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Significance Statement: Coronary artery disease 
continues to be a global health concern. Invasive 
coronary angiography, as the gold standard, is widely 
used to detect coronary stenosis but has limitations 
and risks. Magnetic resonance coronary angiogra-
phy (MRCA), a noninvasive method, is expected 
to be an alternative method for diagnosis and 
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Abstract

Objective: We aimed to evaluate the diagnostic performance of three-dimensional whole-heart magnetic resonance 
coronary angiography (MRCA) in detecting coronary artery disease (CAD) with invasive coronary angiography as the 
reference standard.
Methods: We searched PubMed and Embase for studies evaluating the diagnostic performance of three-dimensional 
whole-heart MRCA for the diagnosis of CAD with invasive coronary angiography as the reference standard. The 
bivariate mixed-effects regression model was applied to synthesize available data. The clinical utility of whole-heart 
MRCA was calculated by the posttest probability based on Bayes’s theorem.
Results: Eighteen studies were included, of which 16 provided data at the artery level. Patient-based analysis revealed 
a pooled sensitivity of 0.90 (95% confidence interval [CI] 0.87–0.93) and specificity of 0.79 (95% CI 0.73–0.84), while 
the pooled estimates were 0.86 (95% CI 0.82–0.89) and 0.89 (95% CI 0.84–0.92), respectively, at the artery level. 
The areas under the summary receiver operating characteristic curve were 0.93 (95% CI 0.90–0.95) and 0.92 (95% CI 
0.90–0.94) at the patient and artery levels, respectively. With a pretest probability of 50%, the patients’ posttest prob-
abilities of CAD were 81% for positive results and 11% for negative results.
Conclusions: Whole-heart MRCA can be an alternative noninvasive method for diagnosis and assessment of CAD.

Keywords: magnetic resonance coronary angiography; whole-heart; coronary artery disease; invasive coronary 
 angiography

Correspondence: Minjie Lu, MD and Shihua Zhao, 
MD, Department of Cardiac MR, Fuwai Hospital, National 
Center for Cardiovascular Diseases of China, Chinese 
Academy of Medical Sciences and Peking Union Medical 
College, No. 167 Beilishi Road, 100037 Beijing, People’s 
Republic of China, E-mail: coolkan@163.com (M. Lu); 
cjrzhaoshihua2009@163.com (S. Zhao)

http://doi.org/10.15212/CVIA.2019.0561
mailto:coolkan@163.com
mailto:cjrzhaoshihua2009@163.com


S. Yu et al., Diagnostic Accuracy of Three-Dimensional Whole-Heart Magnetic Resonance Angiography174

assessment of coronary artery disease. The image 
quality and the depiction of artery length have been 
substantially improved and the acquisition speed has 
been substantially increased by use of three-dimen-
sional whole-heart MRCA. Hence, we conducted a 
meta-analysis to evaluate the diagnostic accuracy of 
three-dimensional whole-heart MRCA in detecting 
stenosis of coronary arteries with invasive coronary 
angiography as the reference standard.

Introduction

Invasive coronary angiography (ICA), as the gold 
standard, is widely used to detect coronary stenosis 
with high spatial resolution [1]; however, it has several 
limitations. Firstly, it is an invasive procedure with 
radiation exposure. Secondly, the use of iodinated con-
trast agent may lead to various complications. Thirdly, 
about half of patients with suspected coronary artery 
disease (CAD) who underwent elective ICA were 
found to have no significant stenosis [2–4].

Different scan protocols for magnetic resonance 
coronary angiography (MRCA), a noninvasive 
method, have evolved during the past few decades 
[3, 5–7]. From the two-dimensional breath-hold 
technique to the three-dimensional (3D) respir-
atory-gated technique, MRCA was initially per-
formed with a target-volume method. It was time-
consuming and operator dependent. Subsequently, 
the whole-heart approach was developed, which 
makes distal coronary segments more delineative 
in a reduced total examination time in comparison 
with the target-volume approach [7]. Herein, we 
conduct a meta-analysis to evaluate the diagnostic 
accuracy of 3D whole-heart MRCA in detecting 
stenosis of coronary arteries.

Materials and Methods

This meta-analysis generally followed the Preferred 
Reporting Items for Systematic Reviews and Meta-
analyses (PRISMA) statement [8].

Data Sources and Searches

We searched the PubMed and Embase databases 
for all published studies in English evaluating the 
accuracy of 3D whole-heart MRCA with ICA as the 

reference standard using different combinations of 
the following thesaurus terms and synonyms as text 
words: “magnetic resonance angiography,” “whole-
heart,” and “coronary artery disease.” In addition, 
references of retrieved meta-analyses and system-
atic reviews were screened. All studies were care-
fully examined to exclude potential duplicates or 
overlapping data. Two reviewers selected the stud-
ies independently. Differences were discussed to 
reach an agreement.

Study Eligibility

The inclusion criteria for the studies were as follows: 
(1) 3D whole-heart MRCA was used as a diagnostic 
test to determine significant stenosis in patients who 
were suspected of having CAD; (2) ICA served as 
the standard reference, and a 50% or greater reduc-
tion in diameter was considered significant stenosis; 
(3) raw data provided or data that enabled the build-
ing of a 2 × 2 contingency table based on sensitiv-
ity and specificity. Letters, case reports, editorials, 
reviews, animal studies, and retrospective stud-
ies were excluded. As the PRISMA flow diagram 
in Figure 1 shows, we first scanned the titles and 
abstracts, and then reviewed the full text to reassess 
the remaining potentially eligible articles in depth.

Data Extraction and Quality Assessment

Two investigators independently extracted the 
data using a standardized data extraction form. 
Discrepancies were solved by interrater consensus.

The following data were extracted from each 
included study: first author, year of publication, 
study population characteristics (sample size; sex; 
age; heart rate); technical characteristics (scanner 
manufacturer; sequence; magnetic field strength; coil 
channels; scan time), and test accuracy results (true-
positive/true-negative/false-positive/false-negative 
values). The quality of included studies was assessed 
by the tailored Quality Assessment of Diagnostic 
Accuracy Studies (QUADAS-2) tool to make the 
checklist items more specific and practical [9].

Data Synthesis and Statistical Analysis

The main analysis was performed at the patient 
level, as we were concerned about whether patients 
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need further management. To look for possible 
publication bias, we applied Deeks’s test for funnel 
plot asymmetry [10], which performs linear regres-
sion of log diagnostic odds ratios (DORs) on the 
inverse root of effective sample sizes. A nonzero 
slope coefficient is suggestive of significant small 
study bias (P < 0.10). The interrater reliability for 
quality assessment was assessed by the Cohen 
kappa test.

Primary data synthesis was performed within 
the bivariate mixed-effects binary regression mod-
eling framework [11, 12]. On the basis of a 2 × 2 
contingency table for each study, sensitivity, spec-
ificity, and positive and negative likelihood ratios 
(LRs) were computed with 95% confidence inter-
vals (CIs). The results for sensitivity and specific-
ity were presented in a forest plot with both indi-
vidual study and pooled estimates. Positive and 
negative LRs were used to evaluate the clinical 
or patient-relevant utility of whole-heart MRCA 
by our calculating the posttest probability based 
on Bayes’s theorem. The derived logit estimates 

of sensitivity, specificity, and respective variances 
were used to construct a summary receiver operat-
ing characteristic curve [13], presenting the point 
estimates for each study, the joint receiver operat-
ing characteristic curve, and the pooled charac-
teristics, including the 95% CI and the 95% pre-
diction region. The area under the curve (AUC), 
obtained by trapezoidal integration, serves 
as a global measure of test  performance: low 
(0.5 ≤ AUC < 0.7), moderate (0.7 ≤ AUC < 0.9), 
high (0.9 ≤ AUC ≤ 1) accuracy [14].

The heterogeneity across studies was assessed 
graphically by forest plots and statistically by I2, 
which describes the percentage of the total varia-
tion across studies that is attributable to heteroge-
neity rather than chance [15]: values greater than 
50% are considered to correspond to substantial 
heterogeneity. Meta-regression was applied to eval-
uate predefined possible sources of heterogeneity, 
which include age, prevalence of CAD, magnetic 
field strength, and enhancement. Covariates were 
manipulated as mean-centered continuous effects 

Figure 1 Literature Search and Selection.
ICA, Invasive coronary angiography.
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or as dichotomous fixed effects. The effect of each 
covariate on sensitivity was estimated separately 
from that on specificity.

Furthermore, the influence of each study on the 
summary estimates was investigated by our sequen-
tially omitting each study to reestimate the pooled 
sensitivity and specificity.

All the analyses were conducted with STATA 14 
(Stata Corporation, College Station, Texas, USA) 
and Revman 5.3.

Results

Characteristics of Selected Studies

A total of 18 studies, which contained 595 patients 
who tested positive and 540 patients who tested 
negative, met our inclusion criteria (Figure 1). Two 
were multicenter studies [16, 17]. The study from 
Wagner et al. [18] presents both the performance of 
MRA with or without contrast agent injection. We 
only included results with contrast agent injection. 
It is noteworthy that four studies [19–22] evaluated 
the incremental value of MRCA as part of a cardiac 
magnetic resonance (CMR) protocol including 
myocardial perfusion imaging (MPI) and late gad-
olinium enhancement (LGE). Table 1 describes the 
characteristics of the included studies. All the stud-
ies with a field strength of 1.5 T used a steady-state 
free precession sequence, while the studies with 
a field strength of 3.0 T used a spoiled gradient-
echo sequence. A vasodilator was used in 12 stud-
ies [16, 18–20, 23–30]. The pooled scan time was 
11.10 ± 3.29 min. Finally, there were 16 studies at 
the artery level available for our synthesizing data 
[16, 17, 19–26, 28–33], which included 804 posi-
tive arteries and 2142 negative arteries.

Data Synthesis and Statistical Analysis

At the patient level, the pooled sensitivity, specific-
ity, positive LR, negative LR and DOR were 0.90 
(95% CI 0.87–0.93), 0.79 (95% CI 0.73–0.84), 
4.3 (95% CI 3.3–5.7), 0.12 (95% CI 0.09–0.17), 
and 35 (95% CI 21–59), respectively. Significant 
 heterogeneity (Q = 40.88, P < 0.001, I2 = 58.42%) 
was found in specificity between studies, while 
moderate heterogeneity (Q = 27.12, P = 0.06, 
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Figure 2 Forest Plots of Sensitivity and Specificity.
CI, Confidence interval; df, degrees of freedom.
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I2 = 37.32%) was detected in sensitivity (Figure 
2). The meta-regression analysis showed that the 
magnetic field strength (P

1
 < 0.001, P

2
 < 0.001) 

and enhancement (P
1
 < 0.001, P

2
 = 0.02) were sig-

nificant predictors (Figure 3). The prevalence 
of CAD (P

1
 = 0.98, P

2
 = 0.66) and the age of the 

patients (P
1
 = 0.99, P

2
 = 0.82) showed no significant 

influence.
The probability of CAD after whole-heart MRCA 

is presented in Figure 4. We assumed that the pretest 
probabilities of 25%, 50%, and 75% represented 
low clinical suspicion, the worst-case scenario, and 
high clinical suspicion, respectively (Figure S1 in 
the supplementary material). The posttest probabil-
ity of patients with low suspicion (pretest probabil-
ity of 25%) was 4% with a negative result. With 
a pretest probability of 50%, the patients’ posttest 
probabilities of CAD with positive and negative 
MRCA results were 81% and 11%, respectively. The 
posttest probability of patients with high suspicion 

(pretest probability of 75%) was 93% with a posi-
tive result.

The data for different protocols and their com-
bination were available from four studies on a 
patient basis. If any CMR component was posi-
tive, the overall CMR result was considered 
positive. The pooled estimates are summarized 
in Table 2. Integrated analysis from MRCA and 
CMR MPI/LGE increased the overall CMR per-
formance for detection of significant CAD with 
pooled sensitivity, specificity, positive LR, nega-
tive LR, and DOR of 0.96 (95% CI 0.90–0.99), 
0.66 (95% CI 0.50–0.79), 2.8 (95% CI 1.8–4.3), 
0.06 (95% CI 0.02–0.15), and 50 (95% CI 15–
161), respectively.

At the artery level, the pooled sensitivity, specific-
ity, positive LR, negative LR, and DOR were 0.86 
(95% CI 0.82–0.89), 0.89 (95% CI 0.84–0.92), 7.5 
(95% CI 5.3–10.7), 0.16 (95% CI 0.12–0.21) and 
47 (95% CI 28–79), respectively. Heterogeneity 
was obvious in both sensitivity (Q = 30.80, P = 0.01, 
I2 = 51.30%) and specificity (Q = 122.23, P < 0.001, 
I2 = 87.73%) between studies.

Figure 3 Graphic Presentation of Meta-Regression.
CAD, Coronary artery disease; CI, confidence interval; 
e, enhancement (“yes” means a contrast agent was used; 
“no” means a contrast agent was not used); t, magnetic field 
strength.

Figure 4 Probabilities of Coronary Artery Disease in 
Different-Hierarchy Patients after Whole-Heart Magnetic 
Resonance Coronary Angiography.
Whole-heart magnetic resonance coronary angiography per-
formed better in ruling out disease. LR−, Negative likelihood 
ratio; LR+, positive likelihood ratio; NPV, negative predic-
tive value; PPV, positive predictive value.
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The summary receiver operating characteristic 
curves are illustrated in Figure S2 in the supple-
mentary material, showing the general performance 
of whole-heart MRCA. The AUC was high at both 
the patient level and the artery level, with a value of 
0.93 (95% CI 0.90–0.95) and 0.92 (95% CI 0.90–
0.94), respectively.

No outlier was identified in sensitivity analysis at 
both the patient level and the artery level as all the 
new summary estimates were within the 95% CIs 
of the original estimates. Each individual study did 
not influence the pooled sensitivity and specificity 
by more than 0.02 (Figure S3 in the supplementary 
material).

Publication Bias

Deeks’s test showed no publication bias on any 
level of analysis (P = 0.74 for the per-patient level, 
P = 0.35 for the per-artery level).

Quality Assessment

There was a low risk of bias and a low level of 
applicability concerns. The details for each module 
are summarized in Figure S4 in the supplementary 
material. QUADAS-2 items are given in the supple-
mentary material. The interrater reliability for qual-
ity assessment was perfect (κ = 0.896).

Discussion

Current European and American guidelines support 
the use of coronary computed tomography angiog-
raphy (CCTA) for ruling out CAD [34, 35]. MRCA, 
another noninvasive method, with improved image 
quality, increased acquisition speed, and improved 
depiction of artery length by the whole-heart 

approach, is expected to be an alternative method 
for diagnosis and assessment of CAD. In the pre-
sent meta-analysis, 3D whole-heart MRCA showed 
good performance, with pooled sensitivity and 
specificity of 0.90 (95% CI 0.87–0.93) and 0.79 
(95% CI 0.73–0.84), respectively, and a high AUC 
(0.93) at the patient level. In addition, MRCA has 
incremental value to comprehensive CMR-MPI/
LGE protocol for detection of significant coronary 
stenosis.

In previous studies, CCTA showed a favorable 
trend toward higher diagnostic performance than 
MRCA [36]. However, a multicenter study by 
Hamdan et al. [16] found that CCTA did not have 
significantly superior performance over MRCA. 
Moreover, MRCA has several advantages over 
CCTA. Firstly, MRCA is free of ionizing radiation. 
Secondly, it is an effective examination for patients 
with a high calcification score. Thirdly, MRCA can 
provide a diagnostic image without use of a contrast 
agent. In addition, β-blocker is not indispensable 
for MRCA examination.

Multiparametric CMR protocols are a one-stop 
technique allowing the assessment of cardiac mor-
phology, function, perfusion, and viability as well 
as coronary artery anatomy. As Table 2 shows, use 
of MRCA in addition to CMR MPI/LGE increased 
the overall CMR performance for detection of sig-
nificant CAD but caused false-positive results. Heer 
et al. [20] applied a differentiated algorithm such 
that MRCA use was added in cases of probably nor-
mal or probably abnormal perfusion deficits, which 
increased specificity from 55.6 to 88.9% in com-
parison with the conventional integration algorithm 
[20]. Klein et al. [21] showed that MRCA with an 
excellent image quality combined with CMR MPI/
LGE yielded sensitivity of 86% and specificity 
of 91%. Moreover, MRCA accurately identified 

Table 2 Diagnostic Performance of Different Protocols and their Combination on a Per-Patient Basis.

 Sensitivity  Specificity  PLR  NLR  DOR  AUC

MRCA  0.90 (0.72–0.97)  0.80 (0.69–0.88)  4.5 (2.8–7.2)  0.13 (0.04–0.38)  35 (10–122)  0.85 (0.82–0.88)
MPI/LGE  0.83 (0.75–0.89)  0.82 (0.66–0.91)  4.5 (2.3–8.7)  0.21 (0.13–0.32)  22 (9–54)  0.84 (0.81–0.87)
MRCA plus 
MPI/LGE

 0.96 (0.90–0.99)  0.66 (0.50–0.79)  2.8 (1.8–4.3)  0.06 (0.02–0.15)  50 (15–161)  0.96 (0.94–0.98)

AUC, Area under the curve; DOR, diagnostic odds ratio; LGE, late gadolinium enhancement; MRCA, magnetic resonance 
coronary angiography; MPI, myocardial perfusion imaging; NLR, negative likelihood ratio; PLR, positive likelihood ratio.
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stenoses without myocardial ischemia or infarc-
tion, which reduced the incidence of false negatives 
in studies conducted by Zhang et al. [22]. Hence, 
MRCA has value additive to that of perfusion or 
LGE imaging for detection of significant coronary 
stenosis [6, 36, 37].

The technique has developed a lot since MRI was 
first used to evaluate coronary arteries in the 1980s 
[37, 38]. Three-dimensional whole-heart MRCA 
with respiratory motion suppression, T2 prepara-
tion, a fat suppression prepulse, and radial k-space 
sampling has achieved highly promising clinical 
results and has increasingly been used in clinical 
routine [5, 39]. In the present meta-analysis, the 
pooled scan time of included studies was accept-
able at 11.10 ± 3.29 min. It showed high sensitivity 
(0.90) and moderate specificity (0.79) at the patient 
level, and both the sensitivity (0.86) and the spec-
ificity (0.89) were high at the artery level. It was 
superior to previous meta-analyses that included 
different scanning approaches along with time. At 
the patient level, the pooled sensitivity and specific-
ity of previous meta-analyses were 88% and 56% 
[40], 87.1% and 70.3% [36], 89% and 72% [6], 
respectively. Moreover, the analysis by Danias et al. 
[40], with lower pooled estimates, did not include 
studies conducted by the whole-heart approach. 
Thus, it can be concluded that the 3D whole-heart 
approach resulted in better performance than the 
old scanning protocol.

The meta-regression analysis plots indicated that 
the studies with a scanner with a field strength of 
3.0 T presented better performance. MRI systems 
with a field strength of 3.0 T, increased signal-to-
noise ratio, and increased spatial and temporal reso-
lution can be expected to overcome the shortcom-
ings of systems with a field strength of 1.5 T [5]. In 
addition, the element channel coils were superior in 
the 3.0 T group from the included studies; they can 
partially reduce the noise and therefore increase the 
signal-to-noise ratio. It was reported that contrast-
enhanced MRCA at 3.0 T increased the number of 
assessable coronary artery segments, especially dis-
tal segments, and also improved image quality [18, 
19, 29]. However, MRCA at 1.5 T had much broader 
availability in clinical practice. Twelve of the 18 
included studies used a 1.5 T system. Moreover, 
contrast agent is not required at 1.5 T [39].

Furthermore, we tried to explore whether the 
examination is suitable for patients with differ-
ent risk levels. The analysis of the clinical appli-
cation presented different results for patients with 
different degrees of pretest probability. As shown 
in Figure S1, for patients with low suspicion, the 
examination could be conducted as an exclusionary 
test. It is also useful for worst-case scenario patients 
since the posttest probability was significant for 
both positive and negative results. For patients with 
high suspicion, it can be considered sufficient to 
rule in significant stenosis for a positive result with 
a posttest probability of 91%. Therefore, 3D whole-
heart MRCA could be applied to different-hierarchy 
patients.

In this analysis, the publication years of the 
included studies ranged from 2005 to 2018. Hence, 
the MRCA technique was developed slowly with lit-
tle clinical research in recent years. However, some 
studies focused on novel motion-compensated and 
fast imaging technology, which achieved good fea-
sibility in healthy volunteers [41–45]. As the hemo-
dynamic significance of coronary artery stenosis 
is becoming more important in clinical treatment, 
stress MPI modalities have been widely used. The 
additive value of MRCA integration into a compre-
hensive CMR protocol has more practical signifi-
cance. To this end, combined MRI may be a nonin-
vasive trend for diagnosis of CAD.

Limitations

Firstly, the included studies did not cover specific 
patients who have a high calcification score or who 
had previously undergone coronary artery bypass 
graft or stent operation, which leads to a limited 
reference. For these groups of patients it is diffi-
cult to estimate the degree of stenosis by another 
type of noninvasive examination. Secondly, we 
did not compare the performance of other types of 
 noninvasive examination.

Conclusion

Whole-heart MRCA can be an alternative nonin-
vasive method for diagnosis and assessment of 
CAD.
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