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Better insurance could effectively mitigate the increase
in economic growth losses from U.S. hurricanes under
global warming
Christian Otto1*†, Kilian Kuhla1†, Tobias Geiger1,2, Jacob Schewe1, Katja Frieler1

Global warming is likely to increase the proportion of intense hurricanes in the North Atlantic. Here, we analyze
how this may affect economic growth. To this end, we introduce an event-based macroeconomic growth model
that temporally resolves how growth depends on the heterogeneity of hurricane shocks. For the United States,
we find that economic growth losses scale superlinearly with shock heterogeneity. We explain this by a dispro-
portional increase of indirect losses with the magnitude of direct damage, which can lead to an incomplete
recovery of the economy between consecutive intense landfall events. On the basis of two different methods
to estimate the future frequency increase of intense hurricanes, we project annual growth losses to increase
between 10 and 146% in a 2°C world compared to the period 1980–2014. Our modeling suggests that higher
insurance coverage can compensate for this climate change–induced increase in growth losses.
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INTRODUCTION
Already in the present climate, hurricanes in the North Atlantic
cause substantial economic losses in the United States. Between
1980 and 2014, these storms caused more than US$ 410 billion in
direct economic losses with annual losses peaking at more than US$
100 billion in 2005 according to Munich Re’s NatCatSERVICE da-
tabase (1). Moreover, there is increasing empirical evidence that, in
addition to these direct losses, tropical storms can substantially
reduce economic growth of affected countries for more than a
decade (2–4). These long-term growth impacts may have important
implications for the adaptation to, and coping with, the impacts of
tropical storms under global warming, because there is strong evi-
dence that the proportion of intense storms of the two highest cat-
egories 4 and 5 on the Saffir-Simpsons scale may increase (5–8).
There are at least two mechanisms through which this increase
could overcompensate a possible mild decline of the overall
number of tropical storms (5, 6) driving up economic losses.
First, the most intense storms cause disproportionately larger
direct economic losses than smaller storms. For instance, major cat-
egory 4 and 5 hurricanes have accounted for almost half of normal-
ized economic damage from all hurricanes that made landfall in the
United States in the period 1900–2005 despite representing only
about 6% of landfall events (9). Second, if the increase in the pro-
portion of intense storms overcompensates the possible decline in
overall storm number, then intense storms become more frequent.
This would leave, on average, less time for the economy to recover in
between consecutive intense storms; incomplete recovery has been
identified as one main factor that may increase the vulnerabilities of
the economy to climate extremes and thereby drive up losses (10,
11). Moreover, the activity of hurricanes in the North Atlantic—
as of other main categories of extreme weather events such as
floods and droughts (12)—is influenced by (multi-)decadal
modes of climate variability such as the Atlantic Multidecadal

Oscillation (13). There is an ongoing discussion in the literature
whether this has resulted in a statistically significant clustering of
U.S. hurricanes in the historical period (13–15). However, under
global warming, the clustering of hurricanes might intensify (12).
This would render incomplete recoveries more likely and increase
hurricane damage.

Catastrophe insurance is discussed as a means to reduce vulner-
abilities of the economy to extreme weather events by shortening
the recovery time in the disaster aftermath (16–19), and it may
thereby even promote economic growth on the macroeconomic
level (20–22). These promising findings may explain the rising pop-
ularity of multilateral climate risk insurance schemes and the G20
InsuResilience Global Partnership initiative (23). However, it
remains an open question whether better insurance will be suffi-
cient to counteract climate change impacts in a warming world
(24, 25).

Progress in answering this question has been also made difficult
by the limitations of state-of-the-art climate integrated assessment
models (IAMs). These standard workhorses for climate policy as-
sessments [see (26) for detailed review on IAMs)]—such as the
seminal Dynamic Integrated Climate-Economy (DICE) model
(27), which is used by the U.S. government to estimate the cost of
carbon emissions to society—have been criticized for not being able
to appropriately account for the impacts of climate extremes
(28, 29).

The main reason is that the coarse temporal spatial resolution of
most models [typically 1 to 10 years and about 10 world regions
where climate impacts are scaled in terms of global mean tempera-
ture (GMT) changes] simply does not allow for the representation
of individual extreme weather events; potentially important nonlin-
earities arising from a disproportional increase of total economic
losses with impact intensity or from incomplete recovery between
consecutive events cannot be resolved. In consequence, IAM-
based studies usually report relatively small, or even negligible,
impacts of climate extremes on the economy (30) and cannot repro-
duce the (mostly adverse) long-term impacts of these events on eco-
nomic growth reported in the recent economic literature (2, 3, 31).
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Further, most state-of-the-art IAMs are deterministic. In such a
setup, the economic agents can account for projected changes in
(mean) climate damages with global warming but not for the asso-
ciated uncertainties in climate impact projections due to fluctua-
tions induced by extreme weather events or our missing
knowledge about irreversible regime changes (32) when climate
tipping points are transgressed (33, 34). This can lead to a substan-
tial underestimation of the risks climate change poses for societies
(35) and economies (36) and, in consequence, a lack in climate am-
bition (37). Over the last years, new modeling approaches such as
stochastic IAMs (38) and agent-based IAMs (39) have emerged that
aim for a better representation of climate risks. In stochastic IAMs,
representative agents account for the risk of extreme climate change
impacts in their expectation formation. In agent-based IAMs, addi-
tionally, the assumption of representative agents is relaxed, and the
macroeconomic dynamics emerges from the interaction of multi-
ple, heterogeneous economic agents. This allows accounting for dif-
ferences in the perception of, and response to, climate risks. Both
modeling approaches substantially drive up the expected cost of
greenhouse gas emissions for societies, the social cost of carbon
(36–39).

Here, we particularly focus on a better representation of the
long-term impacts of extreme weather events on economic
growth. To this end, we build a simple—and transparent—event-
based neoclassical growth model for a national economy (cf. Eqs.
1A to 1C). The model accounts for losses to the stock of physical
assets (shocks) that result from individual landfall events. We
assume that these shocks are nonmarginal in the sense that they
affect all “productivity layers” of assets equally instead of merely de-
stroying the least efficient assets (40, 41). In consequence, output is
reduced by the same factor as the stock of physical assets, and, in
consequence, output losses are larger than for marginal shocks. In
line with empirical evidence for intense reconstruction activities in
the (immediate) disaster aftermath (42), we assume that the recon-
struction of destroyed capital provides higher marginal returns than
the growth of the stock of productive assets due to investments into
new technologies (cf. Eqs. 6A and 6B). In consequence, the recovery
of the economy can be divided into a first phase of rapid reconstruc-
tion of destroyed capital and a second phase, where the economy
slowly approaches the balanced growth path (BGP) of the unper-
turbed system. Further, reconstruction investments can be capped
in the disaster aftermath to describe inefficiencies slowing down the
economic recovery such as scarcity of trained labor and building
materials and other financial and technical constraints in the recon-
struction process (cf. Eq. 7) (40), which slows down the recovery
speed in the first phase. Further, we integrate a compulsory non-
profit hurricane insurance financed by a flat fee on all citizens, re-
gardless of their individual risk (16). This insurance scheme
represents a precautionary savings mechanism where premiums ac-
cumulated in normal times are issued to affected households in the
disaster aftermath. Because there are several empirical studies re-
porting that insurance payouts facilitate and speed up the recon-
struction process in the disaster aftermath [cf. (16) for a recent
review] (43–45), we assume that the investment cap can be tempo-
rarily exceeded by the amount of insurance payouts (cf. Eq. 7).

The discussed insurance scheme resembles tax financed and
nonprofit public insurance schemes already implemented in the
United States today such as U.S. National Flood Insurance
Program (NFIP) managed by the Federal Emergency Management

Agency (46), the Florida Hurricane Catastrophe Fund, or the Cali-
fornia Earthquake Authority [see (47) for a detailed review on ca-
tastrophe insurance programs in Organization for Economic Co-
operation and Development countries]. However, because here we
are interested in finding the upper limit for the share of climate
change–induced losses that insurance can compensate for, the dis-
cussed insurance scheme is in two aspects more comprehensive
than these existing insurance schemes: First, by assuming that all
assets are insurable against hurricane risks, we exclude potential
issues regarding the uninsurability of losses, e.g., particularly disas-
ter-prone locations. Second, by considering insurance to be com-
pulsory, we exclude issues of limited insurance uptake by the
population.

In the standard calibration of the model, the insurance coverage
is set to 50% the average ratio of insured losses in the United States
between 1980 and 2014 according to the NatcatSERVICE database
(1), and reconstruction investments are capped to 0.2% of weekly
output following (40). With this model calibration and driving
the model with the (direct) asset losses of the 88 historical hurri-
canes that made landfall in the United States in the period 1980–
2014 according to the NatCatSERVICE database (1), we obtain
average annual output growth losses of about 0.024 percentage
points (p.p.), which fall well into the range constrained by the
recent climate econometrics literature [e.g., Bakkensen and
Barrage (48) and Hsiang and Jina (4) report average annual
growth losses of about 0.006 and 0.880 p.p., respectively]. Through-
out the manuscript, we will use the word “hurricanes” also for trop-
ical cyclones of tropical storm strength and define a hurricane to
make landfall if a portion of its wind field touches land with at
least tropical storm strength, thereby accounting for hurricane
damages even if the hurricane’s core did not touch land (49).

The asset losses caused by the hurricanes that made landfall in
the historical period are very unequally distributed; while the asset
losses of the most destructive storms exceeded 0.1% of the real na-
tional gross domestic product (GDP) in the year of landfall, the ma-
jority of the storms caused asset losses of less than 0.001% of GDP
(fig. S3). We first study how this heterogeneity in asset losses has
affected economic growth in the period 1980–2014. We then
project increases in growth losses that would arise from changes
in the proportion of intense storms, overall storm number, and as-
sociated changes in impact heterogeneity in a Paris-compatible 2°C
world and in a world that is 2.7°C warmer than in preindustrial
times corresponding to the median warming estimate by 2100
under the currently implemented or enacted policies (“current
policy path”) (50). Because there is substantial uncertainty on
how hurricane climatology will change with global warming, and
the magnitude of the effect strongly depends on the underlying
methodology used to estimate this change (6), we consider two dif-
ferent approaches at both ends of the uncertainty range. In addition,
we assess the efficacy and limits of disaster insurance in mitigating
the climate change–induced increase in growth losses.

RESULTS
Insurance accelerates economic recovery
To illustrate the interplay of insurance payouts and limits of recon-
struction investments, we first study the economic recovery dynam-
ics in the aftermath of an individual storm that destroys 1% of the
physical capital stock in month 3 (Fig. 1A). Besides the “realistic”
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standard calibration of the model (or scenario) (ochre full lines), we
consider two limiting scenarios, one without insurance (red lines)
and one with full insurance coverage of all losses (blue lines).
Further, to test the sensitivity of the model with regard to the con-
struction investment cap, we consider a 1% reconstruction invest-
ment cap (dashed lines) in addition to the 0.2% reconstruction
investment cap (solid lines) [both caps were already used in (40)]
and contrast both to a limiting case where all available investments
(difference between output and savings) can be used for reconstruc-
tion (“no investment cap”, dotted lines) (Fig. 1B). Because insurance
premiums depend on insurance coverage, each growth trajectory is
normalized to the BGP of an unperturbed economy with the same
insurance premium. To account for delays in insurance payouts, we
fit data on cumulative insurance payouts of the Reinsurance Asso-
ciation of America (RAA) (51), indicating that 60% (90%) of the

insured losses are paid out after 1 (3) year(s) with a sigmoidal func-
tion (Materials and Methods). The resulting weekly payouts are
shown in the inset of Fig. 1B.

In line with empirical findings (43–45), recovery speed increases
with insurance coverage for two reasons: First, because insurance
provides additional financial means for reconstruction, the recon-
struction investment cap can be temporarily exceeded, e.g., to com-
pensate for scarcity driven wage increases (52). This accelerates the
recovery process especially in the first reconstruction phase (see
section S2 for a detailed discussion of the dynamics in this
phase). Second, the larger the insurance coverage, the lower is the
share of the output that has to be reinvested in reconstruction
efforts. In consequence, more output can instead be invested in
new capital fostering output growth especially in the slow recovery
phase. Except in the limiting, overly optimistic, case of full insur-
ance coverage and no reconstruction investment cap, cumulative
output losses increase superlinearly with the size of the asset
losses, i.e., indirect losses increase faster than shock size (Fig. 1C).
In consequence, in the aftermath of intense hurricane shocks, it can
take multiple months or even years for the economy to recover. For
instance, in the standard scenario, it takes more than 5 months for
the production capacity to recover after the major hurricanes
Andrew and Sandy that struck Florida and Louisiana in 1992 and
New York and New Jersey in 2012, respectively, both causing asset
losses equivalent to about 0.4% of the U.S.’s annual output in the
years of landfall, respectively (gray vertical lines in Fig. 1C).
Further, our modeling suggests that in the aftermath of the largest
historical loss event, the landfall of hurricane Katrina in New
Orleans in 2005, which caused asset losses equivalent to 0.8% of
the U.S.’s annual output in this year, it took more than 1 year and
a half for the production capacity to recover.

Growth losses increase with shock heterogeneity
Next, we study how the economic response dynamics depends on
the heterogeneity of hurricane shocks (Fig. 2). For that, we assume
that (i) the number of landfall events is independent and Poisson
distributed, and (ii) hurricanes have the same probability to make
landfall in eachmonth of the season (June to November).We do not
account for potential clustering of hurricanes in event-rich periods,
because it is currently unclear whether or towhat degree such a clus-
tering (overdispersion) has occurred in the historical period in near
the U.S. coastline; while two early studies found evidence for over-
dispersion (13, 14), a recent study suggests that these findings may,
at least partially, have resulted from observational inhomogeneities
in the storm data (15). After correcting for these reporting biases,
the authors find no evidence for overdispersion in the Gulf of
Mexico and near the U.S. East Coast. Further, we assume that
asset losses (relative to the real national GDP in the year of landfall)
are log normally distributed (see fig. S6 for a log-normal fit of the
data). This yields conservative estimates of direct damages as even
power law distributions with higher tail risk are currently discussed
for U.S. hurricane damages (53, 54).

In the remainder of this paper, we will refer to the distribution of
relative asset losses as shock distribution. As detailed in Materials
and Methods, drawing from this shock distribution allows us to
generate synthetic time series of asset losses with defined length,
event number, and value for the cumulative relative asset losses.
To isolate the impact of shock heterogeneity, we then vary the het-
erogeneity of the direct asset losses—measured by the Gini index

Fig. 1. The contribution of insurance and reconstruction investment to the
economic recovery dynamics in the aftermath of an individual hurricane
with landfall. Response dynamics in the aftermath of a 1% shock to the stock
of physical assets with no (red), 50% (ochre), and full (blue) insurance coverage,
for scenarios where maximum weekly reconstruction investment is not limited
(dotted lines) and limited to 0.2% (solid lines) and 1% (dashed lines) of weekly
output, respectively. (A) Time series of weekly output relative to the output of
an unperturbed economy on the BGP. (B) Time series of weekly reconstruction in-
vestment (in % of weekly output) and weekly insurance payout (in % of asset losses
to the capital stock, inset). (C) Cumulative output losses until full recovery of pro-
duction capacity as a function of the asset losses (both in terms of annual output in
the year before the landfall). Gray vertical lines indicate the asset losses caused by
the historical major hurricanes Sandy, Andrew, and Katrina according to the Nat-
CatSERVICE database (1).
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(G) of the event distribution—but keep the number of hurricanes
with landfall (88) (and thus average hurricane return frequency)
and the relative cumulative asset losses (3.24%) at their values re-
ported in the NatCatSERVICE database (1) fixed for the study
period 1980–2014 (35 years). Considering relative asset losses
allows us to generate representative synthetic time series irrespective
of the year of occurrence of each underlying event. Note that we
thereby adjust losses for inflation and economic growth but
assume no changes in vulnerability (e.g., due to adaptive measures
taken on the ground) [see (55, 56) for a discussion on different nor-
malization approaches with respect to hurricane damages].

For a nearly homogeneous shock distribution (G = 0.018), asset
losses (gray circles in Fig. 2, A to C) are relatively small, and produc-
tion capacity can mostly recover between loss events and stays close
to the one of the unperturbed system for the whole study period
(Fig. 2A). For higher values of the Gini index, we obtain many
small but few high-intensity loss events. Because cumulative
output losses increase disproportionally with event intensity (cf.
Fig. 1C), overall losses and the risk for incomplete recovery
between events increase for higher values of the Gini index (cf.
Fig. 2, B and C for G = 0.83 and G = 0.87). For instance, when
driving the model with the historical sequence of landfall events,
we find that the U.S. economy may not have recovered in
between the major hurricanes Katrina and Sandy (Fig. 2B).

To gain a systematic understanding on how production capacity
depends on shock heterogeneity, we study the cumulative produc-
tion capacity over 35 years as a function of shock heterogeneity. For
a given shock distribution, cumulative production capacity in
general differs between event realizations due to differences in the
timing and the size of the shocks. To account for this uncertainty,
we generate a large ensemble of 20,000 realization for each shock
distribution. The cumulative production capacity is then plotted
as a function of the median Gini index as obtained across all reali-
zations (Materials and Methods) (Fig. 2D). [Note that values of the
Gini index for individual realizations may substantially deviate from
themedian Gini index. For instance, the Gini index for the observed
historical storm sequence (G = 0.83) is substantially higher than the
median value of the Gini index across all realizations for the histor-
ical storm distribution (G = 0.71) (compare red dot to gray vertical
line in Fig. 2D).] We find that the available production capacity
reduces superlinearly with increasing shock heterogeneity. The re-
duction is strongest in the high heterogeneity range to the right of
the median Gini index for the historical period (gray line in
Fig. 2D), where incomplete recovery becomes more likely.

Similarly, economic growth declines superlinearly with increas-
ing shock heterogeneity (Fig. 3). Besides the standard scenario with
a 0.2% reconstruction investment cap and 50% insurance coverage
(red line in Fig. 3B), we again consider scenarios with a 1% and no
investment cap (ochre and blue lines in Fig. 3) as well as the limiting
cases of no and complete insurance (Fig. 3, A and C). We find that
the dependence of economic growth on shock heterogeneity in-
creases when (i) the reconstruction investment cap and (ii) the in-
surance coverage are lowered.

For low values of the investment cap, the growth reduction with
increasing shock heterogeneity can be quite substantial. For in-
stance, for the standard scenario, median average annual growth
losses increase by more than 16% from 0.0238 p.p. for the lowest
to 0.0275 p.p. for the highest value of the Gini index (red line in
Fig. 3B). While these growth rate reductions may appear small,
they imply that for the highest value of the Gini index output
losses accumulate over three and a half decade to US$ 16,218 per
capita, an additional US$ 2196 per capita compared to the lowest
value of the Gini index. The dependence of growth on shock hetero-
geneity can again be understood by the disproportional increase of
indirect losses with shock intensity making incomplete recovery
between events more likely with increasing Gini index (cf.
Fig. 1A). In line with this reasoning, we find that, in the scenario
without reconstruction investment cap, where the recovery time is
substantially shorter than in the scenarios with caps (cf. Fig. 1),
growth losses are nearly independent of the Gini index.

Fig. 2. Recovery dynamics of production capacity in dependence of hurricane
shock heterogeneity. Economic impacts of hurricane shocks for a period of 35
years. The heterogeneity of shocks increases from (A) to (C). Hurricane number
and relative cumulative asset losses are fixed to the 88 hurricanes that reportedly
made landfall in the United States over the period 1980–2014 and caused 3.24% of
cumulative asset losses (relative to the GDP of the years the hurricanes made land-
fall) according to the NatCatSERVICE database (1). (B) Impacts of the observed his-
torical time series of hurricanes with landfall. Left: Exemplary time series of
available production capacity [in % of full production capacity (gray horizontal
lines)]. Periods of reduced capacity in the disaster aftermaths are marked in red,
and shocks are marked by gray dots with the size of the dots indicating the
shock size. Right: Lorenz curves to illustrate the heterogeneity of the shock distri-
bution. Red lines indicate the cumulative share of production capacity losses as a
function of the cumulative share of the shocks. Gray diagonal lines indicate the
Lorenz curves for equally distributed shocks. The Gini index G ; Le � Li

Le
as measure

for shock heterogeneity is determined by the ratio of the areas under the red (Le,
light blue shading) and blue lines (Li, dark blue shading). (D) Mean cumulative
available production capacity (in % of the production capacity of unperturbed
system) as a function of the Gini index. Red dots and gray shaded areas indicate
the values of the Gini index obtained for the runs in (A) to (C) and the 16.7 to 83.3
percentile confidence intervals, respectively. The gray vertical line indicates the
median Gini index of the historical shock distribution (Materials and Methods).
Other parameters: Insurance coverage 50% and reconstruction investment cap
0.2% of weekly output.
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Further, for each fixed level of shock heterogeneity, growth losses
decrease with increasing insurance coverage, which can be under-
stood as follows: Insurance provides additional financial means for
reconstruction and thereby mitigates the impact of shocks that are
large compared to the reconstruction investment cap by reducing
the recovery time and therefore suppressing incomplete recovery.
For instance, for the standard scenario and the median Gini index
of the historical period (gray vertical line in Fig. 3), output losses
accumulate over three and a half decades to US$ 14,904 per
capita. They are therefore, on average, US$ 832 per capita and
US$ 1121 per capita higher than for the corresponding scenarios
with a 1% and without reconstruction investment cap, respectively.

The greatest benefit of insurance is, however, that it strongly mit-
igates the magnitude of growth losses. For the median Gini index of
the historical period and the lowest investment cap, hurricanes
reduce the annual growth, on average, by 0.048 p.p. in the uninsured
scenario. These losses are already roughly halved to 0.025 p.p. for
the standard scenario with 50% insurance coverage and reduced
by a magnitude larger than 10 to 0.0045 p.p. in the fully insured
scenario. Accordingly, output losses accumulate over three and a
half decade decrease from US$ 28,807, over US$ 14,904, to US$
2746 per capita.

Critically, there is a trade-off between the increase in consump-
tion in the disaster aftermath in the presence of insurance and con-
sumption and economic growth losses due to lower capital
accumulation in normal times. We find that the studied insurance
scheme only fosters economic growth (figs. S8 and S9) and national
consumption when large indirect losses arise, i.e., when the recon-
struction process is slow and shocks are heterogeneously distributed
as this likely was the case in the historical period. Thereby, the
benefit of insurance for national consumption (averaged over
many shock realizations) increases with insurance penetration
and shock heterogeneity (figs. S10 and S11). Insurance premiums
increase with insurance coverage but remain small compared to
average per-capita consumption. For instance, for the standard sce-
nario of 50% insurance and the mean shock heterogeneity of the
historical period, the mean annual insurance premiums per capita
equal US$ 110, which is only a tiny fraction (about 0.003%) of U.S.
households’ average annual consumption in the historical period
(fig. S12).

To set all these numbers into context, it is important to keep in
mind that our model, by construction, computes growth losses
borne by the United States in total. Local growth losses in the affect-
ed counties may be much larger.

Better insurance coverage can help mitigate climate
change–induced growth losses
To account for the substantial uncertainty on how climate change
will affect on hurricane climatology, we use two different approach-
es, one at the lower and the other at the upper end of the impacts
reported in the recent literature (6). Both approaches consistently
predict an increase of the proportion of intense storms, although
the magnitude of this change—and in consequence the resulting
changes to asset losses—differs substantially between the two ap-
proaches. In contrast to the last section, where only the heterogene-
ity of events was mutable, these climate change–induced frequency
increases may additionally translate into changes of the distribution
of asset losses with respect to (i) the number of hurricanes and (ii)
the cumulative asset losses during the study period (Fig. 4) (Mate-
rials and Methods). Knutson et al. (8) report a moderate increase of
the return frequency of the most intense (categories 4 and 5) hur-
ricanes by 45% in a 2°C world (2.7°C: 39%) but a reduction of the
overall number of hurricanes (of all categories) by 22% (2.7°C:
24%), which the authors derive from changes in the maximum life-
time wind speeds of the storms obtained from dynamical down-
scaled global circulation model runs (“wind speed–based”
estimate). In contrast, Grinsted et al. (7) use observational storm
surge data and estimate a considerable increase of relative return fre-
quencies ranging from 1.4-fold (2.7°C: 1.6-fold) for storms with a
small surge index to a 6.4-fold (2.7°C: 15.2-fold) for the most
intense storms (“surge-based” estimate) (7). The authors’ statistical
analyses cannot distinguish whether this frequency increase is
caused by an overall increase in the number of storms or merely
implies a shift of the distribution of storm surges to higher intensity
events. However, because there is relatively good agreement in the
literature that the average number of hurricane per season will not
strongly change with global warming (6), in our derivation of future
asset losses according to Grinsted’s surge-based estimate, we
assume that the number of storms does not change compared to
the historical study period (Materials and Methods).

Fig. 3. Impact of hurricane shock heterogeneity on annual output growth
rate. Average annual growth rate change of the economy under hurricane
shocks relative to the growth rate of the corresponding unperturbed economy,
as a function of shock heterogeneity—measured by the Gini index—for no (A),
half (B), and full (C) insurance coverage. Blue, ochre, and red lines depict median
growth rate changes for scenarios where reconstruction investment is not limited,
limited to 1%, and 0.2% of weekly output, respectively; shaded areas mark the cor-
responding 16.7 to 83.3 percentile confidence intervals. The gray vertical line in-
dicates the median Gini index of the historical distribution of relative asset losses.
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For both, the wind speed– and surge-based estimates, we obtain
a moderate increase of shock heterogeneity with the median Gini
index increasing from its historical value of 0.71 to 0.77 (2.7°C:
0.78) and 0.77 (2.7°C: 0.80), respectively. For the former, the
storm number decreases to 69 (2.7°C: 67), whereas it remains un-
changed (88) for the latter. Further, under the assumption of cons-
tant adaptation levels, the estimated cumulative relative asset losses
over 35 years increase only moderately from 3.24% for the historical
period to 3.76% (2.7°C: 3.66%) for the wind speed–based estimate
but more than double (7.25%) (2.7°C: 14.05%) for the surge-based
estimate.

In terms of median average annual growth losses, we obtain a
moderate increase by 10% (for 2° and 2.7°C) compared to the his-
torical standard scenario for the wind field–based estimate but a
strong increase by 146% (2.7°C: 522%) for the storm surge–based
estimate (Fig. 5A). The reason is that, for the former, the additional
growth losses due to the increases of shock heterogeneity and cumu-
lative asset losses are partially compensated by the reduction of
growth losses due to the reduced absolute number of hurricanes;
whereas for the latter, the increases of shock heterogeneity, cumu-
lative asset losses, and hurricane number all enhance growth losses.
Because we always consider growth losses relative to a baseline sce-
nario with the same reconstruction investment cap and insurance
coverage, these findings are robust with regard to changes in the re-
construction investment cap (cf. Fig. 5, B and C).

Regarding the question whether an increase in insurance cover-
age would be sufficient to compensate for the additional global
warming–induced growth losses, we find that, to this end, the his-
torical insurance coverage of 50% would have to be substantially
raised to 84% (2.7°C: 99%) according to the surge-based estimate,

whereas a moderate increase to 58% for 2°C and 2.7°C would suffice
according to thewind field–based estimate for the standard scenario
[cf. columns 2 and 6 with columns 3 and 7 (2.7°C: 5 and 9) in Fig. 5].
Again, these findings are fairly robust with regard to different values
of the construction investment cap.

Last, we assess the debt levels which the insurance can temporar-
ily accumulate when several severe storms make landfall in the
United States within a short period of time and find them to be
moderate. In the historical period, peak debt levels remain below
1.6% of the insured capital and, even for the future climate
change impact scenario with the highest losses (+2.7°C and storm
surge–based estimate of asset losses), peak debt levels remain below
5.6% of the insured capital for the standard calibration of the model
[50% insurance coverage, 0.2% investment cap, and the median
event heterogeneity of the historical (future projected) storms]
(fig. S5). These peak debt levels are rarely reached, and in 95.5%
of the simulations, debt levels remain below 0.9 and 3.3% of
insured capital in the historical period and for the climate change
impact scenario with the highest losses, respectively.

DISCUSSION
These numbers suggest that a better insurance coverage could
indeed be a viable means to compensate for climate change–
induced increases in tropical storm–related losses, even in the
absence of other adaptation measures. However, we caution that
we do not account for several drivers of losses in the future projec-
tions, which may lead to an over- or underestimation of future
losses. On the one hand, we assume no future changes in the vul-
nerability of the U.S. economy to hurricane impacts. While this
might result in an overestimation of future losses, because vulnera-
bility may be reduced by additional adaptation efforts, there also
exists empirical evidence that the vulnerability of the U.S.
economy to hurricane strikes has rather increased over the past
decades (57, 58). Assuming constant vulnerability thus provides a
balanced perspective. On the other hand, our estimates of
climate-induced changes in asset losses are based on estimates for
the changes in storm number and the proportion of intense storms
only; other potential channels through which climate change may
affect on the economic losses caused by tropical storms, such as in-
creasing storm surge risk due to sea level rise and stronger tropical
cyclone precipitation rates (6), are neglected. Neglecting these addi-
tional drivers and noneconomic losses such as lives lost most likely
results in an underestimation of future economic losses (59).
Further, in our simulations, we do not consider that clusters of
intense hurricanes may form in event-rich periods, because it is
still discussed in the literature whether and to which extent this
has happened in the historical period near the U.S. coastline (13–
15). Clustering renders incomplete recoveries more likely, and
these increase cumulative production capacity losses (Fig. 2D)
and growth losses (Fig. 3). However, we find that even for an
extreme and unprecedented scenario where all storms cluster
within half of the 35-year study period, the increases in growth
losses are small compared to the mitigating effect of higher insur-
ance coverage (fig. S13). Because also the nonlinear dependence of
growth losses upon shock heterogeneity remains robust, we may
conclude that, even if the clustering of hurricanes will intensify
under future global warming, the main findings of this work
remain robust.

Fig. 4. Visualization of climate change–induced shifts of the hurricane shock
distribution. Under global warming, the historical distribution of the asset losses
caused by the Ns = 88 historical hurricanes that made landfall in the United States
in the 35-year period from 1980 to 2014 (black filled circle) according to the Nat-
CatSERVICE database (1) is projected to change along three dimension: (i) the
median shock heterogeneity measured by the Gini index (x axis), (ii) the number
of landfalls for a 35-year period (y axis), and (iii) themedian cumulative asset losses
(size of circles). Blue and red circles indicate estimates for +2°C and + 2.7°C worlds
(above preindustrial levels) based on Grinsted et al. (7) and Knutson et al. (8), re-
spectively. The numbers in the circles refer to the median cumulative relative asset
losses for a 35-year period (Materials and Methods).

Otto et al., Sci. Adv. 9, eadd6616 (2023) 4 January 2023 6 of 13

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at T

echnische Inform
ationsbibliothek (T

IB
) on A

pril 03, 2023



Further, using a simple macroeconomic growth model with only
one homogeneous output good, our analysis cannot provide infor-
mation on the recovery dynamics of individual sectors and may
therefore underestimate delays arising from the scarcity of interme-
diate goods from strongly affected sectors needed for production in
other sectors and the associated scarcity-induced price inflation in
the disaster aftermath. In consequence, we may underestimate re-
covery costs (60) and, in turn, growth losses.

Our modeling framework assumes that continuous exponential
economic growth will still be possible in the future period, as it was
in the historical study period 1980–2014. This is in agreement with
the Shared Socioeconomic Pathways (SSPs) mapping out a broad
space of alternative socioeconomic futures and assuming that all na-
tional economies continue to grow exponentially at least until the
end of the 21st century (61). In the light of dwindling and overused
natural resources (62) and intensifying climate change impacts (63)
(explicitly not accounted for in the SSPs), it can however not be

taken for granted that continued growth is possible within the plan-
etary boundaries (64). Thus, it would be an insightful extension of
the current work to exchange the exponential growth model by a
logistic model accounting for resource constraints (65) to assess
the resulting impacts of hurricanes on growth and the effectiveness
of the discussed insurance scheme. Testing the robustness of our
modeling results for a large range of baseline growth rates, we
find that insurance remains effective even under degrowth condi-
tions (fig. S7). However, it is important to keep in mind that our
modeling framework cannot account for the deep societal and eco-
nomic transformations that would be required to allow for prosper-
ity in a post or degrowth environment (66, 67), including the
acquisition of the necessary financial resources for the insur-
ance scheme.

For the studied public and compulsory insurance scheme, we
consider the risks of solvency issues or bankruptcy to be low
because even under the higher warming scenario and for the

Fig. 5. Projected impacts of hurricanes on economic growth in 2° and 2.7°C worlds and the effectiveness of insurance as coping strategy. Average annual growth
losses (relative to the corresponding unperturbed economies evolving on the BGPs) as obtained for the historical shock distribution (50% insurance coverage, period
1980–2014; first column), for Paris-compatible +2°C warming above preindustrial levels (second, third, sixth, and seventh columns), and for +2.7°C warming in compliance
with current policies (fourth, fifth, eighth, and ninth columns) for reconstruction investment caps of 0.2% (A) (standard scenario), 1% (B), and without reconstruction
investment cap (C). Climate change projections of growth losses are derived from two different methods to estimate climate change–induced changes in the return
frequencies of hurricanes by Grinsted et al. (7) and Knutson et al. (8) (50% insurance coverage, second and fourth columns, respectively). In addition, for both estimates
and warming levels, the insurance coverages that would be necessary to reduce growth losses to the historical level are shown (third, fifth, seventh, and ninth columns).
Orange lines, boxes, and whiskers indicate median loss estimates as well as the 25th to 75th and 5th and 95th percentile ranges, respectively.
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more pessimistic storm surge–based estimate of asset losses, peak
debt levels remain likely too low to severely burden the govern-
ment’s budget (fig. S5). However, in most countries, insurance is
currently provided either by competing private providers or a
mixture of public and private providers (68), and solvency and in-
debtedness issues of providers have been reported in several coun-
tries (19, 47). Further, insurance coverage and the access to
insurance are usually more limited than in the studied insurance
scheme (16). For instance, the U.S.’s NFIP is available only in par-
ticipating communities (19, 46). Further, because most insurance
schemes are not mandatory, insurance take-up by the population
can be limited because insurance premiums are perceived as too ex-
pensive (24) or are even unaffordable for poorer parts of the popu-
lation (69). This problem of underinsurance may further aggravate
in the future due to an increase of insurance premiums to compen-
sate for the intensification of extreme weather events under global
warming (70). Last, we do not discuss moral hazard issues that may
arise from the considered mandatory precautionary savings scheme
andmay require the introduction of deductibles, for instance, to de-
incentive the construction of new buildings in storm surge–prone
locations (71). For all these reasons, the insurance scheme discussed
here likely provides an optimistic upper limit for the efficacy of in-
surance in mitigating disaster.

Our research stresses the importance of nonlinear economic re-
sponses to consecutive extreme weather events. In particular, our
results suggest that only by (i) resolving the response to individual
events and by (ii) accounting for a realistic timing of the events (e.g.,
accounting for the hurricane season), it is possible to estimate the
full economic impact of extreme events (28). Further, these findings
are key to assess the efficacy of adaptation and coping strategies. For
instance, in our study, the limited pace of insurance payouts delays
reconstruction efforts in the disaster aftermath, but a similar reason-
ing holds for physical protection measures such as sea walls or
levees, which once breached may take months or even years to be
repaired (72). Thus, temporally resolving the economic recovery
phase is critical for the assessment and comparison of disaster re-
sponse measures. This aspect becomes especially important because
extreme weather events are projected to intensify and become more
frequent with global warming, at least on a regional level (5). In this
regard, our findings may also encourage the climate integrated as-
sessment modeling community to consider new approaches allow-
ing going beyond smooth damage functions translating changes in
GMT into aggregate output losses. As shown here, this common ap-
proach may underestimate the economic repercussions of extreme
weather events because it neglects potentially important nonlinear-
ities in the economic response such as the disproportional increases
of indirect losses with impact intensity or the case of incomplete
recovery (28). This may also explain the discrepancy between the
loss estimates reported in the recent climate econometrics literature
and the estimates of climate IAMs.

While our estimates on how climate change may affect on eco-
nomic losses caused by hurricanes in the United States are subject to
several sources of uncertainty, they nonetheless show that the mit-
igating effect of increased insurance coverage is of the same order of
magnitude as the climate change–induced loss increase. Although
insurance premiums may increase under global warming by up to
a factor of four, they likely will remain affordable for U.S. consum-
ers. This suggests that insurance can be a major building block of
future climate change adaptation strategies, at least in developed

countries. For developing countries, the hurdles to adapt to
climate change are much higher because they are often more
strongly affected by—and more vulnerable to—climate change
impacts and lack the financial means and strong institutions to im-
plement comprehensive climate adaptation measures (73). To illus-
trate this, we have analyzed the hurricane-prone Small Island
Developing State of Haiti (see section S1) and find that the hurri-
cane-induced growth losses it suffers in the present climate are
already by one magnitude larger than those of the United States
(cf. Fig. 3B with fig. S16A). One reason is that Haiti’s disaster insur-
ance market is much less developed, and nearly all of the past hur-
ricane losses were not insured (1). Further, already in the present
climate, Haiti is affected so strongly that even in the idealistic
limit of full insurance coverage, it would still suffer growth losses
comparable in magnitude to those of the United States today (cf.
Fig. 3B with fig. S16C), and hurricane impacts are projected to
further aggravate for Haiti under continued climate change (fig.
S17), at least according to the more pessimistic storm surge–based
damage projection. To this end, our results stress the importance—
for developing and developed countries alike—to complement in-
surance solutions with other measures to build resilience to extreme
weather events such as investments into better housing standards
and resilient infrastructure (74) or coping strategies such as
managed retreat (75) in a risk-layering approach (76). However,
in contrast to rich developed countries of the Global North, strongly
affected developing countries will be only able to successfully adapt
to climate change impacts when national and international mecha-
nisms and institutions providing concessional climate finance and
expertise in climate adaptation such as the United Nations’ Green
Climate Fund are further strengthened by ensuring that they have
both the financial resources and the effective government to fulfill
their mandates.

MATERIALS AND METHODS
Modeling approach
As the standard neoclassical Solow-Swan growth model for a closed
economy (77), our Insured Growth under Climate Impacts model
(InGroClIM) describes the growth of a per-capita stock of physical
capital k for a unique indistinguishable good under investments and
capital depreciation. Here, we neglect changes in labor market and
population growth as drivers of capital growth. In extension to the
standard model, we account for a nonprofit insurance scheme and
obtain two coupled differential equations for k and the per-capita
capital stock of the insurance kI

_A ¼ ΛA ð1AÞ

_k ¼ sy � ½δþ rI�kþ FI ð1BÞ

_kI ¼ rIk � FI ð1CÞ

Here, ð� Þ
�

denotes the derivative with respect to time t. We
assume that total factor productivity (TFP) A grows exponentially
with trend growth rate Λ, and s, y, and δ denote savings rate, pro-
duction function, and depreciation rate of capital, respectively. The
insurance premium rI ≡ rI(rc) depends on the economy’s insurance
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coverage rc, and FI(t) denotes the insurance payouts in the disaster
aftermaths. Both terms are detailed below. Further, we assume in
(Eq. 1B) that the production process can be described by a Cobb-
Douglas production function y(t) ≡ A(t)(k(t))α, where α ∈ (0,1]
denotes the capital share of income. We model the impact of
extreme weather events as shocks to the capital stock. Following
(40), we assume that the reconstruction of destroyed capital pro-
vides higher marginal returns than investment into new technolo-
gies. This allows us to describe the economic recovery in the disaster
aftermath as the superposition of two different mechanisms: (i) a
fast reconstruction process of the damaged capital and (ii) the com-
paratively slow growth of the capital stock due to technological de-
velopment. To this end, we write the capital stock as the product of
the fraction of remaining production capacity ξ(t) ∈ [0,1] and a “po-
tential capital stock” kp(t)

kðtÞ ; ξðtÞkpðtÞ ð2Þ

The Cobb-Douglas production function is derived from the as-
sumption that the process of capital accumulation is optimal and
that the last unit of capital added is the least productive (78).
However, it appears unlikely that a disaster strikes in such a way
that it “deconstructs” the capital in the same optimal way, starting
with the least productive unit, and this method is likely to underes-
timate direct production losses [see discussion in (41) for details].
Following previous works (40, 41), we therefore assume that a shock
does not merely destroy the least efficient capital but equally affects
all productivity layers of capital. For that, we may write y as a func-
tion of ξ and kp

yðtÞ ; yðξðtÞ & kpðtÞÞ ¼ ξðtÞAðkpðtÞÞα ð3Þ

Noteworthy, this implies that at the time of the shock ts, y reads

yðtsÞ ¼ ξðtsÞ lim
tbts
½yðtÞ� ¼ ξðtsÞAðkpðtsÞÞα

where ξ(ts) < 1, and kp(ts) represents the predisaster value of the
capital stock. Thus, production is reduced by the same factor 1 −
ξ(t) as the capital stock, i.e., asset losses equal direct production
losses, and the marginal productivity of capital remains unchanged.

To derive the dynamical equations for kp and ξ, we first decom-
pose the total investment I(t) into the sum of two different invest-
ment channels: short-term reconstruction investments Iξ(t) and
regular investments increasing production capacity Ik(t)

IðtÞ ; syðtÞ þ FIðtÞ ¼ IkðtÞ þ IξðtÞ ð4Þ

By using Eqs. 2 to 4, we may then rewrite the dynamical equation
for the capital stock (Eq. 1B) as

ðξðtÞ _kpðtÞÞ ¼ _ξðtÞkpðtÞ þ ξðtÞ _kpðtÞ ð5AÞ

¼
Eq:ð1BÞ IkðtÞ þ Iξ � ½δþ rI�ξðtÞkpðtÞ ð5BÞ

By comparing the right-hand sides of Eqs. 5A and 5B, we obtain
the dynamical equations for kp and ξ as

_kpðtÞ ¼
IkðtÞ
ξðtÞ
� ½δþ rI�kpðtÞ ð6AÞ

_ξðtÞ ¼
IξðtÞ
kpðtÞ

ð6BÞ

Next, we derive an expression for Iξ(t), which then permits us to
calculate Ik from Eq. 4. To this end, we have to make four assump-
tions: First, we assume that reconstruction investments yield higher
returns compared to investments in the potential capital stock and
are therefore prioritized. Second, we assume that reconstruction
efforts are limited by short-term constraints such as a lack of
skilled labor or reconstruction materials, which may substantially
slow down the economic recovery. In consequence, only a fraction
fmax ∈ [0,1] of the output available for investment sy(t) can be used
to finance reconstruction; the actual value of the investment cap
fmax depends on the economy under consideration (40). Third, we
assume that reconstruction efforts cease when the capital stock
equals the potential capital stock, no overshoot is possible. Last,
we assume that the insurance primarily finances reconstruction
efforts. In the presence of insurance, the investment cap may be
temporarily exceeded because the insurance provides additional fi-
nancial means, e.g., to compensate for scarcity driven wage increas-
es (52). This assumption is motivated by empirical findings that
higher insurance coverage can lead to a faster economic recovery
(73). However, if reconstruction is completed before all of the
insured capital is reimbursed, then the remaining insurance
payout will be invested into the potential capital stock. With these
assumption, we may express Iξ(t) as

IξðtÞ ;
0 ξðtÞ ¼ 1
min½min½fmax; s�yðtÞ þ FIðtÞ; IrðtÞ� ξðtÞ , 1

�

ð7Þ

where Ir(t) ≡ (1 − ξ(t))kp(t) is the investment needed to reconstruct
the capital stock in the present time step.

Insurance payout dynamics
We model insurance as a compulsory precautionary savings mech-
anism, which may be implemented and managed on the national
level by a public institution. To our knowledge, there are no empir-
ical data on the payout dynamics of such an insurance scheme in the
United States. This is why we use observational data of insurance
payouts of commercial providers of risk diversifying insurance by
the RAA (51), arguing that the payouts dynamics of the insurance
scheme discussed here and commercial (re-) insurers may be
similar to main processing steps such as the filing of insurance
claims and that their eligibility assessment by the insurance provid-
er would be identical for both insurance schemes. According to the
RAA data, the reimbursement of insured losses fI(t) can spread over
several years; 60% (90%) of the insured values are reimbursed
within 1 (3) year(s). This may substantially delay the reconstruction
process. We describe the cumulative insurance payouts with a
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sigmoidal function

f Iðt � ts; rcΔskpðtsÞÞ

; rcΔskpðtsÞβ
t� ts
τI

� �β� 1
ða � 1Þexp½� t� ts

τI

� �β
�

τIð1þ ða � 1Þexp½� t� ts
τI

� �β
�Þ
2 8t . ts

Here, ts denotes the time of the shock, and the insured losses are
given by the product of the insurance coverage rc, the asset loss Δs at
time ts relative to the preshock potential capital stock kp(ts). (Note
that, according to Eq. 3, this is identical to expressing asset losses
relative to the output in the year before the shock as done for the
calibration of the model to empirical data). The three parameters
a, τI, and β (51) are specified in Table 1 (see fig. S2 for a fit of the
observational data). The cumulative insurance payout in response
to multiple successive asset losses {Δsi}i at times {tsi}i is then given
by the sum of the individual payouts

FIðt; ftsigi; fΔsigiÞ ;
XNs

i¼1
f Iðt � tsi ; rcΔsi kpðtsiÞÞ

where index i labels the shock number and Ns denotes the total
number of shocks.

Model calibration
We assume that, in the absence of shocks, the economy evolves
along its BGP, where output growth is constant and only driven
by TFP growth (growth rate Λ)

g ;
_y
y
¼

_A
A
þ α

_k
k
¼ Λþ αg , Λ ¼ ð1 � αÞg ð8Þ

In the second identity, we have used that, if y grows constantly with
rate g, then k also grows constantly with the same rate. This can be
seen as follows: From the first identity in Eq. 8, it follows that the
growth rate of the capital stock _k

k ¼
g� Λ
α is constant when g is cons-

tant. From Eq. 1B, it then follows that k and y have to grow with the
same rate g. Because in the absence of shocks FI(t) = 0 ∀ t ∈ [0, T],
where T denotes the length of the simulation, the dynamic equa-
tions for k and kI decouple (cf. Eq. 1), it suffices to solve the equa-
tions of motions for the dynamic variables A and k along the BGP.
The corresponding equation for kI can then be derived from Eq. 1C.
To this end, we insert the coordinate transformation

AðtÞ ¼ eΛt ~AðtÞ & kðtÞ ¼ egt~kðtÞ

into the dynamic equations for A and k yielding

_~AðtÞ ¼ 0 ð9AÞ

_~kðtÞ ¼ s~yðtÞ � ðδþ rI þ gÞ~kðtÞ ð9BÞ

where we have introduced the output in BGP coordinates
~yðtÞ ; A0~k

α
ðtÞ with A0 denotes initial TFP. Equating the right-

hand sides of Eqs. 9A and 9B to zero yields the steady states for A
and k in BGP coordinates

~Aw
¼ A0 & ~k

w
¼ k0 ¼

sA0

δþ rI þ g

� � 1
1� α

ð10Þ

where (·)⋆ the steady-state values of variables and k0 denote the ini-
tial capital stock. This allows writing the BGP solution of Eqs. 1 as

AðtÞ ¼ eΛtA0 ð11AÞ

kðtÞ ¼ egtk0 ð11BÞ

kIðtÞ ¼
rI
g
½kðtÞ � k0� ¼

rI
g
k0½egt � 1� ð11CÞ

To calibrate the model to the United States, we set the initial per-
capita annual output y0 and output growth rate g to the per-capita
GDP and the GDP growth rate of the United States in 2015 accord-
ing to the World Banks’ and Organization for Economic Co-oper-
ation and Development’s National Accounts database (https://data.
worldbank.org/indicator/NY.GDP.PCAP.CD), whereas capital de-
preciation rate δ, savings rate s, and capital share of income α are
set to their standard values for developed economies (77). Using
the Cobb-Douglas relation for the production function y = Akα
and the steady-state relation for k0 (cf. Eqs. 10A and 10B) then
allows expressing the initial TFP and initial per-capita stock as
A0 ¼ y0 δþrIþg

s

� �α
and k0 = sy0(δ + rI + g)−1, respectively.

Table 1 lists all exogenous parameters used in the simulations.
Note that our model results are very robust with regard to
changes of the GDP growth rate g because we only consider
changes of the perturbed economy relative to an unperturbed
economy evolving along the BGP. Even large variations of g ∈
[−1 % ,4 %] result in changes of growth losses that are small com-
pared to the climate uncertainties (compare lines and shaded areas
in fig. S7).

Table 1. Exogenous parameters used in the numerical simulations.

Quantity Symbol Value Unit

Initial GDP per capita y0 51638.1 US$

GDP growth rate g 2.6% Year−1

Savings rate s 0.2 Year−1

Capital depreciation rate δ 0.1 Year−1

Capital share of income α 0.7

Time step length Δt 1
52

Year

Insurance payout parameter one a 109

Insurance payout parameter two β 0.0741

Insurance payout parameter three τI 1.31
x 10−18

Year

Empirical insurance premium
coefficient

ε 4.046
x 10−4

Simulation period T 35 Year

Cumulative relative historical
asset losses

ΔT 3.24 %

Number of historical landfalling
hurricanes

Ns 88

Standard deviation of historical log-
normal asset loss distribution

σ0 0.10654
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Modeling a nonprofit insurance scheme, we have to ensure that,
averaged over many realizations, the insurance does neither make
profit nor losses. However, deriving an exact analytical formula
for the corresponding insurance premium rI is challenging
because—as output losses and growth losses—it would depend
on shock heterogeneity. Instead, we here motivate a simple heuristic
formula neglecting this dependence and show that the resulting
average insurance profits or losses are negligible compared to the
cumulative payouts of the insurance. In the worst case, the total rel-
ative asset losses occur at the last time step of the simulation. Cov-
ering this loss would require an insurance capital stock of kI(T) =
rcΔTk(T), whereT denotes the length of the simulation. Inserting
this relation in the BGP solution for kI (cf. Eq. 11) provides us with
the following expression for the insurance premium

r1 ; ε
grc

1 � e� gT

where we have added an empirically determined factor ε, ensuring
that average insurance profits (or losses) are negligible. (cf. fig. S4
revealing that average profits or losses of the insurance are about
five magnitudes smaller than the insured capital.)

Gini index as measure for shock heterogeneity
We fit the relative asset losses of the Ns = 88 historical hurricanes
with landfall included in the NatCatSERVICE database (1) (cf. table
S1) with a log-normal distribution (fig. S3) with standard deviation
(SD) σ0. To change the heterogeneity of the loss events, we vary the
SD σ of the log-normal distribution from σ0

100 to 4σ0. We use the Gini
index G ; Le� Li

Le
[ ½0; 1� as measure for the shock heterogeneity,

which is derived from the difference of the areas below the
Lorenz curves for a uniform distribution Le and the given shock dis-
tribution Li (cf. Fig. 2). Shock heterogeneity increases from small to
large values of the Gini index. Noteworthy, the Gini index of the
historical time series of hurricanes with landfall equals 0.829,
whereas the median Gini index of the historical shock distribu-
tion—obtained by averaging over many synthetic realizations of
asset loss time series (see the next section for details)—equals 0.71.

Generation of synthetic time series of asset losses
In this section, we discuss the generation of synthetic time series of
asset losses from their historical distribution as reported by the Nat-
CatSERVICE (1) database and the global data set of tropical cyclone
exposure (TCE-DAT) (49). For the study period 1980–2014 of T =
35 years, these databases list Ns = 88 hurricanes with landfall that
have caused asset losses corresponding to at least 10−4 % of the
GDP in the year of their landfall (see table S1). Over this period,
relative asset losses accumulated to ΔT = 3.24%. We generate syn-
thetic time series of asset losses of length T keeping Ns and ΔT at
their historical values in three steps illustrated in fig. S6. First, fol-
lowing (15), we assume that the number of hurricanes with landfall
na in each season a is Poisson distributed, f PðnaÞ ; λna e� λ

na!
. Further,

we assume that the mean number of landfalls per season λ is cons-
tant over the study period T. To ensure that each synthetic track
contains exactly Ns shocks, the shock number for the last season
of the track is set to the remainder of available shocks

Ns �
XT� 1

a¼1
na. To avoid that the last season always receives the re-

mainder of available shocks, seasons are shuffled afterward.

Second, we assume that the likelihood of a hurricane making land-
fall is the same for each day of the season, but exclude the possibility
that two hurricanes make landfall at the same day. Third, following
(53), we assume that relative asset losses Δs are log normally distrib-
uted, f LNðΔsÞ ; 1

sΔs
ffiffiffiffi
2π
p exp � ðlnðΔsÞ� mÞ

2

2s2

h i
(cf. fig. S3), where we have

introduced the parameters s ; ln σ2
Δ2T
Ns

þ 1

 ! !1
2

, m ; lnðΔTNs
Þ � s2

2 ,

and the SD σ of the log-normal distribution. Similarly, first, the
size of the last shock of each realization is set to the difference
between ΔT and cumulative relative asset losses before the last
shock to ensure that total cumulative relative asset losses equal
ΔT, and then shock sizes are reshuffled.

Storm surge– and wind field–based climate change
projections of asset losses
Storm surge–based projections of asset losses
Grinsted et al. (7) estimated the relative increase in the average
return frequency of hurricanes with landfall in dependence of the
severity of their storm surge [measured by the surge index (79)]
per degree of GMT warming relative to the reference period
1980–2000. We use these findings to project asset losses for +2∘C
and +2.7∘C increases of GMT above its preindustrial level. [Note
that 1°C of global warming compared to 1980–2000 corresponds
to 1.5∘C of warming compared to the preindustrial level (5)]. To
this end, we first map the surge indices f

Ð h
si
g of theNs = 88 historical

hurricanes that made landfall in the United States between 1980 and
2014 to the corresponding relative asset losses fΔhsig reported in the
NatCatSERVICE database (table S1) (1). Next, we determine the
statistical correlation between historical asset losses and surge
indices, yielding the damage function f(s) (fig. S14). As discussed
in the Results, we assume that the average number of hurricanes
with landfall will not change compared to the historical study
period. In consequence, we interpret the increases in return fre-
quency reported by Grinsted et al. (7) as increases solely in storm
surge intensity and not as an increase of the average number of hur-
ricanes making landfall (in each season). This allows us to map the
set of historical surge indices f

Ð h
si
g to a set of estimated surge indices

in a warmer world f
Ð cc
si g. We then assume that each future relative

asset loss Δccsi can be written in terms of the corresponding historical
asset loss. This allows expressing future relative asset losses in terms
of the historical relative asset losses as well as future and historical
storm surge indices

Δccsi ; Δhsi þ f
Ð cc
si

� �
� f

Ð h
si

� �
ð12Þ

Note that with this relationship, historical asset losses are repro-
duced for

Ð cc
si
¼
Ð h
si
. Using Eq. 12, we project relative asset losses ΔT

accumulated over T = 35 years to increase substantially from their
historical value of 3.24 to 7.25% in a +2∘Cworld (14.05% in a +2.7∘C
world). We then generate synthetic realizations of future asset loss
time series by distributing the projected Ns = 88 relative asset losses
over the simulation time of T = 35 years as described above.
Wind field–based projections of asset losses
Knutson et al. (8) analyzed an ensemble of downscaled global
climate models participating in the fifth phase of the Coupled
Model Intercomparison Project. On the basis of the wind fields of

Otto et al., Sci. Adv. 9, eadd6616 (2023) 4 January 2023 11 of 13

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at T

echnische Inform
ationsbibliothek (T

IB
) on A

pril 03, 2023



the storms, they estimated a median decrease of 22% in the overall
number of all hurricanes but a median increase of the most intense
category 4 and 5 storms by 45% for an increase of GMT by +2°C
above its preindustrial level under the Representative Concentration
Pathway 4.5. To estimate the associated changes in asset losses, we
first divide the Ns = 88 historical tropical cyclones that reached land
with at least tropical storm strength in the United States in the
period 1980–2014 into moderate (categories 0 to 3, 66 storms)
and intense (categories 4 and 5, 22 storms) storms. The definition
of a storm’s landfall and the categorization of the storms by the
Saffir-Simpson scale was done according to the TCE-DAT (49)
and IBTRaCS (80) databases. The definition of a storm’s landfall
and the categorization of the storms by the Saffir-Simpson scale
was done according to the TCE-DAT database (49). Applying
then the estimates of Knutson et al. (8), we project that in a +2°C
(+2.7°C) world, the number of all hurricanes and the number of
moderate hurricanes decrease to 69 and 37, respectively, whereas
the number of intense hurricanes increases to 32. This would lead
to a minor change of relative cumulative asset losses ΔT from their
historical value of 3.24 to 3.76% (3.66%). Synthetic time series of
future asset losses are lastly generated as described for the surge-
based estimate.

Supplementary Materials
This PDF file includes:
Sections S1 and S2
Tables S1 and S3
Figs. S1 to S18

Clarification (2 February 2023): In the Introduction and Materials and Methods subsection
“Wind field-based projections of asset losses,” the authors have provided explanations for the
way they categorized tropical cyclones as tropical storms and hurricanes and the definition of
landfall. This information was added to further explain the methodology the authors used in
their research. The calibration of the economic growth model does not depend on the
categorization of the storms as it is based on hurricane damage data only. Due to the addition
of this information, references in the main text and the Supplementary Materials have been
renumbered.
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