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Abstract
This paper examines the dynamic relation betweenBitcoin spot and futuresmarkets during the
Covid-19 pandemic. Using hourly data from 2020 combined with quantile impulse response
analysis and predictability in the distribution test, we attempt to ascertain whether spot or
futures markets lead in the price discovery process under a variety of market conditions.
Granger predictability based on the left tail, the right tail, and the center of the distribution
show bidirectional predictability between spot and futures markets suggesting significant
feedback effects following normal and extreme gains/losses where neither market dominates
in price discovery. Using a CAViaR model and the associated impulse response functions
with estimates for dynamic tail dependence, we document spillovers between quantiles of
spot and futures returns. Estimates of impulse response functions at various risk levels show
the futures market has an edge in influencing the spot market and figures more prominently
in the price discovery process.

Keywords Bitcoin returns · Cryptocurrencies · Futures markets · Risk spillovers ·
Information flows

JEL Classification E42 · G13 · G14 · G23

1 Introduction

In an ideal world, asset prices should reflect discounted cash flows and instantaneously react
to the arrival of new information. However, in the real world this process is not smooth and
explicit in some financial markets. Therefore, price developments in these markets demon-
stratemore sophisticated dynamics.As theory posits, financial asset prices evolve per liquidity
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(Pástor & Stambaugh, 2003), real interest rates (Grossman & Shiller, 1980), information-
based trading (Easley et al., 2002), and changes in risk appetite and economic uncertainty
(Baele et al., 2010; Bekaert et al., 2019). The cryptocurrency market, on the other hand, has
shown that such factors are insignificant when accounting for token price fluctuations, as its
market is highly speculative, volatile, and does not depict the characteristics of a medium
of exchange (Baek & Elbeck, 2015; Balcilar et al., 2017; Baur et al., 2018; Ciaian et al.,
2016; Guizani & Nafti, 2019). However, these findings can be attributed to the nature of the
cryptocurrency market being in its infancy. Compared to stock and foreign exchange mar-
kets, it is clear that the cryptocurrency market is far from being established. The introduction
of Bitcoin futures can be considered a milestone in its journey towards such an established
market.

Both the ChicagoMercantile Exchange (CME) and the Chicago Board Options Exchange
(CBOE) launched the Bitcoin futures contract in mid-December 2017. Bitcoin futures allow
investors to trade in a regulated market with a more secure platform. Noteworthy exchange
failures have shown that cryptocurrencies have a relatively high counterparty risk. However,
in Bitcoin futures, the risk that stems from contractual obligations are alleviated through the
margin deposit, the mark-to-market process, and by clearinghouses. Although the futures
market’s principal function is to hedge exposed risks in the spot market, the introduction
of Bitcoin futures also offers transparency and price discovery for market participants. As
discussed by Kavussanos et al. (2008), if interest rates and dividend yields follow a deter-
ministic process, in a perfectly frictionless world, price developments of the spot and futures
markets would exhibit a perfect positive correlation with no cross-autocorrelations. In such
a world, both markets would be perfectly efficient, and in response to information arrivals,
supply and demand curves would immediately intersect at a new equilibrium price with
no lag. Therefore, investors would be indifferent to taking a position in the futures market.
However, if the informed traders are prone to choose one of these markets over another, then
the price development of that chosen market can govern the other (Chu et al., 1999). For
example, Brooks et al. (2001) and Bohl et al. (2011) state that futures markets are likely to
react to incoming information faster than spot markets due to their inherent leverage, high
liquidity, low transaction costs, and fewer short-sale restrictions. These features make futures
markets more dominant in the price discovery realm and account for the lead-lag relation-
ship in returns. However, the evidence obtained from Bitcoin futures is not yet sufficient to
define their price discovery function. Moreover, the differences between the trading hours
of Bitcoin futures and its spot price may distort these widely accepted factors. For example,
while cryptocurrencies in the spot market run 24/7, the trading hours of Bitcoin futures are
6:00 p.m.–5:00 p.m. ET and 6:00 p.m.–6:45 p.m. ET Sunday–Friday in the CME Globex
and CME ClearPort, respectively (CME Group, 2022). From a statistical standpoint, sam-
ple specific features may lead to different results than those in the literature, which mostly
examine conventional markets such as equity and foreign exchange. Work by Hajric (2019)
shows that Bitcoin prices experience severe jumps during weekends, accounting for 40% of
its returns fromMay 2019 to January 2020. This phenomenon may reduce the leading role of
futures market’s in transmitting information or change the direction of the lead-lag relation-
ship in favor of the spot market. On the other hand, due to the utilization of futures market for
both hedging and speculation purposes, it can be expected that in periods of high volatility,
the return and volatility spillovers of Bitcoin may make the futures market more dominant
than the spot market. This effect is expected to be more evident during crises, and thus the
futures market may accentuate the volatility in underlying assets within such episodes. These
phenomena also necessitate the examination of the relation between spot and futures prices
under different market conditions.
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While there is an extensive literature on such relationships with various results reported
from different markets, studies that examine tail dependence in Bitcoin spot and futures mar-
kets in terms of price discovery are quite limited. As such, this study explores the lead-lag
relation of futures and the spot markets for Bitcoin and attempts to account for any interac-
tions. Such empirical findings can be potentially useful for traders who seek returns in the
cryptocurrency market. Efficient Market Hypothesis supposes that all available information
in themarket is immediately incorporated into asset prices and thatmarket participants cannot
make abnormal profits. Therefore, in a truly efficient market, all assets are fairly valued, with
none undervalued or overvalued. However, if the dissemination of information lags across
markets, then traders may use this information to earn higher returns following the discovery
by the transmitter and recipient, and after understanding the extent of the lag.

The paper aims to contribute to the existing literature in several aspects. First, there is no
consensus about the direction of predictability in Bitcoin spot and futures markets where the
dynamic relationship between spot and futures markets may be complex and hence requires
further examination. Although some studies focus on nonlinear relationships betweenBitcoin
spot and futures markets, to the best of our knowledge, this is the first attempt to examine
tail dependence between Bitcoin spot and futures markets. In this regard, this study first
utilizes predictability in the distribution test suggested by Candelon and Tokpavi (2016),
and then the quantile impulse responses analysis suggested by White et al. (2015), to better
understand the dynamic relationship betweenBitcoin spot and futuresmarkets under different
market conditions. To that end, the center, left, and right tail of the distribution for spot and
futures return series is focused on, where segments of the distribution correspond to different
market conditions such as normal, bearish, and bullish markets. Lahiani et al. (2021) pointed
out several benefits of examining tail dependence between financial assets for policymakers,
investors, and portfoliomanagers. For example, examining tail dependence of financial assets
help investors and portfolio managers efficiently allocate their portfolios and make optimum
investment decisions. As such, examining tail dependence between spot and futures markets
is vital for riskmanagement purposes as themain function of a futuresmarket is to hedge risks
stemming from the spot market. Also, Koutmos (2020), Corbet et al. (2021), and Maghyereh
and Abdoh (2020) found that the relationship between Bitcoin and financial assets (such as
stock, commodity, gold, foreign exchange, and bond markets) is different under different
market conditions. Moreover, Bekiros et al. (2020) indicated that the leptokurtic distribution
of asset prices causes implicit herd behavior. Therefore, the same asset traded in different
markets may exhibit different herd dynamics. This finding is important for Bitcoin spot and
futures prices which have leptokurtic distributions and requires examination, not only in the
center of the distribution but also in the left and the right tails.

Secondly, focusing on price discovery during the global Covid-19 pandemic can be justi-
fied by the significantly elevated risk levels present not only in financial markets, but also in
cryptocurrency markets. To illustrate, Espinosa-Méndez and Arias (2021) show that herding
behavior in Europe’s capital markets has significantly increased during the global pandemic.
Over the sameperiod, the price ofBitcoin reached all-timehighs, followedby sharp decreases,
evidence of significant increases in volatility. Wang et al. (2021) analyzed the effects of posi-
tive feedback behavior in the Bitcoin market and found a significant and positive relationship
between Bitcoin prices (and volumes) and trading behaviors during Covid-19. These results
imply that the herding behavior of the Bitcoin market has significantly changed during the
global pandemic. On the other hand, although Mnif et al. (2020) found an increase in cryp-
tocurrency market efficiency during Covid-19, Kakinaka and Umeno (2021) concluded that
the effect is more of a long-term effect, and herding behavior in the cryptocurrency market
has increased in the short-term during the global pandemic. Similarly, King and Koutmos
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(2021) found evidence in favor of heterogeneity in herding behavior for the cryptocurrency
market. Therefore, it may be noteworthy to examine tail dependence between Bitcoin spot
and futures markets during the global Covid-19 pandemic.

Finally, intraday data is utilized for this study, of which scant attention has been paid to
regarding the price discovery process in Bitcoin spot and futures markets. Bouri et al. (2021)
indicated that since intraday data exhibits different properties from daily closing price data,
using intraday data for the Bitcoin market allows for the examination trading opportunities
within the trading day. In addition, the sharp and rapid price changes in Bitcoin prices produce
wilder fluctuations in these assets. According to the literature, high-frequency data becomes
more useful in extreme noise platforms, better revealing the fear and greed response of
investors to information arrivals. For instance, Blasco et al. (2011) stated that intraday data is
more appropriate in investigating herd behavior. Similarly, Dobrev and Szerszen (2010) show
that intraday data overcomes the underestimation problem of volatility during bearish states
and the overestimation of risks during bullish states. Since intraday data allows news-based
trading strategies, such data would enable a researcher to incorporate a great deal of price
noise stemming from swift market developments. Since the Bitcoin market operates 24/7, it
has become an ideal platform to measure the impact of the endless data stream caused by
its independence of the trading hours for conventional securities. Thus, the data employed
in this study has a high potential to capture event-based price developments in the Bitcoin
market.

To preview our results, there is a bi-directional predictability between spot and futures
markets under different market conditions. The feedback effect between Bitcoin spot and
futures markets does not reveal which market figures prominently in terms of the price dis-
covery process. On the other hand, the quantile impulse responses analysis shows the typical
responses of the Bitcoin spot market to an unexpected extreme shock in the futures market
is considerably higher than the responses of the Bitcoin futures market to an unexpected
extreme shock in the spot market. These results suggest that while neither the futures market
nor the spotmarket figures prominently in terms of price discovery, the Bitcoin futuresmarket
has an edge in terms of dominance over the spot market under various market conditions.

The rest of the paper is organized as follows: We provide a brief literature survey for
the relation between spot and futures markets. We present the econometric methodology
in Sect. 3 and empirical results are given in Sect. 4. We discuss the results in Sect. 5 and
conclude in the final section.

2 Literature review

Theoretically, the arrival of new information affects asset prices both in spot and futures
markets. Since in general futures markets have low transaction costs, are more liquid, and
can process short positions, new information can be expected to have an instantaneous impact
upon them. Fassas et al. (2020) contend there is ample evidence to support the hypothesis that
price discovery is dominated by futures trading in a range of asset classes; e.g., in US equity
markets, international equity markets, commodities, and foreign exchange markets. Indeed,
the question which markets dominate price discovery is an unresolved debate (Patel et al.,
2020). In the study on the relationship between spot and futures prices in commodity markets
(corn, wheat, soybeans, soybeanmeal and oil, feeder, and live cattle) Dimpfl et al. (2017) find
evidence that the prices of these commodities are almost uniquely formed in the spot market
and the contribution of the futures contracts to price discovery is less than 10%. Jin et al.
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(2018) examine the price discovery of Chinese gold spot and futures markets and concluded
that the Chinese gold market’s price discovery occurs predominantly in the futures market.
Miao et al. (2017) investigate the price discovery process between the CSI 300 equity index
and index futures in China. They find strong evidence that index futures dominate the price
discovery. Yan and Guiyu (2019) examine price discovery of corn-starch cash and futures
markets and found evidence that the futures price Granger causes the cash price. Xu (2018)
investigates the cointegration relation and price discovery process for corn prices, finding
that bi-directional information flows between spot and futures prices. Overall, the empirical
literature generally shows futures markets come to the fore in the price discovery process.
On the other hand, there is limited literature on Bitcoin futures markets as the market is still
in its infancy.

The Chicago Mercantile Exchange (CME) and the Chicago Board Options Exchange
(CBOE) launched the Bitcoin futures contract in mid-December 2017. Thereafter, work on
the price discovery between Bitcoin futures markets and spot markets gained momentum
(Alexander et al., 2019). Shortly after the introduction of Bitcoin futures, Bitcoin prices went
into a serious decline. Hale et al. (2018) attribute this decline to pessimistic investors starting
to actively trade in the Bitcoin market. The market, previously dominated by optimists,
reversed course with pronounced participation by pessimists who wanted to take advantage
of high prices and started short-selling. Hattori and Ishida (2020) find that in the long run the
introduction of the futures market plays no part in the sharp decline in the spot price. They
conclude that the introduction of Bitcoin futures did not crash the Bitcoin spot market at the
end of 2017.

Asset pricing theory and experimental finance emphasize themoderating effects of futures
contracts on asset price bubbles in spot markets, as there are more opportunities to take
advantage of expected price changes (see Porter & Smith, 2003 for an early summary of
evidence). Hence, Sebastião and Godinho (2020) state that the CBOE futures market is
an effective instrument for daily hedging for Bitcoin and other cryptocurrencies such as
Ethereum, Litecoin, and Ripple. However, there is no consistent evidence on the impact
of Bitcoin futures contracts on the spot price of Bitcoin. Contrary to Hattori and Ishida
(2020), Liu et al. (2020) find that the introduction of futures was responsible for the Bitcoin’s
price meltdown at the end of 2017. Using data from 7 major cryptocurrencies alongside
Bitcoin, Liu et al. (2020) reports a meltdown of 26.50% in the price of Bitcoin in the first
45 days after the introduction of Bitcoin futures while positive returns continued for other
cryptocurrencies. The study emphasizes a significant and negative relationship between the
introduction of Bitcoin futures and Bitcoin returns while the relationship is either positive or
insignificant for other cryptocurrencies. Kim et al., (2020) examine the effect of the Bitcoin
futuresmarket launch.Usingdata from5major cryptocurrency exchanges at different periods,
bitFlyer (Japan), Coincheck (Japan), Bitstamp (E.U), Coinbase (U.S), and Binance (Hong
Kong), they show that the Bitcoin market became unstable immediately after the launch of
the futures market, but stabilized over time.

Köchling et al. (2019) examine the impact of the introduction of Bitcoin futures on cryp-
tocurrency markets by focusing on weak-form efficiency. While weak-form efficiency for
Bitcoin cannot be validated before the introduction of futures markets, the study finds evi-
dence of weak-form efficiency with the introduction of futures markets and argues that
Bitcoin prices became less predictable thanks to short selling and easier access by institu-
tional investors to the cryptocurrencymarket. Similarly,Urquhart (2016) finds that theBitcoin
market was not efficient before the futures market, while Jiang et al., (2018) find evidence
of long memory in Bitcoin prices. Brauneis and Mestel (2018) examine the efficiency of
Bitcoin and 77 other cryptocurrency markets, concluding Bitcoin to be the least predictable.
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Matsui and Gudgeon (2020) analyse the efficiency in futures markets and find that while
1-month Bitcoin futures prices were not efficient, 2-week and 1-week futures prices were.
Accordingly, the market is more efficient with shorter contract lengths.

CBOE futures contracts were withdrawn in March 2019 and thus CME futures started to
play a particularly strong price discovery role (Alexander & Heck, 2019). It can be expected
that the trading of futures contracts of decentralized Bitcoin in an organized market will
have the effect of reducing volatility in spot prices. Thus, the futures market will have a
hedging function.However,Corbet et al. (2018)find the spot volatility has increased following
the appearance of futures contracts in the Bitcoin market. The study also shows that price
discovery is driven by uninformed investors in the spot market (97% of the information
affecting Bitcoin prices). On the other hand, Fassas et al. (2020) examine the price discovery
of Bitcoin spot and futures markets with evidence favouring a dominant role for the futures
market in the price discovery process. Hu et al., (2020) find similar results using time-
varying Granger predictability tests. Using BitMEX perpetual swap prices instead of CME
and CBOE market data as future prices. In addition, Alexander et al. (2019) find that the
BitMEX perpetual swap plays a dominant price discovery role.

Baur and Dimpfl (2019) argue that price discovery is led by the spot market. Accordingly,
the spot market dominates price discovery because of the higher level of total trading volume
in the spot market compared to futures markets, faster pricing of news in the spot market, and
the ability to trade 24/7 in the spot markets. Matsui and Gudgeon (2020) find that the price
of Bitcoin futures becomes a more accurate indicator of the spot price as futures contracts
become shorter. Deng et al. (2021) examine the optimal trading strategy between Bitcoin spot
and futures markets in terms of the Sharpe ratio and the Sortino ratio. They find that futures
market may be used by investors when the volatility increases in the spot market to maximize
their utility.Akyildirimet al., (2020) emphasize that spotmarket dominance in price discovery
is driven by lower frequency data. They also stress that spot markets figured prominently
early on when futures contracts were first launched; however, the situation was reversed with
the entrance of sophisticated institutional investors. Other studies in the literature such as
Karkkainen (2018), Kapar and Olmo (2019), Aleti and Mizrach (2020), and Hu et al. (2020)
also conclude that the futures market figures prominently in the price discovery process.

The foregoing discussion implies there is no consensus in the literature on the price
discovery process in the Bitcoin market. However, price discovery is about which market
dominates prices when a financial instrument or a different financial instrument with a high
correlation is traded in more than one market. Whether either market moves first is important
for market participants and regulators (Kapar & Olmo, 2019). A summary of some extant
studies in the literature with a focus on the price discovery process between Bitcoin spot
and futures markets in terms of data source, market, data frequency, sample, and method are
given in Table 1.

3 Econometric framework

In this study, two different econometric methods suggested by Candelon and Tokpavi (2016)
and White et al. (2015) were used to better understand tail dependence between Bitcoin spot
and futures markets. While the first method allows for the examination of tail dependence in
terms of a multivariate Granger predictability framework, the latter can be used to investigate
impulse responses under different market conditions.
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3.1 Predictability in distribution test

Candelon and Tokpavi (2016) suggest a new approach for ascertaining predictability in
specific regions of the distribution of a series, such as the center or tails, and in doing so,
they show that their method is a version of the Granger predictability test. Moreover, their
method is advantageous compared to those that depend on copulas because the multivariate
process of interquantile event variables can be examined.

The test statistic proposed by Candelon and Tokpavi (2016) is a multivariate version of the
kernel-based nonparametric Granger predictability test suggested by Hong et al. (2009). The
Granger predictability test in tail events suggested by Hong et al. (2009) is related to whether
the lags of extreme downside risk from Xt can be used to predict an extreme downside risk
of Yt . Hong et al. (2009) define extreme downside events according to value-at-risk (VaR)
at a specific risk level α, where the extreme downside risk is calculated as the losses in Xt

and Yt that are lower than VaR. In the Granger predictability-in-distribution test, a set of A
� {α1, …, αm+1} of m + 1 VaR risk levels cover the distribution support of both variables
Xt and Yt with 0 ≤ α1 < … < αm+1 ≤ 100%. For the first time series Xt the corresponding
VaRs at time t are VaRX

t , s

(
θ0X , αs

)
s � 1, …, m + 1, with

VaRX
t , 1

(
θ0X , α1

)
< · · · < VaRX

t ,m+1

(
θ0X , αm+1

)
(1)

where the vector θ0X is the true unknown finite-dimensional parameter set related to the VaR
model forXt . If the distribution support ofXt is separated intom disjoint regions, each related
to the indicator variable can be written as follows:

Z X
t , s

(
θ0x

) �
{
1 if Xt ≥ VaRX

t , s

(
θ0X , αs

)
and Xt ≤ VaRX

t , s+1

(
θ0X , αs+1

)

0 else
(2)

where s � 1, …, m. For example, if we consider as m + 1 � 5, the set A is written as A
� {α1, α2, α3, α4, α5} � {0%, 20%, 40%, 60%, 80%}. Let HX

t

(
θ0X

)
be vector (m, 1) and

components of the m event variables

HX
t

(
θ0X

) �
{
Z X
t , 1

(
θ0X

)
, Z X

t , 2

(
θ0X

)
, . . . , Z X

t ,m

(
θ0X

)}T
(3)

One can define a second time series Yt , with event variables in the vector HY
t

(
θ0Y

)
as:

HY
t

(
θ0Y

) �
{
ZY
t , 1

(
θ0Y

)
, ZY

t , 2

(
θ0Y

)
, . . . , ZY

t ,m

(
θ0Y

)}T
(4)

The null hypothesis that Yt does not predictXt in distribution can be formulated as follows

H0 : E
[
HX
t

(
θ0X

)
F X&Y
t−1

]
� E

[
HX
t

(
θ0X

)
F X
t−1

]
(5)

Suppose Ĥ X
t ≡ HX

t

(
θ̂X

)
and ĤY

t ≡ HY
t

(
θ̂Y

)
are the estimated counterparts of the

multivariate process of event variables HX
t

(
θ0X

)
and HY

t

(
θ0Y

)
respectively and θ̂X and θ̂Y are√

T consistent estimators of the true unknown parameter vectors θ0X and θ0Y . Let �̂( j) be the
sample cross-covariance matrix between Ĥ X

t and ĤY
t with

�̂( j) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T−1
T∑

t�1+ j

(
Ĥ X
t − �̂X

)(
ĤY
t− j − �̂Y

)T
0 ≤ j ≤ T − 1

T−1
T∑

t�1− j

(
Ĥ X
t+ j − �̂X

)(
ĤY
t − �̂Y

)T
1 − T ≤ j ≤ 0

(6)
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where the vector of �̂X (or �̂Y ) of lengthm is the samplemean of Ĥ X
t (or ĤY

t ). As in the case
for univariate setting inHong et al. (2009), one can replace �̂X and �̂Y by�X � E

(
HX
t

(
θ0X

))

and�Y � E
(
HX
t

(
θ0Y

))
, respectively. The sample cross-correlation matrix can be defined as:

R̂( j) � D
(
�̂X

)−1/2
�̂( j)D

(
�̂Y

)−1/2
(7)

with D (.) being the diagonal form of a matrix and �̂X and �̂Y are the sample covariance
matrices of Ĥ X

t and ĤY
t . The test statistic can be expressed in weighted quadratic form that

relates the current value of Ĥ X
t and the lagged values of ĤY

t

T̂ �
T−1∑

j�1

κ2
(

j

M

)
Q̂( j) (8)

where κ (.) is a kernel function, andM is the truncation parameter. The function Q̂( j) can be
obtained by:

Q̂( j) � T vec
(
R̂( j)

)T (
�̂−1
X ⊗ �̂−1

Y

)
vec

(
R̂( j)

)
(9)

where �̂X and �̂Y are the sample correlation matrices of Ĥ X
t and ĤY

t respectively. The
restrictions imposed on the truncation parameterM and the kernel function κ (.) are the same
as in Hong et al. (2009). Candelon and Tokpavi (2016) define the test statistic as:

VY→X � T̂ − m2CT (M)
(
m2DT (M)

)1/2 (10)

where CT (M) and DT (M) are:

CT (M) �
T−1∑

j�1

(1 − j/T )κ2( j/M) (11)

DT (M) � 2
T−1∑

j�1

(1 − j/T )(1 − ( j + 1)/T )κ4( j/M) (12)

Candelon and Tokpavi (2016) showed that the test statistic has a standard Gaussian dis-
tribution under the null hypothesis and that it performs well in rejecting the null hypothesis
of no predictability in case of linear and nonlinear predictability in the mean and in the
variance using Monte Carlo simulations. The test also allows for the detection of asymme-
try between the variables, as it also allows for distinguishing contagion or interdependence
between financial markets. Interdependence suggests a long-run relation between themarkets
and it generally occurs in normal times based on the center of the distribution. On the other
hand, contagion is the co-movement of the variables in extreme cases and is related to the
tails of the distribution.

3.2 Quantile impulse responses analysis

White et al. (2015) suggest a multivariate regression quantile model that is labelled VAR for
VaR model to examine tail dependence between the variables by impulse-response analysis.
The multivariate quantile regression model depends on estimating the following multivariate
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multi-quantile conditional autoregressive value at risk framework (MVMQ-CAViaR) which
is a bivariate generalization of the CAViaRmodel suggested by Engle andManganelli (2004):

qY , t � c1(θ) + a11(θ)|Yt−1| + a12(θ)|Xt−1| + b11(θ)qY , t−1 + b12(θ)qX , t−1 (13)

qX , t � c2(θ) + a21(θ)|Yt−1| + a22(θ)|Xt−1| + b21(θ)qY , t−1 + b22(θ)qX , t−1 (14)

where θ is the risk level that varies between 0 and 1. Yt and Xt are the spot and futures return
series respectively and qY and qX are the quantile functions at the risk level θ for spot and
futures return series, respectively.

Equation (13) and (14) can be represented in matrix notation as follows:

qt � c + A|Zt−1| + Bqt−1 (15)

such that qt , Zt-1, and c are vectors where qt � (qY , qX ), Zt � (Yt , Xt ), and c � (c1, c2).
A and B show the coefficients matrix for aii and bii that are defined in Eqs. (13) and (14).
Equation (15) shows that quantiles of spot (futures) returns can be estimated by using its
lag, lag of futures (spot) returns, lag of spot (futures) returns, and also lag of the quantiles
of futures (spot) returns. In this context, while the diagonal elements of matrix B show the
persistence of risk at a specified risk level, off-diagonal elements represent the risk spillover
effects between Bitcoin spot and futures markets.

After estimating theMVMQ-CAViaRmodel, quantile impulse response functions (QIRF)
can be conducted by using the estimated parameters from Eq. (15). Unlike standard impulse
responses analysis, it is assumed that there is one intervention δ given to the observ-

able Y t only at time t
(
Ỹt :� Yt + δ

)
in the QIRF. The time-series behavior of Y t with

and without intervention can be represented as {. . . , Yt−2, Yt−1, Yt , Yt+1, Yt+2, . . .} and{
. . . , Yt−2, Yt−1, Ỹt , Yt+1, Yt+2, . . .

}
respectively. Although this assumption is strict in the

sense that it does not take into account the second moment of Y t, it is essential to calculate
an impulse responses function under the conditional quantile model.

White et al (2015) defined the pseudo QIRF for the first variable Zit as follows:


i , s

(
Z̃i t

)
� q̃i , t+s − qi , t+s , s � 1, 2, 3, . . . (16)

where q̃i , t+s is the conditional quantile of the affected series, and qi , t+s is the conditional
quantile of unaffected series. The pseudo QIRF for the first variable (Yt) can be presented as
follows:


Y , 1

(
Ỹt

)
� a11

(∣∣∣Ỹt
∣∣∣ − |Yt |

)
+ a12

(∣∣∣X̃t

∣∣∣ − |Xt |
)
, f or s � 1 (17)


Y , s

(
Ỹt

)
� b11
Y , s−1

(
Ỹt

)
+ b12
X , s−1

(
Ỹt

)
, f or s > 1 (18)

For the second variable Xt , the QIRF can be represented as:


X , 1

(
Ỹt

)
� a21

(∣∣∣Ỹt
∣∣∣ − |Yt |

)
+ a22

(∣∣∣X̃t

∣∣∣ − |Xt |
)
, f or s � 1 (19)


X , s

(
Ỹt

)
� b21
Y , s−1

(
Ỹt

)
+ b22
X , s−1

(
Ỹt

)
, f ors > 1 (20)

We can define the QIRF as:


s

(
Ỹt

)
:�

⎡

⎣

Y , s

(
Ỹt

)


X , s

(
Ỹt

)

⎤

⎦ (21)
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If we define Dt as
∣
∣
∣Ỹt

∣
∣
∣ − |Yt |, then the pseudo QIRF can be written as:


s

(
Ỹt

)
� ADt , f or s � 1 (22)


s

(
Ỹt

)
� B(s−1)ADt , f or s > 1 (23)

The QIRF can be estimated using the processes above when there is an intervention to
Xt . In order to orthogonalize the innovations, White et al. (2015) uses a standard Cholesky
decomposition to identify the shocks.

4 Data and empirical results

In this study, the dynamic relation between spot and futures markets for Bitcoin is examined
from January 12, 2020, through February 1st, 2021 using intraday (hourly) data, with a total
number of 8,375 observations. Beginning at the start of the Covid-19 pandemic, the sample
period contains episodes of record highs in the Bitcoin market. The study utilizes CME
futures price for Bitcoin futures market, and the hourly data for the spot and futures markets
(denominated in US dollars) is obtained from the Refinitiv Eikon database. The logarithmic
return series is used for the empirical analysis.

The Candelon and Tokpavi (2016) predictability-in-distribution test depends on the esti-
mation of time-varying VaR for each return series. Although there are several VaR estimation
procedures in the literature, Füss et al. (2010) show that dynamic VaR models such as the
CAViaR and the GARCH-type VaR generally outperform traditional VaRs. Similarly, Hung
et al. (2008) and So and Yu (2006) find that GARCH class models estimate time-varying VaR
reasonably well. Therefore, as in Candelon and Tokpavi (2016), this study utilizes GARCH
class models in time-varying VaR for spot and futures return series.

Nevertheless, there is a well-documented literature on the adverse effects of outliers on
GARCHmodels, specifically on GARCH parameters and conditional homoskedasticity tests
(see Charles & Darné, 2005; Franses & van Dijk, 2011). Moreover, Grane and Veiga (2014)
show that outliers significantly affect portfolio risk measures such as VaR, with distortions
depending on the size of the outliers. These issues must be kept in mind when using the
predictability- in-distribution test as they affect the estimation of VaR. Also, Ftiti et al.
(2021) show that models which consider outliers provide a better fit in forecasting Bitcoin
volatility. As such, we start the empirical analysis by first examining outliers within the return
series. Although there are several outlier detection tests in the literature, the test suggested
by Verardi and Vermandale (2018), which depends on calculating the box plot for the return
series (and hence its simplicity), was utilized in this study. The test performs reasonably
well for series that have skewed or heavy-tailed distributions. The latter is very important
because the distribution of financial returns is generally leptokurtic. This outlier detection
test resulted in 77 outliers in the futures return series and 88 outliers in the spot return series.
As in Bodart and Candelon (2009) and Warshaw (2020), the return series is adjusted by
considering outlier dates where each outlier is replaced by a 10-day average centered around
the abnormal observation.

The descriptive statistics for the adjusted return series are presented in Table 2. The results
show that the mean return for each series is positive during the Covid-19 period where the
futures market provides a higher yield than the spot market. However, the volatility of the
futures return series is also higher than the spot return series according to the estimated
standard deviation. Although the futures return series exhibits strong positive skewness, the
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Table 2 Descriptive statistics
Spot Futures

N 5227 5227

Mean 0.026 0.030

Median 0.020 0.000

Maximum 3.452 3.160

Minimum − 3.060 − 4.156

SD 0.616 0.644

Skewness − 0.039 0.195

Kurtosis 6.095 6.350

J-B 2,087.8 [0.000] 2,478.0 [0.000]

ARCH (5) 26.903 [0.000] 78.035 [0.000]

Q(20) 77.775 [0.000] 25.288 [0.190]

Qs (20) 944.044 [0.000] 1,539.35 [0.000]

ADF − 73.932*** − 70.826***

PP − 73.961*** − 70.827***

KPSS 0.099*** 0.070***

The numbers in square brackets show p-values of rejecting the null
hypothesis. ARCH (5) suggests the LM conditional variance test. Q(20)
andQs (20) giveBox-Pierce serial correlation test statistics for return and
squared return series, respectively. *** imply that the series in question
is stationary at the 1% significance level

distribution of the spot return series has negative skewness. On the other hand, both return
series have excess kurtosiswhich confirmsboth distributions are leptokurtic. The Jarque–Bera
test strongly rejects the null hypothesis of normality for both return series. The Box-Pierce
Q statistics show the autocorrelations in squared returns. Finally, unit root tests are used to
ascertain whether all series are stationary in levels using Augmented Dickey-Fuller (ADF),
Phillips-Perron (PP), and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) tests; the results
strongly suggest stationarity for both series.

Next, a large class of GARCH models are considered, such as GARCH, EGARCH,
GJR-GARCH, APARCH, FIGARCH, FIEGARCH, and FIAPARCH for estimating the time-
varying VaR for returns. Themodel is then selected which best fits model information criteria
such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).
In the end, the EGARCH (1,1) model proposed by Nelson (1991) both for spot and futures
return series was chosen, which is consistent with Bouri and Gupta (2021).

The model results presented in Table 3 show that the α and β parameters are significant
at the 1% significance level. The estimated volatility parameters are similar in both models
except for the leverage parameter. Although the estimated leverage parameter (γ ) is neg-
ative for the futures returns, it is not statistically significant in either model. Furthermore,
the persistence in volatility clustering parameter (β) is close to unity, which suggests high
persistence in volatility.

Time-varyingVaR is then calculated for each return series at different risk levels to examine
the presence of tail dependence between spot and futures markets. Following Candelon and
Tokpavi (2016), AL � {0%, 1%, 5%, 10%} and AR � {90%, 95%, 99%, 100%} for the
left and right tail of the distribution respectively, where m + 1 equals 4. For the center of
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Table 3 EGARCH class model results

ω α β γ ν ln(L) Q (20) Qs (20)

Spot − 0.778
[0.065]

− 0.646
[0.000]

0.996
[0.000]

0.002
[0.928]

3.295
[0.000]

−
4062.449

53.576
[0.000]

19.707
[0.349]

Futures − 0.733
[0.064]

− 0.610
[0.000]

0.996
[0.000]

− 0.003
[0.809]

3.447
[0.000]

−
4286.793

52.774
[0.000]

13.956
[0.731]

The numbers in square brackets show the p-values. ln(L) is the loglikelihood value. Q(20) and Qs
(20) give Box-Pierce serial correlation test values for the return and the squared return series, respec-

tively. The EGARCH (1,1) model has the following volatility equation: log
(
h2t

)
� ω + β

(
h2t−1

)
+

α
(∣
∣∣εt−1/

√
h2t−1

∣
∣∣ − E

∣
∣∣εt−1/

√
h2t−1

∣
∣∣
)
+ γ

(
εt−1/

√
h2t−1

)
where γ is the leverage parameter and v is the

student t distribution parameter.

Table 4 VaR Back-testing results

Quantile
(short
positions)

Success rate LR stat Quantile (long
positions)

Failure rate LR stat

Spot 0.990 0.991 0.555
[0.456]

0.010 0.010 0.233
[0.628]

0.975 0.975 0.056
[0.812]

0.025 0.028 2.260
[0.132]

0.950 0.951 0.116
[0.733]

0.050 0.051 0.233
[0.628]

0.990 0.988 1.726
[0.188]

0.010 0.009 0.362
[0.547]

Futures 0.975 0.971 2.011
[0.156]

0.025 0.021 2.279
[0.131]

0.950 0.944 3.420
[0.064]

0.050 0.045 2.461
[0.116]

LR stat gives the Kupiec LR test results. The numbers in square brackets show the p-values

the distribution, the VaR risk levels are set as AC � {20%, 30%, …, 70%, 80%} where m
+ 1 is 7. In order to examine Granger predictability between spot and futures returns for
ascertaining price discovery, the Bartlett kernel is used, and as in Candelon and Tokpavi
(2016), the truncation parameter (M) is equal to 20 (corresponding to approximately one
day).1

The back-testing results for the VaR analysis are given in Table 4. Results indicate that
the success rate in short positions and the failure rate in long positions are very close to the
empirical quantiles, which suggests that the EGARCH model is adequate in gauging both
upside and downside risks in returns. Kupiec’s (1995) LR test result confirms this result as

1 Candelon and Tokpavi (2016) calculated the truncation parameter via [1.5T0.3] where T is the number of
total observations.
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Table 5 Predictability in
distribution test results Predictability

direction
Left tail Right tail Center

Spot → futures 59.975*** 32.473*** 18.829***

Futures → spot 114.857*** 841.079*** 23.047***

***Indicates a statistically significant Granger predictability at the 1%
level

the null hypothesis cannot be rejected at conventional significance levels (such as 1% and
5%).2

After obtaining upside and downside risk events, Granger predictability tests are given in
Table 5. In order to investigate risk spillovers or contagion effects between the two markets,
the left tail of the distribution is examined. For example, finding bi-directional predictabil-
ity between spot and futures markets in the left tail of the distribution suggests significant
feedback during bad times, where unexpected losses in the spot market can be predicted by
sudden past declines in the futures market or vice versa. Test statistics in Table 5 suggest a
bi-directional price discovery process between spot and futures markets, where neither the
spot market nor the futures market dominates the other in the Bitcoin price formation during
bad times. On the other hand, the futures market seems to be one step ahead of the spot
market in the price discovery process as the test statistics for predictability from the futures
to spot returns are higher than the test statistics for predictability from spot to futures returns.

Similar results are observed for the right tail of the distribution: the statistics indicate
bi-directional predictability between spot and futures markets at the 1% significance level.
Results confirm there is a bi-directional price discovery between the spot and futures market
during good times. As in the results for the left tail of the distribution, the test statistics for
predictability from futures to spot returns are higher than the test statistics for predictability
from spot to futures returns.

The test results for the center of distribution are similar with evidence of bi-directional
predictability between spot and futures returns. Note that evidence of predictability in the
center of distribution implies dynamic interactions between the two markets in normal times
and hence it points to predictability-in-mean between the variables.3 Therefore, it can be said
that there is a bi-directional price discovery process between spot and futures markets during
normal times.

Overall, the predictability-in-distribution tests indicate a strong bi-directional predictabil-
ity between Bitcoin spot and futures markets which seems to be robust over bearish as well
as bullish markets. Investing in the Bitcoin spot market can seemingly hedge risk by using
futures contracts over various market conditions.

Lütkepohl (2005) emphasized that Granger predictability test results are not adequate to
understand the dynamic relationships among variables. This is important as the Granger pre-
dictability test results indicate bi-directional predictability between Bitcoin spot and futures
markets and hence, additional evidence is needed to ascertain which market is dominant
in the price discovery process. In order to gain an insight into the issue, impulse-response
functions are utilized, which track the magnitude and the persistence of the responses of one

2 We also use the Dynamic Quantile Test suggested by Engle and Manganelli (2004) and fail to reject the null
hypothesis. The test results are available upon request.
3 We also employ predictability-in-mean and variance test suggested by Hong (2001) and find bidirectional
Granger predictability between Bitcoin spot and futures markets both in-mean and variance. The test results
are not reported to save space and are available upon request.
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Fig. 1 Responses of the bitcoin spot market to a futures market shock. Note The dashed lines provide two
standard deviation confidence intervals. The QIRF are calculated by using bivariate VAR for VaR model
where the quantile of futures return series is estimated in the first equation and the quantile of spot return
series is estimated in the second equation

market return to an unexpected shock to the return in another. For example, when comparing
the responses of returns in one market to an unexpected shock in another market, the more
pronounced response can be deemed less dominant in the price discovery process.

In order to estimate impulse responses, the bi-variate CAViaR model suggested by White
et al. (2015) is first used, and then the quantiles for Bitcoin spot and futures returns at different
risk levels are estimated.4 Three risk levels are considered for the left tail (1%, 5% and 10%
level) and for the right tail (90%, 95% and 99%). Note that unlike standard impulse responses,
the quantile impulse responses show the effects of extreme positive and negative shocks on
returns at different risk levels. Results from quantile impulse responses, e.g., cumulative
responses of spot returns to an unexpected two-standard-deviation shock in futures returns
series are presented in Fig. 1.

The left panel of Fig. 1 shows cumulative responses of spot return series to unexpected
shock in the futures return series for the left tail of the distribution. The right panel of Fig. 1
presents cumulative responses of the spot market to an unexpected positive shock in the
future market. While the results in the left panel show downside losses in the spot market in
response to an extreme loss in the futures market, the results in the right panel indicate upside
gains in the spot market in response to an unexpected extreme gain in the futures market.

4 We do not present the bivariate CAViaR model results to save space; these are available upon request.
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The cumulative responses of the spot market to an unexpected extreme negative shock
in the futures market are negative and statistically significant up to the 25th lag at the 1%
risk level. After the 30th lag, the responses start to die out and quickly converge to zero. On
the other hand, the initial responses of the spot market to an unexpected negative shock in
the futures market are positive at the 5% and 10% risk levels but turn to negative after the
third lag. The reactions of the spot market are negative and statistically significant between
the 4th and 15th lag. The results also show responses of the spot market die out after the
30th lag, converging to zero thereafter. The results suggest the impact of unexpected losses
in the futures market on the losses in the spot market take almost a day and then the returns
in the spot market converge to their mean under the ceteris paribus condition. Moreover, the
maximum losses in the spot market in response to extreme unexpected losses in the futures
market are 0.3%, 0.36%, and 0.32% at 1%, 5%, and 10% risk levels, respectively.

Results on the right panel in Fig. 1 show the initial responses of the spot market to an
unexpected extreme gain in the futures market are negative and statistically significant at all
three risk levels. Then, the responses turn positive after the third lag and remain positive and
statistically significant up to the 20th lag. Thereafter, the responses converge to zero.

We present the cumulative responses of the futuresmarket to an unexpected extreme shock
in the spot market in Fig. 2. The left panel of Fig. 2 shows the results for downside losses
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Fig. 2 Responses of the bitcoin futures market to a spot market shock. Note The dashed lines provide two
standard deviation confidence intervals. The QIRF are calculated by using bivariate VAR for VaR model
where the quantile of spot return series is estimated in the first equation and the quantile of futures return
series is estimated in the second equation

123



Annals of Operations Research

at 1%, 5%, and 10% risk levels. At the 1% risk level, although the responses of the futures
market to an extreme loss in the spot market are positive, they are not statistically significant.
On the other hand, the initial responses of the futures market to unexpected extreme loss
in the futures market are positive at 5% and 10% risk levels, but they turn negative and
are only statistically significant between the 5th and 15th lags. The right panel of Fig. 2
shows that only the initial responses of the futures market to an unexpected extreme gain
in the spot returns are negative and statistically significant at the 5% and 10% risk levels.
In addition, responses of the futures market to an unexpected extreme gain are positive but
not statistically significant at the 1% risk level. These results show the effect of the spot
market on the futures market varies over risk levels, a point emphasized by Candelon and
Tokpavi (2016). Accordingly, tests focusing only on a specific fixed level of the quantile
may not be appropriate as time-series properties of the variables (such as nonstationary and
long memory) may change in quantiles across the distribution. Moreover, Candelon and
Tokpavi (2016) also suggested dynamic relations between variables may change at different
risk levels, which is corroborated by impulse responses functions in Fig. 2; e.g., responses at
1% and 5% risk levels. Finally, the maximum losses in the futures market, given an extreme
loss in the spot market are 0.002%, 0.044%, and 0.037% at the 1%, 5%, and 10% risk levels
respectively.

Comparing the results in Figs. 1 and 2, it is evident that the responses of the Bitcoin spot
market to an unexpected extreme shock in the futures market are considerably higher than the
responses of Bitcoin futures market to an unexpected extreme shock in the spot market. This
result suggests that the Bitcoin futures market has an edge in dominating the spot market.
Evidence from the quantile impulse responses analysis show the futures market seems to
be more dominant than spot market under various market conditions. These findings are
consistent with results reported by Akyildirim et al. (2020), Hu et al. (2020), Fassas et al.
(2020), Aleti and Mizrach (2020), Alexander and Heck (2020), Alexander et al. (2019),
Karkkainen (2018), and Kapar and Olma (2019).

For robustness, cross-quantilogram analysis is employed as suggested by Han et al.
(2016) in order to examine tail dependence between spot and futures markets. The cross-
quantilogram depends on the calculation of the cross-correlations of the quantile-hit process
obtained from quantile regressions suggested by Koenker and Basset (1978). We focus on
left and right tail dependence between the variables and present the results in Fig. 3. Panel (a)
of Fig. 3 shows predictability from spot to futures market. The left panel of Fig. 3 presents
the left tail dependence between the spot and futures market. On the other hand, we show
the right tail dependence between the series in the right panel of Fig. 3. Note that, while we
use the 0.05 quantile level for spot and futures returns in calculating left tail dependence,
the 0.95 quantile level is used for the right tail. The results in panel (a) of Fig. 3 show that
the cross-correlations are positive and statistically significant at specific lags. This finding
implies predictability from the spot market to the futures market both in the left and right tail.
Similar results are found for predictability from futures to spot market as there are positive
and significant cross-correlations in panel (b) of Fig. 3. These findings are consistent with
the results in Table 5 and imply bi-directional predictability between Bitcoin spot and futures
markets, which seems to be robust over bearish as well as bullish markets.
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Fig. 3 The cross-quantilogram results. Note The dashed lines are two standard deviation confidence intervals
obtained from stationary bootstrap with 1000 repetitions

5 Discussion

The presence of lead-lag relations between futures and spot markets for Bitcoin can be
evaluated from different perspectives. For example, this study’s empirical results may have
implications for behavioral finance. Investor perception and behavior may differ depending
on market conditions. This phenomenon is thoroughly examined in the finance literature
(see Hanna et al., 2020; Hu et al., 2020; Chau et al., 2012; Zou & Sun, 2012). However, the
evidence presented for investor sentiment and the spot/futures market interactions is quite
limited. According to our empirical results, while the Granger predictability-in-distribution
test and cross-quantilogram analysis results emphasized bi-directional predictability between
Bitcoin spot and futures markets both in bearish and bullish market periods, the quantile
impulse responses analysis results indicate the impact of spot prices on futures prices is
limited in bullish market phases.

The bi-directional interactions in the left tail of the return distributions can be attributed
to the co-movements of these two markets during market turmoil episodes. Such market
phases contain sharp downward trends that are formed relatively faster than the upward
developments. The panic in the market induces soaring fluctuations and it brings about
asymmetric volatilitymeaning higher variability in decliningmarkets. Our best-fittingmodel,
the EGARCH model, suggests the presence of such asymmetry in the Bitcoin spot and
futures market. The evidence regarding bidirectional volatility transmissions in the left tail
of return distributions may shed light on possible causes of this outcome, besides asymmetric
volatility. As reported by Peterson (2016), investor sentiment may become more significant
and devastating on asset prices during bearish episodes. Similarly, Vidal-Tomás et al. (2019)
find evidence of herd behavior during bearishmarkets in cryptocurrencymarkets. The authors
attribute this outcome to the inefficiency and high volatility of the tokenmarket. Bikhchandani
and Sharma (2000) report that herd behavior is a substantial factor in rising volatility and
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exacerbating fragility in financial markets. Thus, it can be concluded that the aptness of
the asymmetric volatility model to our dataset and significant mutual interactions in bearish
phases can be attributed to the nature of investor anxiety observed in market crashes and the
chaotic environment of turmoil.

When it comes to the right tail analysis, the quantile impulse responses analysis results
suggest spillovers from futures to spot market are more pronounced. In this regard, it can
be concluded that Bitcoin futures are superior to the spot prices concerning price discovery.
The dominance of futures prices over the spot prices may indicate the order in disseminating
and incorporating information arrivals, especially in upward market episodes. This outcome
can be useful for traders who attempt to capture trend reversals in upward price markets
and may reflect faster incorporation of information sets in the futures market than its spot
market counterpart. However, the literature is replete with studies (see Al-Yahyaee et al.,
2020; Vidal-Tomás et al., 2019; Caporale et al., 2018; Zhang et al., 2018) which suggest the
cryptocurrency market is not a good candidate for the Efficient Market Hypothesis as far as
reflecting information on asset prices in three different contexts. Considering this fact, one
can surmise that the spillovers from the futures market to the spot market may be a spurious
lead-lag relationship caused by herd behavior in the tokens market. Thaler (1991), Shefrin
(2000), and Blasco et al. (2012) also point out that price adjustments might be due to the
collective herd phenomena instead of the incorporation of information arrivals during market
volatility.

As discussed in the literature, the cryptocurrency market is prone to display high and
wild fluctuations (see Cheikh et al., 2020; Ammous, 2018; Fry and Cheah, 2016). However,
the absence of evidence in volatility transmissions conditional on market states necessitates
further analysis. The evidence revealed from three different market phases in the framework
of return distributionswithin this study can be utilized to evaluate the effectiveness of hedging
strategies in this market. Singhal and Biswal (2018) point out the importance of rebalancing
the portfolio weights in the presence of switching market conditions. Likewise, Mensi et al.
(2018) suggest holding less Bitcoin than other tokens during market turmoil. As our results
illustrate, there exists a high and significant bi-directional predictability between Bitcoin
futures and spot prices in bearmarkets. It can also be concluded that during the contractionary
phase, the price discovery feature of the futures market might not work as effectively as in
a bull market. Thus, the effectiveness of hedging may decrease during these periods. This
outcomenecessitatesmoremeticulous riskmanagement practices forBitcoin investors during
bearish markets when its futures are employed for hedging. In line with this suggestion,
Ivanyuk (2021) shows that the dynamic adaptive portfolio management strategy utilized in
crisis periods may significantly increase portfolio performance.

6 Conclusions

The introduction of futures markets by CBOE and CME for Bitcoin in December 2017 has
prompted much academic research on its price discovery process. Using hourly data from
January 12, 2020, through February 1st, 2021, this paper attempts to examine whether spot
or futures markets lead in the price discovery process. Within this period, cryptocurrencies
experienced record price highs in the face of the global Covid-19 pandemic. The significant
contribution of this paper to the existing literature is its econometric methods, as this is,
to the best of our knowledge, the first attempt to examine tail dependence between Bitcoin
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spot and futures markets using predictability in the distribution test and the quantile impulse
responses analysis.

We rely on tail dependence betweenBitcoin spot and futuresmarkets and use predictability
in the distribution test andquantile impulse response analysis to better understand the dynamic
relationship between Bitcoin spot and futures markets under a variety of market conditions.
A variety of GARCHmodels are considered before the EGARCH (1,1) is selected, as it is the
best fit for the model selection criteria by best characterizing both spot and futures returns.
The back-testing results for the VaR analysis indicate the success rate in short positions and
failure rate in long positions are very close to the empirical quantiles, which suggests the
EGARCH model is adequate in gauging both upside and downside risks in returns.

Using time-varying VaR for each return series at different risk levels, tail dependence is
examined between spot and futures markets. The Granger predictability test based on the left
tail of the distribution shows bi-directional predictability between spot and futures markets,
which suggests significant feedback effects following extreme losses. Unexpected losses in
the spotmarket can be predicted by past losses in the futuresmarket and vice versa. Repeating
the tests for the right side of the distribution, similar results are obtained: unusually large
gains in the spot market can be predicted by past gains in the futures market and vice versa.
Statistics from the center of the distribution tell the same story where we find bi-directional
Granger predictability and neither the spot market nor the futures market dominates the other
in the Bitcoin price formation during normal times.

The CAViaR framework is then used along with the associated impulse response functions
that provide an estimate of dynamic tail dependence to gain insights into the spillovers
between quantiles of spot and futures returns. Impulse response functions are estimated at
various risk levels for a given loss or gain in a market and measure the dynamic response of
returns in the other market. The cumulative responses of the spot market to an unexpected
extreme negative shock in the futures market are negative and statistically significant within
a day. The same is also true for responses of the spot returns to unexpected extreme gains
in the futures market where such responses are negative and statistically significant at all
three risk levels. Turning to the responses of the futures market to extreme losses or gains in
the spot market, they tend to be smaller, initially marginally significant, or not significant at
all. Overall, the futures market has an edge in influencing the spot market and figures more
prominently in the price discovery process.

Our empirical findings can be useful for investors and firms that take positions in both the
spot and futures markets of Bitcoin. As the results indicate, interactions of these two markets
display varying behavior under different market conditions. This information emphasizes
the importance of dynamic portfolio management in such volatile markets. Although the
introduction of Bitcoin futures allows the market participants to mitigate the extent of risk
exposure, varying reactions of these variables under different market conditions necessitate
a rigorous follow-up and time-adaptive procedure to determine hedge ratios. Results reveal
that disseminated market information is incorporated in either variable with an erratic pattern
under different confidence levels and signs of returns. Therefore, it can be concluded that
the performance of long or short hedges might be dissimilar due to the varying extent of
reactions of both markets to the same degree of shocks. As our methodology allows us to
distinguish the interactions between spot and futures prices in bearish and bullish markets,
we are also able to evaluate the respective relationship from the perspective of these two
market phases. Accordingly, we conclude that upward and downward market trends reveal
different behaviors of investor sentiment in the cryptocurrency market. Although quantile
impulse responses analysis depicts a limited impact of spot prices on futures in downward
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market phases, distribution test and cross-quantilogram analysis illustrate the presence of bi-
directional predictability in thesemarket phases. Considering the advantage of evidence from
two different perspectives in the latter, this observation indicates that during the panic envi-
ronment of the downward trends, the co-movements of spot and futures prices strengthen.
In their nature, such markets display severe fluctuations and may incorporate asymmetric
volatilities that suggest the existence of higher fluctuations in declining prices, as suggested
by our findings in the EGARCH model. The presence of bi-directional predictability during
the high market tension depicts diminishing price discovery of the futures and spot markets.
Thus, we suggest utilizing alternative hedging instruments that can be used during the market
turmoil in portfolios constructed with Bitcoin. However, as the results for right tail analysis
depict, futures are more pronounced in leading the spot prices during upward market trends.
In such market phases, investors may benefit from the lead-lag relationship between futures
and spot prices since the market information arrivals would follow a sequence and the incor-
poration of information will have an order. The leading characteristic of futures on spot prices
in bullish trends may offer more efficient hedging and trading strategies for investors and
portfolio managers. On the other hand, we suggest seeking alternative hedging instruments
for any investor with a long position in spot Bitcoin by considering the diminished price
discovery feature between spot and futures prices during the downward market trends.
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