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Abstract: The paper presents a machine-learning based approach to text-to-ontology mapping. We
explore a possibility of matching texts to the relevant ontologies using a combination of artificial
neural networks and classifiers. Ontologies are formal specifications of the shared conceptualizations
of application domains. While describing the same domain, different ontologies might be created by
different domain experts. To enhance the reasoning and data handling of concepts in scientific papers,
finding the best fitting ontology regarding description of the concepts contained in a text corpus. The
approach presented in this work attempts to solve this by selection of a representative text paragraph
from a set of scientific papers, which are used as data set. Then, using a pre-trained and fine-tuned
Transformer, the paragraph is embedded into a vector space. Finally, the embedded vector becomes
classified with respect to its relevance regarding a selected target ontology. To construct representative
embeddings, we experiment with different training pipelines for natural language processing models.
Those embeddings in turn are later used in the task of matching text to ontology. Finally, the result
is assessed by compressing and visualizing the latent space and exploring the mappings between
text fragments from a database and the set of chosen ontologies. To confirm the differences in
behavior of the proposed ontology mapper models, we test five statistical hypotheses about their
relative performance on ontology classification. To categorize the output from the Transformer,
different classifiers are considered. These classifiers are, in detail, the Support Vector Machine (SVM),
k-Nearest Neighbor, Gaussian Process, Random Forest, and Multilayer Perceptron. Application of
these classifiers in a domain of scientific texts concerning catalysis research and respective ontologies,
the suitability of the classifiers is evaluated, where the best result was achieved by the SVM classifier.

Keywords: text representation learning; text classification; text preprocessing; text data; ontology

1. Introduction

Research data management addresses the need for consistent data representation
by applying the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In
addition, this can be helped by ontologies, particularly for representing the data structure in
the specific scientific domain [1,2]. Ontologies represent “a formal specification of a shared
conceptualization” [3]. By using a standardized and formalized description language,
knowledge is expressed. Data are also enabled to be stored in a formalized, standardized
description language. Here, terms used and relations between those terms can be specified,
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enabling for, among others, higher findability of data in databases. As different ontologies
are created by different people, they are often not compatible, even within the same domain.
Ontology creation and maintenance is a manual process, often performed by several experts.
As each expert might work on different issues in their scientific work, they also may create
conceptualizations of their respective knowledge, different from the conceptualizations
provided by other domain experts. However, despite efforts to standardize knowledge
conceptualization, there are often still multiple ontologies within the same domain [4,5].

Ontologies are applied in simple use cases as translation references in domain-specific
vocabularies but also serve more complex purposes such as to serve as environments for
property inference by logical reasoning. They define sets of representational primitives
with which to model a domain of knowledge or discourse. The representational primitives
mostly are classes, relationships, and their properties, e.g., definitions. Information eluci-
dating their meaning is included as textual information in definition annotations of these
primitives. In some, rather ideal, ontologies, logical consistency constraints with respect to
the application are posed, as well [6,7]. Thus, a class can be defined in at least two different
ways—through annotation with textual definitions, or as a product of its constraints and
relations to other classes. Domain ontologies typically use domain-specific definitions of
terms denoting their primitives.

As systems that rely on domain ontology interoperability become more extensive, it
is often necessary to merge domain ontologies through manual reconciliation. This holds
for enriching an ontology with information mined from domain-related texts. Approaches
to automating knowledge conceptualization have limitations, as they require human user
input to create semantics. Merging and extending ontologies is therefore a quite manual
process that is both time-intensive and expensive.

Another problem domain experts face is ontology selection for a certain task. Different
ontologies can focus on different levels of abstraction or place an emphasis on different
sub-domains. Selection of the ontology, which best corresponds to a given document is an
important part of reasoning about and increasing the FAIR-ness of such a text. Finding a
suitable ontology for a given text database can speed up the process and help in classifying
the information presented in the text. Moreover, the given text database is more easily con-
nected to the data already linked within the ontology. An automated selection of ontologies
and the respective classification of the text is thus desired, as this allows for the automated
comparison of different text documents. In addition, the documents are compared in an
understandable way and enable connection with the corresponding research data, which
are also derived from other databases.

Ontology recommenders, e.g., the NCBO ontology recommender [8], rate a text based
on the presence of input text tokens. The similarity of tokens to preferred and alternate
labels of ontology classes is calculated and is weighted by term frequency. At the same
time, this work aims to use text embeddings instead in order to not only look for shared
tokens but also to find concepts with synonymous meanings in text and ontology.

This article is dedicated to a particular challenge, sometimes encountered when enrich-
ing ontologies and their merging: deciding which of the some given ontologies is the most
relevant to an input domain-related text fragment. The proposed method relies primarily
on artificial neural networks (ANNs), specifically on using them in the Natural Language
Processing (NLP) setting. To our best knowledge, the neural networks have never been
used in combination with NLP for scoring the relevance of ontologies.

Since we propose several methods of assigning ontologies to input texts, it is needed
to establish the difference between the proposed models. We do so through a comparison
of the model performance on the ontology classification task, and conducting statistical
tests on validation subsets to test the following five statistical hypotheses:

1. All six models perform the same on the validation splits.
2. The 10-NN models perform the same as their 1-NN variants.
3. The neural-network model performs the same as the k-NN model on BERT embed-

dings and on fastText embeddings.
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4. For each of the considered models: The fine-tuned BERT with negative sampling has
the same performance as other considered models.

5. For each remaining pair: Both models from the pair have the same performance.

The next section summarizes the related work on the usage of artificial neural networks
(ANNs) on ontologies. In Section 3, we recall the used methods of text preprocessing and
embedding, as well as the summary of the used classifiers. The usage of the proposed
methodology is described and evaluated in Section 4. Finally, a discussion and an outlook
for future work is given in Section 5.

2. Related Work

In learning and extending ontologies, ANNs have been used mainly for identifying
concepts, attributes, and their relations [9–11]. Regarding relations, some ANN-based
methods have been developed specifically for subsumption relations needed for taxonomy
creation [12–15]. In the context of ontology integration, they were mainly used for ontology
matching or ontology alignment [16–19]. The variety of the types of ANNs employed is
quite large. It includes adaptive resonance theory (ART) networks [20] and associative
memories [21], as well as multi-layer perceptron (MLP) [22] and the modern deep convolu-
tional neural network (CNN) [16,23], deep belief networks [9], long-short term memory
(LSTM) and bididectional long-short term memory (BiLSTM) [24], and gated recurrent
units (GRU) networks [25,26]. The dependency of ontologies on texts has led to the use of
networks designed for learning texts and natural language representations. In particular,
BERT [27,28] is a bidirectional encoder of representations from transformers.

Another important network is word2vec [29], a rather traditional network used to
embed the text into the Euclidean space. Originally designed for knowledge graphs [30],
RDF2Vec [14,26] was developed as a result of the close relationship between ontologies
and knowledge graphs. With respect to vectorization networks such as word2vec and
RDF2Vec, it is important to note that the OWL2Vec network was designed according to
similar principles for embedding ontologies [31]. Finally, the graph structure of ontologies
has led to the use of graph neural networks (GNNs) [18,19].

The closest to our work is the way ANNs have recently been used in the context of
OWL translation [25,32], in the linking and concatenation of predicates and restrictions [21],
and in extracting taxonomy from knowledge graphs [14]. In the publication [32], ontology
learning is adapted as a transductive reasoning task that uses two recurrent neural networks
to convert the natural language text into the description logic in web ontology language
(OWL) specifications.

This approach was further developed in [25] and resulted in a system that is based
on a single recurrent GRU-type network. Employing an encoder-decoder architecture,
it translates a subset of the natural language by the syntactic transformation into the
description logic language ALLQ. It also generalizes across different syntactic structures
and is able to handle unknown words by duplicating input words into the output as
extralogical symbols and enriching the training set with new annotated examples.

A mapping between ontologies and a pair of mutually associative repositories is
created in [21], where one stores assertions and the other stores inference rules. In the
recent work [14] is described a methodology for the task of extracting a taxonomy from an
embedded knowledge graph. The embedding can be obtained using, e.g., RDF2Vec.

Hierarchical agglomerative clustering is performed on this embedding, initially with-
out using type information. Then, types are injected into the hierarchical cluster tree. Next,
an axiom induction algorithm is applied to each cluster in the resulting tree to find new
classes corresponding to those axioms that accurately describe the respective clusters.

3. Methodological Background

Details of the background of the methods employed in the reported research are
described in this section. In the first part, we define the problem of matching texts to
ontologies. In the second part, we describe the considered similarity measures. In the third
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part, we describe how to extract content from text documents, parse it into paragraphs
and filter them to keep the minimal length and to be content relevant to the topic of the
document. The fourth part describes the usage of a transformer for embedding input
paragraphs into a vector space, where the classification will subsequently be performed.
The final part describes the used classifiers.

3.1. Problem Definition of Matching Texts to Ontologies

Within the proposed framework, we define an ontology O as a directed attributed
multi-graph, where vertices represent classes, edges represent relationships between them,
and both vertices and edges can contain attributes. Given a set of specific ontologies
K = {O1, . . . , On} and an input text T ∈ T, where T is the space of all text documents.
The target is to determine the ontology that best matches the content of T. To this end,
we can employ a “hard” mapping f : T 7→ K or a scoring function f : T× K 7→ R which
allows one to order ontologies by relevance.

The following two difficulties, which arise from the posed task, should be considered
in the first place when choosing a solving method:

• Given ontologies are the only source of supervision. No ground truth with pairs of
source text and ontology labels are provided.

• Ontologies may significantly differ in size. This can lead to very unbalanced datasets.

3.2. Matching Background

The above problem is closely related to the concept normalization and entity link-
ing tasks, and the solutions include dictionary search [33,34], conditional random fields,
and term frequency-inverse document frequency (tf-idf) vector similarity [35], word em-
beddings, and syntactic similarity [36].

Vector similarity approaches use either dense word embeddings or tf-idf vectors.
The tf-idf vector is a document-specific vector, whose size is the size of the vocabulary
under consideration. Each element in this vector is the count of occurrences of the term
in a document multiplied by the logarithmized inverse of the proportion of documents
in which the term occurs. These vectors are readily interpretable (high values indicate a
rare term that occurs frequently in a given document) but very sparse, which affects the
performance of machine learning algorithms. In contrast, word embeddings produced by
representation learning algorithms are dense but do not provide direct interpretation.

Both approaches have a common pipeline—in the first step, they use an external
algorithm to find potential concepts in a scientific text. Then, the suggestions are linked to
the concepts using retrieval techniques such as dictionary search or vector spacing.

3.3. Representation Learning and fastText

Techniques for linking entities based on vector similarity can use either word embed-
dings or tf-idf vectors. The latter can be advantageous due to their dense vector structure
and ability to be generated by powerful language models trained on large corpora. Neural
networks are widely employed for their strong abilities in NLP (Natural Language Pro-
cessing). The creation of ontologies relies heavily on text, suggesting the applicability of
artificial neural networks (ANNs) in this context. The fastText [37] is an algorithm based on
representation learning that generates embeddings on the word level. A single-hidden layer
neural network is trained to predict a word in context, and the learned word representations
are then used as word embeddings.

Bidirectional Encoder Representations from Transformers (BERT)

Another model, and an even more widely used model for learning representations, is
the Bidirectional Encoder Representations from Transformers (BERT) [38]. It is usually used
for data analysis tasks such as classification or clustering, where it is suitable to represent
documents by embedding them in a vector space. Such a representation is usually the result
of representation learning by ANNs—a deep text-processing neural network is trained
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towards two goals—prediction of a hidden word in a sentence and order prediction of two
given sentences. In comparison to fastText, BERT embeds the entire input sentence at once,
generating contextual embeddings for each token—the same token is embedded differently
in different contexts. This makes it possible to achieve top results in text classification [38]
and named-entity recognition tasks [39]. Another advantage of BERT is that its transformer
architecture has impressive transfer learning capabilities [40], which can be useful for
fine-tuning the model for tasks that fall outside the pretraining data distribution.

BERT must be trained with a large amount of text. For this reason, a pre-trained
version is usually used, which is then often fine-tuned using texts to pertaining the topic
of interest. Such fine-tuning is also often done when the pre-trained network has been
trained not only with general texts but also with texts from a broader relevant domain (civil
engineering, health care, mechanic engineering, etc.).

The simplified scheme of BERT is shown in Figure 1. First, the input is tokenized by a
tokenizer, then it passes through the encoder, which embeds the sequence of words into
point of Euclidean space. These vectors are used as input to the BERT internal architecture.
BERT provides one embedding for one input token. Each input sequence of tokens has a
special token at the beginning, labeled CLS. The token’s embedding represented by vector,
can be arranged in a matrix for an input sequence. The embedding of the whole input text
is in the first row of this matrix. The embedding of a given text paragraph is used for the
assignment of the most relevant ontology to the paragraph [38].

Figure 1. BERT (Bidirectional Encoder Representations from Transformers) architecture [38] the
figure is reproduced under the CC-BY licese. An input sequence of words is divided into tokens
and each token is encoded as a vector. There is one numeric vector per token in the BERT’s outputs.
The output vector marked by C is subsequently used for classification.

3.4. Text Similarity Strategy for Matching Texts to Ontologies

Ontologies typically contain annotations for most of their classes and relations, poten-
tially generating supervised datasets for machine-learning algorithms. However, we need
to make several strong assumptions before employing a text similarity approach:

• The distribution of texts provided as input is the same as the distribution of em-
beddings of annotation texts. This means that the input sentences should follow
the same general structure, length, and vocabulary as ontology annotations to avoid
prediction skewing for irrelevant reasons.
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• The best matching ontology is the one which provides annotations most similar to
the input text. Since the considered methods are text-based, they will not rely on
structures or hierarchies created by ontology classes and input text terms.

For below mentioned methods, we use fastText and BERT models. They were trained
using texts from related domains, which will serve as a backbone for further processing. Fol-
lowing the notation introduced in Section 3.1, we consider a “hard” mapping f : T 7→ K
directly to the set of ontologies of interest.

3.4.1. Zero-Shot Classification

The method is composed by assigning an ontology considering the similarity between
annotation embeddings and input text embedding. This provides a simple method and does
not require fine-tuning of the model, so a basis for further experimentation can be quickly
established. Common similarity measures are cosine distances or Euclidean distances.
In our experiments, we choose the first one because in some embedding algorithms the
vector length can be affected by the size of the input text, so vectors corresponding to
semantically similar texts generally point in the same direction, but are different in terms
of the Euclidean distance.

3.4.2. Supervised Classification Based on Ontology Annotations

This approach relies on supervision provided by ontology annotation attributes of
nodes and relations. Let us provide a set of ontologies, K. We can receive a dataset with
pairs of annotations and the respective ontology source label and use it in supervised
training. With the above assumptions, we can map the input texts to the ontologies by the
trained model.

3.4.3. Negative Sampling

This approach is an extension of the above approach with the class “None”, which
states that the input text is not to be assigned to any of the known ontologies. Thus,
the annotation dataset is enhanced by:

• Texts received from scientific papers from unrelated domains and labeled by the
“None” class.

• Sentences extracted from scientific papers from related knowledge domains with a
different target during training. Instead of maximizing the model output scores for a
ground truth class, the output scores for the “None” class are minimized for related
input texts. This method is intended to partially compensate for the possible difference
in input distribution between ontology annotations and scientific texts.

3.5. Text Processing

For the task of classifying scientific texts into the most relevant existing ontology,
documents in Portable Document Files (PDFs) are used. One problem with PDFs is that
they have an internal structure for printing by a physical printer device, and therefore keep
metadata about the contained content with respect to its place on the paper. Therefore, it is
complicated to extract the whole content of each paragraph. In case the file is parsed with
the simple PDF tool and the line-break character is used to separate between paragraphs,
only a single line is returned and not the entire paragraph. Another problem is related
to documents with multiple columns of text on one page. In case the document does
not contain a mark to the point where the paragraph continues, software tools for text
extraction from PDF files usually continue with the nearest letter in the same line instead of
going to the next line in the same column.

The found solution for retrieving text data from multi-column PDFs uses the engine
contained in Microsoft Word. Its ability is able to pass both problems and extract the text
without issues. It identifies meta-information in the content such as titles, paragraphs,
and sentences. Some source documents contain irrelevant text to the topic of interest, such
as references, acknowledgments, etc. The descriptions of ontologies are usually contained
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in Ontology Web Language (OWL) files. The OWL’s internal structure [41] is a kind of XML
structure for ontologies extended by RDF. Content describing classes and relationships can
be marked by different tags depending on the ontology developer’s decision.

3.6. Pipeline for Comparing BERT and fastText Results

Before classifying articles according to the most relevant ontologies, we have in this
context compared BERT and fastText. In this pipeline, we have used spaCy. It is a free,
open-source library for advanced Natural Language Processing (NLP) in Python. The fol-
lowing text preprocessing pipeline for input embeddings is thus employed (the stars at the
beginning of some points mark, which are applied to new sentences from scientific papers
only):

1. *Parse an input text into sentences by a SpaCy model.
2. *Filter out invalid sentences, which contain less than two nouns or no verb.
3. *Filter out sentences with non-paired parenthesis and ill-parsed formulas or composed

terms.
4. (BERT) Tokenize sentences with a tokenizer received from the model.
4. (fastText) Transform to lowercase and split into words.

3.7. Classification of Output Embeddings

The output embeddings of the texts, obtained by BERT, are used as input data for
classification algorithms, classifying a given input paragraph with respect to its relevance
to the considered ontologies. The classification algorithms have been trained on the
embeddings of the annotations of relations and classes from the considered ontologies
because we know the ground truth (i.e., the ontology to which the annotation belongs)
for them.

We have selected the following five classification algorithms implemented in scikit-
learn [42]:

1. Random Forest (RF): An ensemble classifier that fits a set of classification trees to dif-
ferent subsamples of the training dataset and uses an aggregation function to improve
prediction accuracy and control overfitting. Typically, each tree in the ensemble is
created using a surrogate sample (by bootstrapping algorithm—selection from source
with repetition) from the training dataset. In addition, as each node is split during tree
creation, the best split is found using all features from the input or a random subset of
features of a given size. The goal is to reduce the variance of the forest estimator. The
single decision tree typically has high variance and tends to overfit. The randomness
introduced into the forests leads to decision trees with slightly decoupled predic-
tion errors. By averaging these predictions, some errors can be mitigated. Random
forests achieve lower variance by combining different trees, sometimes at the cost of
a small increase in bias. Usually, the reduction in variance leads to an overall better
model [43].

2. Support Vector Machine (SVM): This is a classifier specifically designed to achieve
the lowest possible prediction error, using a known relationship between the gen-
eralization error and the edge of the separating hyperplane. It uses only training
points on both support hyperplanes of the boundary (support vectors), which leads to
memory effectiveness. A simple SVM can only be used for linearly separable classes.
For linearly non-separable classes, the data must first be transformed into linearly sep-
arable function sets in a high-dimensional vector space of functions using a suitable
kernel. SVM classification has multi-class support, which is handled according to a
one-versus-one or one-versus-rest scheme [44].

3. Gaussian Process (GP): It was developed primarily for regression problems. A Gaus-
sian Process Classifier (GPC) implements a collection of random variables indexed by
a Euclidean space by placing a GP prior on latent functions. Its purpose is to provide a
convenient formulation of the classification by a logistic link function. GPCs support
multiclass classification by performing either one-vs.-rest or one-vs.-one training and
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prediction. A critical component of any GPC is the covariance function of the under-
lying GP. It encodes the assumptions about the similarity of Gaussian distributions
corresponding to different points [45].

4. K-Nearest Neighbors (k-NN): Neighbors-based classification stores individuals from
the training dataset. A query instance is assigned to the class that has the most
representatives within the point’s nearest neighbors. In nearest neighbor classification,
uniform weights can be used, i.e., the value assigned to a query point is calculated
by a simple majority vote of the nearest neighbors. In some cases, it is better to
weigh the neighbors so that the nearest neighbors contribute more. For example,
if the class of a queried point is computed from two nearest points and one of them
is closer than the second by a defined metric, the resulting class in this case is the
class of the closest point. The distance d between two points can be calculated
as: d(x, y) = (∑n

i=1 |xi − yi|c)
1
c , where n is the dimension of the space and c ≥ 1,

if c = 1, this is the Manhattan distance and in the case of c = 2, this is the Euclidean
distance [46].

5. Multilayer Perceptron (MLP): Given a set of features and targets, it can learn a non-
linear function approximator for classification or regression. Between the input and
output layers, it can have one or more hidden layers. The input features are rep-
resented in the input layer consisting of a set of neurons. Using a weighted linear
summation and a non-linear activation function, the neurons making up the hid-
den layer, transform the values from the previous layer. The last hidden layer then
transfers its values to the output layer, which in turn transforms these values into
output values. MLP has the advantage that it is able to learn nonlinear dependencies
and also is capable of online learning, which allows learning models in real-time.
However, a downside of the MLP with hidden layers is the non-convex loss function
with multiple local minima. In the case of training MLP with the same data, the results
may be different, when the MLP uses random weight initialization. A number of
hyper-parameters are needed to be set for MLP such as the number of layers or the
number of hidden neurons. MLPs also express sensitivity to feature scaling [47].

3.8. Summary of the Methodology

The summarization of the whole process classification is shown in Figure 2. The core
inputs are scientific papers in PDF and the output is a table of classified paragraphs.
The table rows contain vectors with probabilities to which ontology each paragraph fits.

For this task, the relevant text first is extracted from the papers to obtain a dataset
with the text of source paragraphs. As this poses the textual data, it is used for fine-tuning
a BERT transformer for the later use of source text embeddings received from ontologies
and papers.

In addition, descriptions of classes and relations are extracted from ontologies and
stored as ontology description dataset. Then, the fine-tuned transformer is used to produce
text embeddings of the descriptions. This yields a dataset containing the embeddings as a
ground truth based on the text data from the descriptions obtained from ontologies.

The set then is used to train the classifiers of Random Forest, SVM, Gaussian Process,
k-NN, and MLP. Those trained classifiers in turn are finally used together with the dataset
with text paragraphs from papers for their classification regarding the best-fitting ontology.
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Figure 2. Process diagram of the whole methodology.

4. Empirical Validation in Catalysis Research

A catalyst is a chemical that is not consumed in the course of a chemical reaction.
The use of a catalyst in a chemical reaction usually allows the reaction to proceed more
quickly and allows milder reaction conditions to prevail. Chemical synthesis based on
catalysts is used in about 90 % of chemical processes in the chemical industry. The scientific
field of catalysis is highly interconnected with other sciences and therefore spans many
topics, from materials science to process design [48,49].

We perform our experiments using a set of five chemical domain ontologies (Table 1)
developed as part of the NFDI4Cat project [2]. The National Cancer Institute Thesaurus
(NCIT) [50], Chemical Methods Ontology (CHMO) [51], and Allotrope Foundation Ontol-
ogy (AFO) [52] ontologies are closely related to the chemical domain. Chemical Entities
of Biological Interest (CHEBI) [53] and Systems Biology Ontology (SBO) [54], on the other
hand, are expected to have a lesser connection to the chemical domain based on their names.
This is not necessarily true for CHEBI, as it describes a plethora of chemical entities that are
also relevant in the chemical domain, not just the biological domain. The SBO was chosen
because it contains some general laboratory and computational contexts. It can also be
observed as a kind of test to whether the tools used can also identify ontologies that do not
match the text content.

Table 1. Types and counts of tags in their OWL files.

Ontology Name XML Classes Number of Classes

AFO rdfs:comment rdfs:label
Literal 2773

NCIT rdfs:comment rdfs:label 1169

SBO rdfs:comment rdfs:label
Literal 534

CHEBI obo:IAO_0000115 rdfs:label 35,067

CHMO rdfs:comment
obo:IAO_0000115 rdfs:label 2521
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4.1. Comparison of fastText and BERT

In this experiment, we have used 28 scientific papers composed of 25 research as well
as 3 review papers for input to the evaluation. Those papers consist of 1.3 million symbols
(1485 relevant paragraphs) and encompass the topic of the methanation of CO2. These
articles have been extracted to Microsoft Word files by a PowerShell script. By Microsoft
Word’s engine, paragraphs, and headings are recognized and marked properly, so para-
graphs with relevant texts have been extracted by the template in Listing 1 and by the
BERT embedding prepared for the final classification. In addition, these texts are used for
fine-tuning BERT.

Listing 1. Irrelevant parts in source text are titled by strings listed on the first line. Paragraphs in
parts with different headings are stored and their headings are removed.

1 removeContent = ["authorinformation", "symbols", "subscripts", "
acknowledgment", "acknowledgement", "acknowledgements", "
acknowledgments", "references", "notesandreferences"]

2 listFiles = []
3 for dirpath , dirnames , filenames in os.walk(pathToDOCXs):
4 listFiles += glob.glob(os.path.join(dirpath , "*.docx"))
5 with codecs.open("mergedLong_"+pathToDOCXs+".txt", "w", encoding=

"ascii", errors="ignore") as file:
6 for idx , file in enumerate(listFiles):
7 newfile = str(file).replace("docx", "txt")
8 with codecs.open(str(file).replace("docx", "txt"),’w’,’utf -8’) as

f:
9 doc = docx.Document(file)

10 toSave=False
11 for p in doc.paragraphs:
12 if p.style.name.startswith("Heading"):
13 if re.sub(r’[^A-Za -z0 -9]+’, ’’, str(p.text)).replace(’ ’,’’).

lower() not in removeContent:
14 f.write(p.text + ’\r\n’)
15 toSave=True
16 else:
17 toSave=False
18 if toPrint and not str(p.text).startswith("\t") and len(str(p.

text)) >70:
19 modtext = re.sub(’ +’, ’ ’, p.text)
20 f.write(modtext + ’\r\n’)
21 if len(modtext) >170 and len(modtext) <2000:
22 file.write(modtext + ’\r\n’)

We have selected the pretrained fastText model by [55] and the recobo/chemical-
bert-uncased [56] checkpoint of a BERT implementation [57] from the HuggingFace portal.
In the preprocessing task, we use SpaCy [58] with a ScispaCy [59] model en_ner_bc5cdr_md.
For the remaining machine learning models, PyTorch implementations were used. For the
visualization method Uniform Manifold Approximation and Projection for Dimension
Reduction (UMAP) [60], we used the implementation described in [61].

Because we lack data with known ground truth, we evaluate the quality primarily by
inspecting the resulting input sentence-annotation pairs.

4.1.1. Zero-Shot Setup

We start with representation learning of annotations using the fastText and BERT
algorithms and examine the generated embeddings. For dimensionality reduction, we use
the UMAP algorithm with a count of 15 neighbors, a minimum distance of 0.5, and a cosine
metric. We found that with three-dimensional embeddings, much more information is
preserved (and it is possible to split clusters that might be inseparable in 2D). The results
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are shown in Figure 3. Blue dots denote embeddings from NCIT, red dots embeddings from
CHMO ontology, green dots embeddings from AFO, purple dots embeddings from SBO,
and orange dots represent CHEBI ontology embeddings. Three example sentences with the
annotations assigned to them by fastText and BERT are shown in Table 2. The annotation
“carbon dioxide” was assigned by BERT to all three new example sentences.

label
NCIT

CHMO

AFO

SBO

CHEBI

(a) fastText

label
NCIT

CHMO

AFO

SBO

CHEBI

(b) BERT
Figure 3. Annotation embeddings produced by fastText and BERT, a 2d-image of the embeddings
projected down to 3 dimensions. In the case of fastText, SBO, AFO, and CHMO annotations are
located in tiny areas, primarily close to the center of the image. Note that fastText struggles to group
smaller ontologies into more dense and decoupled clusters, while BERT provides embeddings with
better separability of annotations of individual ontologies.

4.1.2. Ontology Matching as Text Classification

As mentioned in Section 3.4, another possible strategy to solve the problem is to
treat it as a classification task into multiple classes. If the distributions of input texts and
corresponding ontologies are the same, we can train a classifier on descriptions of ontology
classes and relations and use them as input texts.

We have implemented this using embedding ontology annotations by BERT and training
a dense (fully connected) 768-dimensional hidden layer over them. Minority data points are
proportionally overestimated due to the significant size differences between ontologies. The clas-
sifier achieves a validation accuracy of 0.987 after a single-shot validation of the annotations of
all nodes, indicating a good separability for different ontologies, cf. Figures 4 and 5.

(a)

label
NCITu
CHMOu
AFOu
SBOu
CHEBIu
Sentencesu

(b)

Figure 4. Training plot of the ontology classifier model and a 3-dimensional projection of the BERT
embeddings before tuning. The visualization provides an intuition about the distribution gap
between ontology annotation and input texts, for which we are looking for the most relevant ontology.
(a) Training and validation (blue resp. yellow) accuracy dynamics during the training. (b) BERT
embeddings of ontology annotations and text sentences extracted from 28 scientific papers.
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label
NCITu
CHMOu
AFOu
SBOu
CHEBIu
Positivesu
Negativesu
Sentencesu

(a)

label
NCITu
CHMOu
AFOu
SBOu
CHEBIu
Sentencesu

(b)

Figure 5. Visualization of the BERT embeddings along with the classifier MLP hidden states in the
ontology classification task. The model on the right takes as input vectors produced by the untuned
BERT, visualized in the Figure 4b. (a) Negative sampling fine-tuned BERT embeddings, a 2d-image
of the original space projected down and visualized in the 3 dimensions. (b) Hidden layer outputs of
the classifier model on top of the BERT, a 2d-image of the hidden activation space projected down
and visualized in the 3 dimensions.

Table 2. Sentence pairs of a new sentence from the scientific papers and the closest annotation from
all the considered ontologies. The “carbon dioxide” annotation was assigned by BERT to all three
above example new sentences. While BERT embeddings are more discriminative for the ontology
classification task, the assigned sentences and low-dimensional embeddings on Figure 5 indicate that
this approach is more sensitive to the distribution shift problem.

Sample 1 Sample 2 Sample 3

New sentence

Moreover, there is an up-
per limit of operation,
above which thermal de-
composition will occur.

The difference is the
main adsorption species
during the reaction.

This enhancement of the
Ni dispersion is very rele-
vant because as reported
in the literature NiO sites
[...]

fastText closest

An end event specifica-
tion is an event specifi-
cation that is about the
end of some process.

Reaction scheme where
the products are created
from the reactants [...]

The name of the individ-
ual working for the spon-
sor responsible for over-
seeing the activities of the
study.

BERT closest

Carbon dioxide gas
is a gas that is com-
posed of carbon dioxide
molecules.

Carbon dioxide gas
is a gas that is com-
posed of carbon dioxide
molecules.

Carbon dioxide gas
is a gas that is com-
posed of carbon dioxide
molecules.

Those visualizations and Table 3 allow to suppose that the model embeds input papers
separately from ontology annotations, which may indicate a distribution shift between
annotations and sentences.

Table 3. Zero-shot statistics for the distances of sentences to the closest ontology annotations.

Embeddings Closest Distance Mean Closest Distance Standard Deviation

fastText 0.846 0.086
BERT 0.605 0.038
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However, when we have preprocessed the input texts and embedded them, our
inspection has demonstrated that their distribution differs significantly in comparison to
the distribution of the ontology annotations. The projection in Figures 4 and 5 show a dense
separated group of texts parsed from scientific papers.

While the BERT embeddings are more discriminative for the ontology classification
task, the assigned sentences and the low-dimensional embeddings in Figure 5 show that
this approach is more sensitive to the distributional shift problem.

4.1.3. Negative Sampling

To address this problem, we included scientific texts in the training dataset. We
selected 400 texts from the area of chemical science (as positive examples) and 400 from
non-related areas (as negative examples). The model has two targets during training:

1. Cross-entropy loss when the input is an ontology annotation (as before).
2. Binary cross-entropy loss when the input is a text from a scientific paper. The model

minimizes the probability of outputting a special class “Negative” for a related scien-
tific text and maximizes it for non-related ones.

In our setup, we first train the head over BERT to convergence and leave the backbone
frozen. If we consider only the ontology annotations and leave aside the example sentences,
the model achieves a validation accuracy of 0.984; this value is similar to the accuracy of
the classifier described before.

We then fine-tune the whole BERT model. It achieves a validation accuracy of 0.958 af-
ter single-shot validation on the combined annotation and paper sentence dataset, with the
confusion matrix shown in Figure 6, where values close to one are denoted blue and values
close to zero denoted in the white color. By mixing sentences from irrelevant and relevant
scientific texts, the classification accuracy was improved compared to the BERT classifier,
as shown later.

Figure 6. Confusion matrix of the MLP classification over fine-tuned BERT for a dataset consisting of
the annotations from all five considered ontologies and the sentences of the additional 400 related
and 400 unrelated scientific papers. An additional column to the right is related to the training set
containing an additional label “Positive”, which is the opposite of the “Negative” label, and is being
used during training.
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Despite the good separability of the individual ontologies and the additional opti-
mization criterion, the UMAP embeddings are similar to the previous setting in terms of
clustering the input sets in a separate subspace.

It is worth noting that the classifier and negative sampling models produce softmax
scores that can be interpreted as class probability distributions. However, neural networks
tend to be overconfident in their results [62], so additional calibration is required before
using the results for the relevance decision.

4.1.4. Statistical Results

We compare the models using the Friedman test first, which checks whether the
models have the same performance. We make a stratified split of the validation dataset
with the ontology annotations into fifty samples and test the following null hypothesis:

Hypothesis 1. All six models perform the same on the validation splits.

The Friedman test has rejected the null hypothesis on the significance level of 5%.
For the post-hoc analysis, we have employed the Wilcoxon signed-rank test with a two-
sided alternative for all pairs of the compared results, because of the inconsistency of the
more common mean ranks post hoc test, as pointed out in [63]. For correction to multiple
hypotheses testing, we have used the Holm method. We make the following assumptions
about the algorithms, which will imply the alternative hypotheses for the null hypotheses
2–4 discussed below:

• For a larger k, the k-NN classifier can work the same or better than the 1-NN.
• The neural network model can fit training data the same or better than the k-NN.
• The negative sampling results in a non-decrease or an improvement in the model

generalization.

Hypothesis 2. [Null for k-NN models] The 10-NN models perform the same as their 1-NN
variants.

While the 1-NN is a common setting for many NLP systems, it may produce complex
decision boundaries and lead to overfitting. We test a larger k versus one to determine if
this is an issue in our setup.

Hypothesis 3. [Null for neural network classifier] The neural-network model performs the same
as the k-NN model on BERT embeddings and on fastText embeddings.

The assumption behind this hypothesis is that a neural network as a universal approx-
imator can fit data better than a nearest-neighbor classifier.

Hypothesis 4. [Null for the fine-tuned model with negative sampling] For each of the considered
models: The fine-tuned BERT with negative sampling performs the same as other considered models.

Our assumption is that additional sampled sentences will improve the model’s perfor-
mance and will help to avoid overfitting when the model is fine-tuned as a whole instead
of its head only.

Hypothesis 5. [Null for the rest] For each remaining pair: Both models from the pair have the
same performance.

We indicate the relative model performance in Figure 7, where high values are denoted
in blue and low values in white color.
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Figure 7. The comparison matrix of the six considered models. The i, j-th element indicates a number
of splits where the i-th model performed better than j-th. Except for the one- and ten-nearest-neighbor
over BERT embeddings, all the models demonstrate statistically significant differences. BERT NN
denotes a neural network classifier trained over BERT embeddings.

The test rejected the null hypotheses on the 5% significance level, except for Hypoth-
esis 2. This hypothesis was rejected only for the fastText embeddings, which might be
explained by a relatively sharp boundary between individual classes on UMAP visualiza-
tions of the embeddings. If this holds true for the original space, larger k may suppress
outlier noise while decreasing the classification accuracy near it.

4.2. Experimental Setup and Preprocessing for the Comparison of Classifiers

In the first part, the received portable document files were converted to Microsoft Word
file format using PowerShell scripts. The transformed files were processed using a Python
library for parsing docx file format and SpaCy. As a result, the considered paragraphs
were extracted for classification with respect to the most relevant ontology 1. We skipped
paragraphs containing acknowledgments, references, titles, and paragraphs that were too
short (shorter than 170 letters).

The extracted paragraphs were also used for fine-tuning the BERT model. The chosen
pretrained version of BERT was recobo/chemical-bert-uncased from the Huggingface
portal [56]. The fine-tuning is located in the Listing 2. Using the fine-tuned BERT, each
paragraph was converted to a 768-dimensional numerical vector. The annotations in the
specifications of the given ontologies were extracted using the XML parser for Python called
BeautifulSoup. The parsing code can be found in the Listing 3. The individual annotations
were again embedded into the 768-dimensional vector space. For this, the fine-tuned BERT
presented in the previous section is used.

The classifiers were chosen from ScikitLearn [42]. Each classifier has many hyper-
parameters. The optimal value of each hyperparameter was determined using a cross-
validation algorithm with 5 folds. It was applied with a grid search to choose the optimal
values from the given set. These values are listed in Table 4. In order to mitigate overfitting,
training data from large ontologies were under-sampled. For the statistic computations, we
have used the pingouin, scipy, and statsmodels python’s libraries.

https://www.crummy.com/software/BeautifulSoup/
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Listing 2. The selected pretrained version of the BERT from the Huggingface portal was
recobo/chemical-bert-uncased [56]. The model is trained using a CUDA device in an ideal en-
vironment, which makes tuning significantly faster than on the CPU. The source data are stored in a
variable dataset. The used optimizer is Adaptive Moment Estimation.

1 modelName="recobo/chemical -bert -uncased"
2 config = AutoConfig.from_pretrained(modelName)
3 tokenizer = AutoTokenizer.from_pretrained(modelName , config=

config)
4 model = AutoModelForMaskedLM.from_pretrained(modelName , config=

config)
5 loader = torch.utils.data.DataLoader(dataset , batch_size =1,

shuffle=True)
6
7 model.train() #switch model to training mode
8 optimizer = AdamW(model.parameters (), lr=5e-5)
9

10 for epoch in range(epochs):
11 loop = tqdm(loader , leave=True)
12 for batch in loop:
13 optimizer.zero_grad ()
14 input_ids = batch[’input_ids ’].to(device)
15 attention_mask = batch[’attention_mask ’].to(device)
16 labels = batch[’labels ’].to(device)
17 outputs = model(input_ids , attention_mask=attention_mask ,
18 labels=labels)
19 loss = outputs.loss
20 loss.backward ()
21 optimizer.step()
22 model.save_pretrained(modelName.replace(’/’,’-’) + ’-FT -’+

sourceTexts+’.ptmodel ’)

Listing 3. Tags that stored relevant descriptions are in the list named ’contentTags’. Because the OWL
contains name-spaces owl, rdf, xml, rdfs, and obo, they had to be loaded. The output is one text file
per ontology file, where each row contains one node or relation description.

1 contentTags = [’rdfs:label ’, ’rdfs:comment ’, ’Literal ’, ’obo:
IAO_0000115 ’]

2 namespaces = {
3 None: ’http ://www.w3.org /2002/07/ owl#’,
4 "owl" : "http ://www.w3.org /2002/07/ owl#",
5 "rdf" : "http ://www.w3.org /1999/02/22 -rdf -syntax -ns#",
6 "xml" : "http ://www.w3.org/XML /1998/ namespace",
7 "rdfs" : "http ://www.w3.org /2000/01/rdf -schema#",
8 "obo" : "http :// purl.obolibrary.org/obo/" }
9 for file in SOURCE_OWL_FILES:

10 ontology = os.path.splitext(os.path.basename(file))[0]
11 with codecs.open(’parsedOWLs/parsed_ ’+str(ontology)+’.txt’,’w

’,’utf -8’) as fout:
12 with open(file , ’r’, encoding=’utf -8’) as f:
13 xml_file = f.read()
14 soup = BeautifulSoup(xml_file , ’xml’)
15 for tag in soup.findAll(contentTags):
16 x = tag.text.strip(’, .-*/’)
17 x = x.replace(’\n’, ’ ’)
18 x = x.replace(’\r’, ’’)
19 if len(x.split(’ ’)) > 5:
20 fout.writelines ([x + os.linesep ])
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Table 4. Hyperparameters of individual classifiers that were determined through grid-search on
combinations of considered values. The bold values are selected values using a random stratified
5-fold cross-validation applied to a grid-search with the considered values.

Classifier Hyperparameter Considered and Selected Values

Random forest

bootstrap samples {false, true}

criterion {entropy, gini}

count of estimators {5, 10, 15, 20, 25, 30}

fraction of features used in
each split {0.5, 0.7}

maximal depth {5, 7, 9, 11}

Support vector machine

kernel type {linear, radial basic}

kernel coefficient gamma [0.001, 0.0001]

slack trade-off constant (C) {1, 10, 100, 1000}

Gaussian process kernel {radial basic, dot product, matern,
rational quadratic, white kernel}

K nearest neighbors

algorithm {auto, ball tree, kd tree, brute}

distance metric exponent {1, 2, 3, 4, 5}

number of considered
neighbors {1, 5, 9, 13, 17}

weights {distance, uniform}

Multi-layer perceptron

activation function {identity, logistic, relu, tanh}

hidden layer size {1, 4, 16, 64}

learning rate for weights
update {adaptive, constant}

optimizer {adam, lbfgs, sgd}

strength of L2
regularization term {0.0001, 0.05}

random state {0, 1}

4.3. Comparison of Important Classifiers on Considered Ontologies

The classes to which classifiers assign new parts of text are ontologies from Table 1.
The source dataset has been split into training and testing datasets in stratified proportion
1:1. The data in the training dataset originating from large ontologies are unbalanced.
We needed to mitigate overfitting during the training part. We have decided to under-
sample the training dataset parts. The testing dataset has been split into 20 disjoint subsets,
assuming that disjointness is a sufficient condition for their independence.

Aggregated statistic results of the predictive accuracy in the classification of all 20 test-
ing datasets are in Table 5. The table is enhanced with boxplots in Figure 8, which presents
the following quality measures for each classifier: accuracy, F1 score, precision, and recall.
The RF classifier had the worst results of all classifiers. Other classifiers had much better
statistical results. The Gaussian process had the best accuracy, its mean accuracy was 97%
and it had a very low standard deviation.

Differences between the considered classifiers were tested for significance using the
Friedman test. The basic null hypothesis that the average accuracy of all five classifiers is
identical was strongly rejected with a significance level of p = 3× 10−12. The results of
the Wilcoxon test are shown in Table 6, with the best results for the SVM classifier and the
Gaussian process classifier.
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Table 5. Statistic quality measures of the used classifiers with regards to the 20 testing datasets (mean
[%] ± standard deviation [%]), where Accuracy = TP+TN

TP+FN+TN+FP , Precision = TP
FP+TP , Recall =

TP
FN+TP and F1 = 2 · Precision·Recall

Precision+Recall (using the abbreviations T as True, F as False, P as Positive and N
as Negative).

Accuracy F1 Precision Recall

Gaussian process 97.46± 0.39 89.48± 1.38 85.70± 1.35 95.88± 1.21
K-nearest neighbor 96.66± 0.67 87.60± 2.41 84.36± 2.69 92.73± 2.04
Multi-layer perceptron 96.99± 0.67 87.84± 1.59 84.03± 1.54 94.97± 1.58
Random forest 94.63± 0.69 82.00± 2.29 76.30± 2.34 90.76± 2.58
Support vector machine 97.16± 0.53 88.72± 1.85 84.64± 1.89 95.85± 1.69

Figure 8. The quality measures with a standard deviation of the considered classifiers on testing
datasets. For each classifier was computed Accuracy, F1 score, Precision, and Recall. The worst result
has the Random forest classifier, the others are significantly better.

Table 6. Comparison of accuracy results on the 20 testing sets with ontology annotations. Counts of
datasets are listed, where the model in the row has higher accuracy than the model in the column.
The italic value marks counts, where the difference is not significant in the Wilcoxon test. The bold
value marks a higher count from the pair, where the difference is significant.

Random
Forest

Support
Vector

Machine

Gaussian
Process

K-Nearest
Neighbors

Multi-
Layer

Perceptron

Summary
Score

RF - 0 0 0 0 0
SVM 20 - 2 15 13 50
GP 20 16 - 17 19 72
k-NN 20 3 3 - 5 31
MLP 20 4 1 14 - 39

4.4. Classification of Scientific Texts with Respect to Relevant Ontologies

In the following experiment, we did not have a ground truth about which of the
available ontologies was most relevant for each text passage considered. We used two
collections of scientific papers from the field of chemical catalysis research. The small
collection is the same as in the previous experiment and the large collection is the digital
archive of papers from Leibniz Institute for Catalysis scientists (except for very few papers
with read-only permission). This set of documents contains 3450 portable document
files. We extracted 144,490 relevant paragraphs from them. The BERT embeddings of
these paragraphs were classified by the five classifiers. Each paragraph’s embedding can
be classified into more than one target class with non-zero probability. The probability
distribution over all classes is used as the confidence of classification into each of them.

4.4.1. Results for the Small Dataset

Figure 9 shows counts of paragraphs each classifier assigned to each ontology. While
the AFO is represented as blue bars, the CHEBI is shown in orange, the CHMO in green,
the NCIT is represented as red bars, and the SBO is shown in purple. The Gaussian
process, the k-NN, the MLP, and the SVM classifier assigned almost all paragraphs to the
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NCIT ontology. The RF classifier is the most uncertain of all the classifiers and assigned
most of the paragraphs to the CHEBI ontology, but some paragraphs to each of the other
four ontologies.

Figure 9. Number of paragraphs of the collection of 28 scientific papers regarding the topic of
methanation of CO2 predicted by highest confidence to target class based on five ontologies.

Figure 10 shows the sum of the confidences of the class assignment. The confidence
of the MLP and the SVM is very high, while the confidence of the Random Forest and the
Gaussian process is much lower. The k-NN classifier also has fairly high confidence.

Figure 10. Sum of prediction confidences with regards to the five ontologies for the collection of
28 scientific papers regarding the topic of methanation of CO2.

Figure 11 shows the spread between the predicted ontology confidence and the second-
highest class confidence. Even here, the highest values are obtained by SVM and MLP,
while GP and RF have only a small difference between the predicted and the second-highest
ontology confidence. The k-NN has a quite high difference, but not as high as MLP or SVM.

Figure 11. Sum of margins between top two confidences for the collection of 28 scientific papers
regarding the topic of methanation of CO2.

4.4.2. Results for the Large Dataset

Figure 12 shows the count of assignment of paragraphs from the second dataset to
ontology by each classifier with coloring similar to the charts presented in the experiment
with the small dataset. The GP, k-NN, MLP, and SVM have assigned almost all paragraphs
to the NCIT ontology. The RF has the most unstable predictions of all the classifiers. It has
assigned most of the paragraphs to the CHMO ontology but also assigned some paragraphs
to the other four ontologies.
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Figure 12. Counts of paragraphs of the collection of scientific papers from the digital archive of
papers from Leibniz Institute for Catalysis predicted by highest confidence to target class.

Figure 13 using the confidence of the class predictions shows that the confidence of
the SVM is very high, while that of the GP and the RF is much lower. The MLP and the
k-NN classifier also have fairly high confidence.

Figure 13. Sum of prediction confidences for the scientific papers obtained from the digital archive of
papers from Leibniz Institute for Catalysis.

Figure 14 shows the spread between the predicted ontology confidence and the second-
highest class confidence. The results are similar to those in the first experiment; the highest
values are obtained by the SVM, while the GP and RF have only a small difference between
the predicted and second-highest ontology confidence. The MLP and k-NN have quite a
high margin, but not as high as the SVM.

Figure 14. Sum of margins between top two confidences for the scientific papers obtained from the
digital archive of papers from Leibniz Institute for Catalysis.

4.4.3. Summary of Results for Both Datasets

This experiment has returned results, from which we can say that SVM has good
accuracy in testing data according to all considered quality measures. The results of the
confidence margins between the top two most relevant ontologies and of the predicted most
relevant ontology confidence are the best of all considered classifiers. Hence, the results
indicate that for a large majority of the unknown scientific texts, the most relevant ontology
is NCIT.

5. Discussion and Outlook

Ontologies provide a way to express knowledge and data in a formalized and stan-
dardized way. However, since creating and maintaining an ontology is a manual process,
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there are different conceptualizations and different representations of knowledge. This
poses a challenge when a researcher wants to select the most appropriate ontology for
a particular scientific text (i.e., his/her research). In this work, we investigate the possi-
bility of automatically selecting the most relevant ontologies for given scientific texts in
order to reduce the workload for domain experts. We are not aware of other works on
this topic, so we are not able to discuss them and compare the proposed approach with
previous methods.

In the research conducted, it was found that the distributions of scientific texts differ
significantly from those in ontology annotations. Despite a good separability of the consid-
ered ontology annotations from each other, as well as the sets of positively and negatively
valued articles, the investigated approach leads to a mapping in separate subsets of the
embedding space. This is true also for the most sophisticated of the three settings studied,
where BERT was fine-tuned with both ontology annotations and scientific papers from
related and unrelated areas.

To mitigate such inadequate coverage of unknown scientific texts, the following
research could contain an intermediate step recognition of entities. The use of recognized
entities instead of original texts may lead to separating the information in scientific texts
directly related to terms from ontologies from unrelated terms, phrases, and other partitions
of the text that were not eliminated by preprocessing.

Furthermore, we report on the use of classifiers in combination with representation
learning through the fine-tuned BERT. We used the embedding of each paragraph from
PDFs as input to the classifiers. We made tests using five different classifiers, specifically
the Gaussian Process, k-NN, Multilayer Perceptron, Random Forest, and Support Vector
Machine. The Random Forest was the worst of all considered classifiers; its precision as
well as other quality measures were the lowest among all classifiers. The best results were
obtained by the Gaussian Process and the Support Vector Machine.

In the last test, the used classifiers were compared using scientific papers from the field
of catalysis. The ground truth of the papers was not known. The k-NN and the Gaussian
Process had very small ranges between the predicated and the second highest confidence.
The Support Vector Machine had the highest confidence of all tested classifiers. It also had
the highest margin among them.

Since there is no ground truth for the classification of the scientific articles, it is hard
to assess this experiment. Hence, we want to test methods that reduce the impact of the
unknown ground truth. Our idea is to use interpolation between annotations using public
alternatives to GPT-2 and GPT-3 networks that are available to use in local code. When the
GPT-4 will release, we want to try this transformer as well. GPT (Generative Pre-trained
Transformer) [64] stands for a set of pre-trained language models developed by the OpenAI
group. The transformers can be used to tackle specific language-related tasks, as they
have been trained with a large dataset of textual information. The BERT has been trained
with book data and wiki data containing over 3.3 billion tokens. Thus, BERT is popular in
natural language understanding tasks such as text classification. However, BERT, being a
masked language model, can only learn a contextual representation of words. Therefore, it
cannot organize or generate language, rendering it unsuitable for concept-generation tasks.
The GPT is an autoregressive language model that is trained to predict the next word based
on all previous words.

In the following experiments, it is desirable to try more different transformers. We
want also to gain information from ANNs related to learning. The main direction of our
research is to extend and integrate existing ontologies. Our plan contains also the usage of
graph neural networks (GNNs) to apply them in the representation learning of ontologies.
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CHEBI Chemical Entities of Biological Interest
CHMO Chemical Methods Ontology
KNN K Nearest Neighbors
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
NCBO National Center for Biomedical Ontology
NCIT National Cancer Institute Thesaurus
OWL Web Ontology Language
PDF Portable Document File
RDF Resource Description Framework
RF Random Forest
SBO System Biology Ontology
SVM Support Vector Machine
TF-IDF Term Frequency – Inverse Document Frequency
TN True Negative
TP True Positive
XML Extensible Markup Language
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