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Uniform optical gain as a non-Hermitian control knob
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Non-Hermitian optics utilizes judicious engineering of the spatial and spectral distribution of gain and loss
in order to tailor the behavior of photonic systems in ways that could not be achieved by modulating only the
real part of the refractive index. In this respect, a question that has never been addressed is whether a uniform
distribution of gain or loss can also lead to nontrivial non-Hermitian effects in linear systems, beyond just
signal amplification or decay. Here, we investigate this problem and demonstrate that the application of uniform
gain to a symmetric photonic molecule (PM) can reverse the optical energy distribution inside the structure.
For a PM composed of two coupled resonators, this translates into changing the optical energy distribution
inside the resonators. For a PM formed through scattering or defect-induced intermodal coupling in a ring
resonator, the applied gain, despite being uniform and symmetric, can impose a strong chirality and switch the
direction of light propagation from dominantly clockwise to dominantly counterclockwise. These predictions are
confirmed by using both coupled mode formalism and full-wave finite-element simulations. Our work establishes
a different direction in the field of non-Hermitian optics where interesting behavior can be engineered not only by
unbalancing the non-Hermitian parameter but also by changing its average value—a feature that was overlooked
in previous works.
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I. INTRODUCTION

The past few decades have witnessed tremendous progress
in our ability to control the propagation and trapping of
light and its interaction with matter. These developments
were largely enabled by specially designed and fabricated
structures such as photonic crystals [1,2], metamaterials [3],
whispering gallery resonators [4], and chaotic resonators [5],
just to mention a few examples. While these systems feature
very different wave-dynamic effects, they all rely on engi-
neering mainly the real refractive index of the material. On
the other hand, optical loss and gain have been tradition-
ally treated at a different level, with the former considered a
nuisance to be avoided and the latter used mainly for ampli-
fication. Despite early attempts to utilize loss and/or gain for
tailoring optical pulse delay time in the context of slow and
fast light [6], it was not until the introduction of parity-time
(PT ) symmetry [7] in optics [8–12] that these non-Hermitian
parameters acquired a different role as additional degrees of
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freedom for molding the flow of light and building a new
generation of photonic devices with unique optical responses
(see [13–17] for recent reviews). The basic insight brought
by these works is that a judicious choice of the spatial dis-
tribution of gain, loss, or their combinations can lead to
exotic effects such as the formation of exceptional points
(non-Hermitian spectral singularities where two or more
eigenvalues of a system and their corresponding eigenvectors
coalesce) [11,15,18–20], unidirectional invisibility [21,22],
and loss-induced lasing (and the reverse effect) [23–25]. Sub-
sequent studies showed that tailoring the spectral distribution
of loss can also lead to interesting results such as the ability
to achieve wave mixing in the absence of phase match-
ing [26–28]. In all these studies, gain or loss was applied
only to a subspace (spatial or spectral) of the full system
in a preselected manner to achieve a desired functionality.
For instance, this strategy was recently employed to control
the emission characteristics of random and chaotic lasers by
engineering the gain profile such that its overlap with the
desired lasing mode is maximized [29–33]. This example
illustrates the utility of nonuniform gain as a knob that can be
externally controlled by shaping the pump field. On the other
hand, it is well known that uniform gain can lead to interesting
behavior beyond light amplification when nonlinear effects
are involved [34,35].

The wealth of these results may indicate that interest-
ing effects in linear non-Hermitian systems arise only for
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FIG. 1. (a) A schematic of a PM structure made of two coupled microcavities, together with two waveguide channels for excitation and
collection, as indicated by the red arrows. In this example, we use microring resonators, but the analysis is valid for other types of resonators
such as photonic crystals. (b) Plot of the asymmetry parameter η ≡ |A/B|2, characterizing the ratio of the energy in resonator a to that of
resonator b as a function of the homogeneous gain g under resonant condition � = 0. The red solid line represents the results obtained by
using the analytical formula indicated in the plot, while the black dots represent the results obtained with full-wave simulations. In applying
the formula η = δ2/κ2, we used the numerical values γ = 123 GHz and κ = 39 GHz, which are extracted from separate simulations, as
discussed in Appendix A. All relevant parameters, such as the dimensions of the resonators and waveguides and refractive indices are given in
Appendix A.

nonuniform distributions of gain and loss. With the exception
of the recent work on active resonance [36], this narrative is
supported by numerous studies of non-Hermitian optics, par-
ticularly those dealing with waveguide platforms. Consider,
for instance, the first observation of PT symmetry breaking in
a system of two coupled optical waveguides [37]. In that work,
no gain was employed. Instead, one waveguide was almost
transparent, while the other had an extra amount of loss (i.e.,
unbalanced loss profiles), creating a shifted PT system. This
was possible because in waveguide setups, adding uniform
gain shifts the complex eigenvalues (propagation constants)
of both supermodes. This in turn leads to a net amplifica-
tion effect without changing the propagation dynamics. The
often invoked analogy between spatial and temporal coupled
mode theories in waveguides and resonators has led to the
assumption that similar behavior will occur in resonators and,
consequently, to the implicit conclusion that nothing inter-
esting can arise by using uniform gain in resonator systems,
beyond signal amplification.

Here, we demonstrate that the aforementioned implication
is, in fact, wrong. In particular, we show that the application of
uniform gain to a photonic resonator system that harbors two
spectrally close optical modes can have a profound impact on
the system’s response, beyond amplification effects. Specif-
ically, we find that, under steady-state excitation from an
external channel, the spatial distribution of the optical power
inside the system depends on the value of the applied gain.
We emphasize that this happens despite applying the gain
uniformly across the entire structure without any spatial or
spectral profile engineering. This remarkable effect in optical
resonators is very different from the situation in waveguides
where uniform gain provides only amplification without af-
fecting the dynamics. This difference can be understood by
noting that the analogy between spatial and temporal coupled
mode theories is, in fact, incomplete. The former reduces the
problem of coupled waveguides into linear coupled ordinary
differential equations (ODEs) featuring an initial value prob-

lem. On the other hand, the latter describes coupled resonators
by a system of coupled ODEs with additional driving terms
and extra input/output equations. In other words, coupled op-
tical resonators are driven-dissipative systems, while coupled
waveguides are not. As we will see, it is this difference that
leads to very distinct behavior in resonator systems.

II. RESULTS

We consider a generic photonic molecule (PM) struc-
ture [38,39] under steady-state excitation. PMs have attracted
considerable attention recently because they can be used to
engineer the linear spectrum of photonic structures and their
associated field distributions for various applications such as
sensing [40,41], frequency conversion [42], and optical comb
generation [43]. For a comprehensive review of the spectral
properties of PMs, see [44]. Figure 1(a) depicts one possible
implementation of such a PM using microring resonators. Im-
plementations using microdisk resonators or photonic crystal
cavities are also possible. Later, we also discuss a different
realization based on the coupling between counterpropagating
waves in a single microring resonator.

The PM in Fig. 1(a) is excited from the top waveguide
channel. An additional waveguide is added at the lower end
in order to maintain the geometric symmetry of the structure.
Measuring the optical energy inside the rings can be done ei-
ther directly by using near-field measurements or indirectly by
measuring the power at various output channels (e.g., outputs
denoted as Q1 and Q2 in Fig. 1). Within the temporal coupled
mode formalism [45], the above system is described by

i
d�v
dt

= H �v + i
√

2γ �s, H =
[
ωo − iδ κ

κ ωo − iδ

]
, (1)

where �v = [a, b] represent the field components of the clock-
wise (CW) wave in resonator a and the counterclockwise
(CCW) wave in resonator b. Here, ωo is the bare resonant
frequency of the degenerate CW and CCW modes of the
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resonators in the absence of coupling, and δ = γ − g is a
non-Hermitian parameter that accounts for material gain g
and radiation loss through the waveguides γ . Throughout this
work, we always assume that the system operates below the
lasing threshold with δ > 0. The parameter κ is the coupling
coefficient introduced by the overlap between the evanescent
fields of the resonators. Finally, the vector �s = [s1, 0] de-
scribes the excitation from port P1, as indicated in Fig. 1(a).
In the absence of any external excitations, the eigenvalues of
the supermodes of this PM are given by μ1 = ωo − iδ − κ and
μ2 = ωo − iδ + κ , with the corresponding eigenvector given
by �v1,2 = [1,∓1]T . Let us turn the excitation from port P1 on
and assume it is a continuous wave at a frequency ωo, i.e.,
s1 = soe−iωot . In this case, the steady-state field components
inside the resonator, [A, B]T ≡ [a, b]T eiωot , are given by

�V ≡
[

A
B

]
=

√
2γ so

δ2 + κ2

[
δ

−iκ

]
. (2)

Let us now define a parameter that quantifies the asym-
metric power distribution between the CW and CCW modes
η ≡ |A/B|2. From Eq. (2), we find that η = δ2/κ2. Clearly,
the value of η can be controlled by varying κ . This is rather
intuitive since κ is a measure of the coupling between the
two modes of the resonators. What is surprising, however, is
that the asymmetry parameter depends on δ and hence on the
gain g even though it is applied equally to both resonators.
As an illustrative example, assume that the design parameters
are set to γ = 5κ and g = 0 (i.e., initially there is no gain).
In this case, we find η = 25, implying that optical power
predominantly resides in the CW of resonator a. By applying
a material gain (through optical or electrical pumping depend-
ing on the gain medium of the resonators) such that δ = κ , we
obtain η = 1 (i.e., optical energy is equally shared between the
CW mode of resonator a and the CCW mode of the resonator
b). Even more intriguing, by adjusting the applied gain value
such that δ = κ/5, we find η = 0.04, with most of the energy
now residing in the CCW mode of resonator b. These results
are rather counterintuitive as they demonstrate that one can
control the asymmetric response of the system by using a
symmetric knob.

We verify these results by performing full-wave simula-
tions for the structure shown in Fig. 1(a) under different condi-
tions. The geometry is chosen such that for the passive device
we have γ = 123 GHz, κ = 39 GHz. The details of these sim-
ulations are discussed in Appendix A. Figures 2(a) and 2(b)
depict the steady-state field distribution when g = 0 and g =
122.7 GHz, respectively. It is clearly seen that when no gain
is applied, the energy mostly resides in resonator a. However,
application of uniform optical gain (i.e., the same gain in
both resonators) redistributes the energy to reside mainly in
resonator b. Figure 1(b) plots the power asymmetry parame-
ter η as a function of the uniform gain g and compares the
predictions obtained from the Coupled Mode Theory (CMT)
(red curve) to those obtained using full-wave simulations
(black dots), where a near-perfect agreement between them is
observed.

A second example that demonstrates the counterintuitive
result of applying uniform gain in photonic molecules is de-
picted in Fig. 3(a). Here, we use only one microring resonator

FIG. 2. Steady-state electric field distribution in a PM structure
similar to that depicted in Fig. 1(a) under excitation from port P1

when (a) no gain is applied [i.e., when the system is passive, which
corresponds to point x1 with g = 0 GHz in Fig. 1(b)] and (b) both
cavities experience uniform gain of g = 122.7 GHz, corresponding
to point x2 in Fig. 1(b). In (a), optical energy dominantly resides in
resonator a with η = 10.2, whereas in (b) the energy mostly resides
in resonator b with η = 0.01. In other words, the application of
uniform gain has reversed the optical response of the PM. In all sim-
ulations, the single resonator loss through the waveguide channel is
γ = 123 GHz, which guarantees that the system operates below the
lasing threshold. All the geometric and optical parameters associated
with the simulations are listed in Appendix A.

and introduce coupling between its CW and CCW modes via
a nanoscatterer (particle or notch, etc.) [46]. One can think of
this system as a PM implemented using synthetic dimensions.
From a mathematical point of view, this configuration is de-
scribed by the same system of equations as in Eq. (1), except
that the Hamiltonian must be modified to read

i
d�v
dt

= H �v + i
√

2γ �s,

H =
[
ωo − iδp + κp κp

κp ωo − iδp + κp

]
, (3)

with δp = 2γ − g (since now each mode experiences loss via
both waveguides). The additional κp factor on the diagonal
elements accounts for the fact that the scatterer also shifts
the frequencies of the individual modes. In this case, the
eigenvalues of the supermodes are given by μ1 = ωo − iδp

and μ2 = ωo − iδp + 2κp; that is, one eigenfrequency remains
unchanged, while the other is shifted by 2κp. This picture
is consistent with the field distribution associated with this
situation where the introduction of the scatterer results in two
standing wave modes: One that exhibits a null field at the
scatterer location and thus is not affected by its presence and
one that exhibits a peak field value at the scatterer and thus
experiences a maximum frequency shift. One can thus follow
exactly the same analysis as before by using the field com-
ponents �vs = [aCW , aCCW ]T and �Vs = [ACW , ACCW ]T and the
excitation s1 = soe−i(ωo+κp)t to obtain ηp ≡ |ACW /ACCW |2 =
δ2

p/κ
2
p . In other words, by varying the uniform gain parameter

g, one can switch the chiral response of the microring from
predominantly CW to predominantly CCW. These results are
confirmed by using full-wave analysis, as shown in Fig. 3(b)
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FIG. 3. (a) A schematic representation of a PM formed by using a two-dimensional synthetic dimension spanned by frequency-degenerate
propagating CW and CCW modes in a ring resonator, where the coupling between the modes is introduced via a nanoscatterer. Here, the
excitation channel is P1, and the collection channels are Q1 and Q2. (b) Plot of the parameter ηp with respect to the gain parameter g under
resonant condition � = 0. The red solid line depicts the plot of results obtained from CMT for ηp = δ2

p/κ
2
p when γ = 123 GHz and κp =

52 GHz, while the black dots represent the results of the full-wave simulations. All the geometric and optical parameters associated with the
simulations are listed in Appendix A.

for the ηp-g plot as well as Figs. 4(a) and 4(b) for the field
distribution. Beyond the intriguing aspect of these results,
they indicate that one must exercise extreme caution when
constructing the properties of any system by examining its re-
sponse. For instance, in the above example, the regime η = 1
can be very misleading since naively looking at the output
from the lower waveguide, one could be tempted to conclude
that the excitation is symmetric, which is obviously wrong.
We also note that the situation we observe here is different
from the reversal of chirality (rotation direction of light) in
a whispering-gallery-mode resonator demonstrated in [47].
While in that work chirality reversal is achieved by moving the
system from one exceptional point to another, here, chirality
reversal is achieved by the application of uniform gain, and
exceptional points are not involved.

FIG. 4. Steady-state electric field distribution in a PM structure
similar to that depicted in Fig. 3(a) under excitation from port P1

when (a) no gain is applied [i.e., under passive conditions corre-
sponding to point x1 in Fig. 3(b)] and 3(b) a uniform gain of g =
245.4 GHz is applied, which corresponds to point x2 in Fig. 3(b). In
the first case, only 4% of the intracavity optical energy resides in the
CCW mode, as evidenced by the output power from the two ports of
the lower waveguide, while in the second scenario most of the energy
(∼92%) populates the same CCW mode, and hence, more output
power travels through the right channel of the lower waveguide. In
all simulations, the resonator loss through each waveguide channel is
γ = 123 GHz with the total loss given by 2γ , thus ensuring operation
below the lasing threshold. All the geometric and optical parameters
associated with the simulations are listed in Appendix A.

Having demonstrated that the application of a uniform
gain can have a profound effect on the optical power dis-
tribution inside PMs, we may wonder about the physical
mechanism responsible for these interesting results. At first
sight, it may appear that any change in the value of the
asymmetry coefficient is a result of exciting different weights
of the eigenvectors �v1,2 = [1,±1]T . This, however, is not the
case. In fact, regardless of the design parameters, the two
vectors are always excited with equal magnitudes. In order to
understand the reason for this interesting behavior, we return
to Eq. (2), which is associated with Fig. 1(a) [one can make
the same argument about the example shown in Fig. 3(a)] and
describes the steady-state complex field amplitudes inside the
resonators, and reexpress it in terms of the eigenvectors to
obtain

�V =
√

2γ so

2
√

δ2 + κ2

{
e−iφ�v1 + eiφ�v2

} =
√

2γ so√
δ2 + κ2

[
cos φ

−i sin φ

]
,

(4)

where φ = arctan(κ/δ). Expressed in terms of the angle φ,
the asymmetric parameter reads η = cot2 φ. Thus, apart from
a general scaling prefactor that determines the total energy
inside the resonator, it is the phase φ that dictates the degree
of asymmetry in energy distribution between the two sites or
the two modes. This phase factor depends on the excitation
frequency relative to the two eigenfrequencies of the super-
modes but also on the relative linewidth of these modes, which
in turn is a function of the applied gain.

III. CONCLUSION

In this work, we have demonstrated that uniform gain or
loss distribution in linear non-Hermitian optical setups can
have a significant impact on the system’s response beyond
the trivial effect of power amplification or dissipation. In
particular, we show that the application of uniform gain to
a symmetric PM can totally alter the optical energy distri-
bution inside the structure. We have illustrated our results
for PMs made of two coupled microresonators and for a
PM formed by the coupling between internal modes of a
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single microresonators. Our results, which were obtained
via temporal coupled mode theory, are also confirmed by
performing full-wave simulations of Maxwell’s equations us-
ing silicon photonic material systems. Importantly, we note
that in contrast to earlier studies on controlling laser emis-
sion by engineering the refractive index profile (see, for
example, [48,49]) and the recent work demonstrating that,
under linear conditions, an intricate correlation between uni-
form gain and a very special parabolic index distribution
(with vanishing value at the center of the structure) can
give rise to a novel active resonance [36], the results re-
ported in this work do not rely on engineering the relation
between the gain and refractive index. In addition, in our
work, uniform gain acts as a continuous tuning parameter.
To further emphasize these findings, we have checked that
our results indeed extend to larger systems such as those
made of three coupled resonators, as we demonstrate in
Appendix B.

These results raise some important questions. For instance,
several recent studies investigated localization properties in
disordered non-Hermitian waveguide arrays [50,51] which
fall into the class of initial value problems. In that case, the
average value of the gain does have a trivial impact on the
outcome; namely, it acts as an amplification factor. Our work
here indicates that the situation could be very different in a
system of a disordered driven-dissipative coupled resonator.
In particular, the relationship between wave localization and
transport properties in driven-dissipative systems under varia-
tion of average loss (or gain) values is not at all clear. Another
interesting question is whether one can devise optical systems
whose topological features can be controlled by applying uni-
form gains. We plan to investigate these problems in future
works.
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APPENDIX A: NUMERICAL EVALUATION
OF THE OPTICAL PARAMETERS

In this Appendix, we present the simulation details. In what
follows, all the simulations are performed using the full-wave
finite-element method (using the COMSOL commercial
software package) by assuming two-dimensional geometries.
For the structure shown in Fig. 1(a), the simulation parameters
were chosen as follows: The outer radii of both microring
resonators are R = 5 µm, the ring waveguide widths (which
are also identical to the widths of the waveguide channels)

FIG. 5. An add-drop setup with one ring resonator is used to
evaluate the dissipation coefficient γ through the width of the trans-
mission spectrum at the half of its maximum value. In this simulation
γ = 123 GHz is obtained.

are w = 0.25 µm, and the edge-to-edge separation between
each ring and its adjacent waveguide is d1 = 0.2 µm, while
the edge-to-edge separation between the two rings is d2 =
0.5 µm. The refractive indices of the microring resonators
and waveguides are taken to be nr = 3.47 and are assumed
to be embedded in a background with a refractive index of
nb = 1.44. These values are relevant to the standard silicon
photonics platform. Among the many modes supported by this
structure, we focus on the resonant TE modes with frequency
ωo = 1217×109 rad s−1(or, equivalently, λo = 1548 nm) and
an effective refractive index of neff = 2.93.

The numerical value of the dissipation coefficients γ is
evaluated by using an add-drop filter configuration in the
absence of gain, as shown in Fig. 5(a) (see [52] for details).
By doing so and plotting the transmission as a function of
frequency detuning [Fig. 5(b)], we obtain γ = 123 GHz.

Next, we consider a two-ring add-drop configuration as
shown in Fig. 6 in order to evaluate the coupling coefficient
κ between the two rings. In this case, it is straightforward
to derive an expression for Pdrop in terms of the parameters
associated with the temporal coupled mode theory:

Pdrop ≡
∣∣∣∣Q2

s

∣∣∣∣
2

= 4γ 2κ2

�4 + 2�2(γ 2 − κ2) + (γ 2 + κ2)2 , (A1)

FIG. 6. (a) An add-drop configuration is considered to determine
the numerical value of the ring-ring coupling coefficient κ . This
platform does not have any gain. (b) The input signal is launched
from the input port, and the normalized power transmission from
the drop port is depicted with respect to the frequency detuning.
By fitting the simulation data for the power transmission with the
theoretical expression in (A1), we obtained κ = 39 GHz.
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FIG. 7. (a) Schematic of the geometry used to evaluate the ring-
particle coupling coefficient κp. This platform does not have any
gain. (b) The input signal is driven from the input port, and the
normalized power transmission is measured through the output port.
By fitting the simulation data (black dotted curve) with the theoretical
result in Eq. (A2), we obtained κp = 52 GHz.

where |Q2|2 is the output power from the drop port,
�≡ ω − ωo is the frequency detuning, and |s|2 is the input
power.

The black dots in Fig. 6(b) present the actual normal-
ized drop power data obtained from full-wave simulations.
By performing curve fitting between these data points and
the expression in (A1), we obtain κ = 39 GHz. These val-
ues of γ and κ are then used to compare the results
obtained from coupled mode analysis and full-wave simu-
lations. In the latter case, gain is introduced through the
imaginary part of the refractive index ni by considering g =
−ωo(ni/nr ), with gain corresponding to a negative value
of ni.

For the structure shown in Fig. 3(a), the parameters of the
ring and waveguide are identical to those used above. The
radius and refractive index for the nanoparticle are taken to
be r = 30 nm and np = 3.5, while its location is chosen to be
centered at the distance dp = 32 nm from the circumference
of the ring in a symmetric position with respect to the two
waveguides [see Fig. 3(a)]. In addition to the coupled mode
parameters obtained before, here, we need also to obtain the
numerical value of the coupling between the CW and CCW
modes due to the presence of the particle. To do so, we
perform a full-wave simulation for the configuration shown
in Fig. 7(a) and plot the normalized transmission as a function

of the input signal frequency, as shown in Fig. 7(b). By fitting
these results to the theoretical expression obtained by using
coupled mode theory,

PQ2 ≡
∣∣∣Q2

s

∣∣∣2

= 4γ 2κ2
p

�4 + 2�2
(
4γ 2 − κ2

p

) + (
4γ 2 + κ2

p

)2 (A2)

we obtain κp = 52 GHz.
From these same simulations, we also obtain the parameter

ηs = |Q1/Q2|2.

APPENDIX B: THREE COUPLED RESONATORS

In this Appendix, we check whether our results still hold
for larger systems. To do so, we consider a structure that con-
sists of three coupled ring resonators, as shown in Fig. 8(a).
Within the context of temporal coupled mode theory, this
structure is modeled by the Hamiltonian matrix:

H =
⎡
⎣ωo − iδ κ 0

κ ωo + ig κ

0 κ ωo − iδ

⎤
⎦, (B1)

where, as before, δ = γ − g. The eigenvalues of H and the
corresponding eigenvectors are given by μ1 = ωo − iδ,
μ2,3 = ωo + i(g − γ

2 ) ± 1
2

√
8κ2 − γ 2 and v1 =

[1, 0,−1]T , v2,3 = [1,
iγ±

√
8κ2−γ 2

2κ
, 1]T , respectively. The

system’s response to a continuous wave excitation from port
P1 with a frequency ωo is given by

�V3 ≡
⎡
⎣a1

a2

a3

⎤
⎦ =

√
2γ soe−iωot

δ(g2 + 2κ2 − γ g)

⎡
⎣κ2 − δg

−iκδ

−κ2

⎤
⎦, (B2)

where a j is the electric field amplitude in resonator j. From
the above formula, it is clear that the value of the uniform gain
(i.e., gain applied equally to all cavities) controls the ratio of
the field amplitudes in the three sites. To better illustrate this
behavior, we plot η3 ≡ |a1/a3|2 as a function of the applied
gain, as shown in Fig. 8(b). These results confirm that the main
conclusion of our work still holds for larger systems involving
more than two interacting modes.

FIG. 8. (a) A schematic of an optical system consisting of three coupled ring resonators. (b) Plot of the asymmetry parameter
η3 ≡ |a1/a3|2 = (κ2 − δg)2/κ4 (with δ = γ − g) as a function of the applied gain for κ = 39 (GHz) and γ = 123 (GHZ).
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