
An analysis on key Factors of Agile Project Management

Muhammad Saad Munir1*

1Department of Computer Science and Information Technology

Email: msaadmct@gmail.com

ABSTRACT:
 Agile software development is a new method for developing and implementing software. It
depends more on ad hoc approaches to planning and control in favor of the more organic processes of
teamwork and mutual education. After reviewing several case studies of business initiatives, this
research work focuses agile project management. It discusses the historical context of the shift from
conventional management's emphasis on top-down supervision and process standardization to agile's
emphasis on self-managing teams, with all of the advantages and complications it entails. In this
section, you will study the four cornerstones of agile project management: minimal critical specifica-
tion, self-organizing teams, redundancy, and feedback and learning.

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 20

1. INTRODUCTION
Over the past decade, agile software development
has gained popularity as a solution for this
problem [1] . Several models have emerged over
time to better explain the actions of individuals
across the many stages of a team's, projects, or
business's development. Levels [2]. When it
comes to software development projects, Scrum
is the most open and accessible method of
management. One of the key principles of agile
software development is the merging of the
development team with the "customers" who
stand in for the actual users of the software. The
customer and the development team work
together to decide which features are most
important between iterations. According to [3],
the software project manager's job is to ensure
that the team is well-coordinated and that
everyone's opinions are taken into account.
What makes up a software project is its individual
components, all of which work together to
produce an end product. In their most basic
forms, project management entails the
aforementioned three phases: preparation,
execution, and monitoring. The high costs and
failure rates of such projects continue to interest
scholars and practitioners, making the

management of software projects a relevant topic
despite tremendous advancements in the field.;
Several management activities are required to
oversee the various and complex operations that
make up a project. The software industry, like
other parts of the business world, has been
moving towards standardization with the support
of codified, generic project management
approaches like PRINCE2 (which was
established and is championed by the UK
government). Although there is agreement on the
definition of project management, there is no
commonly held theory of project management or
agreed-upon methodology for gauging its success
[4].
The linear structure and discrete, mechanical
perspectives of the systems engineering and
quality sciences of the 1950s and 1960s have a
considerable impact on current practices in
project management. Conventional methods of
project management treat requirements gathering,
system design, coding, and testing as separate
phases. This makes it more challenging to adjust
the project plan to account for shifts in
requirements or availability. It seems like
following the established approach would result
in functional hardware. Yet, the software

Munir et al. LGURJCSIT 2023 SSN: 2521-0122 (Online)
ISSN: 2519-7991 (Print)

LGU Research Journal of
Computer Science & IT

doi: 10.54692/lgurjcsit.2023.0701417

Vol. 7 Issue 1, January – March 2023

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 21

development process struggles under this context
due to its lack of concreteness and consequent
lack of acceptance. To characterize a strategy for
resolving these issues by applying engineering
concepts to software development, the phrase
"software engineering" was coined at a landmark
NATO meeting in Garmisch-Partenkirchen in
1968. Because of this, most initiatives to solve
software development issues have adopted the
strategy of treating software development like an
engineering process. According to Hoare (1984),
the "rise of engineering" and the application of
"mathematical evidence" in software
development "promise to revolutionize the
obscure and error- prone trade of computer
programming to meet the highest standards of a
contemporary engineering profession." Lehman
(1989) also "architected" software in an attempt
to lessen risks during the creation phase.
Agile project management differs from the
traditional waterfall approach by focusing on
short cycles of iterative and incremental delivery
of product features and continuous integration of
code revisions. The mindset and strategy of upper
management must change to accommodate agile
project management. Scrum is a framework for
managing software development projects. It
specifies three roles: the development team, the
facilitator, and the product owner. A typical agile
team has seven members, as depicted in Fig. 1.

Figure 1: The work environment of an agile
development team

The facilitator is in charge of setting up and
leading the development team's meetings so that
problems can be discussed and solved as they
emerge. The product owner is responsible for
setting the priorities for the features that will be
built. Apart than that, the group should be able to
handle itself. Yet, in practice, many companies
assign a project manager to aid a product owner
in working on requirements and other
non-software- related tasks, such as internal and
external reporting. Although agile development
does not alter the fundamental skills necessary
for software development, it does alter the
collaborative, coordinated, and communicative

character of software projects. When making the
switch from waterfall to agile project
management, the emphasis needs to move from
detailed planning to make choices on the fly.
When dealing with complexity and uncertainty,
agile development's emphasis on bottom-up,
collaborative problem solving within software
development teams becomes all the more crucial
[5].
The "kick-off" is one of the most common phases
in project management. (Besner and Hobbs 2008).
The goals, responsibilities, stakeholders, and
preliminary plans for a project are all written out
and addressed at the introductory meeting. The
client acts as the project's "product owner" in
Scrum, and it is their job to define the project's
"high-level vision and objectives." Also, under
agile methods, the team functions as a
self-governing entity under the guidance of a
single facilitator. Now there's only the team leader
and the team members, with no other internal
positions to speak of. However, many companies
additionally hire a project manager, who is
responsible for overseeing the work of many
teams on a given project. A product owner is a
common example of a stakeholder, but other
interested parties, such as customers or even
developers from other projects that share
technical infrastructure, might also be present.
This project's first picture shoot is seen in Figure
2.

Figure 2: beginning a project with a
development team, team facilitator, and

accountable customer

The length of an iteration is an important
component to consider while establishing the
project strategy. Iterations should be shorter if
there are frequent adjustments in customer
demands or technology, and longer if the
environment is more stable. An agile team would
frequently construct a high-level plan for
numerous iterations before creating a more
precise plan for the subsequent iteration. At the

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 22

beginning of the process, a product owner could
be asked to rate the priority of the features that
will be produced. Planning poker, for instance, is
used to estimate the features, and it stimulates a
debate amongst team members about the actions
that need to be followed in order to build a
feature. The team then commits to what they will
be able to produce in the first iteration. The
team's "plan" is then the ordered list of features,
and throughout the iteration, the employees
responsible for implementing those features are
allocated to various sprints. How can the first
meeting effectively facilitate feedback and
lessons learned? We know that teams need to
establish common knowledge in a number of
domains through studies on shared mental
models. The team's collective awareness of the
tasks at hand, the state of the art, the competence
of its members, and the interactions among them
all creates the team's mental models. One
technique to enhance consensus on a single
mental model is by the use of planning poker.
Team members' abilities may be shown and new
information learned through estimation talks
about the tasks at hand and the development
technologies being utilized [6].
The steps for poker planning are as follows: Each
player is dealt a hand of cards with values that
;roughly follow the Fibonacci pattern (0, 1, 2, 3,
5, 8, 13, 20, 40, etc.). Each person assigns
themselves a certain amount of time to do each
activity based on the card they choose. Members
of the team reveal their cards, and the highest and
lowest estimators are questioned on their thought
processes. If an agreement cannot be reached, the
procedure is repeated until a majority or an
average of the votes establishes a decision. If
there is a wide range of estimates, the work at
hand may need to be broken down into more
manageable chunks. There have also been studies
done on the effectiveness of using planning poker
[7]. Last but not least, establishing transparent
procedures ensures that everyone has a consistent
mental picture of how the team functions.
Because to their simplicity and memorability,
agile practices may serve as a readily accessible
common mental model for teams.
Scientists in the field of organizational learning
used the term "reflective practice" to define "the
habit of routinely pausing to reflect on the
significance to self and others in one's immediate
surroundings about what has just occurred." [8].
It provides insight into one's

 own and others' previous experiences and may be
used as a launching pad for future growth [9].
Finding and naming the results of contemplation,
investigation, and action is a part of this
procedure. It may provide insight into parts of life
that have been overlooked thus far. Kerth argues
that residents of a community might gain insight
into the issues plaguing their neighborhood and be
motivated to work together to find answers by
participating in a retrospective. With the help of
the retrospective, the community may eventually
become the "master of its software process." [10].
It is widely believed ;that retrospectives help
participants grow intellectually, emotionally, and
behaviorally in addition to offering an opportunity
to recognize and appreciate past successes.
Further, Derby and Larsen contend that teams
may benefit from "whole-team learning" by
improving their performance by looking back at
their prior efforts to see how they could have done
things better [11].
The goals of an agile retrospective are to assist the
team gather information, gain understanding, and
decide on a course of action. (ibid). Many people
use techniques like constructing a timeline of key
events or merely brainstorming about "what went
well" and "what may be better" to collect data.
These conclusions are drawn through a variety of
analyses, such as fishbone diagrams, data
modeling, and prioritization, of the source
material. (see Fig.3). Adjustment choices are
made and activities to implement those decisions
are scheduled for the next iteration based on this
information.
Even though retrospectives are a common
practice in today's businesses, not much research
has been done on the topic. While many articles
discuss how to conduct retrospectives, fewer
examine their consequences. A study of crucial
procedures in R&D businesses found that
"learning from post-project audits" was one of the
most promising ways for gaining a competitive
edge [12].
Kransdorff (1996) argues that participants' faulty
memories make postmortems a breeding ground
for disagreements. Gathering information as you
go throughout the project, such via quick
interviews, is one method he proposes for
obtaining more neutral data.
Artifacts in physical form are convenient since
they can be quickly referred to, annotated, and
ignored [13]. It's simpler to control
the flow of data with a physical board than with an
electronic system, which is frequently the

Figure 3: Group of developers conducting a
retrospective, organizing ideas generated

during a previous session

alternative. Teams may benefit from having a
visual representation of the project's progress, the
relative significance of tasks, and the degree of
product readiness on such boards.
The only steps involved in establishing a visual
board are locating a suitable location, deciding
on a layout for the cards, and delivering them to
the designated area. Try to choose a spot that's
convenient for the developmentteam and anyone
else who might be following their progress. It
might be helpful to have the board next to any
visual aids the team is using, such as a
burndown4 chart that outlines what tasks need to
be completed at this pointin the project. The
board should display critical data on the team's
current work state and its overall development.
Activities in the workplace pass through. To do,
analysis, development, review, integration test,
and readiness for deployment test are all typical
milestones (see Fig. 4). A step in which one
developer validates the completion of the job
with the consensus of a second developer or an
outside party may be worth considering if your
team is having trouble with a specific issue, such
as developers arguing over whether a certain
piece of work is accomplished. Some individuals
also use a distinct font color or subheading to
draw attention to tasks that might potentially
derail the project.
Physical artefacts like the card stand in for
symbols of accountability, and it has been
observed that physically manipulating objects
yields greater insight than using electronic
manipulation tools [13].
Physical artefacts like the card stand in for
symbols of accountability, and it has been
observed that physically manipulating objects
yields greater insight than using electronic
manipulation tools [13[. Common
issues in a project, such tasks not being done,

Figure 4: Example visual board with areas for
tasks “todo,” “analysis,” “development,”
“review,” “integration test,” and “ready for

deployment test”

critical jobs not getting done, and too many
activities being begun at once, may all be easily
seen with a visual board.
Lack of feedback and iterative improvements
makes agile project management impossible.
Learning and doing go hand in hand because of
the agile methodology's emphasis on action rather
than preparation. The significance of feedback
and learning is further emphasized when the
programmer is viewed as an open system that is in
constant interaction with its environment.
However, because to the complexity and
unpredictability of software, problems are
notoriously hard to spot until they are virtually
resolved .
Due to these obstacles, accurate requirements
cannot be specified till a significant portion of the
system has been built and put into use. But, unless
its purpose is elucidated, the system cannot be
constructed. Due of the infinite potential for
improvement, this is an ongoing problem. It is
more efficient to manage and handle software
issues in tiny increments by doing operations like
requirements, design, coding, and testing, rather
to focusing on a single delivery. The success of
the project hinges on how well it handles
overlapping and concurrent activities over time.
This is accomplished through iterative phases in
which providing feedback and learning from past
mistakes become second nature. These rules,
taken as a whole, provide forth a firm groundwork
for a software development project's planning,
execution, and monitoring, while leaving room
for flexibility in the project's particulars.
2. LITERATURE REVIEW
Traditional project management principles face a
number of obstacles, but complexity and
unpredictability are particularly significant ones
when it comes to the management of software
projects. It may be difficult to predict the
outcomes of an action in a big project because of

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 23

the interplay between the multiple states and
actions of the software project and its external
elements [14]. An accurate depiction of the
technical, organizational, and environmental
states that may significantly affect the value of
the project's outcome, or of the causal links
between them, is simply beyond of the project
team's reach in complex software projects.
As Humphrey (1989) pointed out, the most
pressing issues in software development are
administrative, not technological. As a result, he
devised the Capability Maturity Model for
Software to standardize and improve the process
of creating software (CMM). Both the Capability
Maturity Model for Implementation (CMMI) and
its predecessor, the Capability Maturity Model
(CMM), share the same technical base as
software engineers, with an emphasis on
predictability and improvement through
statistical process management. "Constant
improvement" can be anticipated when "the
process is under statistical control," as Humphrey
(1989) puts it.
The rationalistic traditions of engineering are
deeply embedded in the software development
and software project management processes, as
evidenced by these enlightening quotations from
top academics in the software industry.
Assemblage line theory as developed by Frederic
Winslow Taylor and Henry Ford, as well as Max
Weber's study of bureaucracy, can be seen as the
foundation for the vast majority of works that
came before us. Modern project management
methodologies, such as PRINCE2, build on this
technical foundation by providing standardized,
process-driven alternatives to reactive and
flexible methods like Scrum. The whole acronym
for Project IN a Networked, Controlled, and
Evaluated Environment (PRINCE) is often
overlooked. That it doesn't fare as well in the
same environment as many (or maybe even most)
software development projects is scarcely
surprising.
It is projected that for every 25% increase in
issue complexity, there is a 100% rise in the
complexity of the software solution, and this
complexity grows exponentially with scale,
causing most of the traditional challenges of
software development [15]. Yet another difficulty
is that the data required to comprehend most
software issues is idea-specific. Most software
projects face difficulties that are novel and
difficult to formalize, and for which solutions
tend to change continuously as programmers

acquire a deeper understanding of the problems
they face [16].
The fast-paced, highly unpredictable
environment, including, for example, market
volatility, shifts in client needs, and modifications
to project objectives, only serves to heighten the
difficulty of the issue and its resolution. As a
result, we must recognize that any assumptions or
forecasts we make about the future will
necessarily include some degree of uncertainty.
Management of software projects requires
significant caution when extrapolating previous
patterns or leaning too much on experience. A
future full of surprising changes and
unpredictable human behavior is in store, as
trends inevitably fade. When a project's inherent
uncertainty rises, the team must shift from more
conventional techniques based on a defined
sequence of activities to those that enable the
activities, or even the structure of the project plan,
to be rethought and redesigned as the project
progresses [17]. Hence, as the complexity and
unpredictability of a project rise, managers will
need to go beyond conventional risk management,
shifting their focus from rigid planning to
adaptive problem-solving.
The viewpoint presented in a research is heavily
influenced by socio-technical theory as it relates
to software project management (Trist 1981). Its
basic idea is that organizations are dual-natured
social-andtechnical systems, with the interaction
between the two being the very essence of a
software organization. But, the world is made up
of challenges that cannot be reduced to software
development approaches, tools, and
methodologies, at least from an engineering point
of ;view. To put it another way, the technical
justification for this worldview prioritizes
"objective facts" and global "best practices"
above local context and knowledge. Yet,
according to socio- technical theory, there may be
several optimum solutions to any given issue,
since there are often multiple methods to achieve
the "joint optimization" of any given
technological and human system.
We therefore deny that a high level of
formalization is necessary to manage complexity,
unpredictability, and change. Keep in mind that
(1) a shorter time period is required between
planning and execution, (2) an activity's
preparation does not supply all the information
necessary for its implementation, and (3)
creativity and education are required to make
sense of the world around us.

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 24

Teams are the primary organizational structure
for completing software development projects.
Individuals with specialized knowledge in design
and programming may contribute valuable
insights into the inner workings of organizations
and their processes in a group environment.
However, three challenges characterize the
efficiency of software teams[18]. Since the skills
required for a software project may be found in a
wide variety of people, the first step is for
development teams to find out how to
communicate, share information, and solve
problems efficiently and effectively. Second,
software projects can't be completed successfully
without formal and informal forms of control, as
well as the expertise and understanding to apply
both forms at the appropriate periods during the
project's execution. Finally, software projects are
differentiated by varying degrees of goal
ambiguity and coordination problems. Because
of this, software development teams need to be
adaptable enough to deal with the inevitable
challenges that come with working with the
unknown. In line with contemporary beliefs, we
regard the software team as an integral element
of a bigger organizational hierarchy that consists
of not only individuals but also other teams and
the company as a whole [19]. Having a deeper
comprehension of this concept is crucial if we are
to succeed in our mission of providing useful
guidance for agile software management.
After the advent of agile software development,
self-managing software teams have received
much acclaim. It is beneficial to organize
software development in self-managing teams
since it leads to higher levels of productivity,
innovation, and employee happiness. To get the
most out of people, though, you need to do more
than just put them on teams and cross your
fingers. Effective management of agile teams
requires knowledge of the processes involved in
creating and sustaining self-managing teams.
Because the project manager is responsible for
facilitating distributed leadership (the antithesis
of centralized leadership), distributed
decision-making, distributed mental models, and
a continuous cycle of learning and improvement,
leading a self-managing team is more
challenging than leading a traditional team. This
is a very gradual process. Software development
teams are notoriously tough to manage due to the
fact that they are often disbanded and
reconstituted for each new project. How much
time and money can be allocated to the project

Tversus how much help is needed [20]. It's
unusual for a whole crew to go on from one
project to another.
eams that are given the authority to make their
own decisions are frequently referred to as
"self-managing teams." It's true that
self-managing teams are a more recent innovation
in software project management, but the idea of
self-management has been studied at least since
the 1950s, when Eric Trist and Ken Bam forth
investigated the ways in which coal miners
self-regulated [21]. Software team performance,
improvement effort, and creativity have all been
proven to benefit greatly from the
self-management method. Self-management has
been shown to improve job satisfaction, worker
loyalty, and attendance [22]. Several academics
(Takeuchi and Nonaka, 1986) contend that
self-managing teams are crucial to the
achievement of innovative goals, particularly in
the realm of software development [23].
Cross-training team members to perform several
roles increases both functional redundancy and,
by extension, the team's flexibility in the case of
labor shortages. Despite several studies showing
the advantages of self-managing teams,
researchers have obtained wildly varied
conclusions on the repercussions of such
arrangements on productivity, employee turnover,
and morale [24]. It has been suggested that
self-managing teams are better to traditionally
managed teams because they allow
decision-making authority to be decentralized to
the level of operational challenges and
uncertainties, hence improving the efficiency and
accuracy with which issues are handled. For the
sake of cost reduction, increased productivity, and
improved quality, businesses have banded
together to create such consortiums.
One-personone-vote systems and other
democratic ideals won't be enough to create
functional self-governing groups, though. [25].
Based on his research, Hackman has identified
five overarching criteria that facilitate and
encourage self-management.
• Inspiring, well-defined purpose
• A conducive framework for executing
 units.
• A helpful work environment;
• Ready access to knowledgeable
 mentors.
and
• Sufficient means

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 25

The project manager's role is to ensure that these
conditions are met so that the team may become
and stay a self-managing agile unit. In order to
manage agile projects effectively, you must
recognize that team members can take on varying
degrees of autonomy. Individuals on an agile
team need a great deal of latitude to make
decisions on their own. There should be
agreement on the team's direction (what activities
should be accomplished and how), but each
member should have some latitude in selecting
how those duties are completed, and the project
manager is responsible for making that happen.
The struggle to balance the needs of both
individuals and the group is a major barrier to
building effective agile teams. If team members
are excessively independent and focused on
meeting their personal obligations, it might
compromise the team's productivity. It's possible
that a self-managing team might be more
authoritarian in its treatment of its members than
is the case under traditional management styles,
which would have a dampening effect on morale.
The question for a project manager in an agile
software development setting is how to find a
happy medium between the autonomy of the
whole team and the autonomy of its individual
members. It is especially challenging to do this in
market-driven, agile projects when scope and
timelines are often set in stone.
To have a productive team, many experts agree
that a strong leader is essential. Although there is
a wealth of information out there on many
leadership theories. Yet, what leaders should do
to improve team performance has received less
emphasis in the present research [26]. Some
schools of thought on leadership emphasize the
importance of mentoring a person more than
supervising a team. In this essay, we discuss
leadership and decision-making in the context of
self-managing teams and examine the pivotal
role of team leaders. A recent survey of agile
professionals revealed the need of strong
leadership in areas like as setting goals,
preventing distractions, deciding on a workflow,
ensuring sufficient resources, and creating a solid
technical foundation [27].
 In a self-managing team, everyone is responsible
for not only doing their part but also keeping tabs
on what they're doing, assessing how well, and
thinking of ways to improve it [25]. Due of this,
there shouldn't be a monopoly on leadership
inside these teams [28] With shared leadership,
team empowerment can grow [29]. Leaders and

followers alike should take turns at the helm, with
authority passing to the person best suited to
overcome the challenges at hand ([30]. While the
project manager is ultimately responsible for
ensuring that all tasks are completed successfully,
other team members will contribute when they
have expertise that is necessary [31].
At a software company, choices about products
and projects can be made on a strategic, tactical,
and operational level [32]. In traditional devel-
opment decision-making is governed by the hierar-
chical command and control structure, yet, agile
development promotes a culture of self-organiza-
tion and collective decision-making among teams.
You'll find a hybrid of the two decision-making
styles in most companies. An accurate grasp of the
present business process and a deep knowledge of
the software product should form the basis for
strategic choices in an agile product firm, with the
decisions mostly relating to product and release
plans. The project management perspective is
used to make tactical choices in such organiza-
tions, with the overarching goal of figuring out
how to best put strategic decisions into action via
resource allocation. Decisions regarding how to
run an agile business, on the other hand, focus on
the details of actually making the product and
getting the work done [33]. Since agile teams
make strategic choices gradually while delaying
crucial tactical and operational decisions as much
as feasible, they need to be able to change course
quickly in reaction to changing market conditions.
Rapid and precise problem resolution is crucial
when creating software, and giving the self-man-
aging team ownership of resolving operational
issues and uncertainty improves both.
There are many upsides to collaborative problem
solving in agile teams, but there are also certain
difficulties that might arise. First, compared to the
conventional model, where the project manager is
accountable for most choices, the shared
decision-making strategy is more complex since it
incorporates stakeholders with various
backgrounds and agendas [34]. Groupthink is
perhaps the most well-known issue related to
team cohesiveness, but it's not the only one;
cohesion has been cited as a cause of inefficient or
dysfunctional decision making despite the advan-
tages of shared decision making. Lastly, keep in
mind that the team might delegate responsibility
to individuals or subgroups within the team,
rather than relying on a consensus reached by
everyone. Learning who on your team has to
weigh in on certain choices might be difficult. As

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 26

the standup meeting is concerned with daily
coordination and planning, it serves as a crucial
platform for collaborative decision making in
agile software development. The meeting is
meant to be brief and to help with things like
better communication, highlighting and promot-
ing swift decision-making, and finding and
eliminating roadblocks.
Decisions in the complicated, dynamic, and
real-time world of agile software development
are made by the team during the daily meeting.
The theory of naturalistic decision making
(NDM) (Meso et al., 2002) may shed light on the
impact of decision making in such a complicated
setting when time is of the essence. Experts,
according to NDM, can make sound judgments
in trying circumstances such limited time, hazy
information, and a lack of clarity on the desired
outcome without resorting to laborious analysis
and weighing of their alternatives. The specialists
are able to achieve this because they are able to
draw on their prior experiences to spot issues for
which they have already devised effective
solutions. Specialists employ their knowledge to
create mental simulations of the issue at hand,
from which they draw conclusions about the best
course of action.
As you think about your daily meetings through
the lens of NDM, you have to consider certain
consequences. The first responsibility of an agile
project manager is to ensure that their team
members get enough training in both domain-spe-
cific competence and collaboration. Second, the
agile project manager should ensure that the team
is comprised of professionals rather than
amateurs, since NDM is dependent on the knowl-
edge and experience of those with advanced
training in the field. The agile project manager is
responsible for figuring out a path for any team
members who are new to the process to progress
through the various levels and eventually become
experts. Finally, the project manager must ensure
the team has formed a shared mental model, in
which all members understand their roles and
responsibilities, as well as the knowledge and
requirements necessary to complete the tasks at
hand, if the team is to make good decisions
during these sessions [35].
Decisional errors often result from people being
too committed to a single course of action [36].
As leaders commit more resources to an ineffec-
tive strategy, tensions rise [37]. Considering the
complexity and unpredictability of software
development projects, this issue is all

too prevalent. One study [38] revealed that escala-
tion of commitment occurs in 30–40% of all
software projects. According to the results of a
number of studies, business leaders often spend
more money to defend their prior expenditures
[39]. One could expect agile teams to have less
rising commitment scenarios than more conven-
tional teams, given that groups can leverage
various viewpoints when making choices. Howev-
er other studies demonstrate that owing to group
polarization and conformity demands, rising
tendencies are more common and more severe in
group decision-making than in individual
decision-making [40].
While working on agile projects, it's crucial to
keep team meetings from devolving into a forum
for justifying past choices [36]. Teams should
keep an eye on their internal procedures and also
think about who else may join or monitor their
meetings. We recommend that persons from
outside the team don't regularly engage in team
activities like daily meetings, where they can
induce team members to feel the need to justify
their choices or provide lengthy reports of what
they've accomplished. It's important to pay
attention to warning indications of escalation,
such as members of the team trying to justify the
continuance of a particular course of action or
providing more extensive and technical explana-
tions of their work since the previous meeting. In
addition, the team must address the warning
indicators of rising commitment in their retrospec-
tive sessions.
Unlike conventional software development
practices, agile development places a far greater
emphasis on "functioning software" and "individu-
als and interactions," necessitating a rethinking a
rethinking of how information is handled. In the
past, developers have mostly concerned
themselves with the management of explicit
information, such as written lessons learned in
knowledge repositories and recorded processes in
electronic process manuals. Knowledge is mostly
transferred via conversation in agile methodolo-
gies [41]. Although CEOs and knowledge officers
continue to priorities costly IT systems, measur-
able databases, and measurement tools, von
Krogh et al. point out that these businesses
already possess one of the finest mechanisms for
knowledge exchange and creation: their own
employees. The value of having open and honest
dialogues cannot be overstated [42].
Single- and double-loop learning is a popular

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 27

theory of learning that emphasizes the need of
feedback. The difference between single- and
double-loop learning is that the latter is
concerned with the values themselves. It's a red
flag that an agile team hasn't figured out the root
of the issue if they keep trying to find a solution
by switching up their methods.
Their issue and is putting single-loop learning to
the test. Taking notes and making adjustments to
one's behavior in light of new information are
two of the most important aspects of learning,
according to L43]. Some of the necessary
procedures for this to occur include keeping
records and evaluating them, setting specific
goals, maintaining those goals throughout time,
and having faith in the future's potential.
Agile teams may struggle, though, to fully capital-
ize on educational opportunities [44] found that
many groups overlook obvious problems and
don't think about how they might enhance their
techniques of working together. Not all
teams are able to effectively implement changes
based on the feedback they receive, despite the
fact that they have regular retrospective sessions.
When individuals put up sustained effort to
resolve problems, but don't see results, they often
give up.
Educational challenges will always be there, but
achieving success is crucial. Having agreed-upon
mental models of the product, tasks, and
procedures used by a team has been found to
improve performance in a number of studies.
Knowledge redundancy, or the creation of
overlapping knowledge, is especially important
in uncertain contexts where individuals must
perform tasks based on priority rather than the
competence of team members. We'll take a look
at two of the most crucial times for feedback and
education in agile development: the beginning of
a project and the retrospective that follows each
iteration and release.
The table 1 presents a comparison of various
research works and their focus on different
aspects of software development projects.
Process standardization, statistical process
management, and complexity management are
the most commonly studied areas by the research-
ers. Solution scalability and solution specificity
were the least focused areas in the research
works. Additionally, there were some works that
did not specifically focus on any of the
mentioned areas.
Finally, agile development methodologies have
been noted as placing a greater emphasis on

Table 1: Comparative analysis

"functioning software" and "individuals and
interactions," which necessitates a rethinking of
how information is handled in software develop-
ment projects.

3. CONCLUSION
Agile project management principles have the
potential to birth new kinds of systems and organi

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 28

Research
Works

Hump
hrey

(1989)

Wood
field

(1979)

Nerur
and

Balije
pally

(2007)

Hackman
(1986)
et al.

Morgan
(2006)

Kirkman
and

Rosen
(1999)

Pearce
(2004)

Hewitt
and

Walz
(2005)

Bjrnson
&

Dingsyr
(2008)

Von
Krogh
et al.

(2000)

Process
Standard-
ization

Yes Yes Yes No No

No No Yes Yes No

No No No No Yes

No No No No No

No No No No No

No No No No No

No No No No No

No No No No No

No No No No No

No No No No No

Statistical
Process
Management

Complexity
Management

Solution
Scala-
bility

Solution
Specificity

zations with emergent properties. Nonetheless,
companies should proceed with caution when
adopting or implementing such ideas and
methods. Projects with a wide range of tasks,
team members' skill sets, and supporting technol-
ogies are well suited to agile management
approaches. They work particularly well in
creatively oriented rather than formally
structured organizations. The takeaway here is
that software companies need to take stock of
their readiness before embarking on the path to
agility.
Managing agile software projects requires a
delicate balancing act between extensive
planning and iterative improvement. Discipline
and an actionable, documentable, and tractable
list of activities and contingencies are provided
by planning. Adapting to random or unexpected
events is made possible through education. They
have different management needs and infrastruc-
tural projects. When the complexity and unpre-
dictability of a project are low, more time may be
spent on detailed planning, but when they are
high, more attention must be paid to ongoing
learning. Many software companies' newfound
willingness to learn is still in its infancy. The
numerous high-profile project failures, however,
make it clear that established practices in
software project management need to be re-exam-
ined. Small, co-located projects are where agile
project management is seeing the most interest
right now. Agile project management, however,
has the potential to address some of the most
pressing issues plaguing large scale, cross-nation-
al endeavors in the future).

REFERECES
[1] T. Dingsøyr, S. Nerur, V. Balijepally,
and N. B. Moe, “A decade of agile
methodologies: Towards explaining agile
software development,” J. Syst. Softw., vol. 85,
no. 6, pp. 1213–1221, doi:
10.1016/j.jss.2012.02.033. 2012

[2] S. M. Abramson P, Oza N, “‘Agile
software development methods: a comparative
review. In: Dingsøyr T, Dyba’,T, Moe NB (eds)
Agile software development. Current research
and future directions. Springer, Berlin,” pp.
31–59, 2010.

[3] W. S. Augustine S, Payne B,
Sencindiver F, “Agile project management:
steering from the edges,” Commun ACM, vol. 48,

no. 12, pp. 85–89, 2005.

[4] G. G, “NA history of project
management models: from pre-models to the
standard models. o Title,” Int J Proj Manag., vol.
31, no. 5, pp. 663–669, 2013.

[5] P. M. Conboy K, Coyle S, Wang X,
“People over process: key challenges in
agiledevelopment,” IEEE Softw, vol. 28, no. 4, pp.
48–57, 2011.

[6] T. E. Fægri, “Adoption of team
estimation in a specialist organizational
environment,” Lect. Notes Bus. Inf. Process., vol.
48 LNBIP, no. 7465, pp. 28–42, doi:
10.1007/978-3-642-13054-0_3. 2010

[7] K. Moløkken-Østvold, N. C. Haugen,
and H. C. Benestad, “Using planning poker for
combining expert estimates in software projects,”
J. Syst. Softw., vol. 81, no. 12, pp. 2106–2117,
doi: 10.1016/j.jss.2008.03.058. 2008.

[8] T. Dybå, “The Re ective Software
Engineer : Re ective Practice,” 2014.

[9] J. A. Raelin, “No TitlePublic Reflection
as the Basis of Learning,” Manag. Learn, vol. 32,
no. 1, pp. 11–30, 2001.

[10] N. L. Kerth, Project retrospectives: a
handbook for team reviews. 2001.

[11] L. D. Derby E, Agile retrospectives:
making good teams great. 2006.

[12] M. M. Menke, “Managing R&D for
Competitive Advantage,” Res. Manag., vol. 40,
no. 6, pp. 40–42, doi: DOI:
10.1080/08956308.1997.11671169. 1997.

[13] H. Sharp, H. Robinson, J. Segal, and D.
Furniss, “The role of story cards and the wall in
XP teams: A distributed cognition perspective,”
Proc. - Agil. Conf. 2006, vol. 2006, pp. 65–75,
doi: 10.1109/AGILE.2006.56. 2006,

[14] M. T. Pich, C. H. Loch, and A. De
Meyer, “On uncertainty, ambiguity, and
complexity in project management,” Manage.
Sci., vol. 48, no. 8, pp. 1008–1023, 2002, doi:
10.1287/mnsc.48.8.1008.163.

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 29

[15] S. N. Woodfield, “An Experiment on
Unit Increase in Problem Complexity,” IEEE
Trans. Softw. Eng., vol. SE-5, no. 2, pp. 76–79,
1979, doi: 10.1109/TSE.1979.234162.

[16] S. Nerur and V. G. Balijepally,
“Theoretical reflections on agile development
methodologies,” Commun. ACM, vol. 50, no. 3,
pp. 79–83, doi: 10.1145/1226736.1226739.
2007.

[17] A. D. E. Meyer, “Institutional
Knowledge at Singapore Management
University Managing project uncertainty : From
variation to chaos,” MIT Sloan Manag. Rev., vol.
43, no. (2), pp. 60–67, [Online]. Available:
https://ink.library.smu.edu.sg/lkcsb_research/54
50/, 2002.

[18] S. Faraj and V. Sambamurthy, “Faraj,
Sammaburthy, 2006, IEEE.pdf,” vol. 53, no. 2,
pp. 238–249, 2006.

[19] S. Publications, “Effectiveness
Enhancing Work Groups and Teams,” vol. 7, no.
3, pp. 77–124, 2013.

[20] Constantine LL, “Work organization:
paradigms for project management and
organization.,” Commun ACM, vol. 36, no. 10,
pp. 35– 43, 1993.

[21] K. W. Trist, E. L., & Bamforth, “Some
Social and Psychological Consequences of the
Longwall Method of Coal-Getting.,” Hum.
Relations, vol. 4, no. 1, pp. 3–33, 1951, doi:
10.1177/001872675100400101.

[22] S. Cohen, “What makes teams work:
Group effectiveness research from the shop floor
to the executive suite,” J. Manage., vol. 23, no. 3,
pp. 239–290, doi:
10.1016/s0149-2063(97)90034-9. 1997.

[23] P. Hoegl, M., & Parboteeah,
“Autonomy and teamwork in innovative
projects,” Hum. Resour. Manage., vol. 45, no. 1,
pp. 67–79, doi: 10.1002/hrm.20092. 2006.

[24] R. A. Guzzo and M. W. Dickson,
“Teams in Organizations: Recent Research on
Performance and Effectiveness,” Annu. Rev.
Psychol., vol. 47, pp. 307–338, doi:
10.1146/annurev.psych.47.1.307. 1996.

[25] H. JR, The psychology of
self-management in organizations. doi:
org/10.1037/10055-003. 1986.

[26] B. B. B. S. B. P. Kozlowski SWJ, “Work
groups and teams in organizations In Borman
WC, Ilgen DR, Klimoski RJ (ed) Handbook of
psychology,” Ind. Organ. psy- chology.
Wiley-Blackwell, New York, vol. 12, pp. 333–375,
doi: 10.1002/9781118133880.hop212017. 2003.

[27] T. Dingsøyr and Y. Lindsjørn, “Team
performance in agile development teams:
Findings from 18 focus groups,” Lect. Notes Bus.
Inf. Process., vol. 149, no. 7465, pp. 46–60, doi:
10.1007/978-3-642-38314-4_4. 2013,

[28] G. Morgan, “Images of Organization,”
Thousand Oaks, CA Sage Publ., 2006.

[29] B. Kirkman, B. L., & Rosen, “Beyond
self-management: Antecedents and consequences
of team empowerment,” Acad. Manag., vol. 42,
no. 1, pp. 58–74., doi: org/10.2307/256874. 1999.

[30] Pearce CL, “The future of leadership:
combining vertical and shared leadership to
transformknowledge work,” Acad Manag. Exec,
vol. 18, no. 1, pp. 47–57, 2004.

[31] B. Hewitt and D. Walz, “Using shared
leadership to foster knowledge sharing in
information systems development projects,” Proc.
Annu. Hawaii Int. Conf. Syst. Sci., vol. 00, no. C,
p. 256, doi: 10.1109/hicss.2005.666. 2005.

[32] A. Aurum, C. Wohlin, and A. Porter,
“Aligning software project decisions: A case
study,” Int. J. Softw. Eng. Knowl. Eng., vol. 16,
no. 6, pp. 795–818, doi:
10.1142/S0218194006003002. 2006.

[33] N. B. Moe, A. Aurum, and T. Dybå,
“Challenges of shared decision-making: A
multiple case study of agile software
development,” Inf. Softw. Technol., vol. 54, no. 8,
pp. 853–865, doi: 10.1016/j.infsof.2011.11.006.
2012.

[34] S. Nerur, R. Mahapatra, and G.
Mangalaraj, “Challenges of migrating to agile
methodologies,” Commun. ACM, vol. 48, no. 5,
pp. 72–78, doi: 10.1145/1060710.1060712. 2005.

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 30

[35] R. Lipshitz, G. Klein, J. Orasanu, and E.
Salas, “Taking stock of naturalistic decision
making.,” Decis. Mak. Aviat., vol. 352, pp. 3–24,
2015.

[36] V. G. Stray, N. B. Moe, and T. Dybå,
“Escalation of commitment: A longitudinal case
study of daily meetings,” Lect. Notes Bus. Inf.
Process., vol. 111 LNBIP, no. 0373, pp. 153–167,
doi: 10.1007/978-3-642-30350-0_11. 2012.

[37] B. M. Staw, “Knee-deep in the big
muddy: a study of escalating commitment to a
chosen course of action,” Organ. Behav. Hum.
Perform., vol. 16, no. 1, pp. 27–44, 1976, doi:
10.1016/0030-5073(76)90005-2.

[38] M. Keil, J. Mann, and A. Rai, “Why
software projects escalate: An empirical analysis
and test of four theoretical models,” MIS Q.
Manag. Inf. Syst., vol. 24, no. 4, pp. 631–664,
doi: 10.2307/3250950. 2000.

[39] A. A. Max H. Bazerman, Toni Giuliano,
“Escalation of commitment in individual and
group decision making,” Organ. Behav. Hum.
Perform., vol. 33, no. 2, pp. 141–152, 1984.

[40] G. Whyte, “Escalating Commitment in
Individual and Group Decision Making: A
Prospect Theory Approach,” Organ. Behav. Hum.
Decis. Process., vol. 54, no. 3, pp. 430–455, 1993.

[41] T. D. Finn Olav Bjørnson, “Knowledge
management in software engineering: A
systematic review of studied concepts, findings
and research methods used,” Inf. Softw. Technol.,
vol. 50, no. 11, pp. 1055–1068, 2008.

[42] N. I. Von Krogh G, Ichijo K, Enabling
knowledge creation. doi:
10.1093/acprof:oso/9780195126167.001.0001.
2000.
[43] G. S. Lynn, R. B. Skov, and K. D. Abel,
“Practices that Support Team Learning and Their
Impact on Speed to Market and New Product
Success,” J. Prod. Innov. Manag., vol. 16, no. 5,
pp. 439–454, doi: 10.1111/1540-5885.1650439.
1999.

[44] D. T. Stray VG, Moe NB, Challenges to
teamwork: a multiple case study of two agile
teams. 2011.

LGU Research Journal of Computer Science & Information Technology 7(1) LGURJCSIT 31

