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ABSTRACT 

Micro Aerial Vehicles (MAVs) are popular for their efficiency, agility, and lightweights. They can 

navigate in dynamic environments that cannot be accessed by humans or traditional aircraft. These 

MAVs rely on GPS and it will be difficult for GPS-denied areas where it is obstructed by buildings 

and other obstacles.  Simultaneous Localization and Mapping (SLAM) in an unknown environment 

can solve the aforementioned problems faced by flying robots.  A rotation and scale invariant visual-

based solution, oriented fast and rotated brief (ORB-SLAM) is one of the best solutions for 

localization and mapping using monocular vision. 

 

In this paper, an ORB-SLAM3 has been used to carry out the research on localizing micro-aerial 

vehicle Tello and mapping an unknown environment.  The effectiveness of ORB-SLAM3 was tested 

in a variety of indoor environments.   An integrated adaptive controller was used for an autonomous 

flight that used the 3D map, produced by ORB-SLAM3 and our proposed novel technique for robust 

initialization of the SLAM system during flight.  The results show that ORB-SLAM3 can provide 

accurate localization and mapping for flying robots, even in challenging scenarios with fast motion, 

large camera movements, and dynamic environments.  Furthermore, our results show that the 

proposed system is capable of navigating and mapping challenging indoor situations. 
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vehicles; oriented fast and rotated brief (ORB-SLAM); flying robots; feature extraction; visual 

odometry; object recognition. 

 

Cite as: Saira Khan, Abdul Basit. (2023). Vision-Based Monocular SLAM in Micro Aerial Vehicle. 

LC International Journal of STEM (ISSN: 2708-7123), 4(1), 41–51. 

https://doi.org/10.5281/zenodo.8200317  
 

INTRODUCTION 

 

Quadrocopters or micro helicopters are grasping the attention of people for their agility and efficiency. 

These are used widely in applications such as aerial photography, surveillance and reconnaissance, 

environmental monitoring, disaster response, and search and rescue operations. Though MAVs are 

getting popularity because of their advanced features, trilling performance, versatility, and mobility in 

all search and rescue operations in every environment. 

 

Micro aerial vehicles (MAVs) are small unmanned aerial vehicles (UAVs) that are basically designed 

to fly in close proximity to objects and navigate in environments that are difficult to access by human 

beings and by traditional aircraft. MAVs weigh less than 1 kilogram and have a wingspan of less than 

50 centimeters.  They still struggle for autonomous flights in GPS-denied environments. 
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MAVs need built-in maps [1] in environments where GPS is denied, unstructured, and unknown. This 

problem can be solved by simultaneous localization and mapping (SLAM).  Robots and drones can 

operate autonomously in uncharted and chaotic situations without human supervision, thanks to SLAM. 

Without SLAM, a robot or drone would need to already have a map of its surroundings and be aware 

of where it is in relation to that map in order to navigate successfully.  A pre-existing map cannot be 

made or is impractical in many real-world situations, such as disaster areas or space exploration. 

 

Oriented FAST and rotated BRIEF (ORB) SLAM is a visual simultaneous localization and mapping 

(SLAM) system, used in the field of Robotics and computer vision applications. It is a library with 

open source that provides a real-time 3D mapping of the environment with a single RGB camera. The 

ORB SLAM algorithm finds and matches locations in successive frames of a video stream using ORB 

characteristics. It then optimizes a 3D point cloud of the seen image utilizing bundle adjustment 

algorithms to determine the camera’s position and orientation in that environment (see Fig. 1). 

Figure 1: Micro aerial vehicle (MAV) Tello with visual sensor and odometry 

for the localization and mapping. 

 

In the rest of the paper, the related work is discussed in Section II, in Section III the details of the 

proposed system are presented. The experimental setup and the results are drafted in Section IV. Finally, 

the conclusion of the manuscript is given in Section V. 

 

LITERATURE REVIEW 

 

In this section, we detail the existing technologies present in the visual monocular SLAM. 

 

Mur et al. [2] made the initial presentation of ORB-SLAM. The authors suggested a monocular SLAM 

algorithm that employs real-time bundle adjustment techniques for optimization together with ORB 

(Oriented FAST and Rotated BRIEF) features for feature recognition and description. It has been 

demonstrated that the algorithm works well in both indoor and outdoor settings. 

 

Wang et al. [3] used a monocular camera to introduce a different visual SLAM approach with dense 

planar reconstruction. This approach exploits planar template-based trackers for computing camera 

poses and reconstructing maps. The authors focused on three areas: depending on heterogeneous 
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information like key points etc, the second area is about deep learning segments and detection of planar 

regions, and the third area is exploiting planar maps for relocalization. 

Mur et al. [4] introduced ORB-SLAM2, an improved version of ORB-SLAM that can handle multiple 

types of cameras, including monocular, stereo, and RGB-D cameras.  This system operates in real time 

with the capabilities of loop closing and re-localization. It works efficiently in both indoor and outdoor 

environments. 

 

Campos et al. [5] presented the first system presented, known as ORB-SLAM3 which is characterized 

as being able to use monocular, stereo, and RGB-D cameras with pin-hole and fisheye lens models to 

carry out visual, visual-inertial, and multi-map SLAM. One of the key innovations is a feature-based, 

tightly integrated visual-inertial SLAM system that solely depends on Maximum-a-Posteriori (MAP) 

estimation during the setup of the IMU (inertial measurement unit). The multiple map system uses a 

ground-breaking place recognition method with improved memory. ORB-SLAM3 generates a new map 

which is then combined with earlier maps when the mapped area is revisited. This allows ORB-SLAM3 

to live for a prolonged duration of insufficient visual input. 

 

Martine et al. [6] discussed various methods for estimating 6D camera posture meanwhile creating a 

3D map of the observed scene. The method was based on visual signals and is known as a novel visual 

simultaneous localization and mapping (SLAM) system. A binary descriptor ORB was used in this 

method, often referred to as ORB-SLAM, for all visual tasks such as feature matching, re-localization, 

and loop closure. Moreover, ORB-SLAM combines graph-based global bundle updating with local 

updates to enable scaled map construction 

without sacrificing real-time speed. The author described how to execute autonomous flight in a low-

cost micro aerial vehicle using ORB-SLAM as a visual positioning system to supply 

pitch, roll, and yaw commands to a PD controller. 

 

Zhao et al. [7] chose the features that were crucial for posture VSLAM’s estimation. In contrast to 

traditional feature selection works that focus primarily on efficiency, the author significantly improved 

posture tracking accuracy while adding little overhead. They offered the Max-logDet metric, which 

connected to the conditioning of least squares pose optimization problem, to do this by directing the 

feature selection.  A cutting-edge visual SLAM system that incorporates Max-logDet feature selection 

saw accuracy gains with no additional overhead. 

 

Chen et al. [8] suggested that visual simultaneous localization and mapping and multi-rotor unmanned 

aerial vehicle navigation in an unknown environment have achieved fame in research and training. Yet, 

because of its complex hardware setup, safety concerns, and battery constraints, rigorous physical 

testing can cost high and time-consuming. Before field trials, alternative techniques like simulation 

tools make testing and validating algorithms simpler. The authors provided a simulation solution for 

the UAV VSLAM and navigation inquiry that was fully configured for the ROS-Gazebo-PX4 simulator. 

A selection of localization, mapping, and path-planning software was also included in the simulation 

platform. Many factors, including intricate settings and onboard sensors, can simultaneously affect the 

navigation framework in simulation. 

 

Engel et al. [9] used featureless monocular SLAM. The model created extensive maps that were 

persistent. They provided precise pose estimates for key-frames and generated a 3D environment for 

them in real-time, along with semi-dense depth maps. The two improvements they produced are as 

follows: the first was a direct tracking methodology that used a sim to detect scale drift, and the second 

incorporated the impact of noisy depth values into tracking. A CPU powered the resulting real-time 

direct monocular SLAM system. 
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Chappellet et al. [10] evaluated the accuracy and dependability of some camera types’ localization in 

VSLAM. The current Open VSLAM framework is suggested for use with this methodology. Due to its 

adaptability, it may be used with various cameras, including fish-eye and 360-degree monocular or 

stereoscopic cameras using RGB or RGB-D approaches. Each camera’s output varies a little bit from 

the others. The lowest localization rate and greatest precision were demonstrated by RGB-D vision. The 

stereo-fisheye camera supports localization rates and precision for both RGB-D and 360-degree vision. 

 

Yang et al. [11] demonstrated a simultaneous localization and mapping (SLAM) system that made use 

of numerous cameras to provide reliable posture tracking of any micro aerial vehicle (MAV) in a 

challenging environment. Pose tracking and map improvement were examined in many cameras of 

VSLAM. In order to guarantee precise optimization, an analysis was performed. The final 

implementation of a known monocular VSLAM was claimed improved by using two cameras with non-

overlapping fields of view (FoVs). 

 

A VSLAM system makes MAVs autonomous navigation in an unknown environment. This idea can be 

successfully implemented in configuring multi-camera situations with onboard computational 

capability. In large environments’ operations, visual SLAM can be modified to a constant-time robust 

visual odometry. 

 

Lv et al. [12] designed the ORB-SLAM technique to track the robot’s location and provided rich 3D 

reconstruction while the robot is exploring the area in real-time. The method successfully estimated the 

camera positions and built a sparse 3D map of the environment based on photographs. Yet, the scanty 

chart was useless for either navigating or avoiding obstacles. By using octrees and probabilistic 

occupancy estimates to improve ORB-mapping SLAM, the author was able to produce 3D 

reconstructions that might be used in the robot industry. Benchmark datasets are used to illustrate this 

method’s effectiveness. Finally, studies show that when the enlarged SLAM system is used with a 

portable Kinect 2.0, the camera position is accurately monitored and an automap is produced in real-

time. 

 

Steder et al. [13] employed flying objects to concentrate on learning a visual map of the ground. The 

researcher assumed that the vehicles had one or two inexpensive downward-facing cameras working in 

tandem with an attitude sensor. This created a visual map to be used for navigation. One of the benefits 

of this approach was being relatively simple to implement, effectively handling noisy camera images, 

and working with either a monocular camera or a stereo camera system. It made use of visual features 

and a PROSAC algorithm variation to estimate the correspondences between features. Graph 

approaches are to solve the SLAM problem, which extracts spatial constraints between camera postures. 

It also deals with the issue of effectively locating loop closures. The author conducted a number of 

flying vehicle studies that show our technology can create maps of both huge outdoor and inside 

settings. 

 

Celik et al. [14] utilized the architectural orthogonality of the indoor environment, The authors 

developed a novel monocular camera-based indoor navigation and range technique to estimate range 

and vehicle states from a monocular camera for vision-based SLAM. The navigation approach assumed 

a previously unidentified interior or indoor-like man-made environment, one that is not GPS-enabled 

and may be represented by straight architectural lines and energy-based feature points. The research 

experimentally evaluated the proposed methods using a completely self-contained micro aerial vehicle 

(MAV) with robust onboard image processing and SLAM capabilities. It built and outfitted a tiny aerial 



Logical Creations Education Research Institute 

LC INTERNATIONAL JOURNAL OF STEM 

E-ISSN: 2708-7123 

Web: www.lcjstem.com | Email: editor@lcjstem.com 

Volume-04 | Issue-01 | March-2023 
 

 

Published by Logical Creations Education Research Institute. www.lceri.net  
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0) 

45 

 

vehicle to fly in limited locations, especially when GPS signals weren’t there and there weren’t many 

sensor choices available. 

 

Chen et al. [8] suggested that the surrounding texture of scenes is low or repeated when mobile robots 

are operating in indoor unknown locations. Due to the tendency of robots to wander back and forth 

within a small space, it is difficult to assess their poses, and picture details are readily lost when tracking 

them. To address such tracking challenges, authors proposed a one-circle feature-matching approach, 

also known as a series of circle matching for the time after space (STCM), and an STCM-based visual-

inertial simultaneous localization and mapping (STCM-SLAM) method. This approach improved the 

indoor pose prediction of the mobile robot by tightly linking the stereo camera and the inertial 

measurement unit (IMU). Visual characteristics are tracked using optical flow in both directions. The 

absolute accuracy and relative accuracy of STCM are both 129.167 percent and 37.869 percent higher 

than that of correlation flow, respectively. In terms of scale error, operating frequency, and CPU load, 

their investigations show that STCM-SLAM performs significantly better than the OKVIS technique. 

 

Ozbek et al. [15] concentrated on maintaining airplane navigation in situations where GPS is not 

available. The two best-known algorithms in the literature for visual-inertial navigation systems, VINS-

Mono and ORB-SLAM3, were evaluated and their performances were compared. 

 

Dissanayake et al. [16] presented the structure of SLAM. According to the author estimating map 

convergence to any relative map is developed with zero certainty, where the exact accuracy of the map 

and location of the vehicle is shown and the Vehicle location reaching to lower bound is explained with 

vehicle initial uncertainty. According to these results, autonomous vehicles can start moving in an 

unknown location. By the use of relative observations, it builds a world map and simultaneously 

computes bounded estimation of the location of the vehicle. 

 

They also discussed the significance of the algorithm implementation on vehicles moving in an 

environment that is outdoor by using Millimeter Wave (MMW) radar to provide map’s relative 

observations. By implementing this, main issues for example map management and data association are 

tackled in an outdoor environment. Outputs are then compared with the locations of the map which are 

gained by surveying. 

 

SYSTEM OVERVIEW 

 

For flying robots, hardware and software setup depend on the specific application and platform. Some 

general guidelines are here: 

● A flight controller is needed for stabilizing the drone, controlling its movements, and reading 

sensor data.   

● ORB SLAM requires a camera to capture images of the environment, which it uses to 

estimate the drone’s position and orientation. A popular drone used in our research is the DJI 

Tello with an onboard nose-mounted camera. 

● For communicating with the ground station or other devices during flight, the drone uses 

wireless communication modules such as WiFi or Bluetooth to achieve this.  

● Flying robots require a reliable and powerful battery and power distribution system to operate 

efficiently.  

● We need an onboard computer with enough processing power to run the algorithm in real time. 

The system’s specifications for the computer are AMD A10 quad-core  processor with 4GB in 

RAM. Ubuntu and ROS (Robot Operating System).  See Fig. 2 for the details of the system. 
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Initialization 

For initializing ORB SLAM, the robot should be moved around in the environment to capture images 

or extract features from different viewpoints. The algorithm will then use these images to estimate the 

initial position and orientation of the robot, as well as the features in the environment. 

 

Feature Detection and Matching 
ORB SLAM works by detecting and matching features in the images captured by the camera(s). This 

process involves identifying key points and descriptors in images, which are used to track the robot’s 

position and build the environment’s map. The algorithm uses the ORB (Oriented FAST and Rotated 

BRIEF) feature detector and descriptor, designed to be fast and robust. 

 
Fig. 2. An overview of the proposed ORB SLAM 3 algorithm for the micro aerial vehicle Tello. 

 

Camera Tracking 
Once the algorithm has been initialized, it will track the robot’s position and orientation in real time as 

it moves around the environment. This involves continuously detecting and matching features in the 

images captured by the camera(s), and updating the position of the robot and the environment’s map 

accordingly. 

 

Map Building 

For loop detection and re-localization, our system uses bags of words place recognition module 

(DBoW2). Visual words are a sampling of descriptor space called Visual vocabulary or 

codebook which is a key component of the bags-of-words (BoW) approach used for image 

classification, object recognition, and place recognition. Visual vocabulary is the set of visual 

words or visual features that are extracted from a large collection of images with ORB 

descriptors and used to represent images as histograms of visual words. 

The process of building a visual vocabulary involves several steps. First, a large collection of 

images is acquired and pre-processed to extract visual features, such as ORB descriptors. 

Second, a database will be built with an inverted index to store visual words in the vocabulary 

and the already-seen frames. It will make database access very quick. The culling procedure 

will be used to update the database. 
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Loop Closing 

For a flying robot, loop closing in ORB SLAM 3 is essential for simultaneous localization and 

mapping (SLAM). Recognizing previously visited areas and adjusting the robot’s predicted 

trajectory are required for loop closing. The bag-of-words method, in which images are 

described as histograms of visual words, is used in ORB SLAM 3 to close loops. The current 

image’s and earlier photos’ histograms are compared to determine the order to discover the 

best match, the histograms of the current image and earlier images are compared. If the match 

is strong enough, the algorithm takes the likelihood of a loop closure into consideration. 

 

Due to the flying robot’s high-speed movement and the environment’s quick changes, loop 

closing can be difficult. The ORB SLAM 3 algorithm attempts to correct the motion blur 

brought on by the camera’s movement by taking into account the robot’s motion model. The 

Loop Closure consists of two steps: it first starts the Loop Detection step and then it does the 

Loop Closure. Despite of sensors’ accurate information and reliability of the odometry and 

mapping algorithm, noise and approximation introduce errors into the pose and map estimation 

process.The Loop Closure corrects the errors. The main large classes of ORB SLAM are 

Bundle Adjustment (BA) methods and filter methods. 
 

Map Optimization 

In order to reduce the reprojection inaccuracy of the observed features, ORB SLAM uses 

bundle adjustment techniques to optimize the camera positions and the 3D map. 
 

Localization 

When tracking fails, a reliable SLAM system has to localize the camera again. By using a 

proper motion model, ORB-SLAM3 resolves the relocalization problem. The algorithm must 

be accurately modeled because the motion of a flying robot is more complex than that of 

ground-based robots since it occurs in three dimensions. The sensor setup is another crucial 

element.  Several sensors, including cameras, lidars, and IMUs, are frequently found on flying 

robots and can be used for localization. The ORB SLAM algorithm’s accuracy and robustness 

can be increased by integrating these sensors and fusing the data they produce. In addition, the 

flying robot’s size and speed need to be considered. The algorithm must be tuned to manage 

the robot’s rapid movements while preserving precision and consistency. Using the well-

known SLAM dataset EuRoC, the localization accuracy of visual SLAM and visual-inertial 

SLAM approaches has been evaluated. Even though it was gathered using a micro-aerial 

vehicle, we came to the conclusion that this dataset is the best option for comparing STCM-

SLAM, ORB-SLAM2, and OKVIS. The stereo camera photos, IMU data, and actual robot 

motions are all included in the package. 

 

EXPERIMENTS AND RESULTS 

 

We used a Tello drone for our research where we did experiments by letting our drone fly  autonomously 

in an indoor environment. We also set coordinates (x, y, z) for the purpose of teaching and repeating 

the approach. We use the IMU sensor in conjunction with ORB-SLAM 3 algorithms to estimate the 
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pose (position and orientation) of the robot in real time. It gives us information on the linear acceleration 

and angular velocity of the robot, which helps in predicting the robot’s motion and updates the ORB-

SLAM 3 algorithm. 

 

Fig.4 indicates that we first selected an indoor environment, then took tello with a front-facing camera 

to move in that particular environment and extract features of that environment. The green squares that 

can be seen on the map are basically the features of that environment. That is used for feature-based 

extraction. 

 

We have chosen different indoor environments to test our algorithm. Our flying robot works wonders 

in every indoor environment and extracts features of that environment in a great manner. Indoor 

environments consist of classrooms, libraries, and departments and we have also used the EuroC 

dataset. 

 

Experiment I: Feature Extraction 

In experiment I, We have used Tello with the capability of the front-facing camera which is to create a 

3D map of the environment in real-time through feature extraction, Keyframes are allocated via the 

server, and a local map is created. Tello is used for extracting features. When Tello takes off or starts 

its flight, it moves in the environment and when moves forward, objects that it finds, it saves as key 

frames and it continues doing this till it reaches its destination. Green squares which are visible in our 

map are basically the keyframes. 

 

In the first map, the drone moved in an indoor scenario with coordinates alright set, and it moved in a 

specified path and extracted features (see Fig. 3-(a)). 

 

Fig. 3-(b) shows a straight autonomous flight where the MAV moved in a straight trajectory, where it 

went forward and extracted features of that area, and then the controller stored them which identified 

the pose of the MAV and features of the environment in real-time. The flight time was 45 seconds. Fig. 

3-(c) shows that MAV moved in a corridor or in a small indoor environment and extracted its features 

and keyframe matching. It also created a map of the environment. 

 

In Fig. 3-(d) MAV moved into a small and feature-rich area, it moved in that area and extracted its 

features, and stored them in the map. Additionally, We also used the standard dataset EuroC, TUM, and 

Bags of Words to examine the feature extraction of the proposed method. 

 
 

Fig. 3. An overview of the proposed ORB SLAM 3 algorithm for the micro 

Experiment II: Flight with Various Trajectories 
We have generated simple and challenging trajectories using the micro flying robot Tello. For 

the custom map, we used the department’s indoor environment and generated simple and 

complex trajectories to test the robustness of the proposed ORB SLAM 3 method. In the first 
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path, the robot moved in a straight path generating a feature map and odometry readings, see 

Fig. 4-(a). 

 

In Fig. 4-(a) the micro-ariel vehicle moved on the straight path. Making trajectory by extracting 

features of a straight path. Whereas in Fig. 4-(b) it is a loop closure scenario, Tello 

moved in an area and collected keyframes when it revisited the same area, it found the same 

keyframes. Fig. 4-(c), MAV moved in a corridor where the flying robot had random or 

autonomous trajectories. These key frames are stored in its database. In Fig. 4-(d) a dataset 

EuroC Visual-Inertial and Bags of Words were used to generate the map and drone’s trajectory 

in its autonomous flight in real times in a traversed trajectory. When the EuroC dataset is 

applied to our proposed algorithm, it will detect all the keyframes correctly generate a map, 

and read all points successfully. 

 

Here, Multiple colors are visible in our 3D map with different representations. The green color 

in our map shows the autonomous flight of the Tello device, which means Tello’s flight is 

represented by green color. The blue color is to show the target’s or our flying robot’s 

trajectory. The red color shows waypoints and the Black color is used to show MAV’s start 

position. 

 
Fig. 3. An overview of the proposed ORB SLAM 3 algorithm for the micro 

sExperiment III: Various Dataset Used for Experiments 

We have used the EUROC dataset, Bundle Adjustment (BA), and Bags of words(DBoW) in ORB-

SLAM3 algorithm with IMU to estimate camera pose and localization, loop closure, and tracking and 

mapping. A ground station was assigned to PC.  We have shown the results of the creation of a 3D map 

and recording of the waypoints from this traversed trajectory at the mapping stage. 

 
Table 1: Accuracy test: Experiment for testing the accuracy of the proposed method 

Chapters # of Vehicles True Positive 

(TP)  

False Positive 

(FP) 

Video set I 40 38 4 
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Video set II 35 32 5 

Video set III 30 25 3 

CONCLUSION  

 

We have used ORB SLAM 3 for our DJI Tello drone with the onboard frontal camera used as a sensor 

to give us the images of any unknown indoor or outdoor environment. Our quadrocopter was allowed 

to navigate any dynamic environment either by giving it instruction through setting its coordinates’ 

values where it could move around those coordinates and it could fly high by controlling it manually. 

Or we left it for autonomous flight in any setting. ORB SLAM 3 gave its flight a robust initialization 

which resulted in accurate localization and mapping. Our proposed method has the capability to 

estimate the 6D positions of a monocular camera. 

 

We also needed Bluetooth or wifi to connect our UAV with the controller. For getting imagery from 

MAV and communicating with our robot, the Robot Operating System (ROS) has been used with its 

complete packages. For map building and tracking we used Bags of Words (BoW), which created visual 

vocabulary consisting of visual features of surroundings. We used the Loop closure technique to enable 

our system to recognize already visited areas and adjust them with the trajectory. 
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