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Abstract

T1 mapping using cardiovascular magnetic resonance (CMR) introduces novel techniques for myocardial tissue char-
acterization to detect and quantify disease processes occurring at the microscopic level. Even though T1 mapping has 
limited spatial resolution, cellular and molecular changes occurring within each voxel can affect the aggregate T1 
signal rendering them quantifi able. The estimated T1-based parameters quantifi ed on a “map” demonstrate the spatial 
localization of these changes whereby each pixel expresses the quantitative value of that parameter. This quantifi ca-
tion permits detection of diffuse disease even if it is not directly visible. Rather than relying on nonspecifi c functional 
measures, T1 mapping focuses on intrinsic changes of myocardial composition that advances understanding about spe-
cifi c disease pathways. These changes in myocardial tissue composition inform diagnosis and prognosis. T1 mapping 
encompasses two key parameters: native (i.e., precontrast) T1 and extracellular volume fraction (ECV) derived from 
additional postcontrast T1 and blood T1 measurements. These advances introduce new tools to detect focal and diffuse 
myocardial derangements occurring in cardiac disease that can be otherwise diffi cult to detect. T1 and ECV mapping 
foster precision medicine and personalized care, promising to improve patient outcomes through targeted therapy. 
Capitalizing on the opportunities introduced by T1 mapping and ECV requires further investigation. 

Keywords: T1 mapping; extracellular volume; myocardial fi brosis; remodeling; amyloidosis

Correspondence: Erik B. Schelbert, MD, MS,  Director, 
Cardiovascular Magnetic Resonance Center, Heart and 
Vascular Institute, UPMC, Pittsburgh, PA, USA; and 
 Assistant Professor of Medicine and Clinical and 
Translational Science, University of Pittsburgh School 
of Medicine, 200 Lothrop Street, PUH A349, Pittsburgh, 
PA 15101, USA, Tel.: 412-647-5840, Fax: 412-647-4227, 
E-mail: schelberteb@upmc.edu

Introduction

T1 mapping using cardiovascular magnetic reso-
nance (CMR) introduces novel techniques for myo-
cardial tissue characterization to detect and quantify 
disease processes occurring at the microscopic 
level. Rather than relying on nonspecifi c functional 

measures, T1 mapping focuses on intrinsic changes 
of myocardial composition that advances under-
standing about specifi c disease pathways. These 
changes in myocardial tissue composition inform 
diagnosis and prognosis. 

T1 mapping encompasses two key parameters: 
native (i.e., precontrast) T1 and extracellular volume 
fraction (ECV) derived from additional postcon-
trast T1 and blood T1 measurements. Native T1 can 
refl ect myocardial changes related to disease affect-
ing the entire myocardium, whether intracellular or 
extracellular [1]. In contrast, ECV is more specifi c 
and mostly refl ects myocardial changes limited to 
the extracellular interstitial space which includes 
the vascular compartment [1]. These two param-
eters appear to be robust for diagnosing specifi c 
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disease processes [2]. These advances introduce 
new tools to detect focal and diffuse derangements 
in myocardial structure occurring in cardiac disease 
that can be otherwise diffi cult to detect [3–6].

Optimal diagnosis and prognosis promises opti-
mal treatment whereby the patient’s therapy can be 
matched to the underlying disease process. Indeed, 
this important principle of myocardial tissue com-
position-guided therapy has already been demon-
strated with other myocardial CMR parameters [i.e., 
T2*(star)] whereby CMR guided care improved 
disease detection/severity measurement culminat-
ing in markedly improved patient outcomes [7]. It 
appears likely that T1 and ECV mapping will show 
similar impact in patient care. This review focuses 
on the emerging key principles involving the clini-
cal application of T1 mapping.

Native T1, ECV, and Parametric 
 Mapping

T1 is physical property of matter. The term “T1” 
refers to the exponentiated time constant represent-
ing the nonlinear recovery of longitudinal magneti-
zation (spin-lattice relaxation) after a radiofrequency 
pulse. T1 is expressed in units of time (e.g., msec) 
and varies with temperature and chemical composi-
tion. Thus the accumulation of gadolinium based con-
trast agent, iron or glycosphingolipid can lower T1 in 
myocardium in proportion to severity. Practically, T1 
is estimated by fi tting the changes in signal intensity 
in T1 weighted images acquired at various time points 
following an inversion pulse. Modifi ed Look Locker 
inversion (MOLLI) [8] is the most studied pulse 
sequence for myocardial T1 measurement, but other 
sequences also measure myocardial T1 [9–13]. Their 
relative merits and feasibility for clinical implementa-
tion remain areas of active investigation [14]. MOLLI 
uses a 3 parameter model to describe signal intensity 
(SI) as a function of exponentiated time after a 180 
degree radiofrequency inversion pulse (TI): 

( T1/T1 )SI | A B e |
∗−= − ⋅

where T1=T1*((B/A)−1) [8, 15, 16].
If myocardial T1 is additionally measured post 

gadolinium contrast (Gd), typically between 10 
and 20 min after 0.1–0.2 mmol/kg bolus, Gd 

concentrations in the plasma and interstitium are 
in equilibrium because renal clearance is slow rela-
tive to its dispersion through the body. The uptake 
of Gd in the myocardium relative to plasma is a 
direct measure of the interstitial space with mini-
mal dependence of gadolinium concentration since 
Gd contrast is extracellular [17]. ECV exploits this 
characteristic and is defi ned as: 

ECV (1 hematocrit)= λ ⋅ −

where λ=[ΔR1
myocardium

]/[ΔR1
bloodpool

] pre and post 
gadolinium contrast (where R1=1/T1) [1]. 

The term “mapping” refers to the measurement 
of native T1 or ECV on a pixelwise basis. Mapping 
requires coregistration of component images from 
which the data are fi t to generate the parameter esti-
mates. Mapping permits visualization and spatial 
localization of T1 (Figure 1) or ECV (Figure 2). 
The signal intensity of regions of interest drawn on 
a T1 or ECV map by a reader yields the quantita-
tive value of T1 or ECV. Color coding with look-up 
tables permits rapid qualitative interpretation based 
on visual inspection of the map.

Even though T1 mapping has limited spatial 
resolution, cellular and molecular changes occur-
ring within each voxel can affect the aggregate T1 
signal rendering them quantifi able. The estimated 
T1-based parameters quantifi ed on a T1 or ECV 
map demonstrate the spatial localization of these 
changes whereby each pixel expresses the quan-
titative value of that parameter. This quantitation 
permits detection of diffuse disease even if it is not 
directly visible (Figures 1 and 2).

These innovations are important because disease 
severity is quantifi ed, and its spatial extent and distri-
bution are also demonstrated on the map. Thus, myo-
cardial disease can be rapidly detected regardless of 
whether focal or diffuse. Non quantitative “weighted” 
images, e.g., late gadolinium enhancement (LGE), 
are not robust for detecting diffuse disease and are 
not validated for this purpose [19]. LGE images are 
expressed in arbitrary units and can only detect spatial 
variation in myocardial fi brosis, e.g., “hot spots” rela-
tive to the most normal appearing myocardium which 
may not be normal at all. LGE cannot quantify the 
extent of diffuse interstitial expansion. Historically, 
diffuse myocardial disease has been diffi cult to meas-
ure or even appreciate noninvasively.
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Pitfalls in T1 and ECV Mapping

T1 and ECV mapping demand more technical 
complexity for accurate image generation than T1 
weighted imaging. It is imperative that the CMR 
practitioner be intimately familiar with several 

potential problems in image acquisition. Since T1 
measures are sensitive to scanner characteristics and 
specifi c parameters related to sampling of T1 recov-
ery, normative data from healthy volunteers should 
be generated for each scanner with minimal adjust-
ment in the chosen T1 mapping pulse sequences 

Figure 2 ECV mapping to depict and quantify diffuse myocardial fi brosis.
Examples of an ECV map quantifying the spatial distribution and extent of mostly diffuse fi brosis in a patient with nonischemic 
cardiomyopathy (Panel A). The image contrasts signifi cantly with a patient without myocardial fi brosis with normal ECV meas-
ures (Panel B).

Figure 1 Native T1 in Human Myocardium Decreases with Excess Iron Content [18].
Panel A shows native T1 map shown from a patient with hemochromatosis and iron overload, demonstrating a remarkably low 
myocardial T1. In comparison to a patient with normal myocardial T1 who also happened to have a small pericardial effusion 
(panel B), panel A provides an image that is immediately recognizable as abnormal.
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thereafter; locking the T1 mapping protocols is 
recommended [1]. For the mathematical fi tting of 
the T1 data, phase sensitive reconstruction [20] 
improves fi tting of the data by removing a degree 
of freedom related to polarity and associated phase 
of the magnetization [i.e., SI=A−B·e(−TI/T1*) and the 
absolute value signs which previously introduced a 
degree of freedom are no longer present].

Creating the pixelwise map of T1 or ECV requires 
coregistration of all of the component images. 
Breath holding is therefore recommended to mini-
mize misregistration for T1 and ECV mapping [1]. 
Motion correction improves coregistration of the 
component images from which the pixelwise maps 
are derived because breath holding does not always 
remove all respiratory motion [21]. Error maps [22] 
depict subsequent problems with data fi tting. These 
latter images can alert the CMR reader to techno-
logical problems and/or associated artifact which 
may necessitate repeat measurements. These inno-
vations improve the robustness of the technique, 
and they can be extended to ECV mapping [22]. 
In general, temporal and spatial resolution both 
must be suffi ciently high to avoid artifact related 
to motion. Most protocols involve parallel imaging 
factors of 2 to maintain suffi ciently high spatial and 
temporal resolution.

Partial volume averaging can corrupt myocardial 
T1 measures. The tissue from which T1 estimates 
are measured should be orthogonal to the imaging 
plane given the image slice thickness of 6–8 mm; 
obliquity and misregistration will infl ate partial 
volume errors related to limited spatial resolution. 
Partial volume effects can be visualized as bands 
around the edges of the myocardium on T1 and 
ECV maps that depict pixels straddling the border 
between tissues (Figures 1 and 2). Partial volume 
error limits sampling of myocardial disease by T1 
and/or ECV mapping to the mid myocardium since 
subendocardial and subepicardial pixels are “con-
taminated” by partial volume effects. 

Off resonance can bias T1 measures signifi cantly 
and represents a barrier to standardization between 
CMR sites, so optimal shimming is recommended 
to minimize off resonance [1]. These technical pit-
falls are discussed in more detail in the consensus 
statement on myocardial T1 mapping and extracel-
lular volume quantifi cation from the Society for 
Cardiovascular Magnetic Resonance (SCMR) and 

CMR Working Group of the European Society of 
Cardiology [1].

Native T1 for Diagnosing Disease

Case control studies indicate that intracellular 
accumulation of iron in myocardial siderosis (iron 
overload) [18] or intracellular accumulation of gly-
cosphingolipid in Anderson Fabry disease [23–25] 
lower native T1 in a diffuse fashion throughout 
the myocardium (Figure 1). Clinically, siderosis 
can present as a dilated cardiomyopathy pheno-
type whereas Anderson Fabry disease presents as 
a left ventricular hypertrophy phenotype. Neither 
of these two morphologic phenotypes (i.e., dilated 
cardiomyopathy or left ventricular hypertrophy) is 
suffi ciently specifi c to inform the clinician of the 
underlying disease process. Thus, T1 measures add 
diagnostic specifi city to these two morphologic 
phenotypes.

Since native T1 has the advantage of not requiring 
gadolinium based contrast, native T1 can be imple-
mented as a rapid screening tool for Fabry’s disease 
or iron overload. For example, the TIC-TOC study 
demonstrated the clinical and economic advantages 
of an ultrafast magnetic resonance imaging protocol 
for detecting myocardial siderosis [26]. This study 
scanned 6 participants per hour for two 12-h days, 
reducing scanning costs by a factor of ≈4. Native T1 
mapping analysis took minimal training, required 
<1 minute, and was reliable. 

Native T1 can also decrease in highly focal 
myocardial disease (i.e., not diffuse) such as 
the core of an acute myocardial infarction. [27, 
28].  Shorter native T1 in the core of an infarct 
typically indicates more severe disease includ-
ing microvascular obstruction and greater risks of 
adverse outcomes [29]. Native T1 can also depict 
the area at risk that occurs with acute coronary 
artery occlusion [30, 31].

Native T1 can increase in other conditions. These 
include myocardial fi brosis [32], amyloidosis [33–
36] acute myocarditis [30, 37–42], acute myocar-
dial infarction [16, 27, 28], vasodilation [43], and 
hypertrophic cardiomyopathy [44–46]. The origins 
of increased native T1 likely refl ect increased water 
content (edema) in these conditions. The excess 
water in these diverse conditions may challenge the 
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concept of what constitutes myocardial “edema” 
in the setting of diffuse disease. Native T1 in the 
setting of cardiac amyloidosis becomes especially 
high, a feature which can assist in distinguishing 
amyloidosis from fi brosis [33, 34, 36, 47] and also 
assist in prognosis [34].

Since so many disease pathways can alter native 
myocardial T1, the clinical context must be known 
to inform the clinician about the nature and extent 
of disease, like many valuable parameters in clini-
cal medicine. Therefore, it is entirely expected that 
increased native generally T1 lacks specifi city. 
Native T1 is most diagnostic when it is signifi cantly 
decreased diffusely refl ecting either Anderson 
Fabry disease or iron overload. When the native 
T1 is severely elevated, one must consider amy-
loidosis, especially in the setting of left ventricular 
hypertrophy and other suggestive ancillary fi nd-
ings. Otherwise, native T1 derangements can alert 
the clinician to myocardial disease such as fi brosis 
or edema, depending on the clinical context span-
ning the range from ambulatory patients to hospital-
ized patients post cardiac arrest. 

Current recommendations advise each center to 
establish normal reference ranges since many scan-
ner related factors and pulse sequence related factors 
can infl uence resultant native T1 measures [1]. Care 
must be taken to optimize the scanning protocol 
and then avoid subsequent changes in parameters to 
avoid confounding native T1 measurements. 

ECV for Diagnosing Intrinsic 
 Myocardial Disease

Myocardial fi brosis refl ects dysregulation of col-
lagen homeostasis. It occurs in a spectrum from 
mild to severe where excess collagen (concentra-
tion) accumulates in the myocardial interstitium 
from excess production and/or decreased catabo-
lism [48]. Since gadolinium contrast agents are 
extracellular, ECV measures interstitial expansion 
occurring with fi brosis, amyloidosis, vasodilation, 
or interstitial edema [3, 4, 49]. Similar to native T1, 
these conditions can generally be differentiated if 
the clinical context is known.

ECV dichotomizes the myocardium into its pri-
marily cardiomyocyte compartment and predomi-
nantly interstitial compartment (including the 

myocardial vasculature) [1]. ECV simply quantifi es 
the interstitial uptake of gadolinium contrast agents 
relative to the plasma (Figure 2). Accordingly, his-
tologic validation data overall show best agreement 
with ECV compared to other T1 metrics based on R2 
values (i.e., the proportion of variation in a variable 
explained by another variable) [50, 51]. Specifi cally, 
ECV is superior to native [17, 52–55] or post con-
trast T1 [17, 52, 53, 56] in terms of agreement with 
collagen volume fraction. ECV is also superior to 
native T1 [57] or post contrast T1 [57] for predict-
ing outcomes in large cohorts. Despite the potential 
confounding effects of capillary rarefaction which 
occurs in myocardial fi brosis [58] (since myocar-
dial gadolinium contrast uptake includes the myo-
cardial vasculature), most validation studies report 
high R2 values ≥0.6 when compared against the col-
lagen volume fraction [17, 52–56, 59, 60].

ECV quantifi cation of interstitial expansion rep-
resents a powerful tool to investigate myocardial 
remodeling, especially when combined with ancil-
lary clinical data. While myocardial fi brosis may 
follow myocyte loss due to various types of injury, 
it also may occur with primary fi broblast activation 
[19]. The positive correlation between myocardial 
fi brosis (whether by ECV or histology) and left 
ventricular mass suggests signifi cant prevalence 
of primary fi broblast activation since myocyte loss 
alone would decrease left ventricular mass [51]. 
This information may be relevant when appraising 
potential therapeutic targets to reverse myocardial 
remodeling.

The heart is similar to the liver, lung, and kidney: 
excess collagen can culminate in profound organ 
dysfunction and associated vulnerability [61]. 
Interstitial protein accumulation therefore refl ects 
intrinsic organ disease. One need only consider the 
clinical example of cardiac amyloidosis to observe 
how disastrous interstitial protein accumulation can 
be for cardiac function, leading to symptoms and 
dismal survival. Thankfully, myocardial fi brosis 
exhibits at least some degree of plasticity, and vari-
ous interventions can reverse it in humans [62–66].

“Interstitial heart disease” can affect microvas-
cular, mechanical and electrical function as well as 
myocyte energetics [67], refl ecting cardiomyocyte-
extracellular matrix interactions beyond the inter-
stitium. These interactions include: (a) capillary 
rarefaction and perivascular fi brosis [58] that limit 
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perfusion reserve [62, 68, 69]; (b) myocardial stiff-
ening [70, 71] from increased amyloid proteins [72] 
or from titin and collagen expansion with increased 
cross-linking in MF that leads to systolic and dias-
tolic dysfunction [48, 63, 65, 69] and increased 
fi lling pressures [70], (c) impaired electrical con-
duction from disarray in the collagen network archi-
tecture that predisposes to reentrant arrhythmia and 
sudden death; [72, 73] and d) likely impaired car-
diomyocyte/mitochondrial energetics if interposing 
excess collagen isolates cardiomyocytes from capil-
laries in the setting of decreased perfusion reserve 
and myocardial stiffening [51]. These concepts are 
illustrated in Figure 3.

Emerging data reveal that many cardiac insults 
culminate in myocardial fi brosis as a fi nal com-
mon pathway, and the extent of fi brosis can vary 
across disease categories [2]. Similar to older stud-
ies limited to histopathology, myocardial fi brosis 
quantifi ed by ECV can be observed in a variety of 
disease states including myocarditis [41, 74], rheu-
matologic disease [75–77], hypertension [78, 79], 

Figure 3 Interstitial heart disease represents interactions 
between excess collagen or amyloid proteins in the interstit-
ium and other myocardial compartments. ECV quantifi es the 
associated interstitial expansion. In the setting of myocardial 
fi brosis, it refl ects excess collagen (mostly type I but also 
type III) secreted primarily by cardiac fi broblasts in the inter-
stitium, a situation where synthesis predominates over deg-
radation. Excess interstitial proteins adversely affect organ 
function and patient outcomes (modifi ed from Schelbert EB, 
et al. J Am Heart Assoc. 2015;4:e002491).

diabetes [80], obesity [81], heart failure regardless 
of ejection fraction [19, 52, 70, 82], and hyper-
trophic cardiomyopathy [59, 83, 84]. ECV does not 
appear to elevated in “Athlete’s Heart,” suggesting 
that physiologic adaptation to exercise is primarily 
cellular (cardiomyocyte hypertrophy) rather than 
interstitial (myocardial fi brosis) [44]. 

Risk Stratifi cation with T1 Mapping 
and ECV

Increased ECV refl ects intrinsic myocardial disease. 
Indeed, the extent of myocardial fi brosis appears to 
govern vulnerability to adverse outcomes (death or 
heart failure) regardless of cause or disease category 
[19, 34]. The literature on ECV strongly suggests 
that it is a powerful tool to assess risk of adverse 
events and poor outcomes.  In fact, ECV appears 
to be a more robust risk stratifi er than left ventricu-
lar ejection fraction, the prognostic benchmark that 
governs so many clinical decisions in cardiology. 
ECV also appears to be a stronger risk stratifi er than 
late gadolinium enhancement [19, 85].

ECV can measure myocardial fi brosis reasonably 
well despite the manipulation of myocardial tissue 
that occurs during histologic processing prior to 
microscopy that can alter the original in vivo inter-
stitial space between cells. This alteration can poten-
tially perturb the correlation between ECV and the 
collagen volume fraction. In addition, the distribu-
tion of collagen can vary spatially in the myocardium 
which also can alter ECV-collagen correlations. 
Diffuse myocardial fi brosis may have a subendo-
cardial predilection in ischemic heart disease [86] 
rendering its ultimate quantifi cation challenging by 
ECV which preferentially samples the mid myo-
cardium. Nonetheless, surveying the literature, it is 
important to note that despite these limitations: 

• ECV has been extensively validated against col-
lagen volume fraction as shown in Table 1 [17, 
52–56, 59, 87, 88]

• ECV is reproducible between separate CMR 
scans [11, 87, 89–93]; and 

• ECV predicts outcomes [34, 80, 85, 94] to the 
extent that ECV can provide “added prognostic 
value” manifest by state of the art reclassifi ca-
tion and discrimination metrics [19].
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Native T1 and ECV mapping have each shown 
promise for risk stratifi cation in cardiac amyloido-
sis [34].

T1 Mapping and ECV for Monitoring 
Therapeutic Response in Practice or 
Phase 2 Effi cacy Trials

T1 and ECV mapping technology may act as a 
catalyst for therapeutic development for Phase 2 
effi cacy trials. Due to the ability to track specifi c 
disease processes such as intracellular diseases 
affecting the cardiomyocyte (e.g., iron overload, 
Anderson Fabry disease) and extracellular/inter-
stitial disease processes (e.g., myocardial fi brosis 
and cardiac amyloidosis) affecting the myocardial 
interstitium, investigators and clinicians can now 

enjoy robust, reproducible techniques that quantify 
the extent of myocardial disease. Rather than rely-
ing on nonspecifi c measures like left ventricular 
shape or function or natriuretic peptide levels, all 
of which can be infl uenced by preload, afterload, 
and volume status, investigators and clinicians can 
now probe how the myocardium in an individual 
may respond to proposed treatment. This issue is 
enormously important given the aging population 
and the epidemic of heart failure where therapeutic 
progress has been slow [95–97]. In fact, whether 
the heart is the primary derangement in heart fail-
ure with preserved ejection fraction (“HFpEF”) 
is actively being debated. T1 and ECV mapping 
can now provide clear evidence of therapeutic 
response specifi cally located in the myocardium. 
Novel therapies targeting the interstitium are in 
development.

Table 1 Histologic validation studies of ECV measuring myocardial fi brosis according to R2 value. The R2 value describes 
the proportion of variation in collagen volume fraction explained by ECV.

R2 value Publication

0.89 Miller CA, Naish J, Bishop P, Coutts G, Clark D, Zhao S, Ray SG, Yonan N, Williams SG, Flett AS, Moon JC, 
Greiser A, Parker GJ, Schmitt M. Comprehensive validation of cardiovascular magnetic resonance techniques 
for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging. 2013;6:373–383

0.80 Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC. 
Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fi brosis: 
preliminary validation in humans. Circulation. 2010;122:138–144

0.77 Zeng M, Zhang N, He Y, Wen Z, Wang Z, Zhao Y, Greiser A, An J, Zhang T, Jing B, Zhang X, Fan Z, Li D. 
Histological validation of cardiac magnetic resonance T mapping for detecting diffuse myocardial fi brosis in 
diabetic rabbits. J Magn Reson Imaging. 2016

0.72 Aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, Keller M, Schnabel PA, Giannitsis 
E, Korosoglou G, Katus HA, Steen H. T1 mapping in dilated cardiomyopathy with cardiac magnetic 
resonance: quantifi cation of diffuse myocardial fi brosis and comparison with endomyocardial biopsy. Eur 
Heart J Cardiovasc Imaging. 2014;16:210–216

0.69 White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, Piechnik SK, Robson MD, 
Hausenloy DJ, Sheikh AM, Hawkins PN, Moon JC. T1 Mapping for Myocardial Extracellular Volume 
Measurement by CMR: Bolus Only Versus Primed Infusion Technique. JACC Cardiovasc Imaging. 
2013;6:955–962

0.69 Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, Piechnik SK, Neubauer S, 
Roberts N, Moon J. Comparison of T1 mapping techniques for ECV quantifi cation. Histological validation 
and reproducibility of ShMOLLI versus multibreath-hold T1 quantifi cation equilibrium contrast CMR. 
J Cardiovasc Magn Reson. 2012;14:88

0.61 de Meester de Ravenstein C, Bouzin C, Lazam S, Boulif J, Amzulescu M, Melchior J, Pasquet A, 
Vancraeynest D, Pouleur AC, Vanoverschelde JL, Gerber BL. Histological Validation of measurement of 
diffuse interstitial myocardial fi brosis by myocardial extravascular volume fraction from Modifi ed Look-
Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson. 2015;17:48

0.56 Inui K, Tachi M, Saito T, Kubota Y, Murai K, Kato K, Takano H, Amano Y, Asai K, Shimizu W. Superiority 
of the extracellular volume fraction over the myocardial T1 value for the assessment of myocardial fi brosis in 
patients with non-ischemic cardiomyopathy. Magn Reson Imaging. 2016
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Conclusion

T1 and ECV mapping foster precision medicine 
and personalized care. Since T1 and ECV map-
ping elucidate specifi c disease pathways affecting 
myocardium, they promise to improve patient out-
comes through targeted therapy. They are clinically 
robust and can easily be integrated into clinical 

scanning routines. Data thus far are promising, but 
further investigation is required to capitalize on the 
remarkable opportunities that T1 mapping and ECV 
introduce. These opportunities include improved 
understanding of disease mechanisms, therapeutic 
response to treatment, pharmacologic development, 
and optimizing therapeutic regimens through image 
guided care. 
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