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Abstract
A mean-field theory of the electrodynamics of a turbulent fluid is formulated
under the assumption that the molecular electric conductivity is correlated
with the turbulent velocity fluctuation in the (radial) direction, g . It is shown
that for such homogeneous fluids a strong turbulence-induced field advection
anti-parallel to g arises almost independently of rotation. For rotating fluids,
an extra 𝛼 effect appears with the known symmetries and with the expected
maximum at the poles. Fast rotation, however, with Coriolis number exceeding
unity suppresses this term. Numerical simulations of forced turbulence using
the nirvana code demonstrate that the radial advection velocity, 𝛾 , always dom-
inates the 𝛼 term. We show finally with simplified models that 𝛼2 dynamos
are strongly influenced by the radial pumping: for 𝛾 < 𝛼 the solutions become
oscillatory, while for 𝛾 > 𝛼 they become highly exotic if they exist at all. In con-
clusion, dynamo models for slow and fast solid-body rotation on the basis of
finite conductivity–velocity correlations are unlikely to work, at least for 𝛼2Ω
dynamos without strong shear.
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1 INTRODUCTION

If apart from the velocity and magnetic field, for any
reason also the electric conductivity in a turbulent fluid
fluctuates around a certain value then also the local mag-
netic diffusivity fluctuates around its average. Krause and
Roberts (1973) started to consider the consequences of this
constellation with the result that the effective decay time
of a large-scale nonuniform magnetic field is changed by
reducing the effective eddy diffusivity of the turbulence
field.

Moreover, in convection-driven turbulent fields, the
always-existing temperature fluctuations should produce

magnetic resistivity fluctuations which are correlated with
one of the velocity components, for example, the vertical
one. In this case, even a turbulent diffusivity-flux vector
⟨𝜂′u′ ⟩—with 𝜂 = 1∕𝜇0𝜎 denoting the magnetic resistivity
and u′ the velocity fluctuations—occurs. This, in con-
nection with the magnetic background field or electric
current, may form new terms in the mean-field induction
equation. Pétrélis et al. (2016) suggested a new sort of 𝛼
effect arising in such systems.

They derived an expression for the diffusivity-current
correlation, in which the diffusivity-flux vector, multi-
plied with the mean magnetic field, B , appears so that
a new 𝛼 effect could be possible in spite of the assumed
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homogeneity of the turbulence field. However, there are
two possibilities for the relation between the electromo-
tive force and the mean magnetic field: the latter can be (i)
parallel to the electromotive force or (ii) perpendicular to
the electromotive force. Only in the first case, one formally
speaks of an 𝛼 effect, which may lead to self-excitation
of large-scale magnetic fields, while in the second case
the expression describes a turbulent diamagnetism (also
called “topological pumping”) which is known to ham-
per dynamo instability. If the correlation ⟨𝜂′u′⟩ exclusively
defines a preferred direction g the resulting turbulent elec-
tromotive force is perpendicular to the mean magnetic
field and an alpha-effect is not obtained.

Later on, quasi-linear SOCA calculations applicable
to rotating forced turbulence and/or magneto-convection
indeed confirmed the existence of an 𝛼 effect in the
presence of global rotation. Without rotation, the con-
ductivity fluctuations lead to a reduction of the eddy
diffusivity and—if correlated with one of the velocity
components—to a new but rather strong diamagnetic
pumping effect (Rüdiger et al. 2020). In that work, rotating
magneto-convection was numerically used to derive the
radial turbulent electric current flux

⟨
u′rcurlB′

⟩
—where

r is the radial coordinate—which serves as a proxy of
the turbulent diffusivity-current vector

⟨
𝜂
′curlB′

⟩
if 𝜂′

and u′r are correlated or anti-correlated. The flux vector
always exists for rotating convection under the influence
of an azimuthal magnetic background field. The result is
a well-defined diamagnetic pumping and, with rotation,
an 𝛼 effect, which is anti-symmetric with respect to the
equator.

However, convection only exists if the fluid is stratified
in the radial direction, g . The main difference caused by
the fluctuating-conductivity concept is the occurrence of
an 𝛼 effect in fully uniform fluids in which an anisotropy
exists rather than any form of stratification. This makes
the idea a promising one for a dynamo theory of planetary
magnetism.

In the present paper, therefore, the existence of the
𝛼 effect in absolutely homogeneous fluids is shown by
numerical simulations of forced rotating turbulence. We
shall demonstrate that the 𝛼 effect indeed occurs, if the
global rotation is not too slow or too fast but that it is, how-
ever, always accompanied by a dominating diamagnetic
pumping term, 𝛾 . Even without rotation (and only slightly
suppressed in its presence) a strong radial advection term
occurs by which the horizontal field (i.e., perpendicu-
lar to g) is lifted to either of the radial boundary layers,
depending on the sign of the effect.

We note that a large-scale 𝛼
2 dynamo can in prin-

ciple operate for very weak 𝛼 effect if only the region
is big enough, or—with other words—if it hosts a suffi-
ciently large number of eddies. In our final Section, the

consequences of this puzzling situation are shown by the
presentation of a sequence of mean-field 𝛼2 dynamo mod-
els with stronger and stronger magnetic pumping term
(i.e., turbulence-induced diamagnetism). We shall show
that such dynamos can only operate as long as the 𝛼 term
(in form of a pattern velocity) exceeds the pumping veloc-
ity. This condition is unfortunately not met—at least,
according to the results of the derived electrodynamics,
which is based on the correlations with conductivity fluc-
tuations.

2 THE EQUATIONS

The basic equation of the problem is the induction
equation

𝜕B
𝜕t

= curl(u × B − 𝜂 curlB), (1)

with the continuity condition div B = 0. Moreover, we
assume divu = 0 as the condition for an incompressible
fluid for the analytic derivations, while for the numeri-
cal experiments, this constraint is relaxed. Here, u is the
fluid velocity, B is the magnetic field vector and 𝜂 the
(molecular) magnetic diffusivity. We consider a turbulent
fluid with u = u + u′ and with a fluctuating magnetic dif-
fusivity 𝜂 = 𝜂 + 𝜂′. For the expectation values of the per-

turbations we shall use the notations urms =
⟨

u′2
⟩1∕2

and

𝜂rms =
⟨
𝜂
′2
⟩1∕2

. Large-scale observables (i.e., mean val-
ues) are marked with overbars, while brackets are used for
the correlations of fluctuations. Low or high values of the
magnetic Reynolds number

Rm = urms
𝓁
𝜂

(2)

(for Strouhal number ≃ 1, and with 𝓁 the correlation
length) distinguish between the regimes of low/high con-
ductivity. Within the realm of the electrodynamics with
finite fluctuations, the high-conductivity limit 𝜂 → 0 may
not be allowed.

If the fluctuations u′ and 𝜂
′ exist and are correlated,

then the turbulence-originated diffusivity flux

U =
⟨
𝜂
′u′

⟩
(3)

forms a vector, which is polar by definition. The exis-
tence of the radial component of this vector is obvious
for thermal convection, where both the radial velocity and
the electric conductivity are due to temperature fluctu-
ations. The correlation (3) can be understood as trans-
port of magnetic diffusivity in a certain direction. If, for
example, the correlation between 𝜂′ and ur′ is positive then
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resistivity is transported upwards—balanced by a down-
ward radial velocity ∇(−𝜂) which “pumps” the horizontal
field downwards in the direction where the magnetic decay
is maximum (the “diamagnetic effect” of turbulent origin).

Also the magnetic field will fluctuate, hence B =
B + B′. The magnetic fluctuation B′ fulfills a nonlin-
ear induction equation, which follows from (1). The
turbulence-originated electromotive force  =

⟨
u′ × B′

⟩

and the diffusivity-current correlation  = −
⟨
𝜂
′curlB′

⟩

enter the induction equation for large-scale magnetic field
via

𝜕B
𝜕t

= curl( +  − 𝜂 curlB). (4)

Under the assumption that the large-scale field, B , varies
sufficiently slowly in space and time, the electromotive
force can be written as

 = 𝛼◦B − 𝜂tcurlB, (5)

where the tensor 𝛼 and the coefficient 𝜂t represent the 𝛼
effect and the turbulent magnetic diffusivity (Krause &
Rädler 1980), respectively, and where ‘◦’ denotes a ten-
sor multiplication. The tensorial structure of 𝜂t under the
presence of magnetic field and rotation has been dis-
cussed later by Kitchatinov et al. (1994). As in Rüdiger
et al. (2020), the spectral vector of the correlation (3) may
be written as

Ûi = u1(k, 𝜔)
(

gi −
(g ⋅ k )ki

k2

)

. (6)

The vector g gives the unit vector of the direction in
which the correlation between velocity and diffusivity is
non-vanishing. The expression (6) must be odd in g and its
real part must be even in the wave number k . The quantity
u1 reflects the correlation of the velocity component g ⋅ u′
with 𝜂′ where 𝜔 is the Fourier frequency of the spectrum.
As it should, the transformation g → −g only changes the
sign of U .

3 THE DIFFUSIVITY- CURRENT
CORRELATION

It has been shown earlier that a relation

 = −𝛾 g × B (7)

between the diffusivity-current correlation,  , and the
large-scale magnetic field, B , results with

𝛾 = 1
3 ∫ ∫

𝜂k4u1

𝜔
2 + 𝜂2k4

dk d𝜔, (8)

representing a turbulent advection of the magnetic back-
ground field where uadv = −𝛾 g is the advection velocity
(Rüdiger et al. 2020). We find a coefficient 𝛾 of the same
sign as the diffusivity flux (3). For positive u1 (i.e., for
positive correlation of 𝜂′ and u′r), the advection veloc-
ity, uadv, points downward if g is the radial unit vec-
tor. Anti-correlated 𝜂

′ and ur′ lead to an upward turbu-
lent transport of the mean magnetic field. This means
that the field is always attracted by the islands of lower
resistivity—or, equivalently, of higher electric conductiv-
ity. As a consequence, the large-scale magnetic field favors
the direction toward longer diffusive decay times. The
advection velocity is opposite to the diffusivity flux (3).
The integral expression for 𝛾 of Equation (8) scales linearly
with Rm until it saturates for large magnetic Reynolds
numbers.

Let V̂ be the spectral function of the two-point autocor-
relation function V(𝜉, 𝜏) = ⟨𝜂′(x, t)𝜂′(x + 𝜉, t + 𝜏)⟩ of the
diffusivity fluctuations. For the diffusivity-current correla-
tion  the term with V̂ leads to

 = … + 2
3 ∫ ∫

k2V̂
−i𝜔 + 𝜂k2

dk d𝜔 curlB, (9)

which provides an extra contribution to the magnetic field
dissipation. The question is whether this term reduces or
enhances the eddy diffusivity 𝜂t representing turbulence
without 𝜂-fluctuations. The small-scale diffusivity fluc-
tuations obviously lead to a reduction of the large-scale
eddy diffusivity 𝜂t which, however, is only weak as it runs
with the small value

(
𝜂rms∕𝜂

)
in second order (Krause &

Roberts 1973; Rüdiger et al. 2020). The actual value of
the turbulence dissipation will not have relevance for the
results of the present paper.

Our assumed background turbulence is homogeneous
but anisotropic, where the anisotropy is only implicit. If
the turbulence rotates, an additional pseudo-scalar g ⋅𝛀
appears with which a relation

 = −𝛾 g × B − 𝛼1[(g ⋅ B )𝛀 + (g ⋅𝛀) B ]

− 𝛼2(B ⋅𝛀)g (10)

can be formulated—with yet unknown coefficients 𝛼1 and
𝛼2 for the diffusivity-current correlation,  , in presence
of a large-scale magnetic field and rotation. For the above
expression, 𝛾 is again given by Equation (8). Relation (10)
formally describes the existence of an 𝛼 tensor, which con-
nects the correlation  with the large-scale magnetic field
B . This connection exists despite the turbulence model
being assumed as strictly homogeneous (so that the stan-
dard 𝛼 tensor cannot appear). The 𝛼 effect according to (10)
is highly anisotropic, the middle term with the coefficient
𝛼1 provides the rotation-induced standard 𝛼 expression.
While the diamagnetic term with 𝛾 also exists for Ω = 0,
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the 𝛼 terms need global rotation. We shall show below that,
independently of the sign of the correlations ⟨𝜂′u′r⟩, the
values of 𝛼1 and 𝛾 are always of opposite sign.

The dimensionless ratio

�̂� = 𝛾

𝛼1Ω
(11)

of the pumping velocity 𝛾 and the rotation-induced 𝛼

effect indicates the ratio of anti-symmetric and symmetric
elements in the complete 𝛼 tensor. Simulating electro-
motive forces for models of rotating magnetoconvection,
Ossendrijver et al. (2001); Ossendrijver et al. (2002) found
�̂� ≃ 1 where both 𝛼 and 𝛾 were about 10% of the rms value
of the convective velocity. Also Käpylä et al. (2009) reached
typical values of order unity in their numerical mod-
els of turbulent magnetoconvection. Additionally, with
their extensive numerical simulations, Gressel et al. (2008)
derived �̂� = O(1) for interstellar turbulence driven by col-
lective supernova explosions. All these examples summa-
rize the results of 𝛼 effect calculations from the relation
between the electromotive force  and the mean magnetic
field B , which only appears if the turbulence is nonuni-
form. On the other hand, we shall demonstrate in the
following that for homogeneous models with fluctuating
conductivities, the corresponding ratio (11) reaches val-
ues even exceeding unity—with severe consequences for
associated dynamo models.

4 NUMERICAL METHODS

To probe the theoretical predictions we run artificially
forced, fully nonlinear numerical simulations with the nir-
vana MHD code (Ziegler 2004), which solves the equations
of compressible magnetohydrodynamics by means of a
second-order Godunov approach. In the simulations, the
fluctuating component of the magnetic diffusivity is pre-
scribed by 𝜂′ = cuuz, where the coefficient cu is used to
control the strength of the correlation. We furthermore
use 𝜂rms = cuuz,rms to quantify the amplitude of the fluc-
tuating part of the magnetic diffusivity. The simulation
domain is a fully periodic cube with volume L3. The units
of length and time are [x] = k−1

1 , [t] = (csk1)−1 where k1 is
the wave number corresponding to the system size and cs
is the constant speed of sound. The simulations employ
standard non-helical forcing according to Equation (7) of
Haugen et al. (2004) and are characterized by the mag-
netic Reynolds number (2) with urms volume averaged
and 𝓁 = (kf)−1. The flows under consideration are weakly
compressible with Mach number Ma = urms∕cs ≈ 0.1. All
simulations have kf ≃ 4.5 (using isotropically sampled dis-
crete wave vectors obeying 4 ≤ kf ≤ 5) and employ a grid
resolution of 803. In code units, the molecular diffusivity
is fixed at 𝜂 = 0.02.

5 THE TURBULENT FLUX OF
ELECTRIC CURRENT

Consider a homogeneous and isotropic turbulence that is
influenced by uniform magnetic fields and global rotation.
Let us write its correlation tensor,

⟨
ui′ curl𝑗 B′

⟩
, as

⟨
ui′curl𝑗 B′

⟩
= 𝜅′𝜀jikBk + 𝜅1ΩiB𝑗

+ 𝜅2Ω𝑗Bi + 𝜅3(𝛀 ⋅ B )𝛿ij. (12)

The tensor is not a pseudo-tensor and there is no rea-
son that the dimensionless coefficients 𝜅 identically van-
ish. It does not play a known role in the mean-field
electrodynamics but it is exploited here as a proxy of
the desired diffusivity-current correlation. The correlation
vector

⟨
ur′ curlB′

⟩
describes an upward or downward

radial flux of electric current in a rotating magnetized
turbulence which we shall use below to estimate the
diffusion-current correlation  . We note that for Ω = 0 it
is
⟨(

g ⋅ u′
)

curlB′
⟩
= 𝜅′ g × B for all directions g . With

g as the radial direction, one finds

⟨
ur′curl𝜃 B′

⟩
= −

⟨
u𝜃′curlr B′

⟩
= −𝜅′B𝜙, (13)

if the magnetic background field only has an azimuthal
component. Based on SOCA calculations, the coefficient
𝜅
′ is

𝜅
′ = 1

15∫
∞

0 ∫
∞

0

𝜂k4E(k, 𝜔)
𝜔

2 + 𝜂2k4 dkd𝜔, (14)

with the positive spectral function E of the turbulence
intensity,

u2
rms = ∫

∞

0 ∫
∞

0
E(k, 𝜔) dk d𝜔. (15)

As the spectrum E(k, 𝜔) is positive-definite, the tensor
coefficient 𝜅′ is positive-definite, too.

Figure 1 gives a numerical representation of
the complete tensor (12) in Cartesian coordinates
(r, 𝜃, 𝜙)→ (x, y, z), where the rotation vector is 𝛀 =
Ω0(cos 𝜃,− sin 𝜃, 0) and the magnetic field B = (0, 0,B0).
The details of the simulations were given in the previ-
ous Section. Obviously, the 𝜅3 coefficient in (12) cannot
be determined for this geometry as always 𝛀⊥B . It is
clear from the uppermost and the lowermost curves
in the left and the right panel that after (13) the sim-
ulation gives 𝜅

′
> 0 in accordance to the result (14)

of the quasi-linear theory. Only the xy-component is
anti-symmetric in its indices but the cross correlations
xz and yz are symmetric. The diagonal components
xx, yy and zz vanish (not shown) in accordance to the
relation (12).
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GRESSEL et al. 5 of 11

F I G U R E 1 The off-diagonal components (expectation value plus temporal variations) of the turbulence-induced electric-current flux
tensor

⟨
u′i curl

𝑗
B′
⟩

normalized with urmskfB0 for various co-latitudes. The plot reflects the symmetry of the tensor except the xy-component
which is anti-symmetric in accordance with Equation (18). Rm = 100, B0 = 2 × 10−8, Pm = 1, Ω = 1

For the remaining off-diagonal tensor components,
one finds 𝜅1 = 𝜅2 = 𝜅 with 𝜅 < 0 as

⟨
u′rcurl𝜙B′

⟩
=
⟨

u′
𝜙

curlr B′
⟩
= 𝜅ΩB0 cos 𝜃 < 0 (16)

and

⟨
u′
𝜃
curl𝜙B′

⟩
=
⟨

u′
𝜙

curl𝜃 B′
⟩
= −𝜅ΩB0 sin 𝜃 > 0, (17)

hence for rotating and magnetized (but otherwise
isotropic) turbulence, the tensor expression (12) becomes

⟨
u′i curl𝑗 B′

⟩
= 𝜅′𝜀jikBk + 𝜅

(
ΩiB𝑗 + Ω𝑗Bi

)

+ 𝜅3(𝛀 ⋅ B )𝛿ij. (18)

In a rotating but otherwise isotropic turbulence with an
azimuthal background field, the meridional flow fluc-
tuations will always be correlated with the azimuthal
electric-current fluctuations. We note that the simula-
tions show that the anti-symmetric (xy)-component of
the tensor is always much larger than the symmetric
(xz)-component—which, in fact, will have important con-
sequences.

Replace now in the relations (13) and (16) u′r by 𝜂
′

and the existence of correlations such as
⟨
𝜂
′curl𝜃 B′

⟩
and

⟨
𝜂
′curl𝜙B′

⟩
becomes obvious in (rotating) homogeneous

turbulence fields magnetized with an azimuthal back-
ground field. Just this finding is formulated by Equation
(10). For positive correlation of the 𝜂-fluctuation and the
radial velocities (i.e., positive Ur), the 𝛼1 in (10) becomes
negative and for negative correlations it becomes posi-
tive. Note the negative sign in the definitions. In the same
relation, the 𝛾 results as positive —hence the pumping is
downward (i.e., opposite to Ur). We always obtain 𝛾𝛼1 ≤ 0
for both signs of Ur.

Another basic finding is that the term with 𝜅′ always
exceeds those with 𝜅, which—in other words—means
that, for rotating turbulence, the pumping term (a veloc-
ity) will always be larger than the 𝛼 term (also a velocity).
As a consequence, in rotating conducting fluids, the dia-
magnetic effect may by far exceed the inducting action
of the 𝛼 terms. The remainder of this paper will confirm
this suggestion and will show that a dominating turbulent
pumping precludes dynamo instability of the 𝛼2-type, that
is, in the absence of large-scale shear.

Figure 2 numerically shows the influence of the mag-
netic Prandtl number on the off-diagonal components
of tensor (18). The values are taken for mid-latitudes.
The Pm varies by more than one order of magni-
tude. The numerical values basically grow for growing
Prandtl number. Nevertheless, the ratio of the negative
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6 of 11 GRESSEL et al.

F I G U R E 2 Similar to Figure 1 but for 𝜃 = 45◦ and for various magnetic Prandtl numbers. The blue line in the middle panel
(
⟨

ux′curly B′
⟩

, leading to the advection term) and the orange line in the right panel (
⟨

ux′curlz B′
⟩

, leading to the 𝛼 effect) are of particular
relevance. The ratio

⟨
ux′curly B′

⟩
∕
⟨

ux′curlz B′
⟩

for all Pm always exceeds unity. Rm = 11, Ω = 1

quantities
⟨

ux′curly B′
⟩

and
⟨

ux′curlz B′
⟩

remains numer-
ically always much larger than one, also for the important
case of Pm < 1.

The following numerical simulations in a Cartesian
box with the vertical (radial) vector g = (1,0,0) have
been done with a negative correlation between diffusiv-
ity fluctuation and vertical velocity, hence Ux < 0. Again,
the applied magnetic field is azimuthally directed, B =
(0, 0,B0). We find

𝛾 = −
⟨
𝜂
′curly B′

⟩

B0
, 𝛼1Ω =

⟨
𝜂
′curlz B′

⟩

B0
. (19)

Figure 3 displays the three components of the
diffusivity-current vector as function of the co-latitude 𝜃.
As it should, its radial component vanishes (left panel). It
is also understandable that the advection term

⟨
𝜂
′curly B′

⟩

is positive and does hardly depend on the latitude. Accord-
ing to the first relation in (19), 𝛾 < 0—so that the advection
velocity uadv is directed upwards (i.e., opposite to Ux).

Contrary to this, the z-component of the correlation
vector vanishes at the equator—as it is expected for a
rotation-induced 𝛼-term. Its maximum is obtained at the
poles. According to the second definition (19), one finds a
positive 𝛼1. Note that the negative sign of the product 𝛾𝛼1
is independent of the sign of the correlation of 𝜂′ and u′x.

The simulated components of the correlation vector
⟨𝜂′curlB⟩ for fixed rotation rate have been given in
Figure 3. For a characteristic value 𝜂rms∕𝜂 = 0.1 of the dif-
fusivity fluctuations, the rotation frequency is varied in
Figure 4 to obtain the characteristic numbers at the north-
ern pole. Obviously, the maximal correlation appears for
rotation Ω ≃ 1 and will be suppressed by faster rotation.

For the ratio (11) we generally obtain a value of about
five. The normalized 𝛼 effect is

C𝛼 =
𝛼1ΩL
𝜂 + 𝜂t

≃ 3𝛼1Ω
urms

L
𝓁
, (20)

with L as the box length in code units. The characteristic
turnover time of the turbulence is 𝜏corr ≃ 𝓁∕urms ≃ 2 in the
simulation (also in code units), where urms ≃ 0.11 is set by
the amplitude of the forcing. It is 𝜂t∕𝜂 ≃ 0.3u2

rms𝜏corr∕𝜂 ≃
0.3. According to Figure 3 and Equation (19), we have
𝛼1Ω∕urms ≃ 5 ⋅ 10−3 so that

C𝛼 ≃ 1.5 ⋅ 10−2 L
𝓁
. (21)

The ratio L∕𝓁 gives the number of cells along the vertical
direction, which obviously must exceed 70 to reach C𝛼 of
order unity. This is one of the arguments that it would not
be easy to simulate such a dynamo in a box.
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GRESSEL et al. 7 of 11

F I G U R E 3 The three components of the diffusivity-current vector
⟨
𝜂
′curlB′

⟩
∕ (urmsB0) versus co-latitude. Rm = 11. 𝜂rms∕𝜂 = 0.1,

B0 = 2 × 10−8, Pm = 1, Ω = 1

F I G U R E 4 Similar to Figure 3 but at the northern pole and for increasing rotation rate Ω

The dependencies of the diffusivity-current vector
components on the rotation rateΩ0 are shown in Figure 4,
where for Ω0 = 1, the rotation period is 2𝜋. As usual, the
Strouhal number St = urms𝜏corr∕𝓁 results of order unity.

We also note that Ω0 = 1 describes a rapid rotation with a
Coriolis number of 2𝜏corrΩ ≃ 4.4 beyond which the 𝛼 effect
is strongly quenched by the rotation (Figure 4, right panel).
The maximum correlation exists for Ω = 1; one cannot
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8 of 11 GRESSEL et al.

F I G U R E 5 The three components of the vector
⟨
𝜂
′curlB′

⟩
∕ (urmsB0) for non-rotating turbulence. In accordance with Equation (10)

only the y-component (representing the topological pumping) remains finite. Rm = 11, Pm = 1, Ω = 0

increase this value by faster rotation. For Ω = 1 it is �̂� ≃ 5,
and this ratio even grows for slower and/or faster rota-
tion. A weak rotational quenching can also be observed
in the middle panel, where the advection term is reduced
(only) by a factor of three when Ω0 grows by two orders of
magnitude.

Figure 5 refers to non-rotating turbulence with grow-
ing ratio of the diffusivity fluctuations, 𝜂rms∕𝜂. As expected,
the curve in the middle panel linearly runs with the nor-
malized diffusivity fluctuation in accordance with the 𝛾
expression (8), and it vanishes for 𝜂′ → 0. For non-rotating
turbulence, of course, the two remaining components
(including the 𝛼 effect) are identical zero—as shown in
the left and the right panel of Figure 5. As it should, the
advection term plotted in the middle panel also exists for
non-rotating turbulent fluids. We still have to find out how
the calculated large values of �̂� influence the operation of
a global dynamo.

6 KINEMATIC 𝜶
2 DYNAMO

MODELS WITH FIELD ADVECTION

It has been shown that for rotating turbulence, the above
formulated 𝛼 effect is always accompanied by a pump-
ing effect in the direction of the component of the flow
vector which is correlated with conductivity fluctuations.

For all rotation rates, the ratio �̂� exceeds unity. We now
turn our inquiry to the influence of the turbulent field
advection on the operation of an 𝛼

2 dynamo. In ear-
lier papers, we already found for disk dynamo models
that a too-strong field advection suppresses the field exci-
tation even under the presence of differential rotation
(Schultz et al. 1994).

The geometrically simplest model is posed by uniform
quantities 𝛼 and 𝛾 existing in a gap between two parallel
plates embedded in vacuum. The vertical distance between
the boundaries is H. The eddy diffusivity 𝜂0 between the
plates is assumed as a free parameter, whose actual value
is not important for the result. All quantities are assumed
as uniform in the two horizontal directions y and z. Then
the condition div B = 0 requires that the vertical field
Bx does not depend on x hence Bx = 0 without lost of
generality.

The equations for this kinematic 1D slab model may be
formulated with the normalized quantities

C𝛼 =
𝛼H
𝜂0
, C𝛾 =

𝛾H
𝜂0

(22)

(let Ω = 1 for simplicity) so that

i𝜔By −
d2By

dx2 = −C𝛾

dBy

dx
− C𝛼

dBz

dx
(23)
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GRESSEL et al. 9 of 11

and

i𝜔Bz −
d2Bz

dx2 = −C𝛾

dBz

dx
+ C𝛼

dBy

dx
, (24)

see Moss et al. (1999); Parker (1979); Rüdiger and
Kitchatinov (2006). The real part of the complex frequency
𝜔 determines the oscillation frequency (in units of the dif-
fusion rate) of a possible dynamo wave along the vertical
direction, while the growth rate of the dynamo is given
by the negative value of its imaginary part. We are mainly
interested to know the critical C𝛼,0 for neutral instability,
ℑ(𝜔) = 0. Let us define the ratio

�̂�0 =
C𝛾

C𝛼,0
(25)

as describing the influence of the pumping effect on the
excitation of kinematic 𝛼2 dynamos.

The vacuum boundary conditions By(0) = Bz(0) =
By(1) = Bz(1) = 0 are applied. For 𝛾 = 0 the lowest non-
trivial eigenvalue of a stationary solution is C𝛼,0 = 2𝜋. The
solutions do not depend on the sign of C𝛾 as they do also
not depend on the sign of C𝛼 .

The upper panel of Figure 6 gives the dynamo’s growth
rates for three values of C𝛾 as function of C𝛼 . As usual,
for sub-critical (super-critical) 𝛼 the modes are decaying
(growing), and we find that the C𝛼,0 for neutral instability
grows with growing C𝛾 . All the critical dynamo solutions
for non-vanishing 𝛾 are oscillating. The lower panel of this
figure demonstrates that for these eigensolutions the ratio
�̂�0 does never exceed unity. The 1D 𝛼

2 dynamo, therefore,
has no neutral dynamo solution for C𝛾 > C𝛼 . A too-strong
radial advection effect is not compatible with the oper-
ation of 𝛼2 dynamos. The reason for the suppression of
the dynamo instability by dominating radial advection is
that the field components perpendicular to the advection
vector are concentrated inwards (or outwards) so that the
dynamo domain is reduced and the critical C𝛼 must grow.
This destructive action proves to be even more drastic
for 𝛼2 dynamos than for those of 𝛼Ω-type (Brandenburg
et al. 1992; Moss et al. 1999).

Results for a very special spherical model with 𝛼 effect
and pumping term are plotted in Figure 16.10 in Krause
and Rädler (1980). The 𝛼 effect only exists in an outer
hemisphere while the diamagnetic pumping only exists in
its inner part. Similar to the above slab model, for growing
C𝛾 also the critical C𝛼,0 grows linearly so that the �̂�0 never
exceeds unity. The mode with the lowest dynamo num-
ber is a nonaxisymmetric quadrupole with an azimuthally
drifting magnetic field.

Because of its relevance for the concept of conductivity
fluctuations, we have designed a simple shell-type dynamo
model with an outer turbulence domain filled with 𝛼 effect

F I G U R E 6 Upper panel: Growth rates multiplied with the
diffusion time versus C

𝛼
for three plane dynamos with C

𝛾
= 8,16,24.

All solutions describe waves traveling in vertical direction. Lower
panel: The dimensionless ratio �̂�0 versus C

𝛾
for neutral excitation.

Kinematic dynamos only exist as long �̂� ≤ 1, the pumping term C
𝛾

suppresses the dynamo action

independent of the radius, and with uniform radial 𝛾 .
The 𝛼 term is anti-symmetric with respect to the equator.
The definitions (22) have been used with the replacement
H → D with D = (1 − rin)R and R the radius of the sphere.
The inner boundary is a perfect-conducting one while
the outer boundary mimics vacuum, so that the Poynting
flux is zero. To illustrate the performance of the advec-
tion term, examples for the excited magnetic fields are
plotted in Figure 7 for a turbulence with outward pump-
ing (top) and inward pumping (bottom). The inner part
(or the outer part, in dependence on the sign of 𝛾) of the
shell are field-free. Eigensolutions with dipolar symmetry
have the same eigenvalue as those with quadrupolar sym-
metry. The sign of C𝛾 differs in both models but without
consequences for the excitation condition. For both cases,
∣ �̂� ∣= 0.8 is prescribed. The radial advection produces non-
axisymmetric solutions drifting in the azimuthal direction.
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10 of 11 GRESSEL et al.

F I G U R E 7 Influence of the advection term on 𝛼2 dynamos.
The nonaxisymmetric dipolar mode A1 (top) and the quadrupolar
mode S1 (bottom) for ∣ �̂�0 ∣= 0.8 are excited by the same value of
C
𝛼,0. The kinematic axisymmetric 𝛼2 dynamo for 𝛾 = 0 (middle) is

shown for reference. The bottom of the turbulence domain is at a
r = 0.5, with a perfect-conducting boundary. The models are
embedded in vacuum

F I G U R E 8 The values �̂�0 critical for excitation versus C
𝛾

of
spherical shell dynamo models. The nonaxisymmetric (dashed
lines) solutions possess (slightly) smaller C

𝛼
than the axisymmetric

solutions (solid line). Dynamo solutions for 𝛾 > 𝛼0 do not exist.
CΩ = 0 (dark), CΩ = 460 (red). The smallest eigenvalue is C

𝛼,0 = 5
for 𝛾 = 0. rin = 0.5

For 𝛾 = 0, the critical eigenvalue for neutral excitation is
C𝛼,0 ≃ 5, independent of the value of rin (see Figure 7,
middle panel).

For increasing �̂� , the horizontal field will be more and
more concentrated at the inner or the outer boundary (in
dependence on the sign of 𝛾) while the bulk of the shell
becomes field-free. The values of C𝛼 necessary for dynamo
excitation grow to unrealistic high values (Figure 3).
A fluid with values of �̂� > 1 and without shear cannot
maintain large-scale fields via the 𝛼2 mechanism. For the
above calculated high value of �̂� ≃ 5, therefore, kinematic
𝛼

2 dynamos are not possible. In other words, the dynamo
only works for C𝛼 ≳ Max

(
5,C𝛾

)
. In case that 𝛼 ≃ 𝛼Ω

(which is true for slow rotation), the dynamo only operates
as long as the rotation rate exceeds the critical value ofΩ ≃
𝛾∕𝛼. The dynamo decays for Ω < Ω1 where Ω1 denotes
the rotation rate where �̂� = 1. The above-mentioned sim-
ulations for solar magneto-convection suggest that indeed
Ω1 ≃ Ω⊙. Figure 8 also contains eigenvalues for an 𝛼

2Ω
dynamo with the rather flat rotation law Ω = Ω0∕r0.3. For
the normalized rotation rate CΩ = Ω0D∕𝜂0, the value CΩ =
460 is used. One only finds small deviations from the
curves for the 𝛼

2 dynamo with CΩ = 0. For weak field
advection, the solutions with the lowest 𝛼0 are axisym-
metric and oscillating while for stronger pumping the
nonaxisymmetric modes prevail which are drifting in the
azimuthal direction.

We note that we only considered the kinematic approx-
imation where any nonlinear feedback of the induced
fields onto the turbulence is ignored. In any case, if
dynamos ever existed for large values of �̂� , they must be
rather exotic.
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7 CONCLUSIONS

If an anisotropy in a conducting turbulent fluid is defined
as one that is (only) in the direction of the conductivity
fluctuations, and the velocity fluctuation is correlated,
then a turbulent field-advection exists in this direction. It
lifts large-scale fields oriented perpendicular to this direc-
tion downward or upward, depending on the sign of the
correlation.

Our simulations provide the amplitude of this advec-
tion term in units of the turbulence velocity. They are
on the order of about 10% of the normalized resistivity
fluctuation 𝜂rms∕𝜂, while the 𝛼 effect is generally smaller.
Its amplitude grows for growing rotation rate until Ω ≃
1—declining, however, for faster rotation. On the other
hand, the advection term 𝛾 is numerically almost uninflu-
enced by the rotation, in accordance with general expecta-
tions. As we have also shown that the Pm-dependence of
the results is only weak, one can be sure that in rotating flu-
ids with velocity-correlated conductivity fluctuations, the
resulting pumping term 𝛾 always exceeds the alpha term
velocity 𝛼1Ω.

As demonstrated in Section 6, this constellation has
severe consequences for associated dynamo models. There
we have considered two dynamo models with differ-
ent geometries. First, a simplified slab dynamo model
with two insulating plates and with a uniform 𝛼 effect,
including a vertical turbulence-induced field advection.
This model only yields solutions with neutral stability if
the 𝛼 velocity exceeds the advection velocity. The solu-
tion for 𝛾 = 0 is stationary while otherwise it forms a
vertical dynamo wave. For 𝛾 ≥ 𝛼, dynamo solutions no
longer exist. The results are very similar for spherical shell
dynamos. For growing advection effect the most unstable
modes become oscillatory but always the dynamos need
C𝛼 > C𝛾 , that is, the ratio �̂� never exceeds unity. Pure 𝛼2

dynamos on the basis of resistivity fluctuations can thus
not work. The same holds for shell dynamos with rather
flat rotation laws while the behavior of 𝛼Ω dynamos with
large shear is still unknown for the case of strong pumping.
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