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Quantum Particle on a Rotating Loop: Topological Quenching 
due to a Coriolis-Aharonov-Bohm Effect 

Stefan Weigert 

Insritut f i r  Physik der Urzil.,ersitat Basel, Klingelbergstras.re 82, CH-4056 Basel, Switzerland 
(Received 6 December 1994) 

A particle is assumed to move along a one-dimensional loop such as an ellipse that rotates in a 
plane. Because of the centrifugal force the particle is subjected to a symmetric double-well potential. 
Classically, the Coriolis force does not affect the motion of the particle, whereas the corresponding 
term in the Lagrangian influences the properties of the quantum system: its ground state turns out to be 
degenerate for a discrete set of angular velocities. The analogy between a constant magnetic field and 
a uniform rotation is used to propose, in addition, a variant of the Aharonov-Bohm experiment, which 
can be performed also with neutral particles. 

PACS numbers: 03.65.Sq, 03.65.Db, 73.20.D~ 

Gauge theories exhibit specific features if the configura- 
tion space of a system is multiply connected. This property 
is at the core of the Aharonov-Bohm effect [ l ]  and of topo- 
logical field theories (cf. [2]). The purpose of this Letter is 
to present two simple systemc for which the interplay be- 
tween a topologically nontrivial space and a gauge theory 
leads to surprising phenomena. In the first case a parti- 
cle on a one-dimensional rotating loop is considered. It is 
shown that the quantum-mechanical energy spectrum de- 
pends on the angular velocity of the system in such a way 
that the ground state may degenerate for a discrete set of 
velocities. In the second case an Aharonov-Bohm type ex- 
periment-set up on a rotating table-will be described, 
which can be performed with neutral particles. The inter- 
ference pattern produced on the screen by the split bearns 
will turn out to be a function of the angular velocity. 

These phenomena occur because angular and transla- 
tional velocities of the moving frame with respect to an 
inertial one act as gauge fields: the motion of a classical 
particle moving freely in three-dimensional space can be 
considered as a gauge theory [3]. In this context, evalu- 
ating quantum-mechanical propagators in terms of path 
integrals has proved to be particularly useful: appropri- 
ately superposing classical solutions is often sufficient for 
a qualitative discussion of the salient features of the quan- 

tum system. 
To begin with, a particle with mass m is assumed to 

move freely on a one-dimensional planar loop resting 

in the laboratory frame of reference, KO. This situation 
can be obtained as a limit of a more realistic model in 
which the particle moves in a narrow two-dimensional 

gully [4]. The shape of the loop traces out a smooth 
curve dTo that does not intersect itself. Later on C2 loops 
will be considered only, i.e., loops that are transformed 
into themselves under a rotation by n- about an axis 
perpendicular to the plane [S]. The classical Lagrangian 
of the particle is given by 

where Cartesian coordinates .uo, yo of the plane are consid- 
ered as real and imaginary parts of the complex variable 
z ~ ;  the loop is described by a smooth function Go(zo), i.e., 

The constraint that the particle move on the loop To only 
is taken Into account conveniently by using an appropriate 
system of orthogonal coordinates wo = to + i vo .  It is 

defined in such a way that the loop coincides with one 
of the coordinate lines leading to, say, 5, = 5; = const, 
during the motion. The Rielna~in mapping theore111 [6] 
guarantees the existence of an appropriate conformal 
mapping 

g ( w )  being analytic. The Lagrangiari turns into 

2 
where M(vo) = I d g ( b v o ) / d ~ o l ~ ~ = ~ ; ; .  The position- 
dependent mass M cannot become equal to zero, 
M(vo)  f 0 for all 7 0 ,  as follows from the conservation 

of energy. 
Suppose the loop rotates rigidly with a constant angular 

velocity fl = 101 about an axis 0/fl that is oriented 
perpendicularly to the plane and that pierces the center 
of the ellipse. The constraint becomes explicitly time 
dependent: 

With respect to a noninertial frame of reference, K ,  
rotating with 0 relative to KO, the Lagrangian reads 

where d T  describes the constraint in the moving frame. 
Introducing coordinates adapted to the loop in analogy to 
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(3), the effectively one-dimensional motion on the loop is 
described by 

and the expressions 

are interpreted as mass, a vector potential, and a scalar 
potential, respectively. As before, the particle acquires 
a position-dependent mass, M ( q ) ;  in addition, it is sub- 
jected to a scalar potential W ( 7 )  due to the centrifugal 

force. It is interesting to see how the centrifugal force 
acting on the classical particle shows up on the quantum 
level. Effectively, the centrifugal potential .-c -(a X x ) ~  
along the loop has a form such that the wave function is 
squeezed out of the regions close to the axis of rotation 
(- high potential energy) into the more distant parts of the 
loop (- low potential energy) where the particle prefers 
to stay classically. The centrifugal potential being propor- 
tional to R2,  it is obvious that this phenomenon becomes 
more and more pronounced for higher angular velocities. 

The force associated with the Coriolis term m x  . (a X 

X) does not influence the classical motion since it points 
always perpendicular to the loop. For the Lagrangian L 
in (7) this follows from the fact that the term containing 
the vector potential, n ( r ] ) ,  is a total derivative, 

representing thus a (classically irrelevant) gauge transfor- 
mation of the Lagrangian. Nevertheless, this term must 

not be dropped in a quantum-mechanical description of 
the particle moving on the loop. As a matter of fact, on 

a multiply connected phase space such a term turns out 
to have physical meaning: In models of topological field 
theory [7] it can be used to generate a mass, and in the 
theory of anyons [8] it provides the interaction term re- 
sulting in braid statistics. 

Also, a gauge term has been found to cause an unex- 
pected quenching of the tunnel splitting in a spin system 
[9] possessing two classically equivalent equilibrium po- 
sitions. The separation of the two lowest energy eigen- 
values turns out to be a function of an externally applied 
magnctic field B, and for a discrete set of field strengths, 
B,,. the splitting drops to zero. An analogous phenomenon 
has been found to occur for a charged particle moving on 
a one-dimensional planar loop, along which a T-periodic 
double-well potential V ( 7 )  is present [IO]. Furthermore, 
a uniform magnetic field acts perpendicularly to the plane 
of the loop. If the loop is invariant under twofold rota- 

tions, the system has two equivalent minima. The tunnel 
splitting is found to be a function of the magnetic field, 
although classically the Lorentz force has no influence at 
all on the motion of the particle. Again, the tunnel split- 
ting is quenched for a discrete set of field strengths B,,, 
leading to a degenerate ground state of the quantum sys- 
tem. The Lagrangian of this system has, as a matter of 
fact, exactly the form given in Eq. (7). Consequently, a 
(neutral) particle on a rotating loop is (with respect to the 
rotating frame) equivalent to a charged particle moving on 
a (nonrotating) identically shaped loop with uniform mag- 
netic field if only the external potential V ( 7 )  is chosen 
appropriately. This last condition is due to the fact that 
the form of the centrifugal potential W ( 7 )  is determined 
completely by the shape of the rotating loop, whereas the 
shape of the double-well potential V ( q )  acting along the 
loop at rest is arbitrary, apart from its symmetry. 

Based on these observations it is straightforward to 
conceive a situation in which the gauge term present in the 
rotating system leads to an observable effect. Consider 
a loop invariant under twofold rotations such that the 
distance of the points on the loop from the origin, Iz(q)l ,  

has just two maxima, as well as the symmetries 

An ellipse provides an example of such a loop. 
Applying the instanton method as presented in Ref. [l01 

onc obtains a scmiclassical expression for the separation 
of the two lowest energy eigenvalues, the tunnel splitting 
A E  El  - E,), as a function of the angular velocity 0, 

where the Euclidean action of a single instanton, S:, is as- 
sociated with a path connecting the maxima of the inverted 
potential, - W ( 7 ) ;  the nonzero prefactor A  takes into ac- 
count the contributions of the quadratic fluctuations about 
the instanton path [10]. Contrary to systems with simply 
connected configuration space an additional cosine factor 

arises in the formula for the energy splitting. It is due 
to the nontrivial topology of the loop: there are m o  dis- 

tinct paths connecting the maxima of the inverted potential. 
Application of the instanton method requires one to super- 
pose contributions of all topologically inequivalent paths 
connecting one maximum with the other, which are char- 
acterized by different winding numbers. The summation 
over the multi-instanton contributions finally collapses into 
the multiplicative cosine function. Its argument, v o ( f l ) ,  

is given by the integral of the gauge term ~ ( 7 )  from one 
minimum to the other, i.e., along single (shortest) instan- 
ton path, 

and thus corresponds to an extra phase. The splitting 
A E ( R )  given in ( 1  3) is equal to zero if 
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which by using (9) turns into a condition on the angular 
velocity, 

1 
0, = ( k  + 7)h/2n~Fl, ,p,  k E Z ,  (16) 

where the area enclosed by the loop is given by 

Consequently. there is a discrete set of frequencies 

i lk ,  k E Z, for which the ground state of the system 
is degenerate. This result derived with respect to the 
rotating frame K also holds in the rest frame KO since the 

transition from K to KO does not lift the degeneracy of 
the energy levels. Previously [10], condition (15) was 
interpreted naturally in terms of the flux quantum 40, irn- 
plying that the tunnel splitting would vanish whenever the 
magnetic field through the loop leads to a flux 4 being an 
odd-integer multiple of the flux quantum 40. Formally, a 
"quantum of rotation" could be introduced here that would 
allow for an analogous statement. Imagine an electron 
constrained to an elliptic loop enclosing an area of about 
2 X 10-l2 m-2 [l  l ] ;  then the quantum of rotation w o ~ ~ l d  
be of the order of Clo  - 5 X 10' S - ' .  

There is a hand-waving argument that makes it plau- 
sible that a discrete set of frequencies C L k  is singled out 
from all rotation velocities. Imagine that a wave emanates 
from a given point on the resting loop (an "aphelion," for 

example): it travels along the two branches and interferes 
at the other aphelion. If the loop rotates then the two 
traveling waves are subjected to different histories since 
one is "comoving" and the other is "countern~oving" with 

respect to the sense of the rotation. This effect leads to 
a change in the "interference pattern" from constructive 

to destructive interference, and, a fortiori, to different sta- 
tionary states. 

The analogy between an external magnetic field and a 
constant rotation can be strengthened from a theoretical 
point of view by considering a double-slit experiment 
such as it is used for discussion of the Aharonov- 

Bohm effect [ l ] .  At the same time possible technical 
difficulties due to the necessity to suspend and rotate a 
mesoscopic loop at high velocity can be circumvented 

in this way. Consider an experimental setup appropriate 
for a measurement of the Aharonov-Bohm effect such as 

described in [ l  21. However, the magnetic flux through 
the tiny fiber (or coil) immediately behind the slit is 
zero, but the total apparatus is assumed to rotate about 

an axis located at the position of the fiber. Clearly, the 
interference pattern on the screen where the split beams 
meet will show a sequence of maxima and minima as 
a function of the angular velocity C L ,  much in the same 
way as is known from the Aharonov-Bohm experiment 
when the magnetic flux through the coil is varied. Again, 
this experi~nent is in striking contrast to the experi~nent 
performed with classical particles: the doubly peaked 
intensity pattern observed on the screen in the absence 
of rotation would only be subjected to an overall shift 

for nonzero angular velocity. For electrons (they can be 
considered as neutral particles since no magnetic field 
is present) one obtains a quantum of rotation Clo of the 
order 50 S - ' ;  this value is much smaller than that for 
the mesoscopic ellipse because the area enclosed by the 

"loop" is larger by about a factor of lo6. Even smaller 
angular velocities were sufficient in an experiment using 
neutrons; however, the size of the optical bench involved 

[ l  31 is on the order of l 0  m. 
From a general point of view, it is illuminating to con- 

trast the phenomena reported here to effects resulting from 

a geometric phase [14]. Consider a quantum system the 
Hamiltonian of which depends on an adjustable parame- 
ter A taking on values in a topologically nontrivial space. 
If, simultaneoualy with the regular time evolution, the sys- 
tem also traverses adiabatically a closed loop in parameter 
space, its wave function acquires an additional phase fac- 
tor. It is possible to effectively describe this phenomenon 
by modifying the original Hamiltonian: appropriate vector 
and scalar potentials are introduced acting on a fictitious 
charge of the particle. This same structure is also seen 
to emerge when the Borll-Oppenheimer approximation is 
made, leading to what is known now as the "gauge thc- 
ory of molecular physics" [IS]. In this case, a parameter- 
dependent Hamilton operator is obtained by assuming that, 
at each instant of time, the electrons of a molecule move in 
a slowly varying field due to the slowly changing position 
of the heavy nuclei. These effective (or reduced) descrip- 
tions have in common that they arise from division of one 
physical system into two parts with dynamics on differ- 

ent time scales. In the system studied here, however, the 
relevant Lagrangian does not depend on slowly varying 

parameters. The modification stemming from the transi- 
tion to the rotating frame of reference does not involve an 
adiabatic procedure: the introduction of scalar and vector 
potentials represents an exact transformation. 
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