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Introduction: Insect cytochrome P450 (CYP450) genes play important roles in the
detoxification and metabolism of xenobiotics, such as plant allelochemicals,
mycotoxins and pesticides. The polyphagous Conogethes punctiferalis is a
serious economic pest of fruit trees and agricultural crops, and it shows high
adaptability to different living environments.

Methods: The two novel P450 genesCYP6CV1 andCYP6AB51were identified and
characterized. Quantitative real-time PCR (qRT-PCR) technology was used to
study the expression patterns of the two target genes in different larval
developmental stages and tissues of C. punctiferalis. Furthermore, RNA
interference (RNAi) technology was used to study the potential functions of
the two P450 genes by treating RNAi-silenced larvae with three commonly
used pesticides.

Results: The CYP6CV1 and CYP6AB51 genes were expressed throughout various
C. punctiferalis larval stages and in different tissues. Their expression levels
increased along with larval development, and expression levels of the two
target genes in the midgut were significantly higher than in other tissues. The
toxicity bioassay results showed that the LC50 values of chlorantraniliprole,
emamectin benzoate and lambda-cyhalothrin on C. punctiferalis larvae were
0.2028 μg/g, 0.0683 μg/g and 0.6110 mg/L, respectively. After treating with
different concentrations of chlorantraniliprole, emamectin benzoate and
lambda-cyhalothrin (LC10, LC30, LC50), independently, the relative expressions
of the two genes CYP6CV1 and CYP6AB51 were significantly induced. After the
dsRNA injection, the expression profiles of the two CYP genes were reduced
72.91% and 70.94%, respectively, and the mortality rates of the larvae significantly
increased when treated with the three insecticides independently at LC10 values.

Discussion: In the summary, after interfering with the CYP6CV1 and CYP6AB51
in C. punctiferalis, respectively, the sensitivity of C. punctiferalis to
chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin was
significantly increased, indicating that the two CYP6 genes were responsible
for the adaptability of C. punctiferalis to the three chemical insecticides in
C. punctiferalis. The results from this study demonstrated that CYP6CV1
and CYP6AB51 in C. punctiferalis play crucial roles in the detoxification of
chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin.
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1 Introduction

The yellow peach moth, Conogethes punctiferalis (Guenée), is
widely distributed in East Asia, South Asia, Australia and Papua
New Guinea (Shwe et al., 2021a). It is one of the few polyphagous
borer pests that not only damage woody plants, such as peach,
apple, hawthorn and chestnut, but also feed on herbaceous plants,
including maize, soybeans and cotton (Stanley et al., 2009; Chen
et al., 2018). In recent years, C. punctiferalis has caused severe
damage, and it is now considered a dominant economic
lepidopteran pest of summer corn fields in the Huanghuaihai
Region of China (Shwe et al., 2021b). Currently, chemical control
is commonly used to control lepidopteran pests in corn fields,
including the widely used pesticides chlorantraniliprole,
emamectin benzoate and lambda-cyhalothrin. However, the
excessive and frequent use of insecticides has caused a series
of serious problems, including the evolution of pesticide
resistance (Gao, 2010; Siegwart et al., 2017; Wang et al., 2020).
Some lepidopteran pests have developed high resistance levels to
pesticides commonly used in corn fields. For example, the field
population of Plutella xylostella is more than 2,000 times resistant
to chlorantraniliprole (Wang and Wu, 2012). Spodoptera
frugiperda has a high risk of developing resistance to
emamectin benzoate (Muraro et al., 2021), and field
populations of Spodoptera exigua have developed a high level
of resistance to lambda-cyhalothrin insecticides (Su and Sun,
2014). The increased metabolic activity levels of detoxification
enzymes are main causes of insect resistance, including the
cytochrome P450 monooxygenase (P450)-mediated
detoxification of insecticides (Elzaki et al., 2015). The
overexpression of P450 genes plays important roles in
insecticide resistance. For example, overexpression of
CYP6BG1 may contribute to chlorantraniliprole resistance in
P. xylostella (Li et al., 2018), CYP337B3 in Helicoverpa
armigera is involved in the resistance to cypermethrin (Rasool
et al., 2014), and CYP6AY1 of Nilaparvata lugens is involved in
resistance to imidacloprid (Ding et al., 2013).

P450 is a common and important detoxification enzyme in all
living organisms, including animals, plants and microorganisms
(Cui et al., 2016; Elfaki et al., 2018). Insect P450 can be divided
into four main branches: CYP2, CYP3, CYP4 and mitochondrial
P450s. The CYP3 family is a large group of insect P450s, which
can be subdivided into CYP6, CYP9, CYP28 and several other
families (Wang et al., 2018; Ullah et al., 2020). To date, the
identified insect cytochrome P450s mainly have two functions.
They catalyze the formation and decom position of endogenous
substances (such as ecdysone, juvenile hormone and fatty acid) to
maintain the normal functions of the organism (Helvig et al.,
2004; Iga and Kataoka, 2012). In addition, they metabolize many
exogenous substances (such as pesticides, plant secondary
substances and other environmental chemicals), and this has
detoxification and activation effects (Yang and Liu, 2011;
Giraudo et al., 2015). Many insect P450 genes, especially in
the families of CYP3 and CYP4, participate in the

detoxification of, and metabolic resistance to, several
insecticides (Amenya et al., 2008; Balabanidou et al., 2016;
Wang et al., 2019; Jing et al., 2022).

Previous reports found that the mRNA expression levels of
CYP6CV1 and CYP6AB51 in CYP6 family from C. punctiferalis
were upregulated when larvae fed on resistant plant, and in other
lepidopteran insects, the CYP6 family genes also played
important role in the insect resistance to some pesticides
(Chen et al., 2015; Jing et al., 2022). To examine whether
CYP6CV1 and CYP6AB51 in C. punctiferalis also are involved
in the detoxification of the commonly used pesticides, they were
identified and characterized by molecular technologies. The
results provide significant insights into the functions of
CYP6CV1 and CYP6AB51 from C. punctiferalis in the
detoxification of chlorantraniliprole, emamectin benzoate and
lambda-cyhalothrin, which are three commonly used pesticides
for the control of C. punctiferalis and other lepidopteran insects
in corn fields (Siegwart et al., 2017; Wang et al., 2020).

2 Materials and methods

2.1 Insects and chemical insecticides

C. punctiferalis used in this study was collected from corn fields
in 2019 at the Xuchang campus of Henan Agricultural University
(Henan, China), and then, they were maintained in the laboratory
under the follow conditions: 27°C ± 1°C and a 75% ± 5% relative
humidity, with a 14-h light: 10-h dark photoperiod. The larvae were
fed fresh maize ears, and the adults were provided a 10% sucrose
solution without exposure to any insecticides.

Three chemical pesticides, 95% chlorantraniliprole, 91%
emamectin benzoate and 96.9% lambda-cyhalothrin were kindly
provided by the Insect Physiology, Biochemistry and Molecular
Biology Group of Henan Agricultural University.

2.2 Molecular cloning of CYP6CV1 and
CYP6AB51 from C. punctiferalis

The total RNA of fourth-instar larvae of C. punctiferalis was
extracted using TRIzol reagent in accordance with the instructions
(Invitrogen, Carlsbad, CA, United States). After the RNA quality
and concentration were verified using 1.5% agarose gel
electrophoresis and a NanoDrop 1,000 spectrophotometer
(Thermo Scientific, Waltham, MA, United States), respectively.
cDNA was synthesized using a FastKing RT Kit (with gDNase)
(Tiangen Biotech, Beijing, China).

The gene-specific primers were designed to clone CYP6CV1 and
CYP6AB51 (Table 1), and the above synthesized cDNA was used as
the template for PCR amplification. The PCR reaction was
performed in a total volume of 25 μL, containing 12.5 μL of
PrimeSTAR® Max DNA Polymerase (TaKaRa, Dalian, China),
1 μL of each primer (10 μM), 1 μL of cDNA template and 9.5 μL
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of ddH2O, and the amplification conditions were as follows: 98°C for
5 min; 40 cycles of 98°C for 10 s, 55°C for 10 s and 72°C for 30 s; and
a final extension step at 72°C for 7 min. After detecting the target
band using 1.5% agarose gel electrophoresis, the gel was cut and then
purified using a DNA gel extraction kit (Axygen Scientific, Union
City, CA, United States). Afterwards, the product was inserted into
the pClone 007 vector (Tsingke Biotech, Beijing, China) and then
transformed into Escherichia coli DH5α competent cells (Sangon
Biotech, Shanghai, China). Finally, the selected positive clones were
cultured in LB liquid medium containing Amp (50 mg/ml) at 37°C
and 180 r/min for 12 h. The positive clones were confirmed by PCR
and sequencing (Sangon Biotech). The sequencing results
were compared with the previously obtained transcriptome
sequences.

2.3 Sequence analysis and phylogenetic
analysis

ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/) was used
to determine the open reading frames (ORFs) of the genes. The
online website ExPASy (http://web.expasy.org/compute_pi/) was
used to predict the isoelectric points and molecular weights of
the proteins encoded by the genes. The Neighbor-Joining method
in MEGA 7.0 was used to analyze the phylogenetic relationships
between the target genes and other amino acid sequences of the
CYP6 family in lepidopteran insects. The ClustalX was used to align

the sequences of C. punctiferalis CYP6CV1 and CYP6AB51 with the
related lepidopteran cytochrome P450.

2.4 Analysis of the CYP6CV1 and
CYP6AB51 expression patterns in C.
punctiferalis

Larval samples of C. punctiferalis at different developmental
stages were collected, including first- (80 individuals), second-
(40 individuals), third- (10 individuals), fourth- (5 individuals)
and fifth-instar (3 individuals) larvae, to analyze the expression
levels of the two genes. Samples of different larval tissues, including
head, salivary gland, midgut, fat body, cuticle and hemolymph from
20 fourth-instar larvae, were also dissected and collected. Each insect
sample had three replicates. The total RNA extraction and synthesis
of cDNA were the same as in section 2.2.

On the basis of the cloned cDNA sequences of CYP6CV1 and
CYP6AB51, Primer 5.0 was used to design qRT-PCR primers
(Table 1), and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH; GenBank accession no: KX668532.1) was used as the
internal reference gene to normalize the qRT-PCR data. qRT-PCR
experiments were performed using a QuantStudio™ three Real-
Time PCR System (Thermo Scientific) in a total volume of 20 μL,
which contained 10 μL of 2 × SuperReal PreMix Plus, 0.6 μL of each
primer (10 μM), 0.4 μL of 50× ROX Reference Dye, 1 μL of cDNA
template (200 ng) and 7.4 μL of RNase-Free ddH2O. The qRT-PCR

TABLE 1 Sequences of primers used in this study.

Primer name Base sequence (5′–3′)

cDNA full-length amplification

CYP6CV1-F ATGGCGTCGCTTGTTTGTGTCGCGA

CYP6CV1-R TCACCTTTTCGATATCTTCACCCAT

CYP6AB51-F ATGATTGCTCTCATTTTGATTACA

CYP6AB51-R TTAAATCTTCCGTTCTCGGAATAT

Quantitative real-time PCR

CYP6CV1-Q-F TTCTACTCGGCTGGTTTC

CYP6CV1-Q-R TGCCCATTACATTTCTCG

CYP6AB51-Q-F AATCGCTGGCTGGGTTGGC

CYP6AB51-Q-R CCGTTCTCGGAATATCAGTGGC

GAPDH-F CTGCCTCTTACGACGCTATCA

GAPDH-R ATCGTTCAGGGAGATGCCG

dsRNA synthesis

dsCYP6CV1-F CGTCTGCTGCTACAATGTCTTT

dsCYP6CV1-R CAATTACGCGGTCCTTCC

dsCYP6AB51-F CGAAATGACGTACCTTGATTGGAC

dsCYP6AB51-R CCGTTCTCGGAATATCAGTGGC

dsEGFP-F CACAAGTTCAGCGTGTCCG

dsEGFP-R GTTCACCTTGATGCCGTTC

T7-dsCYP6CV1-F GATCACTAATACGACTCACTATAGGGAGACGTCTGCTGCTACAATGTCTTT

T7-dsCYP6CV1-R GATCACTAATACGACTCACTATAGGGAGACAATTACGCGGTCCTTCC

T7-dsCYP6AB51-F GATCACTAATACGACTCACTATAGGGAGACGAAATGACGTACCTTGATTGGAC

T7-dsCYP6AB51-R GATCACTAATACGACTCACTATAGGGAGACCGTTCTCGGAATATCAGTGGC

T7-dsEGFP-F GATCACTAATACGACTCACTATAGGGAGACACAAGTTCAGCGTGTCCG

T7-dsEGFP-R GATCACTAATACGACTCACTATAGGGAGAGTTCACCTTGATGCCGTTC

T7 sequence: GATCACTAATACGACTCACTATAGGGAGA.

Frontiers in Physiology frontiersin.org03

Yuan et al. 10.3389/fphys.2023.1186804

https://www.ncbi.nlm.nih.gov/orffinder/
http://web.expasy.org/compute_pi/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1186804


program conditions were as follows: 95°C for 15 min; 40 cycles of
95°C for 10 s and 60°C for 32 s. To assess the specificity of each PCR
amplification, a dissociation-curve analysis was performed at the
end of the run. Each sample had three technical replicates.

2.5 The susceptibility of C. punctiferalis
larvae to the three insecticides

The toxicity levels of 95% chlorantraniliprole and 91%
emamectin benzoate to the third-instar larvae of C. punctiferalis
were evaluated independently using the feed-mixing method (Yu
et al., 2015). The two insecticides were dissolved and diluted with
0.1% TritionX-100 independently (Solarbio, Beijing, China) to
obtain a series of different concentrations. Then, 1 ml of each
different diluted solution was incorporated into 100 g of the
artificial diet to obtain six concentration-gradient mixed
insecticide feeds, and 0.1% TritionX-100 was used as a control.
Then, the diets were cut into small pieces and provided to third-
instar larvae of C. punctiferalis that had been starved for 12 h. The
toxicity of 96.9% lambda-cyhalothrin to the third-instar larvae of C.
punctiferalis was evaluated using the topical application method
(Brewer and Trumble, 1989). The 96.9% lambda-cyhalothrin was
diluted into a series of different concentrations using acetone (Fuyu
Chemical, Tianjin, China), and 1 µL of the diluted solution was
placed on the thoracic dorsum of the larvae using a microdropper
(Envta Technology, Beijing, China). Three biological replicates were
used for each concentration, and 20 larvae were treated per replicate.
The number of dead insects was counted after 24 h or 48 h (24 h for
96.9% lambda-cyhalothrin and 48 h for both 95%
chlorantraniliprole and 91% emamectin benzoate).

2.6 Effects of exposure to the three
insecticides on the mRNA expression levels
of the target genes

On the basis of the toxicity levels of the three chemical
insecticides on the third-instar larvae, LC10, LC30 and LC50 were
used to evaluate the effects of chlorantraniliprole, emamectin
benzoate and lambda-cyhalothrin on the CYP6CV1 and
CYP6AB51 expression levels in C. punctiferalis. The third-instar
larvae were treated with the above concentrations of the three
insecticides as described in section 2.5, and the surviving larvae
were collected at 3, 6, 12, 24 and 48 h after treatment. Each
replication included 10 larvae, with three biological replicates per
concentration. The total RNA extraction, cDNA synthesis and qRT-
PCR were performed as described above in section 2.2 and 2.4.

2.7 RNAi silencing of CYP6CV1 and
CYP6AB51 and interference efficiency
detection

On the basis of the obtained gene sequences of CYP6CV1 and
CYP6AB51 in C. punctiferalis, gene-specific primers containing the
T7 promoter were designed, and the enhanced green fluorescent
protein gene (EGFP) was used as a control (Table 1). DsCYP6CV1,

dsCYP6AB51 and dsEGFP were synthesized using a T7 RiboMAX™
Express RNAi System kit (Promega, Madison, WI, United States) in
accordance with the instructions. The dsRNA products were diluted
with nuclease-free water to a final concentration of 3 μg/μL and then
maintained at −80°C for later use.

The third-instar larvae of C. punctiferalis were injected with
2 μL (3 μg/μL) of gene-specific dsRNA (dsCYP6CV1 and
dsCYP6AB51) at the second internode membrane of the
abdomen using a manual microinjector. Larvae injected with
same amount of dsEGFP (EGFP control) or nuclease-free
water (DEPC control) were used as negative controls, and the
non-injection treatment was used as a blank control (CK). At 24,
36 and 48 h after injection, 10 surviving larvae per treatment were
collected, and qRT-PCR was used to detect the interference
efficiency with the target gene. Three biological replicates were
used per treatment, and each biological replicate had three
technical replicates.

2.8 The susceptibility of C. punctiferalis to
the three insecticides after target gene
interference

The third-instar larvae of C. punctiferalis were injected with
2 μL (3 μg/μL) of the target gene dsRNA, dsEGFP or DEPC. At
36 h after injection, the surviving larvae were fed diets treated
with chlorantraniliprole or emamectin benzoate at the LC10 dose,
and another group of C. punctiferalis larvae were subjected to the
topical application of lambda-cyhalothrin at the LC10 dose. After
6 h, the mortality of each treatment was recorded. Every
treatment was performed in triplicate, and each replicate
included 20 larvae.

2.9 Statistical analysis

The relative expression levels of the genes as assessed by qRT-
PCR were analyzed using the 2−ΔΔCT method (Livak and
Schmittgen, 2001). Excel was used to sort the data, and SPSS
20.0 was used for the statistical analysis. After a one-way
ANOVA, Duncan’s multiple range tests (p < 0.05) were used
to analyze the significant differences between different
treatments. The bioassay used the Probit function of SPSS
20.0 for the statistical regression analysis.

3 Results

3.1 Identification ofCYP6CV1 andCYP6AB51
in C. punctiferalis

The cDNA sequences of CYP6CV1 and CYP6AB51 in C.
punctiferalis were obtained through molecular cloning and
sequencing. The ORF lengths, number of encoded amino acids,
protein molecular weights and isoelectric points of CYP6CV1 and
CYP6AB51 in C. punctiferalis were determined using the online
tools of the NCBI and ExPASY, and then, the data were submitted to
NCBI to obtain the GenBank accession numbers. The basic
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sequence characteristics of CYP6CV1 and CYP6AB51 from C.
punctiferalis are shown in Table 2.

The constructed phylogenetic tree showed that C.
punctiferalis CYP6CV1 was closely related to CYP6CV1 in
Cnaphalocrocis medinalis, with a homology of 78.45%
(Figure 1), whereas there was a close relationship between
CYP6AB51 from C. punctiferalis and CYP6AB51 from Chilo
suppressalis, with a homology of 61.36% (Figure 2). The
predicted amino acid sequences encoded by the two genes
contained five typical conserved structural regions of insect
P450 proteins (Graham and Peterson, 1999; Deng et al., 2007),
a C-helix region (WXXXR), I-helix region (AGXETS), K-helix
region (EXXR), meander sequence (PXXFXPXXF) and heme-
binding sequence (FXXGXRXCXG) (where X represents any
amino acid) (Figure 3).

3.2 Expression profiles of CYP6CV1 and
CYP6AB51 in different larval developmental
stages and different tissues

qRT-PCR was used to detect the gene expression levels of
CYP6CV1 and CYP6AB51 at different larval developmental stages
and in different tissues of C. punctiferalis. The two target genes were
expressed throughout the C. punctiferalis larval growth period and
in different tissues. As the larvae developed, the expression levels of
the two genes increased. The maximum expression levels of
CYP6CV1 and CYP6AB51 genes were detected in the fifth-instar
larvae stage, and they were 385.96 and 12.42 times higher than in the
first-instar larvae, respectively. Among the different tissues, the
expression levels of the two genes in the midgut were the
highest, and they were significantly higher than in other larval

TABLE 2 Sequence characteristics of CYP6CV1 and CYP6AB51 in C. punctiferalis.

Gene name ORF
length (bp)

Number of coded amino
acids

Protein molecular
weight (kDa)

Isoelectric
point (pI)

GenBank accession
number

CYP6CV1 1,503 500 57.045 8.93 MT740277

CYP6AB51 1,536 511 59.343 8.38 MW402840

FIGURE 1
Phylogenetic relationships between CYP6CV1 from C. punctiferalis and homologs from other lepidopteran insects. The phylogram was generated
by MEGA 7.0 using the neighbor-joining method, and the inferred phylogeny was tested using a bootstrap analysis with 1,000 pseudoreplicate datasets.
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tissues. The transcript levels in the head and cuticle were the lowest
among the tested tissues (Figure 4).

3.3 Toxicity of the three insecticides on C.
punctiferalis

The toxicity of the three chemical insecticides,
chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin,
on C. punctiferalis larvae are shown in Table 3.

3.4 Effects of insecticide exposure on the
mRNA expression levels of CYP6CV1 and
CYP6AB51

Three pesticides commonly used in the control of C. punctiferalis
were selected to evaluate their effects on the expression levels of C.
punctiferalis CYP6CV1 and CYP6AB51 as assessed by qRT-PCR.
When C. punctiferalis larvae were exposed to chlorantraniliprole at
LC10, the expression of CYP6CV1 increased significantly and peaked
at 3 h, whereas the expression of CYP6AB51 peaked at 6 h. When
treating with chlorantraniliprole at LC30, the expression levels of
CYP6CV1 inC. punctiferaliswere obviously different from the control
group at 3 h and 48 h, and the transcript levels of CYP6AB51 at

different time points were all higher than in the control. Compared
with the control group, the expression of CYP6CV1 in the LC50

treatment increased significantly at 3 h, and the expression of
CYP6AB51 was induced notably at all the time points (Figures 5A,B).

Emamectin benzoate at LC10 obviously induced the expression
of CYP6CV1 and CYP6AB51 at 3 h and 6 h. In addition, emamectin
benzoate at LC30 also significantly increased the expression levels of
the two genes relative to the control treatment. However, when C.
punctiferalis larvae were exposed to emamectin benzoate at LC50, the
expression of CYP6CV1 was significantly increased at 3 h and then
decreased slowly, whereas the transcript levels of CYP6AB51 peaked
at 48 h (Figures 5C,D).

In response to lambda-cyhalothrin exposure, the expression
levels of CYP6CV1 at the three concentrations all peaked at 24 h,
whereas the expression of CYP6AB51 was upregulated at all time
points and peaked at 3 h compared with the control
(Figures 5E,F).

3.5 The sensitivity ofC. punctiferalis larvae to
the three insecticides after target gene
silencing

After the silencing of CYP6CV1 and CYP6AB51 independently
in C. punctiferalis by injecting dsCYP6CV1 and dsCYP6AB51,

FIGURE 2
Phylogenetic relationships between CYP6AB51 from C. punctiferalis and homologs from other lepidopteran insects. The phylogramwas generated
by MEGA 7.0 using the neighbor-joining method, and the inferred phylogeny was tested using a bootstrap analysis with 1,000 pseudoreplicate datasets.
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FIGURE 3
Alignment of C. punctiferalis CYP6CV1 and CYP6AB51 with related lepidopteran cytochrome P450s. The sequences of C. punctiferalis CYP6AB51,
C. suppressalis CYP6AB51, C. punctiferalis CYP6CV1 and C. medinalis CYP6CV1 were aligned using ClustalX. The dark blue indicates a shared amino acid
identity of 100%, the pink indicates a shared amino acid identity greater than or equal to 75%, and the green indicates a shared amino acid identity greater
than or equal to 50%. The five conserved domains of the cytochrome P450 genes are marked with red boxes.

FIGURE 4
The transcription levels of CYP6CV1 and CYP6AB51 in different larval developmental stages (A) and tissues [(B), fourth-instar larvae] of
C. punctiferalis. All the transcript levels were normalized using GAPDH as the internal reference gene. The values are represented as the means ± SEs.
Significant differences among treatments are indicated by lowercase letters above each bar (p < 0.05).
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respectively, the expression levels of CYP6CV1 and CYP6AB51 were
both decreased most at 36 h, with reductions of 72.91% and 70.94%,
respectively, when compared with the control groups (Figure 6).

After dsRNA injection, the mortality of CYP6CV1-silenced
larvae and CYP6AB51-silenced larvae treated independently with
LC10 values of chlorantraniliprole, emamectin benzoate and

TABLE 3 Toxicity levels of the three tested chemical insecticides on the third-instar larvae of C. punctiferalis.

Pesticides LC10 (CI95) LC30 (CI95) LC50 (CI95) Toxicity regression
equation

Correlation
coefficient

Chlorantraniliprole 0.0248 (0.0137–0.0371) 0.0858 (0.0622–0.11055) 0.2028 (0.1605–0.2595) y = 0.9724 + 1.4033x 0.956

Emamectin benzoate 0.0238 (0.0180–0.0293) 0.0444 (0.0371–0.0517) 0.0683 (0.0590–0.0794) y = 3.2646 + 2.8015x 0.986

Lambda-cyhalothrin 0.0237 (0.0110–0.0417) 0.1616 (0.1024–0.2393) 0.6110 (0.4167–0.9263) y = 0.1943 + 0.9078x 0.981

LC10, lethal concentration at 10%; LC30, lethal concentration at 30%; LC50, lethal concentration at 50%; CI, confidence intervals.

FIGURE 5
Effects of three different pesticides treatments onCYP6CV1 andCYP6AB51 expression level inC. punctiferalis. The relative transcription levels of (A)
CYP6CV1 and (B)CYP6AB51 in the chlorantraniliprole treatment (C)CYP6CV1 and (D)CYP6AB51 in the emamectin benzoate treatment; and (E)CYP6CV1
and (F) CYP6AB51 in the lambda-cyhalothrin treatment. Values are represented by means ± SEs. Significant differences among groups are indicated by
lowercase letters above each bar (p < 0.05).
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lambda-cyhalothrin were recorded. The results indicated that the
delivery of dsCYP6CV1 increased the larval mortality caused by
chlorantraniliprole (from 1.67% to 11.67%), emamectin benzoate
(from 3.33% to 16.67%) and lambda-cyhalothrin (from 3.33% to

13.33%), and injection with dsCYP6AB51 significantly increased the
larval mortality caused by chlorantraniliprole (from 1.67% to
8.33%), emamectin benzoate (from 3.33% to 11.67%) and
lambda-cyhalothrin (from 3.33% to 11.67%) (Figure 7).

FIGURE 6
Effects of RNAi on the transcript levels of CYP6CV1 (A) and CYP6AB51 (B) in C. punctiferalis. Values represent means ± SEs for three independent
replicates. Significant differences among groups are indicated by lowercase letters above each bar (p < 0.05).

FIGURE 7
Silencing CYP6CV1 (A–C) and CYP6AB51 (D–F) to the sensitivity of C. punctiferalis larvae treat with three pesticides. Data shown are means ± SEs,
and significant differences among groups are indicated by lowercase letters above each bar (p < 0.05). CK: uninjected larvae fed with normal artificial
diets; CHL/EMA/LAM: uninjected larvae treated with chlorantraniliprole, emamectin benzoate or lambda-cyhalothrin at the LC10 value; DEPC + CHL/
EMA/LAM: larvae injected with DEPC-treated water and then treated with chlorantraniliprole, emamectin benzoate or lambda-cyhalothrin at the
LC10 value; dsEGFP + CHL/EMA/LAM: larvae injected with dsEGFP and then treated with chlorantraniliprole, emamectin benzoate or lambda-cyhalothrin
at the LC10 value; dsCYP6CV1/dsCYP6AB51 + CHL/EMA/LAM: larvae injected with dsCYP6CV1 or dsCYP6AB51 and then treated with chlorantraniliprole,
emamectin benzoate or lambda-cyhalothrin at the LC10 value.
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4 Discussion

The number of CYP genes carried by insect genomes range from
36 for Pediculus humanus to 170 for Culex quinquefasciatus
(Arensburger et al., 2010; Lee et al., 2010). The first identified
insect P450 gene was CYP6A1 cloned from Musca domestica
(Feyereisen et al., 1989), and since then, more and more novel
insect P450 genes have been identified with the development of
molecular biology-related technology (Li F. et al., 2019). Some
P450 genes, especially CYP3 (including CYP6 and CYP9) and
CYP4 are involved in the detoxification and metabolism of
exogenous compounds (Feyereisen, 2011). In Mamestra brassicae,
the CYP4M51 and CYP6AB56 genes have potential roles in the
detoxification of deltamethrin (Zhou et al., 2017). In addition, the
CYP9A105 gene may play an important role in the detoxification of
α-cypermethrin, deltamethrin and fenvalerate in Spodoptera exigua
(Wang et al., 2018). In this study, the obtained P450 CYP6 genes,
CYP6CV1 and CYP6AB51 in C. punctiferalis, also contained the five
conserved domains of insect P450s. The phylogenetic analysis
showed that CYP6CV1 and CYP6AB51 in C. punctiferalis were
closely related to C. medinalis CYP6CV1 and C. suppressalis
CYP6AB51, respectively.

Analyses of P450 gene expression patterns provide useful
information on the potential roles of these genes in biological
functions (Lyu et al., 2020). Insect P450 genes have a diverse
distribution. Some genes are expressed throughout all the
developmental stages and distributed widely in all the tissues,
whereas some genes are only expressed in specific
developmental stages and specific tissues (Scott et al., 1999;
Feyereisen, 2015; Xu et al., 2009). Larval midguts and fat bodies
play important roles in the metabolism of xenobiotics; therefore,
the P450 genes associated with the detoxification of xenobiotics
may be highly expressed in these tissues (Hou et al., 2021).
Consequently, the expression profiles of CYP6CV1 and
CYP6AB51 in C. punctiferalis at different developmental stages
and in different larval tissues were assessed by qRT-PCT. As the
larvae developed, the gene expression levels increased. The
expression levels of CYP6CV1 and CYP6AB51 in fifth-instar
larvae were 385.96 and 12.42 times higher than in first-instar
larvae, respectively. This expression pattern is similar to the
larval expression pattern of CYP6CV1 in C. medinalis (Chen
et al., 2015). A tissue-specific expression analysis showed that
CYP6CV1 and CYP6AB51 are highly expressed in the larval
midguts of C. punctiferalis, with expression levels being
approximately 11.60-fold and 156.96-fold higher than in the
head, respectively, and a similar result was also found for the
CYP6AB60 expression levels in Spodoptera litura (Sun et al., 2019).
The detoxification system of the midgut responds quickly to the
ingestion of xenobiotics (plant secondary substances and
pesticides), indicating that the detoxification enzymes of
midguts play important roles in the metabolism of xenobiotics
(Li Q. et al., 2019; Huang et al., 2021).

An important feature of the P450 enzyme system is its
inducibility (Yang et al., 2013). The expression of insect
P450 can be induced by a broad range of xenobiotics, thereby
enhancing their ability to metabolize the xenobiotics after
exposure (Feyereisen, 2015). CYP6B8 in Helicoverpa zea
metabolizes plant allelochemicals, such as xanthotoxin, quercetin
and flavone, as well as three insecticides, diazinon, cypermethrin and
aldrin (Li et al., 2004). The upregulation of CYP6CM1 in Bemisia
tabaci is related to its resistance to neonicotinoid insecticides (Jones
et al., 2011). In Leptinotarsa decemlineata, six CYP6 genes
(CYP6BH2, CYP6BJ1, CYP6BQ17, CYP6EG1, CYP6EH1 and
CYP6EJ1) are involved in cyhalothrin detoxification (Wan et al.,
2013). In this study, the expression of CYP6CV1 and CYP6AB51was
significantly induced by chlorantraniliprole, emamectin benzoate
and lambda-cyhalothrin treatments, which indicated that CYP6CV1
and CYP6AB51 may participate in the detoxification and
metabolism of the three pesticides in C. punctiferalis.

RNAi is a commonly used gene silencing technology that
inhibits the expression of target genes in the test organisms. It has
been widely used to study the functional roles of insect P450s
(Bautista et al., 2009; Shi et al., 2016). Furthermore, it is a
promising bioengineering technology that can be applied to
pest control (Zhu and Palli, 2020). It has been successfully
used in the functional studies of a variety of insect P450 genes
(Zhao et al., 2021). In the current study, independent injections
with dsRNA targeting CYP6CV1 and CYP6AB51 significantly
increased the mortality of C. punctiferalis larvae treated with
chlorantraniliprole, emamectin benzoate or lambda-cyhalothrin,
which suggested the potential roles of CYP6CV1 and CYP6AB51
in the detoxification of the three pesticides. Similarly, after the
injection of dsRNA targeting CYP6B7, the sensitivity of H.
armigera larvae significantly increases after fenvalerate
exposure (Tang et al., 2012). In addition, the gene silencing of
CYP6B6 in H. armigera significantly reduces the survival rate and
development of larvae (Zhang et al., 2013). After injecting the
dsRNA of CYP6AB14, the transcription level of CYP6AB14 in S.
litura is significantly reduced, and the mortality of larvae
significantly increases (Wang et al., 2015).

5 Conclusion

In this study, it was found that after interfering with the
CYP6CV1 and CYP6AB51 in C. punctiferalis, respectively, the
sensitivity of C. punctiferalis to chlorantraniliprole, emamectin
benzoate and lambda-cyhalothrin was significantly increased,
indicating that the two CYP6 genes were responsible for the
adaptability of C. punctiferalis to the three chemical insecticides
in C. punctiferalis. The results from this study demonstrated that
CYP6CV1 and CYP6AB51 in C. punctiferalis play crucial roles in the
detoxification of chlorantraniliprole, emamectin benzoate and
lambda-cyhalothrin.
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