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Association mapping reveals
novel genes and genomic
regions controlling grain
size architecture in mini
core accessions of Indian
National Genebank wheat
germplasm collection
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Himanshu Avashthi1, Neelam Shekhawat3, Kartar Singh3,
Kaushlesh Kumar Mishra4, Rakesh Singh1, Mahesh C. Yadav1*,
Gyanendra Pratap Singh1 and Amit Kumar Singh1*

1ICAR-National Bureau of Plant Genetic Resources, New Delhi, India, 2Jaypee University of
Information Technology, Solan, India, 3ICAR-National Bureau of Plant Genetic Resources, Regional
Station Jodhpur, Jodhpur, India, 4Zonal Agricultural Research Station, Powarkheda, India
Wheat (Triticum aestivum L.) is a staple food crop for the global human

population, and thus wheat breeders are consistently working to enhance its

yield worldwide. In this study, we utilized a sub-set of Indian wheat mini core

germplasm to underpin the genetic architecture for seed shape-associated traits.

The wheat mini core subset (125 accessions) was genotyped using 35K SNP array

and evaluated for grain shape traits such as grain length (GL), grain width (GW),

grain length, width ratio (GLWR), and thousand grain weight (TGW) across the

seven different environments (E1, E2, E3, E4, E5, E5, E6, and E7). Marker-trait

associations were determined using a multi-locus random-SNP-effect Mixed

Linear Model (mrMLM) program. A total of 160 non-redundant quantitative trait

nucleotides (QTNs) were identified for four grain shape traits using two or more

GWASmodels. Among these 160 QTNs, 27, 36, 38, and 35 QTNs were associated

for GL, GW, GLWR, and TGW respectively while 24 QTNs were associated with

more than one trait. Of these 160 QTNs, 73 were detected in two or more

environments and were considered reliable QTLs for the respective traits. A total

of 135 associated QTNs were annotated and located within the genes, including

ABC transporter, Cytochrome450, Thioredoxin_M-type, and hypothetical

proteins. Furthermore, the expression pattern of annotated QTNs

demonstrated that only 122 were differentially expressed, suggesting these

could potentially be related to seed development. The genomic regions/

candidate genes for grain size traits identified in the present study represent

valuable genomic resources that can potentially be utilized in the markers-

assisted breeding programs to develop high-yielding varieties.
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Introduction

Bread wheat (Triticum aestivum L.) is an important staple food

crop, serving as the main source of energy, protein, and fiber for

much of the world’s human population (Ling et al., 2013; Ji et al.,

2022). However, with the current rate of yearly increment in wheat

yield, feeding the ever-increasing world population, which is

expected to reach 9.3 billion by 2050, will be a daunting task.

Further, depletion of natural resources such as land and water and a

rise in the mean earth surface temperature exacerbates the problem

and poses a challenge to producing sufficient wheat to feed the

human population in the future (Nehe et al., 2019). To increase

wheat yield, it is important to understand the genetic basis of traits

that contribute to grain yield (GY). Grain yield and its contributing

traits are complex in nature, highly influenced by environmental

conditions, and regulated by multiple genes (Kato et al., 2000; Li

et al., 2019; Ji et al., 2022). Quantitative trait loci (QTL) associated

with GY has been extensively studied and reported on all 21 wheat

chromosomes (Bennett et al., 2012; Sun et al., 2020). Several studies

have identified numerous QTL for GY and productivity (Bennett

et al., 2012; Zegeye et al., 2014; Malik et al., 2021; Ji et al., 2022).

However, there is very limited information on the marker-assisted

improvement of GY traits in wheat. This is primarily due to the

non-availability of tightly linked robust markers with the GY-

associated traits. The conventional QTL mapping approach has

been extensively used for gene mapping and has enabled genetic

dissection of seed traits in wheat (Breseghello and Sorrells, 2007;

Duan et al., 2020). However, this approach does not allow detection

of all the possible allelic variants of the target gene that might exist

in the natural populations of wheat. Another downside of the QTL

mapping approach is its poor resolution. Availability of gold

standard wheat reference genome sequence and high-density SNP

arrays is expected to accelerate high-resolution mapping of complex

traits using both conventional and association mapping approaches

(IWGSC et al., 2018; Chaurasia et al., 2021).

In the past few years, the genome-wide association study

(GWAS) has become a popular approach to identify the QTL

associated with complex traits in crops. In contrast to QTL

mapping, this approach enables the exploration of a large number

of alleles for any locus from a natural population of diverse

individuals. This approach facilitates high-resolution mapping of

traits because the individuals used for the association analysis might

have undergone several rounds of historical recombination (Yu and

Buckler, 2006; Li et al., 2019). Several GWAS studies have been

performed on major crops such as Oryza sativa (Spindel et al.,

2016), Zea mays (Xu et al., 2017; Xu et al., 2018), Hordeum vulgare

(Visioni et al., 2013), Avena sativa (Newell et al., 2011), Brassica

napus (Zhou et al., 2017), Glycine max (Zhang et al., 2015),

Sorghum bicolor (Morris et al., 2013), and in wheat for the

genetic dissection of various desirable traits (Peng et al., 2018;

Chaurasia et al., 2021; Malik et al., 2021). Over the past few years,

efforts have been made to develop GWAS models that are more

suited to investigating genetics of simple as well as complex traits in

plants. These GWAS models are broadly grouped into single-locus

GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS) methods.

SL-GWAS methods have been widely used to detect genetic variants
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for various traits, but one main limitation of this model is that the p-

values of the markers identified to be associated with the target trait

need to be subjected to multiple rounds of testing to avoid false

positive associations. To overcome this limitation, Zhang et al.

(2020) developed a mrMLM package that contains the following six

ML-GWAS methodologies: mrMLM (multilocus random-SNP-

effect MLM) (Wang et al., 2016), FASTmrMLM (fast mrMLM)

(Tamba et al., 2017), ISIS EM-BLASSO (iterative modified-sure

independence screening expectation-maximization Bayesian least

absolute shrinkage and selection operator) (Wen et al., 2017),

pKWmEB (integration of Kruskal-Wallis test with empirical

Bayes) (Ren et al., 2018), FASTmrEMMA (fast multi-locus

random-SNP-effect efficient mixed model analysis) (Wen et al.,

2017), and pLARmEB (polygenic-background-control-based least

angle regression plus empirical Bayes) (Zhang et al., 2017).

Among the GY-associated traits, grain size contributes the

most, making it a key selection target in wheat breeding programs

for developing high yielding varieties. Thousand grain weight

(TGW) is the main component of GY and is determined by

grain size traits such as grain length (GL), grain width (GW),

and grain length width ratio (GLWR) (Sun et al., 2009; Li et al.,

2022). Thus, it is important to understand the genetic and

molecular basis of the mechanisms governing grain size in

wheat genotypes and to identify the superior novel alleles

governing this trait from germplasm collections for exploitation

in the breeding program. Therefore, the main aim of this study

was to dissect the genetic control of grain size traits such as GL,

GW, GLWR, and TGW in wheat germplasm employing 35K SNP

array using multi-locus GWAS approaches.
Materials and methods

Experimental materials and phenotyping

The experimental material for the GWAS study comprised of 125

diverse wheat accessions, a subset of a mini core developed from the

composite wheat core set (Phogat et al., 2020) of the National Genebank

of India. These accessions were comprised of 85 indigenous and 40

exotic collections, which included released varieties, landraces, genetic

stocks, and elite genotypes (Supplementary Table 1). These accessions

were evaluated following augmented block design in five blocks using

four checks (HD2967 and C-306) randomized in each block over five

years (Rabi 2015-16 to Rabi 2019-20). The GWAS panel was evaluated

at the ICAR-National Bureau of Plant Genetic Resources (NBPGR),

Issapur Farm, Delhi located 28.3748° N, 77.0902° E, 228.6 m AMSL, for

five consecutive years; during the fifth year, the trial was also taken up at

the ICAR-NBPGR, Regional Station, Jodhpur located at 26.2389° N,

73.0243° E, 263 m AMSL) and the Zonal Agricultural Research Station,

Powarkheda, Madhya Pradesh located at 22.4154° N, 77.4442° E, 229m

AMSL. In total, these made up seven environments: Delhi (2015-16)-E1,

Delhi (2016-17)-E2, Delhi (2017-18)-E3, Delhi (2018-19)-E4, Delhi

(2019-20)-E5, Powarkheda (2019-20)-E6, and Jodhpur (2019–20) - E7.

Each genotype was grown in a three-rows plot of 2 m length

each, with a row-to-row distance of 0.25 m. Pests and diseases were

controlled chemically, whereas weeds were controlled manually.
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The wheat GWAS panel was evaluated for GL (mm), GW (mm),

GLWR, and TGW (gm) from the harvested grain samples. The

measurements of these grain parameters were performed by

selecting the main spike of five random individual plants in the

middle of the row for each accession. Grains per spike were

estimated by hand-threshing the mature spike. TGW of each

genotype was recorded by weighing all the seeds from a sample,

dividing it by the total seed number measured, and multiplying the

result by 1000. For GL and GW analysis, ten seeds from each five

spikes were measured using digital vernier caliper and average value

of the plot accessions was taken up for analysis. Grain length/width

ratio (GLWR) was calculated by dividing the grain length mean by

the grain width mean for each genotype.
Phenotypic data analyses

The phenotypic data was analyzed using ACBD-R (Augmented

Complete Block Design with R) version 4.0 software (Rodriguez

et al., 2018). The mean, coefficient of variation (CV), least

significant difference (LSD), genotypic variance, and heritability

were estimated. In ACBD-R v4.0, the best linear unbiased predictors

(BLUPs) of each genotype were calculated for each environment

and across environments along with four checks varieties. The

calculated BLUPs were then used in the GWAS analysis. The

frequency distribution graphs, correlation coefficients of the

recorded traits, and principal component analysis were obtained

through SAS JMP Version 14 software (https://www.jmp.com/

en_in/software/data-analysis-software.html).
Genomic DNA isolation and
SNP genotyping

Genomic DNA was isolated from one-week-old wheat seedlings

using the CTAB method (Murray and Thompson, 1980) with a few

modifications and then treated with RNase to remove any RNA

contamination. The integrity of DNA samples was checked on 0.8%

agarose gel and concentration was determined by using a

NanoDrop1000 (Thermo Scientific). Genotyping of isolated DNA

samples was done using Breeder’s 35K Axiom® array (Allen et al.,

2017). The SNPs with a genotyping call rate < 97% and minor allele

frequency (MAF) <5% were removed while performing genomic

data analysis.
Clustering, population structure, and
linkage disequilibrium analysis

A total of 23,874 SNPs were used to perform principal

component analysis (PCA) and generate kinship matrix using

TASSEL 5.2 program (https://www.maizegenetics.net/tassel).

STRUCTURE software was used to estimate the level of genetic

differentiation in the population using the Bayesian model-based

approach; the parameter burn-in period and Monte Carlo Markov

Chain (MCMC) replication number were set to 10,000 and 20,000
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respectively for ten independent runs to estimate the number of

subpopulations (k) in a putative range of k = 1 to 5. The optimal

subpopulation number was estimated using an ad hoc statistic delta

k (Evanno et al., 2005). The squared allele frequency correlation (r2)

between SNP markers was used to estimate linkage disequilibrium

(LD) using TASSEL v5.2 (https://www.maizegenetics.net/tassel).
Genome-wide association analysis

All 125 accessions were genotyped using 35K SNPs array. We

used five ML-GWAS methods which were included in the R

package mrMLM v4.0.2 (https://cran.r-project.org/web/packages/

mrMLM/index.html) . These five models are mrMLM,

FASTmrMLM, FASTmrEMMA, pLARmEB, and ISISEM-

BLASSO. All the parameters were set at default values. The

critical thresholds of significant association for all the five

methods were set as logarithm of the odds (LOD) score ≥3.00.

The most significant SNPs, detected in at least two methods, were

considered as reliable SNPs.
Differential gene expression analysis

We utilized RNA-seq data of two wheat genotypes with

contrasting seed size i.e., IC111905 (large-seeded)and EC575981

(small-seeded) at 15 days and 30 days post anthesis (DPA) with

three biological replicates to check the expression profile of putative

candidate genes located in the identified genomic regions. Illumina

sequencing was performed, which generated approximately 177 Gb

raw data. Approximately 98.5% of reads passed the quality control

and clean reads were mapped back on to the reference genome

(IWGSC v2.0) (https://plants.ensembl.org/Triticum_aestivum/

Info/Index) using bwa-mem software (https://sourceforge.net/

projects/bio-bwa/files/). The differential gene expression analysis

was performed using edge R package and genes with p-value <0.05

were considered as significantly differentially expressed genes. Heat

maps of differentially expressed genes were generated by MeV

software (https://sourceforge.net/projects/mev-tm4/).
Result

Phenotypic evaluation and variability

All the genotypes of the wheat association panel were

phenotyped for grain size parameters (GL, GW, GLWR, and

TGW) in seven different environments (E1-E7). The descriptive

statistics of the investigated traits in seven environments are

presented in Supplementary Table 2, and revealed wide variability

for all the traits. GL ranged from 5.24 to 8.20 mm in E1, 5.09 to

8.17 mm in E2, 4.83 to 8.15 mm in E3, 5.04 to 8.09 mm in E4, 4.43 to

7.79 mm in E5, 4.43 to 8.41 mm in E6, and 4.47 to 7.87 mm in E7.

GW ranged from 2.29 to 3.95 mm in E1, 2.26 to 3.71 mm in E2, 1.89

to 3.73 mm in E3, 1.87 to 3.69 mm in E4, 1.41 to 3.67 mm in E5, 1.41

to 3.58 mm in E6, and 1.48 to 3.81 mm in E7. GLWR ranged from
frontiersin.org

https://www.jmp.com/en_in/software/data-analysis-software.html
https://www.jmp.com/en_in/software/data-analysis-software.html
https://www.maizegenetics.net/tassel
https://www.maizegenetics.net/tassel
https://cran.r-project.org/web/packages/mrMLM/index.html
https://cran.r-project.org/web/packages/mrMLM/index.html
https://plants.ensembl.org/Triticum_aestivum/Info/Index
https://plants.ensembl.org/Triticum_aestivum/Info/Index
https://sourceforge.net/projects/bio-bwa/files/
https://sourceforge.net/projects/bio-bwa/files/
https://sourceforge.net/projects/mev-tm4/
https://doi.org/10.3389/fpls.2023.1148658
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kumari et al. 10.3389/fpls.2023.1148658
1.49 to 2.65 in E1, 1.29 to 2.70 in E2, 1.64 to 3.12 in E3, 1.64 to 3.52 in

E4, 1.62 to 3.12 in E5, 1.69 to 3.12 in E6, and 1.61 to 3.02 in E7. TGW

ranged from 18.00 to 64.54 in E1, 13.51 to 67.56 in E2, 7.91 to 51.93

in E3, 9.87 to 61.39 in E4, 12.17 to 56.66 in E5, 13.75 to 67.21 in E6,
and 14.26 to 55.51 in E7. The coefficients of variation for GL, GW,

GLWR, and TGW ranged from 8.32% to 24.00%, indicating

considerable variability for these traits. The CV percent was

highest for TGW in E6 (24.00%) followed by E4 (21.62%) and E2
(20.39%). The frequency distribution of four traits (GL, GW,

GLWR, and TGW) (Supplementary Figure 1) showed near

normal distribution in all environments, indicating the

quantitative nature of these traits except for GW under

environments E3 and E4.

Based on BLUP analysis (Supplementary Table 3), genotypes

recorded an overall grand mean of 6.33 ± 0.40 mm, 6.34 ± 0.39 mm,

6.28 ± 0.36 mm, 6.23 ± 0.44 mm, 6.27 ± 0.34mm, 6.52 ± 0.28 mm,

and 6.64 ± 0.63 mm respectively under different environments for

grain length, whereas for grain width, overall means of 3.19 mm ±

0.06, 3.19 ± 0.07 mm, 3.10 ± 0.18 mm, 3.02 ± 0.39 mm, 3.22 ±

0.22 mm, 3.08 ± 0.41 mm, and 3.20 ± 0.41 mm respectively were

recorded. GLWR recorded overall mean of 2.02 ± 0.40, 2.02 ± 0.40,

2.06 ± 0.15, 2.08 ± 0.16, 1.95 ± 0.15, 2.12 ± 0.14, and 2.13 ± 0.18 in

different environments, whereas TGW recorded grand means of

42.60 ± 5.24 g, 44.30 ± 6.73 g, 37.66 ± 3.00 g, 39.85 ± 6.84 g, 43.07 ±

5.08 g, 38.35 ± 5.30 g, and 42.00 ± 3.12g respectively. Promising

accessions were identified based on adjusted BLUP mean. The top

ten accessions for GL were EC578134 (7.457mm), IC539313

(7.148 mm), EC339611 (7.106 mm), EC464070 (7.085 mm),

C697725 (7.036 mm), IC252928 (7.033 mm), IC535217

(7.016 mm), EC542279 (7.014 mm), EC313710(7.005 mm), and

EC578152(6.969 mm). For GW, the top ten accessions were

IC252429 (3.753 mm), IC335683 (3.441 mm), IC252954

(3.432 mm), IC335715 (3.418 mm), IC252772 (3.38 mm),

IC574476 (3.378 mm), IC252422 (3.369 mm), IC75240

(3.355 mm), IC122726(3.349 mm), IC116274(3.34 mm), and

IC539314(3.328 mm). Similarly, promising accessions with more

than 50 g thousand grain weight were identified as IC539313

(55.03 g), EC578134 (53.56 g), IC542076 (50.95 g), IC335715

(50.36 g), and EC578152 (50.0g).

The environment-wise heritability and variance components

based on BLUP value are presented in Supplementary Table 3.

Heritability for GL ranged from 22.5% (E7) to 82.4% (E4),

whereas heritability for GW ranged from 22.3% (E7) to 60.2%

(E4). Similarly, heritability for GLWR ranged from 22.0% (E1) to

62.3% (E5), whereas TGW was found to be heritable in the range of

21.8% (E6) to 74.1% (E3).
Multivariate analysis

Correlation between traits in
different environments

Pearson’s correlation coefficients were estimated among grain

traits for diverse wheat accessions under each environment separately

(Supplementary Table 4). GL was found to have a consistently

significant positive correlation with GW (0.368, 0.406, 0.444),
Frontiers in Plant Science 04
GLWR (0.585, 0.562, 0.335), and TGW (0.471, 0.394, 0.538) under

E1, E2, and E3 respectively. Contrarily, GW showed a negative

correlation with GLWR (-0.363, -0.438, and -0.684) and significant

positive correlation with TGW (0.371, 0.380, and 0.604) under E1, E2,

and E3 respectively. Under the environment E4, GL showed

significant positive correlations with GW, GLWR, and TGW that

ranged between 0.225 (GW) to 0.457 (GLWR), while GW showed

highly a significant negative correlation with GLWR (-0.748) and

significant positive correlation with TGW (0.488). Similarly, under

E5, a significant positive correlation was observed with GW (0.406),

GLWR (0.361), and TGW (0.643), while GW showed a significant

negative correlation with GLWR (-0.686) and significant positive

correlation with TGW (0.723). A similar correlation pattern among

s e e d t r a i t s w a s a l s o o b s e r v e d und e r E 6 a nd E 7

(Supplementary Table 4).

Phenotypic correlation between different
environments for traits

The magnitudes of correlation between environments were

assessed for knowing behavior of genotypes for trait expression. A

total of twenty-one combinations of correlations were observed

between different pairs of environments for all the traits

(Supplementary Table 5). Here, significant positive associations

were revealed for response of traits by genotypes for all

environment pairs except five for grain length, and TGW and three

for grain width and GLWR. For GL, these correlation values ranged

from 0.084 between E3 to E7 to 0.985 between E1 to both E2 and E4.

For GW, these correlation values ranged from 0.061 between E4 to E7
to 0.953 between E1 and E2. Similarly, for GLWR, the lowest

association was observed as 0.089 between E4 to E6 and highest as

0.961 between E1 and E2. For TGW, lowest association was observed

as 0.021 between E4 to E6 and highest as 0.954 between E2 and E4.
Principal component analysis and correlation
study based on pooled analysis

PCA was performed on the basis of pooled data for seven

environments for grain parameters. Genotype by trait biplot

depicted two-dimensional spatial diversity of accessions as well as

trait variability (Figure 1A). High trait variability was observed for

traits like GLWR, GL, GW, and TGW, which was evidenced by the

larger length of the characters and high positive correlations

between traits such as GL and TGW and GLWR and GL, and a

negative correlation between TGW and GW, which is evident by the

narrow angle between them. Here, the first principal component,

PC1, explained 57.4% of the cumulative variation. The major

contributing traits for PC1 were GW (0.90), TGW (0.90), and GL

(0.79) in positive direction. Second principal component, PC2,

explained 34.5% of the cumulative variation. The major

contributing traits for PC2 were GLWR (0.97) and GL (0.56).

Further, we analyzed correlations between traits using the BLUP

values where GL showed a highly significant positive correlation

with GW (0.562), GLWR (0.368), and TGW (0.667), whereas GW

showed a highly significant negative correlation with GLWR

(-0.508) and significant positive correlation with TGW (0.680).

GLWR was not significantly related to TGW (Figure 1B).
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Genotyping

A total of 125 wheat accessions representing a subset of the

Indian National Genbank mini core germplasm were genotyped

using 35K wheat SNP array that contains 35,143 genome-wide

single nucleotide polymorphism (SNP) markers. The SNP probe

s equenc e s o f whe a t a r r a y we r e BLASTn (h t t p s : / /

blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html)

against wheat genome to find out their physical location, which

revealed only 31,926 SNPs with known positions. Furthermore,

SNPs were also fi l tered on the basis of minor allele

frequency (≥0.05), missing threshold of < 10%, and call
Frontiers in Plant Science 05
rate ≥97%. Finally, a total of 23,874 SNPs were retained for

genetic diversity, population structure, and GWAS analysis.

Mapping of 23,874 filtered SNP markers provided a whole

genome-wide coverage along the 21 chromosomes of wheat

(Figure 2). Further, distribution analysis of SNPs on wheat

chromosomes revealed that the maximum number of SNPs was

positioned on 1B (1594), followed by 2D (1575) and 1D (1516),

while the lowest number was positioned on 4D (508), followed by

4B (800) and 4A (808). We also compared the distribution of SNPs

on the three wheat sub genomes; it was found that 7,291 SNPs

belonged to A sub-genome, 8,784 SNPs were found on B sub-

genome, and 7,799 SNPs belonged to D sub-genome (Table 1).
A B

FIGURE 1

(A) Principal component biplot based on BLUP value of grain parameters over the environments. (B) Scatter plot showing correlation matrix between
grain parameters based on BLUP value.
FIGURE 2

SNP density plot of 21 wheat chromosomes displaying distribution of SNPs within 5 Mb window size. The horizontal axis shows chromosome length
(Mb); Different colors depict SNP density.
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Population structure, kinship, and linkage
disequilibrium decay analyses

We used 23, 874 SNP markers to ascertain the population

structure in the wheat mini core set using STRUCTURE and PCA

analysis. The most probable number of populations were estimated

using delta K method implemented in the STRUCTURE

HARVESTOR program. The value of DK peaked at K=2 and

revealed two sub-populations in the wheat mini core germplasm.

Sub-population 1 represented 82% of the individuals; out of that,

62% were pure and 38% admixtures. Whereas sub-population 2 had

18% of the individuals of the AM panel, and contained 75% pure

and 25% admixtures. PCA also detected the two sub-populations

indicated by two significant components, explaining the maximum

variation of the population. Further, kinship matrix was also created

to explore the relationship among the individuals using the genome

association and prediction integrated tool (GAPIT) which

demonstrated the presence of two sub-groups within the

association panel (Figure 3).

The LD decay in the wheat mini core set was estimated by

calculating the squared correlation coefficient (r2) for all the SNPs.

The LD decay for the whole genome was 1.9 Mb. Further, it was

found that the decay was most rapid in the A sub-genome (1.63
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Mb), followed by the D sub-genome (1.93 Mb) and B sub-genome

(2.28 Mb) (Figure 4).
GWAS for grain size traits

GWAS was performed using 23,874 SNPs filtered on various

parameters to identify genomic loci associated to four different

grain yield traits (GL, GW, GLWR, and TGW) independently for

the seven environments and also based on the BLUP values derived

from data of grain size traits of all the seven environments. Here, we

have used five multi-locus models (mrMLM, FASTmrMLM,

FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO) to conduct

GWAS. A total of 752 significant SNPs were predicted for four grain

size traits using ML-GWAS models with LOD score ≥ 3. Manhattan

plots for GL drawn using various ML-GWAS models that depict

marker trait associations are presented in Figure 5. Of these 752

SNPs, 72 were identified using BLUP values derived from the data

of all the environments and other SNPs were identified by analyzing

data of each location separately. We classified 752 SNPs according

to trait, which demonstrated that 156, 179, 250, and 167 SNPs were

associated with GL, GW, GLWR and TGW traits, respectively

(Figure 6). In addition, comparative study on the basis of the
TABLE 1 Chromosome-wise distribution of 23,874 SNPs and the intra-chromosomal estimated LD among 125 wheat genotypes.

Chrom Size (Mb) No. of SNP SNP/Mb Density SNP pair in LD
(p <0.05)

SNP pair In LD (r2 = 1) Average LD (r2) D prime

1A 594.1 1138 1.92 102600 5766 0.220567146 0.71973128

1B 689.85 1594 2.31 236002 22116 0.271350626 0.77589076

1D 495.45 1516 3.06 163630 19467 0.314246556 0.77693029

2A 780.8 1187 1.52 101708 1958 0.189312876 0.66675889

2B 801.26 1513 1.89 155261 2648 0.169167472 0.64845702

2D 651.85 1575 2.42 146171 6944 0.249166202 0.73375966

3A 750.84 1024 1.36 62572 1342 0.17548539 0.66747653

3B 830.83 1195 1.44 101455 1207 0.163443076 0.64468071

3D 615.55 1158 1.88 62878 3762 0.239489328 0.71345541

4A 744.59 808 1.09 39406 685 0.177018377 0.65255529

4B 673.62 800 1.19 40467 1107 0.218309804 0.68785027

4D 509.86 508 1 12770 1324 0.308622143 0.78044746

5A 709.77 1132 1.59 76483 1872 0.171701946 0.64123409

5B 713.15 1278 1.79 130839 2647 0.163887549 0.63806885

5D 566.08 1113 1.97 72678 4467 0.232972965 0.7229823

6A 618.08 845 1.37 43714 1187 0.191258087 0.66474072

6B 720.99 1259 1.75 126269 1264 0.171017301 0.65574685

6D 473.59 851 1.8 42753 2005 0.217027812 0.70667145

7A 736.71 1157 1.57 94614 1230 0.165787476 0.65314744

7B 750.62 1145 1.53 78061 1132 0.179186058 0.66074305

7D 638.69 1078 1.69 61139 2465 0.237260494 0.72331864
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GWAS model demonstrated that 28, 32, 36, and 31 SNPs were

predicted for four traits (GL, GW, GLWR, and TGW respectively)

by the mrMLM model while the FASTmrMLM model could detect

34, 42, 79, and 39 SNPs for GL, GW, GLWR, and TGW.

FASTmrEMMA and pLARmEB model identified 13, 20, 17, and

12 and 36, 50, 69, and 45 SNPs for the four traits (GL, GW, GLWR,

and TGW respectively). The ISIS EM-BASSO model detected 45,

38, 49, and 40 SNPs for GL, GW, GLWR, and TGW

respectively (Figure 6).

On the basis of redundancy of SNPs in the models and

locations, we combined the identified SNPs and found a total of

160 SNPs were simultaneously detected in two or more multi-locus

models. These SNPs were designated as reliable QTNs for the

respective traits. Furthermore, distribution of these 160 significant

SNPs was also analyzed across the environments. Out of these 160

QTNs, 87 were confined to only one environment that included 13,

19, 27, and 25 QTNs for GL, GW, GLWR, and TGW respectively,

and 3 QTNs that were associated with more than one trait (Table

S6). On the other hand, a total of 73 QTNs were simultaneously

identified in two or more environments as well as two or more

models (Table 2). Among these 14, 17, 11, and 10 QTNs were

identified for GL, GW, GLWR, and TGW traits respectively while

21 SNPs were associated with more than one trait. The physical

distribution of all the 160 SNPs on chromosomes demonstrated that

SNPs were present on all the chromosomes. Moreover, the highest

number of SNPs were found on chr3D (7 SNPs), followed by chr2D

(6 SNPs), and chr7D (6 SNPs) while chr1D, chr6B, and chr6D had

only one SNPs.
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Allelic effects of identified genomic regions
on grain shape

To evaluate the allelic effects of QTNs on respective phenotype,

we only analyzed those QTNs that were detected in more than two

environments and revealed R2 value ≥10% with at least one GWAS

model. Association panel genotypes were divided into two groups

according to allele types in order to test whether the mean

phenotypes of the two groups were significantly different

(Figure 7). Results showed that six QTNs had significant effect

(P ≤ 0.01) on their respective traits. Among these six QTNs, four

QTNs (Q.GL-GW-3D (AX-95008504), Q.GL-5D (AX-94482861),

Q.GL-5D (AX-95020206), and Q.GL-TGW-6A (AX-95238912))

demonstrated significant effects on GL(mm) whereas one, QTN

Q.GW-4B (AX-94878781), had significant effect on GW and

another, Q.GLWR-2A (AX-94736090), showed significant effect

on GLWR. The QTNs with significant phenotypic effects on seed

traits might contribute to their genetic variations.
Annotation of identified QTNs

All the 160 significantly associated QTNs with grain size traits

that were detected in two or more models were searched for their

annotation in the wheat reference genome assembly cv. Chinese

Spring (IWGSCrefseq version 2.0, https://wheat.pw.usda.gov/GG3/

iwgsc-2.0), available at Plant Ensemble. Of these 160 QTNs,

annotation was only detected for 136 QTNs. The detailed analysis
DA

B

C

FIGURE 3

Population structure analysis of wheat association mapping panel. (A) Magnitude of DK values, rate of change from 2 to 5 in association mapping
panel. (B) Population structure of association panel based on 125 germplasm-based SNP markers at K = 2. Different color columns represent
different sub sub-populations. (C) Principal component analysis showing two sub sub-populations. (D) Heat map of kinship matrix. The heat map
shows the level of relatedness among the population. The darker areas show the level of relatedness between genotypes and the dendrogram
depicts clustering of sub sub-population.
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of annotated SNPs showed that Q.TGW-5D (SNP-AX-95234313)

was located within a gene encoding cytochrome 450 and was

identified in E4 environment using mrMLM and FASTmrMLM

models with LOD score ranging between 3.8 to 3.92. Another,

Q.GW-3D (SNP-AX-94540502), for grain weight identified at the

E6 environment was annotated as ABC transporter and detected by

mrMLM and ISIS EM-BLASSO models. We also checked the

annotation of QTNs that were identified at multiple

environments and found that Q.GL-1B (SNP-AX-94699549),

Q.GL-GLWR-4B (SNP-AX-94879134), Q.GL-3D (SNP-AX-

95074739), and Q.GW-5A (SNP-AX-94657794) were located

w i t h i n g e n e s e n c o d i n g ABC t r a n s p o r t e r , WRKY

transcription_factor, Glucan endo-1,3-beta-glucosidase, and

Zinc_finger_protein respectively. Among these four QTLs, Q.GL-

1B (encoding for an ABC transporter) was located at 585,331,222bp

on chromosome 1B. It was identified in two different environments,

E1 and E4, using ISIS EM-BLASSO model with LOD scores 4.17 and

5.65 and R2 3.05% and 6.42%, respectively. Q.GL-GLWR-4B

(encoding for a WRKY transcription factor) was located on chr4B

at 63,231,309bp position and identified in four different

environments: E1 with ISIS EM-BLASSO model, E2 with ISIS

EM-BLASSO and FASTmrEMMA models, E3 with pLARmEB
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model, and E4 with ISIS EM-BLASSO model. It had an LOD

score ranging between 3.52 to 8.12. This QTN was associated

with GL in all locations except E2. Further, in E2, this Q.GL-

GLWR-4B was also determined by three different models, namely

FASTmrMLM, pLARmEB, and ISIS EM-BLASSO, but associated

with GLWR trait.
Expression analysis

The transcriptome sequencing of contrasting seed size wheat

genotypes, i.e. IC111905 (large-seeded) and EC575981(small-

seeded), was performed at two time intervals during the seed

development (i.e., 15 and 30 DPA) to quantify expression of all

annotated genes within associated genomic regions.

Expression analysis demonstrated that only 123 genes were

expressed in both stages (15 and 30 DPA) of small and large

seeded genotypes, of which 23, 33, 27, and 28 were uniquely

associated with GL, GW, GLWR, and TGW respectively. Among

the identified genes, those with foldchange ≥1 and p-value<0.05 were

considered as significantly differentially expressed genes. A total of 18

and 12 genes were significantly differentially regulated in large seeded
FIGURE 4

The rate of Linkage disequilibrium decay (R2) between pairs of polymorphic markers of the whole wheat genome and its sub-genomes A, B, and D
are plotted against the genetic distance (Mb).
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cultivars at 15 and 30 DPA respectively. At 15 DPA, 11 genes were

upregulated and 7 genes were downregulated, while 6 genes were

significantly upregulated and downregulated in large seed cultivars at

30 DPA (Figure 8). Many genes, including TraesCS7B02G462900

(SNP-AX-94472687; Q.GW-7B), TraesCS2D02G132600 (SNP-AX-

94499721; Q.GLWR-2D) , TraesCS1A02G187000 (SNP-

AX-95120969; Q.TGW-GW-1A), TraesCS2B02G260200 (SNP-AX-

95129853; Q.GLWR-GL-2B), and TraesCS6A02G379200 (SNP-AX-

95151036; Q.GW-6A), were downregulated at both the time points

while TraesCS1A02G427400 (SNP-AX-94605845; Q.TGW-1A),

TraesCS3D02G002700 (SNP-AX-94642652; Q.GW-3D) ,
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TraesCS7A02G111200 (SNP-AX-94820170; Q.GLWR-GL-7A), and

TraesCS3A02G180200 (SNP-AX-94960788; Q.GL-3A) genes were

upregulated at 15 as well as 30 DPA. Result also showed that

Q.GLWR-5B (SNP-AX-94915493) associated with GLWR was

located within gene TraesCS5B02G552400 (hypothetical protein),

which was only expressed in small grain cultivars with 10 fold

upregulation, which showed it has some specific role in small seed

cultivars. Another gene, namely TraesCS7D02G463100, located

within the QTNQ.GW-7D and identified in E1 and E5 location was

upregulated in large grain cultivars. TraesCS7D02G463100 is nuclear

transcription factor associated with GLWR.
FIGURE 5

Manhattan plots of associated QTNs for grain length (GL) in wheat using multi-locus GWAS model. The x-axis shows the chromosome label and the y-
axis displays - thresholds for significance (LOD score = 3) and log10 (p-value). The significant QTNs with LOD score >=3 is represented with purple dots.
FIGURE 6

Distribution of identified and significant SNPs for each trait on the basis of detection models of multi-GWAS.
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TABLE 2 List of significant QTNs detected simultaneously using two or more multi-locus GWAS methods for four wheat yield-related grain shapes
across the environments.

QTN SNP Traits Location Chr Position LOD R2 Models

Q.GW-1A AX-94592848 GW E1,E2 chr1A 3.34E+08 5.69~5.88 0.92~2.1 4,2

Q.TGW-1A AX-94932678 TGW E2,E4 chr1A 5.58E+08 3.18~8.8 11.48~23.69 1,2,4,5,5

Q.GW-1A AX-94997333 GW E1,E2 chr1A 20094503 4~18.51 6.49~23.71 1,2,4,5,4

Q.TGW-GW-1A AX-95120969 TGW,GW E1,E6 chr1A 3.38E+08 3.04~5.3 5.93~6.16 5,3

Q.GLWR-1A AX-95213485 GLWR E1,E3 chr1A 25708710 3.12~26.68 3.32~33.74 1,2,4,5,4,5

Q.TGW-1B AX-94517103 TGW E2,E4 chr1B 6.41E+08 3.87~9.84 7.95~8.58 3,4

Q.GL-1B AX-94699549 GL E1,E4 chr1B 5.85E+08 4.17~5.65 3.05~6.42 5,5

Q.TGW-1B AX-94830564 TGW E2,E4 chr1B 74228850 4.11~10.66 7.94~14.14 4,1,2,5

Q.GW-GLWR-1D AX-95098685 GW,GLWR E3,E4 chr1D 4.17E+08 4.28~5.67 6.66~10.8 1,2,1,4,5

Q.GW-2A AX-94402160 GW E1,E2 chr2A 1.92E+08 3.71~10.65 0~9.68 3,4,2,3,4

Q.GLWR-2A AX-94736090 GLWR E1,E2,
E3,E4,E5

chr2A 7.69E+08 3.26~5.91 4~11.47 1,4,5,5,1,2,4,5,3

Q.TGW-2A AX-94780053 TGW E2,E4 chr2A 7.79E+08 3.19~7.47 3.12~14.19 1,2,4,5,5

Q.TGW-2A AX-95012027 TGW E2,E4 chr2A 71666146 6.22~6.6 4.77~7.37 4,5

Q.TGW-GW-2B AX-94470912 TGW,GW E3,E5 chr2B 7.73E+08 3.85~5.26 9.44~14.2 2,3

Q.GW-2B AX-94519462 GW E3,E4 chr2B 5.46E+08 3.87~6.47 7.7~12.23 1,2,3,1,2,3

Q.GL-GW-2B AX-94878848 GL,GW E3,E4 chr2B 5.46E+08 5.66~6.67 7.97~17.37 1,2,4,5,4,5

Q.GLWR-GL-2B AX-95129853 GLWR,GL E1,E3 chr2B 3.26E+08 4.54~8.2 3.71~28.72 2,4,1,2,4,5

Q.GL-TGW-2D AX-94618441 GL,TGW E3,E4 chr2D 6.23E+08 3.32~7.21 7.41~12.87 2,1,5

Q.GW-2D AX-94655905 GW E1,E2 chr2D 96623607 4.23~7.86 0~2.05 4,2,4

Q.TGW-2D AX-94745278 TGW E2,E4 chr2D 22451354 3.32~10.06 3.8~11.63 1,2,4,5,1,2,5

Q.GLWR-2D AX-94774424 GLWR E3,E4 chr2D 4.85E+08 4.47~11.69 3.06~6.63 2,5,4,1

Q.GLWR-2D AX-94922377 GLWR E1,E2 chr2D 2693668 3.61~4.63 0~23.04 4,1,2

Q.GL-2D AX-95128254 GL E1,E2 chr2D 3.52~5.94 2.52~9.48 1,2,5,5

Q.GW-3A AX-95109402 GW E1,E2 chr3A 25939226 4.3~5.83 0.95~3.02 4,5,4

Q.GL-GL-GL-3A AX-95187884 GL E1,E4 chr3A 10884903 3.3~4.97 0~12.07 2,1,2

Q.GLWR–3B AX-94671460 GLWR, E3,E4 chr3B 7.46E+08 3.47~5.4 0~2.63 4,5,5

Q.GLWR-3B AX-94799334 GLWR E1,E2 chr3B 8.18E+08 4.09~4.32 0~6.96 4,2

Q.GLWR-3B AX-95150002 GLWR E1,E2 chr3B 5.52~6.85 0.54~7.19 4,4,5

Q.GW-TGW-3D AX-94401378 GW,TGW E2,E4 chr3D 6.08E+08 4.24~5.96 4.76~7.65 5,2,4,1

Q.TGW-3D AX-94406908 TGW E2,E3,E4 chr3D 2.39E+08 3.16~8.2 7.21~11.48 1,2,2,4

Q.GLWR-GW-3D AX-94535556 GLWR,GW E1,E2,E5 chr3D 3.16~10.15 3.21~7.93 3,4,4,5,1,2,3

Q.GW-3D AX-94642652 GW E1,E2 chr3D 1253893 3.33~10.06 10.18~29.66 5,1,4,5

Q.GW-GLWR-3D AX-94749865 GW,GLWR E3,E4 chr3D 5.28E+08 4.1~6.7 4.64~21.47 1,4,5

Q.GL-GW-3D AX-95008504 GL,GW E1,E2,E4,E5 chr3D 1.51E+08 3.05~6.33 4.09~14.97 1,2,1,2,4,5,4,5

Q.GL-GL-3D AX-95074739 GL E2,E4 chr3D 5.77E+08 3.84~4.85 2.14~2.66 4,4

Q.GL-4A AX-94839917 GL E1,E2 chr4A 45529997 4.92~6.13 15.33~31.94 1,2,5,4,5

Q.GLWR-4A AX-95019395 GLWR E1,E2 chr4A 29453952 3.6~8.31 2.61~8.88 2,3,5,3

Q.TGW-4B AX-94425015 TGW E1,E4 chr4B 2036666 3.2~3.75 1.83~2.94 5,5

(Continued)
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Discussion

Grain yield is a highly complex agronomic trait, governed by

several genes and also influenced by environmental conditions (Li

et al., 2022). It is essentially determined by two main components
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i.e., number of grains per m2 and thousand grain weight (TGW)

(Sun et al., 2009; Kumari et al., 2018; Li et al., 2019). In the breeding

history, grain yield was mainly improved with increase in the grain

number per m2, which is determined by grain number per spike

(Kumari et al., 2018). In the present study, we focused on the grain
TABLE 2 Continued

QTN SNP Traits Location Chr Position LOD R2 Models

Q.GW-4B AX-94433424 GW E1,E2 chr4B 6.72E+08 3.78~8.49 0.62~11.76 1,2,4,4

Q.TGW-GW-GL-4B AX-94878781 TGW,GW,GL E2,E3,E5 chr4B 6.45E+08 3.6~4.86 8.89~16.14 5,1,2,4

Q.GL -GLWR-4B AX-94879134 GL,GLWR E1,E2,E3,E4 chr4B 63231309 3.52~8.12 3.44~7.27 5,3,24,

Q.TGW-4B AX-95232992 TGW E1,E2 chr4B 3.89E+08 4.39~5.06 7.48~9.31 3,3

Q.GW-5A AX-94657794 GW E3,E4 chr5A 6.74E+08 3.48~4.01 3.53~3.62 4,4

Q.GL-GW-5A AX-94909932 GL,GW E1,E4 chr5A 11068517 3.17~9.9 1.54~5.26 5,1,2,4,5,5

Q.GW-5B AX-94424550 GW E1,E2 chr5B 4.76E+08 3.42~11.54 1.49~4.19 2,3,4

Q.GW-5B AX-94531833 GW E1,E2 chr5B 7.13E+08 3.5~9.78 0~6.7 2,4,5,1,2

Q.GW-GL-5B AX-94711368 GW,GL E5,E7 chr5B 7034159 3.71~3.72 2.93~4.95 4,5

Q.GLWR-5B AX-94915493 GLWR E1,E2 chr5B 7.03E+08 4.19~18.5 2.94~5.97 2,4,5,1,2,4

Q.GL-TGW-5B AX-95189661 GL,TGW E1,E3 chr5B 4.64E+08 3.61~5.05 4.61~12.21 4,2,4

Q.GL-5D AX-94424746 GL E1,E4 chr5D 3.54E+08 3.35~4.94 7.6~13.92 4,1,2,5

Q.GL-5D AX-94482861 GL E1,E2,E4 chr5D 5.15E+08 4.91~10.32 7.8~12.41 1,2,4,4

Q.GL-5D AX-95020206 GL E1,E2,E4 chr5D 5.02E+08 3.57~4.95 6.38~11.63 3,2,3,2,3

Q.GL-5D AX-95078562 GL E2,E3 chr5D 3.85E+08 3.92~7.33 2.37~9.56 5,1,2,3,4,5

Q.GW-5D AX-95192563 GW E3,E4 chr5D 3.82E+08 3.29~3.46 0~11.47 2,2

Q.GLWR-6A AX-94615640 GLWR E3,E4 chr6A 9253732 5.03~6.88 6.04~6.41 3,2

Q.GLWR-6A AX-94722285 GLWR E3,E4 chr6A 3.08E+08 3.47~7.59 5.03~18.87 3,2,4,5

Q.GW-6A AX-95151036 GW E1,E2 chr6A 6.00E+08 3.07~3.11 4.49~4.79 3,3

Q.GL-TGW-GL-6A AX-95238912 GL,TGW,GL E3,E4,E5 chr6A 3.63E+08 3.46~8.23 2.6~23.8 4,4,1,2,3,4,5

Q.TGW-6A AX-95240001 TGW E2,E4 chr6A 1.61E+08 3.06~6.9 2.32~5.5 4,2,3

Q.GL–6B AX-94405863 GL, E6,E7 chr6B 5.39E+08 5.44~7.24 7.15~13.4 1,2,4,5,4,5

Q.GW-6D AX-95143327 GW E3,E4 chr6D 7088328 3.16~4.01 3.9~7.26 3,5,3,4

Q.GLWR-GL-7A AX-94820170 GLWR,GL E1,E3 chr7A 68087433 3.26~5.69 0.56~9.02 2,4,4,5

Q.GL-7A AX-95130728 GL E2,E4 chr7A 68861347 3.97~6.44 4.52~7.2 4,4,5

Q.GLWR-GL-7B AX-94551830 GLWR,GL E1,E2 chr7B 6180054 3.89~7.01 0~4.27 2,5

Q.GLWR-7B AX-94754235 GLWR E1,E2 chr7B 6.26E+08 3.81~5.17 2.72~8.3 3,4,5

Q.GLWR-GL-7B AX-94928980 GLWR,GL E1,E3 chr7B 6153426 3.62~4.26 0~5.2 2,5

Q.GL-7B AX-95181207 GL E1,E2 chr7B 6.88E+08 3.28~5.79 3.54~9.82 1,3,5,5

Q.GW-GLWR-7D AX-94460120 GW,GLWR E1,E2 chr7D 3.48~7.27 0.69~10.14 4,3,3,4,5

Q.GW-7D AX-94674756 GW E1,E5 chr7D 5.78E+08 3.44~3.81 1.63~6.26 1,4,5

Q.GL-7D AX-94872194 GL E1,E3,E4 chr7D 6.34E+08 3.32~8 4.82~21.88 4,2,4,5

Q.GW-7D AX-95009696 GW,GW E3,E4 chr7D 4.72E+08 3.56~4.04 2.05~3.55 2,5

Q.GL-7D AX-95014664 GL E1,E2,E4 chr7D 1.03E+08 3.22~6.76 5.76~8.2 2,4,1,2,4

Q.GW-7D AX-95127613 GW E3,E4 chr7D 1.01E+08 5.45~6.53 8.82~9.18 3,3
1, mrMLM; 2, FASTmrMLM; 3, FASTmrEMMA; 4, pLARmEB; 5, ISIS EM-BLASSO.
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shape traits i.e. GL, GW, and GLWR, which determine TGW, a

phenotypically stable yield contributing trait and used by the

breeders for selecting high yielding varieties (Avni et al., 2018;

Duan et al., 2020). The TGW and other grain size traits contribute

to higher grain yield than grain number per spike. (Ji et al., 2022).

Thus, it is very important to study the grain shape traits when the

aim is to improve grain yield. Here, we have applied GWAS to

identify genomic regions regulating variation for grain yield in a

sub-set of the Indian National Genebank wheat mini core set

germplasm (125 accessions). These mini core set accessions have

been identified from a core set (2226 accessions), constituted from

the entire wheat accessions (22416) conserved in the National

Genebank of India (Phogat et al., 2020). Therefore, the mini core

set accessions are a valuable genetic resource for mapping various

desirable traits including grain shape traits.

The phenotyping of wheat mini core set accessions across the

seven environments revealed significant variability among wheat

accessions for grain parameters. High coefficients of variation for

TGW under all the environments indicated broad phenotypic

variation and a large improvement potential. Heritability is the

proportion of genotypic variance to all observable variance in the

total population. Over the environments, heritability was high for GL

and moderate for GW, GLWR, and TGW. The trend of heritability is
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more specific to environment than traits, as we observed low/

moderate heritability for E5 and E6. These environments fall in

stress prone areas affected by less rainfall and high temperatures,

which might have caused low heritability of the traits. Promising

accessions for grain parameters were identified. Among them,

EC578134, IC539313, IC535217, EC464070, and EC578152 were

promising for GL as well as TGW. EC339611, EC578134, and

IC535217 were promising for GL as well as GLWR, whereas

IC335715 was promising for GW and TGW. These accessions can

be used in breeding programs for trait introgression, genetics, and

genomics study. The significant positive correlation of grain length

and width with thousand grain weight revealed that the selection of

grains with increased width and length can greatly contribute to grain

weight and indirectly to grain yield. Earlier studies have reported

moderate to strong correlations between TGW and size (Rasheed

et al., 2018). Simmonds et al. (2016) reported that GL and GW in

tetraploid and hexaploid wheat can greatly influence the TGW, as

longer and broader grains have more starch accumulation and, hence,

a higher weight (Simmonds et al., 2016). Previous studies have also

reported positive associations among TGW, GL, and GW (Breseghello

and Sorrells, 2007; Ramya et al., 2010). Principal component analysis

also found GW, TGW, and GL as major contributing traits positively

contributing to variations in grain shape among wheat genotypes
A B

D E F

C

FIGURE 7

Boxplot for 6 reliable QTNs (A–F). Genotypes were divided into two groups at each locus based on the allele type. A significant difference between
the phenotype of these two groups was analyzed using t-test (P ≤ 0.001). Two alleles for each QTN (Locus) are given on X-axis. Y-axis shows
phenotypic values of the traits.
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(Figure 1). In our study, the association between GW and GLWR is

consistent and significantly negative in all environments. A negative

correlation between GW and GLWR could be attributed to

compensation of photosynthates to GW rather than to GL. The

different correlations could be explained by the influence of the

environment on the plant growth and grain development. This

study shows that GL, GW, and GLWR are all expected to increase

with TGW, one of the major yield components of grain yield and

which can be targeted to enhance wheat yield potential. Genetic

diversity and population structure in the wheat mini core subset

was analyzed using 35K wheat SNP array. Both STRUCTURE and

PCA analyses revealed two subpopulations in the wheat mini core set

germplasm used in our study. The whole genome LD decay distance

in the wheat mini core set was 1.93Mb. Further, LD decay was most

rapid in A genome followed by D and B sub-genome. Many earlier

studies in wheat have reported much longer LD decay distance

ranging from 4Mb to 15 Mb or even more (Pang et al., 2020; Hanif

et al., 2021; Li et al., 2021). This suggested the presence of a big LD

block size, which has so far limited high-resolution trait mapping in

wheat. One of the ways to overcome this problem is to use a very high

density genic-SNP array having lakhs of SNPs derived from the coding

regions for genotyping of association panels used for conducting

GWAS. The high-density genotyping would facilitate construction

of haplotypes maps of the associated regions that may help us in

pinpointing the exact causal SNP/genes for the target traits.
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The Genome-wide association study (GWAS) has been found

to be a powerful tool to investigate genetic bases of complex traits in

many plant species such as rice, maize, soybean, and wheat (Zegeye

et al., 2014; Zhang et al., 2015; Spindel et al., 2016; Zhang et al.,

2018; Chaurasia et al., 2020; Chaurasia et al., 2021). There are many

statistical methods based on different algorithms that can be used to

predict the true association between SNP markers and

corresponding phenotypic variations in GWAS (Spindel et al.,

2016). In our study, we used the ML-GWAS method for the

detection of marker trait-associations for grain shape traits.

Multi-locus methods are effective because of their higher

statistical power which provides higher efficiency and accuracy for

QTNs detection. In numerous studies, it has been found that ML-

GWAS is much better than other methods (Bennett et al., 2012;

Visioni et al., 2013; Spindel et al., 2016; Ma et al., 2018; Xu et al.,

2018; Khan et al., 2019). Peng et al. (2018) used six ML-GWAS

models to detect the genetic dissection of 20 free amino acid (AA)

levels in T. aestivum and claimed that ML-GWAS methods are

more reliable and powerful. In the current study, we used five multi-

locus methods, mrMLM, FASTmrMLM, FASTmrEMMA,

pLARmEB, and ISIS EM-BLASSO, to perform GWAS analysis of

four agronomic traits in our association panel. Among these five

models, pLARmB identified the highest number of QTNs (211

SNPs), followed by FASTmrMLM (202), ISI EMBLASSO (177),

mrMLM(132), and FASTmrEMMA(62).
A

B D

C

FIGURE 8

Heat maps of candidate genes identified for four-grain shape traits in small and large-size seeded wheat genotypes at the two developmental stages
(15 and 30 DPAs). The figure panels show heat map for traits (A) GL, (B) GW, (C) GLWR, and (D) TGW. The genotype names are suffixed with 15 and
30, which indicate number of days after post-anthesis. Red indicates higher gene expression while green represents lower gene expression level; the
gene expression levels are log2 transformed.
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QTNs for thousand grain weight,
grain length, grain width and grain length
width ratio

QTL for grain yield component traits have been extensively studied

and reported on all the 21 chromosomes of wheat (Brinton et al., 2017;

Cao et al., 2019; Ma et al., 2019; Ji et al., 2022). In our analysis, a total of

160 reliable QTNs were detected for four grain shape-related traits

across the seven locations (Table 2; Supplementary Table 6).

For grain length, 27 QTNs were detected, which were

distributed on 17 wheat chromosomes (chr1B, chr1D, chr2B,

chr2D, chr3A, chr3B, chr3D, chr4A, chr4B, chr5A, chr5B, chr5D,

chr6B, chr6D, chr7A, chr7B, and chr7D). Among these 27 QTNs,

10 QTNs were major (R2 ≥ 10% at least in one GWAS method), of

which Q.GL-4A (SNP-AX-94839917), Q.GL-7D (SNP-AX-

94872194), Q.GL-7A (SNP-AX-94760450) and Q.GL-6D (SNP-

AX-94647721) were strongest because their R2 value were ≥20%.

The Q.GL-4A on the chr4A with highest R2 = 31.94% may explain a

significant proportion of the variation for GL in the wheat mini core

germplasm. Moreover, this QTN was identified simultaneously in

two environments i.e., E1 and E2, and with four different models.

TheQ.GL-7D is located within a gene encoding Thioredoxin M type

protein with R2 ranging between 4.82% to 21.88%. This QTN was

predicted in three different environments i.e., E1, E3, and E4, and

using three different models, suggesting this could be a reliable QTN

contributing to GL variation in wheat. In an earlier study,

Thioredoxin has been shown to play an important role in

preventing sprouting of developing grains in cereals (wheat and

barley) by reducing the intramolecular disulfide bonds of storage

proteins and other proteins in the starchy endosperm, and thereby

affecting grain yield (Guo et al., 2013).

For grain width, 36 QTNs were identified that were distributed

on 17 wheat chromosomes. Among these QTNs, Q.GW-3D (SNP-

AX-94642652), Q.GW-5B (SNP-AX-94547840), Q.GW-3A (SNP-

AX-94741529), Q.GW-4D (SNP-AX-95213549), and Q.GW-2B

(SNP-AX-94519462) were predicted as major QTNs as the

phenotypic variance explained by these QTLs was ≥10% of at

least one of the ML- GWAS models. Q.GW-3D and Q.GW-5B

were annotated as unnamed protein product and hypothetical

protein respectively. Additionally, Q.GW-2B and Q.GW-4D had

R2 values ranging from 7.7 to 12.23 and 0.72 to 17.72, respectively.

Q.GW-2B was identified at two environments E3 and E4, while

Q.GW-4D was identified at E2. Interestingly, both intragenic SNPs

showed higher expression in large grain wheat cultivars than small

seed cultivars. This suggested that these QTNs might have

important roles in determining variation for GW in wheat.

Thirty-seven and thirty-five QTNs were predictive for GLWR

and TGW traits respectively. The GLWR-associated QTNs were

distributed on 17 chromosomes (chr1A, chr1D, chr2A, chr2B,

chr2D, chr3A, chr3B, chr3D, chr4A, chr4B, chr5A, chr5B, chr6A,

chr6B, chr6D, chr7B, and chr7D) while QTNs for TGW were

spread over 16 chromosomes (chr1A, chr1B, chr1D, chr2A,

chr2B, chr2D, chr3A, chr3B, chr3D, chr4B, chr4D, chr5A, chr5D,

chr6A, chr7B, and chr7D). In TGW, a total of fourteen SNPs had

R2≥10 and were considered as major genomic regions for this trait.

Q.TGW-1A (SNP-AX-94605845) was annotated as TTL1 protein
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(TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 1) with

R2 = 11.78% and highly expressed in large grains. Studies have

reported that TTL1 positively regulates the stress response regulated

by ABA (Guo et al., 2013). The loss of TTL1 function causes plants

to be sensitive to salt and osmotic stress during seed germination

and later development (Rosado et al., 2006). So, it could be possible

that the identified genomic region in our study may positively

regulate the expression of TTL1 gene and regulate seed maturation.

Q.TGW-5D (SNP-AX-95234313) was located within a gene

encoding cytochrome 450 and it was only identified at E4

environment with R2 = 21.45. In a previous study on cytochrome

family protein, CYP78A3 on chr7 has been shown to play an

important role in wheat seed development by promoting

integument cell proliferation (Ma et al., 2015). Thus, it could be

suggested that Q.TGW-5D (cytochrome 450) identified in our study

might also have some role in seed development. A total of 13 QTNs

were associated with GLWR and were considered as strong QTNs

explaining ≥10% phenotyping variance of the trait. Most of the

QTNs were annotated to be either hypothetical proteins or

intergenic SNPs. Three QTNs for TGW, namely Q.GLWR-2D

(SNP-AX-94922377), Q.GLWR-1A (SNP-AX-95213485), and

Q.GLWR-6A (SNP-AX-94722285), were simultaneously identified

in three different environments and located on chr2D, chr1A, and

chr6A respectively.
Comparison of the QTLs identified in the
present and previous studies

In wheat, several candidate genes underlying grain size and weight

have been identified including TaGS (Bernard et al., 2008), TaGW2

(Su et al., 2011), TaGS-D1 (Zhang et al., 2014), TaCWI (Jiang et al.,

2015), and Tackx4 (Chang et al., 2015). Additionally, McCartney et al.

(2005) identified two major QTLs for TKW responsible for reduced

plant height that were near the Rht-B1b and Rht-D1b genes that

control plant height (McCartney et al., 2005; Gao et al., 2015). Another

QTL, Qtgw-cb.5A, was identified as a key determinant of final grain

weight which increased grain length by driving pericarp cell expansion

(Brinton et al., 2017). We performed the comparative analysis of

QTNs for grain shape identified in the present study with previously

reported QTLs on the basis of their physical locations on

chromosomes. Some of the previously reported grain size-associated

QTLs were also predicted in our analysis. For example, Qgl.cib-CK1-

4A associated with GL on chr4A coincided with Q.GL-4A (SNP-AX-

94839917) for grain length trait at the same region on chr4A and

identified in two environments (E1 and E2). Further, LOD (4.92~6.13)

and R2 value (15.33~31.94) of this QTL demonstrated its importance

in regulating GL trait. Goel et al. (2019) identified qTKW.6A.1

associated with TGW on 6A at the interval 166.64-596.18 Mb (Goel

et al., 2019). The QTN,Q.TGW-6A (SNP-AX-95240001), identified in

our study appears to correspond to qTKW.6A.1. Interestingly,

Q.TGW-6A was identified at two locations, E2 and E4, which

showed that it is a stable genomic region for TGW. Further, we

found that Q.GL-TGW-6A (SNP-AX-95238912) and Q.GLWR-6A

(SNP-AX-94722285), which are located on chr6A at 362.7Mb and

307Mb, overlapped with the grain shape QTLs identified by Cao et al.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1148658
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kumari et al. 10.3389/fpls.2023.1148658
(2019) and Ji et al. (2022), respectively. Interestingly, Q.GL-TGW-6A

was identified in three environments (E3, E4, and E5). LOD score and

R2 value ofQ.GL-TGW-6A and Q.GLWR-6A ranged from 3.46 to 8.23

and 2.6 to 23.8 respectively. On the other hand, Q.GLWR-6A was

present at 307Mb on chr6A with LOD score (3.47~7.59) and R2 value

(5.03~18.87). Since the two QTNs on chr6A were also identified in the

previous studies, these appear to represent major genomic regions for

the grain shape traits.

A few other underlying genes influenced grain size and weight

have been reported by Cabral et al., 2018. TaGS-D1, controlling GL

and grain weight, is an ortholog ofOsGs3 and located at 106.73 Mb on

chr3D. Expression pattern of this TaGS-D1 (TraesCS7A03G0037700)

gene in our data showed relatively higher expression in large seeded

genotypes as compare to small seeded genotypes. So, we examined

nearby QTNs around the gene and we found two QTNs,Q.GLWR-7D

and Q.TGW-7D, located in the vicinity of TaGS-D1 and positioned at

54.9Mb on chr7DS and 100.1 Mb on chr7D respectively. The presence

of these two QTNs indirectly suggested a major locus which

corresponds to either TaGS-D1 or an additional novel gene for

grain shape trait on the short of chr7D. A second grain weight locus

cytokinin oxidase/dehydrogenase (TaCKX6-D1) gene is physically

located on chromosome 3D and played a key role in controlling

cytokinin levels and affects grain weight in wheat (Zhang et al., 2012).

TaCKX6-D1 gene is located at 106.73 Mb on chr3D, so its expression

could be influenced by nearby SNPs around the gene. On the basis of

the physical location of gene, we found two significant genes, Q.GL-

GW-3D and Q.TGW-3D (SNP-AX-95008504, and SNP-AX-

94406908), in our analysis at 151.4 Mb and 239.3 Mb respectively.

Q.GL-GW-3D associated with GL was identified in four environments

(E1, E2, E4, and E5) with LOD value from 3.05 to 6.33 and R2 value

from 4.09 to 14.97, which showed the significance of SNP. The second,

Q.TGW-3D, demonstrated association with TGW with LOD

(3.16~8.2) and R2 (7.21~11.48) and was identified at E2, E3, and E4

environments. Both the QTNs were annotated as hypothetical

proteins and expressed in our transcriptome data. Q.TGW-3D was

highly expressed in large seed cultivars while Q.GL-GW-3D also

showed expression in both cultivars. In conclusion, in this study we

have comprehensively phenotyped wheat mini core germplasm

accessions for grain shape traits and identified promising accessions

for large grain size and length which can be incorporated in breeding

programs. Further, integration of phenotyping and genotyping data

has enabled us to identify genomic regions/candidate genes, some of

which are novel. Comparative study also showed that many QTNs

identified in our study represented novel genomic regions that can be

further validated for their role in determining grain size and can be

potentially exploited in breeding programs to develop high-

yielding varieties.
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