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Abstract

Wolff–Parkinson–White (WPW) syndrome is a congenital disorder of cardiac conduction system characterized by 
electrocardiographic preexcitation and episodes of paroxysmal supraventricular tachycardia. It is caused by a cardiac 
developmental defect in the electrical insulation between the atria and the ventricles due to the presence of an acces-
sory pathway. WPW syndrome is a common cause of supraventricular tachycardia with benign prognosis. However, 
this clinical entity also predisposes patients to an increased risk of sudden cardiac death, especially in the setting of 
preexcited atrial fibrillation. WPW syndrome is usually sporadic and of unknown etiology in most cases. During the 
past 10 years, a significant heritable factor is increasingly recognized. Identification of the genetic basis among patients 
with WPW syndrome has important implications for understanding the molecular mechanism of ventricular preexcita-
tion and the development of therapeutic strategies for risk stratification and management. The goal of this review is to 
examine the previous studies on hereditary variants, as well as to outline potential future avenues toward defining the 
heritability of WPW syndrome.
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Introduction

Wolff–Parkinson–White (WPW) syndrome is a 
clinical entity characterized by electrocardiographic 
preexcitation during sinus rhythm and documented 
episodes of tachyarrhythmias or symptoms consist-
ent with tachyarrhythmias [1]. Electrocardiographic 
findings of ventricular preexcitation include short 
PR intervals and wide QRS complexes with slurred 
upstrokes. WPW syndrome was first fully described 

in 1930, but isolated case reports of the same entity 
were previously reported many times [2]. It is now 
well known that WPW syndrome arises from a car-
diac developmental defect in the atrioventricular elec-
trical insulation due to the presence of an accessory 
pathway. Atrioventricular conduction through the 
abnormal connection, bypassing the atrioventricular 
node, causes early eccentric activation of the ventri-
cles and the electrocardiographic pattern of ventricu-
lar preexcitation. The degree of preexcitation is not 
invariable, depending on the relative contribution 
from ventricular excitation by the atrioventricular 
node and His–Purkinje system versus the accessory 
pathway. Electrocardiographic preexcitation affects 
about 0.15% of the general population [3].  Patients 
with WPW syndrome are prone to paroxysmal 
supraventricular tachycardia that is  maintained by the 
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accessory pathway, but not all patients with ventricu-
lar preexcitation develop paroxysmal supraventricu-
lar tachycardia. WPW syndrome also predisposes 
patients to an increased risk of sudden cardiac death, 
especially in the setting of preexcited atrial fibrilla-
tion. The reported incidence of sudden cardiac death 
in patients with WPW syndrome ranged from 0.15% 
to 0.39% over a 3- to 10-year follow-up [4]. In the 
minority of  patients, the first and only symptomatic 
manifestation of the disease is sudden cardiac death. 
WPW syndrome is usually sporadic and of unknown 
cause in most cases. 

During the past 10 years, a preponderance of evi-
dence suggests a large genetic contribution to this 
condition. The earliest report of familial WPW syn-
drome was described 70 years ago [5]. Since then, 
it has become apparent that WPW syndrome can 
be transmitted genetically in isolation or in asso-
ciation with other cardiac diseases or multisystem 
syndromes [6–11]. Epidemiological investigation 
has found that individuals who have a family mem-
ber with electrocardiographic preexcitation carry an 
increased risk. Vidaillet et al. [12] determined the 
prevalence of preexcitation in the first-degree rela-
tives of 383 consecutive patients with electrophysi-
ologically proven accessory pathways. For 13 of the 
383 probands (3.4%), accessory pathways were doc-
umented in one or more first-degree relatives. Preex-
citation was present in at least 13 of the 2343 rela-
tives (0.55%), which was a significantly  higher rate 
than that in the general population (0.15%) [3, 12]. 
With the emerging reports of a genetic contribution, 
identification of the genetic basis among patients 
with WPW syndrome has significant implications 
for understanding the molecular mechanism of ven-
tricular preexcitation and the development of thera-
peutic strategies for risk stratification and manage-
ment. The purpose of this review is to examine the 
previous studies on hereditary variants, to address 
the genetic factors, inheritance patterns, and clini-
cal characteristics, and to describe future avenues 
toward defining the heritability of WPW syndrome.

Glycogen Storage Diseases

PRKAG2 Cardiac Syndrome

The syndrome was initially described in 1986 by 
Cherry and Green, who observed an autosomal 

dominant mode of inheritance with a high degree 
of penetrance and variable clinical expressivity in 
a five-generation French-Canadian family [13]. 
 Affected family members presented with ventric-
ular preexcitation, supraventricular arrhythmias, 
progressive conduction system disease, and cardiac 
hypertrophy. The disease-causing gene responsible 
for both familial WPW syndrome and hypertrophic 
cardiomyopathy was subsequently mapped to chro-
mosome 7 by use of genetic linkage analysis. In 
2001 Gollob et al. [14] and Blair et al. [15] identi-
fied the gene to be PRKAG2, which is located at 
7q36 and encodes the AMP-activated protein kinase 
(AMPK) γ

2
 regulatory subunit [16, 17]. AMPK is a 

highly conserved heterotrimeric protein composed 
of a catalytic α subunit and regulatory β and γ subu-
nits. It is an important energy-sensing enzyme that 
monitors cellular energy status, maintains energy 
balance, and functions by phosphorylation of key 
enzymes in lipid metabolism and by increasing 
expression and translocation of glucose transporters 
[18]. The function attributed to the γ

2
 subunit is reg-

ulation of AMPK activity by binding two molecules 
of either AMP or ATP [19]. AMPK is activated by 
AMP and inhibited by ATP, but the homeostasis 
can be disrupted by disease mutations in PRKAG2. 
Defects in PRKAG2 are typically associated with a 
cardiac syndrome triad consisting of familial ven-
tricular preexcitation, conduction system disease, 
and cardiac hypertrophy mimicking  hypertrophic 
cardiomyopathy. However, patients with PRKAG2 
cardiac syndrome could also present with electro-
physiological abnormalities and absence of cardiac 
hypertrophy [20]. 

Since this original description, 15 PRKAG2 muta-
tions, including a 3-bp insertion and 14 missense 
mutations, have been identified [21]. Each muta-
tion has been shown to cosegregate with the disease 
phenotypes with complete penetrance.  Histological 
studies of myocardial tissue from affected individu-
als [21–24] and transgenic mice expressing mutant 
forms (N488I [25], R302Q [26, 27], R531G [28], 
and T400N [29–31], respectively) of the PRKAG2 
gene confirmed glycogen storage as the pathologi-
cal basis for this cardiac syndrome. The mechanisms 
that lead to ventricular preexcitation in PRKAG2 car-
diac syndrome might include developmental failure 
to eradicate remnants of atrioventricular connections 
during cardiogenesis due to AMPK malfunction, or 
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promotion of electrical cell coupling and accelera-
tion of conduction velocity caused by glycogen accu-
mulation [32]. Although the relationship between 
PRKAG2 mutations and familial forms of WPW syn-
drome associated with or not associated with other 
structural heart disease has been well established, 
such mutations are not identified in patients with spo-
radic isolated WPW syndrome [33].

Danon Disease

Danon disease is an X-linked dominant multi system 
disorder affecting predominantly cardiac and skele-
tal muscles and caused by mutation in the lysosome-
associated membrane protein 2 gene (LAMP2) [34]. 
In 2000 Nishino et al. [35] first identified LAMP2 
defects in ten unrelated patients with Danon disease. 
All of the ten different mutations resulted in prema-
ture termination of lysosome- associated membrane 
protein 2. Western blot analysis of skeletal muscle 
biopsy specimens from the patients showed marked 
deficiency or complete absence of lysosome- 
associated membrane protein 2. From these results 
and the finding that a similar cardioskeletal myopa-
thy is present in LAMP2-deficient mice as in humans 
[36], Nishino et al. concluded that primary LAMP2 
 deficiency is the cause of Danon disease. The path-
ological hallmark of the disease is intracytoplas-
mic vacuoles containing  autophagic  material and 
 glycogen in skeletal and cardiac muscle cells [35, 
37–41]. As opposed to glycogen storage throughout 
the myocytes in PRKAG2 cardiac syndrome, LAMP2 
mutations accumulate glycogen in  lysosomes [42]. 

Major clinical features include skeletal and cardiac 
myopathy, cardiac conduction abnormalities, mild 
intellectual disability, and retinal disease. Hepatic 
and pulmonary disease may also be present but are 
less prevalent symptoms [36, 42–44]. Males are typi-
cally affected earlier and more severely than females 
because of haploinsufficiency of the X-linked LAMP2 
gene. Danon cardiomyopathy typically manifests 
itself as a hypertrophic phenotype (88%) in men but 
with an equal prevalence of dilated cardiomyopathy 
(27.7%) and hypertrophic cardiomyopathy (33.3%) 
in women [9]. Conduction abnormalities are also 
common, presenting in more than three quarters of 
patients [9, 44]. Preexcitation is the most usual elec-
trocardiographic finding, present in 68.2% of men 
and 27% of women [9]. The mechanism for ventricu-

lar preexcitation is incompletely understood in Danon 
disease. It is likely that there is a common mechanism 
in Danon disease and PRKAG2 cardiac syndrome 
for both LAMP2 and PRKAG2 mutations causing 
glycogen-storage cardiomyopathies. Because of 
similar echocardiographic features, glycogen-storage 
cardiomyopathy produced by LAMP2 or PRKAG2 
mutations could be misdiagnosed as hypertrophic 
cardiomyopathy. Recognition of electrophysiological 
abnormalities, particularly ventricular preexcitation, 
may help to distinguish these disorders, and genetic 
analysis can definitively establish the cause of unex-
plained left ventricular hypertrophy [41].

Pompe Disease

Pompe disease is an autosomal recessive disor-
der caused by the absence or deficiency of acid 
α-glucosidase (encoded by GAA), a lysosomal 
enzyme responsible for the cleavage of the α-1,4- and 
α-1,6-glycosidic bonds of glycogen to form glucose 
[45]. The deficiency resulting in the accumulation of 
glycogen in the lysosomes disrupts the cytoarchitec-
ture and function of affected cells, leading to multi-
system disease and often to early death. The severity 
of clinical presentations, the tissue involvement, and 
the age of symptom onset strongly correlate with the 
nature of the GAA mutations and the level of resid-
ual enzyme activity [46]. The classic infantile form, 
described by Pompe in 1932, is caused by complete 
or near complete loss of GAA activity, and is the 
severest subtype, in which cardiomyopathy and mus-
cular hypotonia are the cardinal features and symp-
toms begin within the first months of life [47, 48]. 
Most infants do not survive beyond the first year 
of life and die of cardiorespiratory complications 
[47, 48]. Similar clinical presentations in infants 
with milder myopathy, absence of left ventricular 
outflow obstruction, and somewhat longer survival 
with assisted ventilation and supplemental intubation 
have been classified as a nonclassic infantile form 
[49]. In the juvenile and adult forms, involvement 
of skeletal muscles dominates the clinical picture. 
Laforêt et al. [50] reported the clinical features of 21 
unrelated patients with juvenile- or adult-onset GAA 
deficiency. The mean age at onset of obvious muscle 
complaints was 36 years, and most patients had pre-
dominant pelvic girdle muscle dysfunction without 
significant distal leg involvement .



Y. Liu et al., Inherited Wolff–Parkinson–White Syndrome190

Herzog et al. [46] reported a long-term obser-
vation of clinical manifestations in 37 nonclassic 
patients. They found that lower limbs and paraspi-
nal muscles are frequently affected first, followed 
by respiratory muscles. As the disease progresses, 
many patients become wheelchair dependent and 
require assisted ventilation. Respiratory failure is 
the main cause of increased morbidity and  mortality.

WPW syndrome and a shortened PR interval are 
commonly seen in patients with both infantile- and 
late-onset Pompe disease [10, 51–57]. These are 
thought to be due to disruption of the annulus fibro-
sis by glycogen-filled myocytes allowing ventricu-
lar preexcitation [25, 55].

Fabry Disease

Fabry disease is an X-linked disorder caused by a 
deficiency in the lysosomal enzyme α-galactosidase 
A due to mutations in the GLA gene [58]. This enzy-
matic deficiency leads to systemic accumulation of 
globotriaosylceramide and related glycosphingolip-
ids within lysosomes of various tissues and organs, 
including heart, kidney, and the nerve system.  Fabry 
disease was previously considered to be an  X-linked 
recessive disorder, but Wang et al. [59] found that 
heterozygous females have significant multisys-
temic diseases requiring medical intervention . The 
disorder is a systemic disease, which manifests 
itself as progressive renal failure, cardiac disease, 
cerebrovascular disease, small-fiber peripheral neu-
ropathy, and skin lesions, among other abnormali-
ties [60]. Patients with some residual GLA activity 
have atypical clinical presentations of Fabry disease 
with predominantly cardiac abnormalities, while 
having little or no kidney dysfunction and no pain-
ful acroparesthesia [61, 62].

Cardiac involvement is common in Fabry disease 
patients, most frequently concentric left ventricular 
hypertrophy, and is one of the most important reasons 
for reduced life expectancy and disease-related death 
[63, 64]. In 1973 Roudebush et al. [65] reported the 
first cases of abbreviated PR interval in Fabry disease. 
Subsequently, recurrent SVT associated with ventric-
ular preexcitation was also described in two brothers 
with Fabry disease [11]. A study of cardiac manifes-
tations in 20 hemizygous male patients by Senechal 
and Germain [66] demonstrated an incidence of 40% 
short PR interval on electrocardiogram. An associa-

tion between Fabry disease and fasciculoventricular 
accessory pathways has been well established by 
electrophysiological study [67].  Evidence suggests 
that the electrocardiographic finding may be due 
to glycolipid deposition in the conducting system 
around the atrioventricular node.

Mitochondrial Diseases

Leber Hereditary Optic Neuropathy

Diseases due to mutations in the nuclear genome 
often follow Mendelian inheritance rules, such 
as autosomal dominant, autosomal recessive, or 
 X-linked inheritance. In contrast, those with pri-
mary mutations in the mitochondrial genome 
(mitochondrial DNA, mtDNA) have unique pat-
terns of inheritance and penetrance governed by 
the principles of maternal inheritance, hetero-
plasmy, replicative segregation, and the tissue-
specific threshold effect [68].

Leber hereditary optic neuropathy (LHON) is one 
of the most common inherited optic neuropathies 
causing bilateral central vision loss [69]. In more 
than 90% of cases worldwide, the disorder results 
from one of three point mutations in mtDNA which 
encode complex I of the respiratory chain, includ-
ing 3460G>A in MTND1, 11778G>A in MTND4, 
and 14484T>C in MTND6 [70]. Cardiac conduction 
defects have been noted in some LHON families. 
Among Finnish patients, Nikoskelainen et al. [71] 
found WPW syndrome in 14 of 163 patients (9%) 
with mtDNA mutations. In studies of 35 Japanese 
LHON families, Mashima et al. [72] indicated that, 
as in Finnish families, WPW syndrome was rela-
tively common and seen in five of 63 individuals 
(8%) with mtDNA mutations. WPW syndrome in 
association with structural heart abnormalities has 
also been described in patients with LHON [73].

Leigh Syndrome

Leigh syndrome, also known as subacute necrotiz-
ing encephalomyelopathy, is the most common 
pediatric presentation of mitochondrial disease. 
This neurodegenerative disorder is genetically het-
erogeneous, and to date more than 75 disease genes 
have been identified, encoded by mitochondrial and 
nuclear genomes, most of which encode structural 
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components of the oxidative phosphorylation path-
way, or proteins required for their assembly, sta-
bility, and activity [74]. Generally, onset of clini-
cal presentations occurs by the age of 2 years [75]. 
Patients develop neurological symptoms, including 
abnormal motor findings (hypotonia, abnormal ten-
don reflexes, and dystonia), abnormal ocular find-
ings (nystagmus, strabismus, visual impairment, 
optic atrophy, ptosis, and ophthalmoplegia), mental 
retardation, epileptic seizures, and respiratory dys-
function [75]. The presentation can also be mul-
tisystemic; cardiac, hepatic, gastrointestinal, and 
renal dysfunction have been observed. Abnormal 
findings on neuroimaging include bilateral sym-
metrical lesions in the basal ganglia and/or thala-
mus and/or brainstem. Cardiac involvement is pre-
sent in one fifth of patients with Leigh syndrome, 
with more than half having hypertrophic cardiomy-
opathy [75]. WPW syndrome is also noted in Leigh 
syndrome patients. A  mitochondrial 13513G>A 
mutation in MTND5 is frequently identified in these 
patients [76–79]. Despite the great variability in 
clinical presentation, WPW syndrome seems to be 
a quite specific and frequent feature in patients with 
the mitochondrial 13513G>A transition.

Mitochondrial encephalopathy with Lactic 
Acidosis and Stroke-like episodes

Mitochondrial encephalopathy with lactic acidosis 
and stroke-like episodes (MELAS) syndrome is a 
genetically heterogeneous mitochondrial disorder 
with multiorgan involvements. The mitochondrial 
3243A>G mutation in the MT-TL1 gene encoding 
transfer RNALeu(UUR) is found in 80% of MELAS syn-
drome cases [80]. Clinical manifestations include 
stroke-like episodes, dementia, epilepsy, lactic 
acidemia, myopathy, recurrent headaches, hearing 
impairment, diabetes, and short stature [81]. Child-
hood is the typical period of onset, with 65–76% 
of affected individuals presenting at or before the 
age of 20 years. Cardiomyopathy occurs in 18–30% 
of affected individuals [82, 83]. Both dilated and 
hypertrophic cardiomyopathies have been observed 
in MELAS syndrome; however, more typical is 
a nonobstructive concentric hypertrophy [84]. 
 Cardiac conduction abnormalities, including WPW 
syndrome, have been reported in 13–27% of indi-
viduals with MELAS syndrome [83, 85–87].

Muscular Dystrophies

Duchenne and Becker Muscular Dystrophy 

Duchenne muscular dystrophy (DMD) and Becker 
muscular dystrophy (BMD) are X-linked inher-
ited neuromuscular disorders responsible for more 
than 80% of all muscular dystrophies and both are 
caused by mutations in the dystrophin gene [88]. 
Approximately 65% of the mutations in both forms 
are deletions of one or more exons in the dystrophin 
gene. Mutations leading to dystrophin deficiency 
cause DMD, whereas mutations leading to par-
tially functional protein cause BMD [89]. DMD is 
characterized by progressive muscle weakness and 
wasting due to the absence of dystrophin, which 
causes degeneration of skeletal and cardiac muscle. 
The first signs or symptoms occur at a mean age 
of 2.5 years, but the mean age at definitive diagno-
sis of DMD is 4.9 years. BMD is the milder form 
of dystrophinopathy [90]. BMD typically presents 
later, usually between 5 and 15 years [91]. Myo-
cardial involvement appears in DMD patients at 
about 6 years of age in a high percentage of cases 
and increases progressively until the last years of 
life, when  cardiac damage occurs in 95% of cases. 
The percentage of myocardial involvement in BMD 
patients is very low before 13 years of age, but 
increases progressively until 20 years, when cardiac 
damage occurs in 80% of cases; severe cardiomyo-
pathy does not occur before the age of 21 years [92]. 
Cardiac involvement may sometimes be the only 
manifestation of the dystrophin mutation in carri-
ers. Mirabella et al. [93] reported two carriers with 
dilated cardiomyopathy and no symptoms of mus-
cle weakness in whose heart biopsy specimens dys-
trophin was absent in many fibers. WPW syndrome 
has been described recently in both DMD and BMD 
patients [94–96]. The mdx5cv mouse model of DMD 
recapitulates also electrophysiological abnormali-
ties seen in DMD patients [97].

Tuberous Sclerosis Complex

Tuberous sclerosis complex (TSC) is an autosomal 
dominant, predominantly neurocutaneous, multisys-
tem disorder characterized by widespread hamar-
tomas in several organs, including the brain, skin, 
heart, kidneys, and lung. Mutations in the TSC1 gene 
or TSC2 gene lead to disruption of the TSC1-TSC2 
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intracellular protein complex, causing overactiva-
tion of the mammalian target of rapamycin protein 
complex [98]. The TSC2 gene accounts for as many 
as 90% of the clinical cases [99]. The most common 
cardiac manifestation of this disease is cardiac rhab-
domyomas, which occur most frequently in children 
younger than 2 years, usually regress spontaneously 
with increasing age, and rarely necessitate therapeu-
tic interventions [100]. A review of tuberous sclerosis 
and cardiac rhabdomyomas suggests that 9–13% of 
patients with rhabdomyomas have WPW syndrome 
[101]. Some of the cells in the cardiac rhabdomy-
omas found in patients with tuberous sclerosis are 
structurally identical to normal Purkinje cells, and 
their tumorlike accumulation in the atrioventricular 
annulus may contribute to the occurrence of acces-
sory pathways [102]. However, cases of tuberous 
sclerosis and WPW syndrome without cardiac rhab-
domyomas have also been reported [103]. A synopsis 
of these genes associated with WPW syndromes is 
presented in the Table 1.

Other Genes

WPW syndrome can be associated with microdele-
tions or duplication of chromosome region 20p12.3 
[104, 105]. It is possible that more than one gene 
within the 20p12.3 region is responsible for the WPW 
phenotype. Members of the T-box gene family of 
transcription factors are important early regulators in 
development and function of the cardiac conduction 
system and have been implicated in human genetic 
syndromes with congenital cardiac malformations. 
Two recent studies from T-box gene family–defi-
cient mice demonstrate that myocardium-specific 
inactivation of Tbx2 or Tbx3 leads to the formation 
of fast conducting accessory pathways, malforma-
tion of the annulus fibrosus, and ventricular preexci-

tation [106, 107]. More recently, the myosin heavy 
chain 6 gene (MYH6) has also been identified as a 
novel candidate locus responsible for WPW syn-
drome [108]. Defects in this gene were previously 
identified in patients with atrial septal defects, car-
diomyopathies, and sick sinus syndrome. 

Conclusions and Take-Home 
 Messages

1. Recent studies have identified several rare  genetic 
variants associated with WPW syndrome. 

2. Present data account for only a limited percent-
age of the heritability of WPW syndrome. 

3. Patients with heritable WPW syndrome have a 
phenotype that is clearly different from that of 
those with sporadic WPW syndrome, who typi-
cally have structurally normal hearts. 

4. No gene defect associated with typical WPW 
syndrome has yet been identified.

5. In most well-recognized cases, ventricular pre-
excitation is accompanied by various cardiac or 
noncardiac clinical manifestations.

6. Integration of next-generation sequencing tech-
nologies, improved identification of disease-
causing genetic variants, and a more complete 
understanding of causative mechanisms behind 
WPW syndrome risk loci will be required. 
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