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Abstract 

A system for animating the execution of eleven specific Pascal programs was devel-

oped to help students acquire programming knowledge. The system, called EPAS 

(Experimental Program Animation System), contains an animation module for de-

picting run-time stack activity. In addition EPAS contains a tutorial module for 

instructional purposes. Compilation modules were also incorporated into EPAS be-

cause it is a prototype for a complete program animator that could accept any Pascal 

program as input. 

The animation module depicts data manipulations within a run-time stack. Data 

are manipulated in accordance with the statements in an executing program. The 

stack is represented by a consecutive set of rectangles. Each rectangular cell rep-

resents one variable in which a name and a value appear. Cells are highlighted to 

depict memory read and write operations. Arrows are displayed on a temporary ba-

sis to depict value parameter passing. In contrast, arrows showing the links between 

formal and actual variable parameters remain on the screen until the links are broken 

by subroutine termination. Stack events are executed only at the user's request. In 

addition, the user can adjust the pace at which cells are accessed. 

The tutorial module presents instruction, provides opportunities for practice and 

then tests the learner. All of these tutorial features are based on program animations 

that manipulate arrays, value parameters, or variable parameters. As an example 

program is animated, stack cells of particular importance are identified. During 

practice and testing program animations, the user is directed to identify specific 

cells. Feedback is provided after all attempts to identify cells. 
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A scanner, a parser and symbol table generation routines comprise the compi-

lation modules. Thus, only type checking and code generation routines would have 

to be added to EPAS to make it a complete compiler. The compilation modules 

were incorporated into EPAS for enhancement purposes only. EPAS could bypass 

the compilation modules and still animate the eleven input programs. 

To test the viability of EPAS, a small study was conducted. Eight students 

with little computing and programming experience first viewed two introductory 

program animations. Then the students advanced through three sets of program 

animations. The program animation sets pertained to arrays, value parameters and 

variable parameters. Each set contained an example, practice and quiz program 

animation. During the practice and testing animations, tallies were kept to monitor 

the number of correctly identified stack cells. 

The results of the study showed that the students, on average, correctly identified 

stack cells more than seventy-five percent of the time on the three quiz programs. 

For the purposes of this study, that level of achievement was viewed as mastery. 

Data pertaining to the reverse execution feature in EPAS were also collected and 

analyzed. Given the encouraging results, it was suggested that EPAS be enhanced 

to the point of a complete program animator. Specific techniques for achieving that 

objective are discussed. 
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Chapter 1 

Introduction 

1.1 Background to the Problem 

This study pertains to the acquisition and application of computer programming 

skills. Of particular concern is a system that could help students gain specific pro-

gramming knowledge. Analyzing how that system could be enhanced to benefit 

experienced programmers is also important. Before examining these issues, which 

pertain to contemporary approaches to writing software, it will be useful to gain an 

appreciation for the techniques developed in the past. Thus a discussion about the 

history of software development follows. 

Beginning about 1834 Charles Babbage worked at developing a new type of calcu-

lating machine. The new machine, called the analytical engine, was designed to per-

form operations specified in an external program. According to Williams (1985), cal-

culating machines were programmed using some semblance of instructions punched 

on a paper tape or by intricate hardwired connections. The instructions for the ana-

lytical engine were stored on paper cards. With respect to programming those types 

of machines, Knuth and Pardo (1980, p. 200) noted: "Example programs written for 

early computing devices, such as those for Babbage's calculating machine, were nat-

urally presented in machine language rather than in a true programming language." 

Example programs for Babbage's machine can be found in Knuth and Pardo (1980, 

p. 200) and Williams ( 1985, pp. 189-190). 

1 
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The realization of the stored program concept (i.e., the storage of instructions 

in the memory of a computer) in the early part of 1944 altered the development of 

software considerably. In particular, the use of stored program computers increased 

the pace with which software was developed. The mathematician, John von Neu-

mann is often credited with advancing the notion of the stored program concept. 

However, the identity of the true developer is vigorously contested. In fact, Williams 

(1985, p. 298) stated: "The question of who actually invented the concept of the 

stored program has caused more controversy than perhaps any other in the history 

of computing science." 

It is still possible to program modern computers in machine language. When do-

ing so a programmer specifies instructions that directly manipulate hardware devices. 

For example, the devices altered could be a register in the central processing unit or 

a byte of random access memory. Presently though, machine code is rarely written 

because that style of programming requires knowledge about a computer's architec-

ture and the necessity to memorize or look-up the numeric codes that correspond to 

its instructions, among other skills. 

Various modifications were made to machine languages in an attempt to ease 

the programming burden. For example, Eckhouse and Morris ( 1979, p. 17) noted: 

"To simplify the process of writing or reading a [machine language] program, each 

instruction is often represented by a simple two- to five-letter mnemonic symbol." 

In keeping with this approach, the mnemonic symbol LDA might be used in place 

of a number to indicate an instruction that loads a value into a register. 

Given this enhancement a programmer can use letters and numbers to specify 

instructions that indicate the type of operation to be performed. Writing these types 
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of instructions and using techniques such as labeling, for the automatic calculation 

of offsets, is called assembly language programming. Writing assembly language in-

structions relieves the programmer from the burden of memorizing or looking up 

codes. However the instructions must still manipulate hardware devices directly. 

Consequently, assembly language code is also rarely written today. Note that ma-

chine and assembly languages are often referred to as low-level languages, or ones 

that operate on a concrete level, since they directly alter hardware devices (see for 

example, Lafore, 1984, pp. 14-15). 

The next step in software developmçnt decreased the extent to which a computer's 

architecture had to be learned. In 1951 Arthur W. Burks showed how machine code 

could be represented at a higher level of abstraction. For example, he introduced the 

notion of an assignment statement in which a variable, not a particular register or 

byte of memory, is given a value. Thus some computations could be specified without 

reference to hardware devices. Knuth and Pardo (1980) referred to this algorithm 

specification notation as an intermediate programming language. 

Subsequently, the machine independence goal was fully realized when compilers 

for high-level languages were developed. According to Knuth and Pardo (1980, p. 

242), "[The 'Formula Translator' (Fortran) compiler] is the earliest high-level lan-

guage that is still in use." It was first released in April, 1957. (Incidentally, like 

some contemporary software, it was delivered later than expected and did not work 

particularly well.) The first Fortran compiler did not actually achieve full machine 

independence. In fact, Knuth and Pardo ( 1980) stated that the developers of For-

tran did not perceive that as a primary goal, although they certainly recognized its 

importance. 
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Today, fully machine independent programming languages are available. Pro-

grams written in Basic, Pascal, PL/1 and other high-level languages seldom refer-

ence hardware components. With respect to existing high-level language transla-

tors, Fischer and LeBlanc ( 1988) stated: "A compiler allows most (indeed, virtually 

all) computer users to ignore the machine-dependant details of machine language." 

Consequently, rather than controlling the flow of data through hardware devices, 

programmers of this day use abstract processes to manipulate data in entities such 

as arrays or records or even more complex structures. 

1.2 Statement of the Problem 

The development of high-level programming languages is . valuable, especially given 

that the variety of computers is growing rapidly. However, the realization of machine 

independent " languages has merely shifted the programming burden. Rather than 

attending to details about, a particular machine, programmers must be concerned 

about manipulating abstract data entities. 

Such manipulations can be perplexing. For instance, Brad A. Myers (1989, p. 3) 

stated: "It is well known that conventional programming languages are difficult to 

learn and use, requiring skills that many people do not have." Fourteen years earlier 

Harlan D. Mills (1975, p. 43) expressed the difficulty of programming as follows: 

"Computer programming as a practical human activity is some 25 years old. Yet 

computer programming has already posed the greatest intellectual challenge that 

mankind has faced in pure logic and complexity." 

In addition to opinions, an indicator of programming difficulty is the rate at 
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which instructions are written. According to Boehm (1981), one can expect 376 

deliverable source code instructions per person-month for a project of intermediate 

size (approximately 8000 instructions). Assuming twenty working days in a month, 

it follows that programmers can only be expected to write nineteen deliverable in-

structions per day! 

In attempts to make programs more understandable in learning and debugging 

(i.e., error correction) settings, researchers are developing program visualization sys-

tems. According to Baecker (1988, p. 356), "Computer program visualization is the 

use of graphics to enhance the art of program presentation and thereby to facilitate 

the visualization, understanding, and effective use of computer programs by people." 

For this study a new program visualization system was developed by the re-

searcher. Since it is a prototype for a more complete system it is entitled: An Ex-

perimental Program Animation System (EPAS). It simulates and displays run-time 

stack activity. 

A run-time stack is a block of memory that contains the data in a program. When 

a program is executing, the run-time stack is updated as data are manipulated. For 

example when a variable is assigned a value, the new value is written to the run-time 

stack cell assigned to the variable. (For later reference, note that memory cells to 

which values are written are called targets whereas cells from which values are read 

are called sources.) 

Other run-time stack manipulations occur when subroutines are called and exited. 

For instance when a subroutine is activated, the variables local to it are assigned 

memory locations on the run-time stack. Conversely, local variables are removed 

from the stack when the subroutine is terminated. Those activities, and parameter 
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passing, are depicted graphically in EPAS. 

EPAS differs from other program visualization systems in two fundamental ways. 

First, EPAS pays particular attention to run-time 'stack activity. In contrast, dis-

playing changes to data structures is the primary focus of other systems. (A review 

of program visualization systems appears in Chapter 2). The second significant 

difference pertains to the manner in which users view programs. All program visu-

alization systems, including EPAS, allow users to proceed through a program one 

statement at a time. However' EPAS, unlike the other systems, also allows users to 

go backward through a program. In this way statements may be repeated to review 

their consequences. 

Presently, students often learn about the dynamic activities of exècutiiig pro-

grams by viewing static diagrams in textbooks. Contrastingly, EPAS simulates those 

dynamic activities by modifying the run-time stack display. In addition, the run-

time stack modeling feature allows the user to view an abstract data structure, in 

particular the one dimensional array, in a concrete manner'. This is done by depict-

ing how it is stored in memory. These advantages led the researcher to advance the 

following hypothesis. 

After using EPAS, students will be able to identify the target and source 

memory cells referenced in statements that manipulate the following pro-

gramming features: 

1. one-dimensional arrays 

2. value paiameters 

3. variable parameters 
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For the purposes of this study, students were expected to correctly identify target 

and source run-time stack cells seventy-five percent of the time. This percentage of 

accuracy is referred to subsequently as the mastery level. 

To test that hypothesis a small study was conducted. Since EPAS is in a formative 

stage, only eight students participated in the study. Each student used EPAS to 

interact with eleven Pascal program execution simulations. The first two programs 

served to introduce the system. The remaining nine programs were divided into three 

sections, one for each of the programming features cited above. For each section the 

students first viewed an example program. Then they worked at identifying source 

and target cells in a practice program. Lastly, they completed a quiz program. When 

the students finished running EPAS, they completed a questionnaire. 

1.3 Importance of the Study 

The claim that programming languages are difficult to learn and use was supported 

at the start of the previous section. A goal of this research is to reduce that degree 

of difficulty. The goal would be reached if it could be shown that EPAS enables 

students to identify source and target cells of arrays, value parameters and variable 

parameters. 

In addition, if the prototype system is beneficial, pursuing the development of 

an entire program visualization system, complete with compiler and run-time stack 

modeler, would be worthwhile. For instance, if modifications to EPAS could help 

students visualize their programs, tedious debugging tasks may be simplified. In any 

case, such a system would directly address the following concern raised by Plattner 
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and Nievergelt ( 1981, P. 91): 

Monitoring program execution takes up a considerable fraction of a pro-
grammer's time; it is unlikely to decrease in importance, since the insight 
it can provide is complementary to, and cannot be replaced by, that ob-
tained from static analysis of program texts. Hence it is surprising that 
today's commercial software rarely supports execution monitoring well, 
and that no advances comparable to those in the fields of programming 
languages have occurred over the past two decades. 

In the ten years since that comment was made, improvements in program exe-

cution monitoring have certainly been implemented, as will be shown in Chapter 2. 

However, still more advances are sought. Evidence for this exists in the current in-

terest in program visualization systems. Indeed Myers (1989, p. 3) observed: "There 

has been a great interest recently in systems that use graphics to aid in the program-

ming, debugging, and understanding of computer programs." The future viability 

of EPAS is a major concern because an enhanced system may help students in these 

three areas. Technical details describing how EPAS could be enhanced are discussed 

at length in Chapter 5. 

1.4 Scope and Limitations 

The most restrictive aspect of EPAS is that it simulates the execution of precisely 

eleven specific Pascal programs. However, the system is a prototype for one that, 

if completed, could display the run-time stack of any Pascal program. A Pascal 

program would be submitted to the complete system and it would compile the pro-

gram. During compilation it would add run-time stack display code to the machine 

code generated for the submitted program. In fact, the complete system would be a 
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combination compiler and run-time stack modeler. In keeping with that approach, 

EPAS also contains compiling and run-time stack modeling components. EPAS is 

described fully in Chapter 3. 

Introducing students to one dimensional arrays, as EPAS does, substantially in-

creases their potential to manipulate data in a program. For instance by utilizing 

an array, related data can be manipulated in a single structure instead of as dis-

tinct entities. Further, EPAS instructs students in value and variable parameter 

manipulations. 

By using parameters, programmers can control the flow of data within subroutines 

(i.e., procedures and functions). In addition, complex programs can be developed in 

a modular manner by writing self-contained subroutines. Procedures and functions 

that do not reference global variables are said to be self-contained. With respect to 

such procedures, Savitch (1991, p. 146) noted: 

Procedures separate a program into smaller, and hence more manage-
able, pieces. In order to get the full benefit of this decomposition, the 
procedures must be self-contained units that are meaningful outside the 
context of any particular program. 

According to Niklaus Wirth, algorithms and data structures are the two fun-

damental aspects of programming. Evidence for this exists in the title of Wirth's 

(1976) book, Algorithms + Data Structures = Programs. Since EPAS may enhance 

a student's knowledge in both of those two vital aspects of programming, it could 

lead to a significant improvement in the quality of programs written by them. 
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1.5 Summary 

A need to help students acquire programming skills was identified. To address this 

need an experimental program animation system (EPAS) was developed to show that 

run-time stack modeling can help students acquire specific programming knowledge. 

If the system is beneficial, students could use it to understand how one-dimensional 

arrays and value and variable parameters are manipulated. Further, it was noted 

that the prototype could be enhanced for use in both learning and simple debug-

ging settings. The potential to develop EPAS to the point of a complete program 

animation system was described as a major concern. 



Chapter 2 

Review of the Literature 

This review is divided into three sections. First, program visualization systems are 

examined. Second, an analysis of the debuggers from four distinct systems is pre-

sented. Last, the foundation of the tutorial module in EPAS, a specific instructional 

design theory, is discussed. 

2.1 Program Visualization 

There are two types of program visualization systems, program animators and al-

gorithm animators. Ross ( 1991) described program animators as software systems 

that dynamically display their actions during execution. These animators typically 

highlight the statement in a program that is being executed and display the values 

of variables. Note that the system developed for this study is a program animator 

that simulates run-time stack activity. 

After describing progran animators, Ross ( 1991, p. 36) stated: "An algorithm 

animator is a software system similar to a program animator except that the un-

derlying algorithm, rather than the program itself, is the subject of the animation." 

Consequently algorithm animators operate at a more abstract level than program 

animators. For example, an algorithm animator might depict the actions of the 

bubble sort routine by comparing and swapping bars of varying heights (represent-

ing random values) until the bars are in ascending order. Alternatively a program 

11 
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animator would highlight lines of code and show how each statement compares or 

swaps the actual values in an array. When the execution of all statements had been 

depicted, the values in the array would be in ascending order. 

Before examining existing program visualization systems, it will be worthwhile 

to distinguish between program visualization and visual programming. Myers ( 1989, 

p. 4) stated: "Visual programming (VP) refers to any system that allows the user to 

specify a program in a two (or more) dimensional fashion." For example, flowcharts 

(Shu, 1988) or Nassi-Schneiderman diagrams (Nassi & Schneiderman, 1973) could 

be used when engaging in visual programming. Alternatively one could use a vi-

sual programming software system such as PECAN (Reiss, 1985) or MONDRIAN 

(Protsko, Sorenson, Tremblay & Schaefer, 1991). While enhancing the comprehensi-

bility of software is the goal of both visual programming and program visualization, 

these fields differ in that the former is concerned exclusively with generating static 

representations of program flow. In contrast, program visualization systems depict 

program flow dynamically. Only program visualization systems for block structured 

languages are considered beyond this point. 

2.1.1 Algorithm Animators 

A discussion of program visualization systems would be incomplete if either algorithm 

or program animators were excluded. However, algorithm animators are discussed 

only briefly here because they depict programs at a high level of abstraction. In 

contrast, since EPAS is a program animator it depicts algorithms concretely. 

To teach students nine different sorting algorithms, Baecker (1981) developed 

the 16 mm film, Sorting Out Sorting. One method used to depict the dynamic 
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nature of the algorithms involves highlighting and moving rectangular bars. The 

bars vary in size to represent random values, as noted above. Verbal descriptions 

of the algorithms accompany the animations. The use of 16 mm film or video is a 

legitimate approach to algorithm animation. However, this approach is restrictive 

because the animation sequences are suitable for depicting only specific algorithms. 

An instructional software system to simulate the functioning of a microprocessor 

was developed by Gurwitz, Fleming and Van Dam (1981). Specifically, the software 

depicts changes to internal registers, control lines, buses, memory buffers and pe-

ripherals. In this way students can learn algorithmic processes such as handshaking, 

or phrased more technically, asynchronous communication. Again, in this restricted 

approach the animation sequences can only be used to depict specific activities. 

All programmers could animate their code by inserting additional statements 

into their source files. Alternatively the animation sequences could be written in an 

additional file' , compiled separately and called when necessary. Krishnamoorthy and 

Swaminathan ( 1989) took such an approach. They wrote code for a limited number 

of animation primitives such as 'blink an object' and 'move an object horizontally.' 

The primitives were compiled separately in a Turbo Pascal (Borland, 1988) unit 

file. Calls to the primitive routines were then placed in existing source files. This 

approach is not as restrictive as the previous two methods because the primitives 

can be used for any algorithm. However, the original source code must be altered 

extensively by calls to the primitive routines. Also, it is unlikely that one set of 

animation primitives could be developed to the satisfaction of all programmers. 

One of the most sophisticated algorithm animators is BALSA- II (Brown, 1988). 

It was derived directly from the original BALSA (Brown & Sedgewick, 1984). Un-
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fortunately a considerable programming effort is still required to create BALSA 

animations. However, they allow the user substantial flexibility. Also, the original 

algorithm is largely unchanged. Only a few calls to the animation routines, at so-

called interesting events, are necessary. For example, an interesting event could be a 

swap in a sorting routine or a node insertion in a tree balancing algorithm. It is up 

to the developer to decide what constitutes an interesting event. Lastly, note that 

BALSA is a flexible system because virtually any algorithm can be animated. 

Two other systems of note, an unnamed system by London and Duisberg ( 1985) 

and TANGO (Stasko, 1990) also utilize the interesting event approach. Both of 

these systems contain modules that communicate by message passing. For example, 

the program module may send a message to the animator module indicating that 

an interesting event has occurred in a tree. In turn, the animator module may 

send a message to the display module to remove a tree node. Again, a significant 

programming effort is required to create animations with these systems. However, 

as in BALSA, these systems can be used to animate diverse algorithms. Table 2.1 

contains a summary of the algorithm animators cited above. 

2.1.2 Program Monitors and Animators 

As defined in Section 1.2, visualization systems, such as program animators, must use 

graphics to depict execution. However some researchers have developed strictly tex-

tual displays for viewing program execution, as discussed below. The term, program 

monitor will be used to describe a software tool that uses this approach. 

Two of the earliest program monitors were developed by Baecker ( 1975) to view 

Logo and PL/1 code. The displays generated by the monitors were actually used 
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Table 2.1: Algorithm Animators 

Identification Scope Approach Purpose Year 
Sorting out Sorting Restricted 16 mm film Instruction 1981 
MIDAS Restricted Software Instruction 1981 
BALSA I Open Software Instruction 1984 
London and Duisberg Open Software Design 1985 

Development 
Testing 

BALSA II Open Software Instruction 1989 
Primitives Open Software Instruction 1989 
TANGO Open Software Instruction 1990 

to facilitate the development of instructional films. The work involved enhancing 

interpreters for subsets of Logo and PL/1 so that they also translated an anima-

tion control language. Displays were generated as the programs, supplemented with 

statements to control monitoring, were interpreted. It should be noted that while 

the mini-PL/1 interpreter generated text predominately, it could also display a circle 

and a rectangle. Nevertheless it generated rather rudimentary displays. In part, this 

was due to the state of computing at that time. 

All programs could be monitored by inserting output statements after each line 

of code. Each output statement would contain the previous source statement and all 

the variables that change as a result of executing it. Hille and Higginbottom (1983) 

wrote a UNIX shell program to automate that process for Pascal code. To describe 

how their system functions, the developers (pp. 76-77) stated: "Source statements 

are displayed by inserting them together with their line numbers as strings into 

writein statements. Other writeln statements for additional information are assem-

bled in similar fashion. Breakpoints are set by inserting readln statements." This 
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system exemplifies an uncomplicated approach to program monitoring. Indeed the 

developers (p. 76) noted: "It took one of us two weeks to design, implement and 

debug the entire system." 

Amenda (1990), as part of an undergraduate research project, also, developed a 

pre-processor system for monitoring Pascal program execution. Consequently this 

system, like the previous one, augments an input program file by adding more Pascal 

code. In this case, though, the additional statements are calls to subroutines that 

display data in a window environment. 

In particular, each window is divided into two parts. The top section contains the 

variables local to a subroutine or in the main program. The lower section contains the 

line of code presently being executed. Each time a subroutine is called, a w, indow 

is created. The variables are updated when parameters are passed and when an 

assignment statement is executed. 

This system was included among the program monitors even though it is called 

the Graphical Pascal Execution Model. Rectangular boxes and arrows are used 

to create windows with scroll bars. However, the windows are the only graphical 

component of the system. All data appearing in the windows are composed of 

characters. 

DYNAMOD (Ross, 1991) is a program animator that was designed to assist in-

troductory Pascal programming students. The system contains a library of animated 

programs. All of the programs display code, values of variables, output and a run-

ning count of the statements executed. As users step through an animated program, 

the values of all active variables and data structures are displayed on the screen. 

While users of this system must work within a simple interface and are limited 
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to monitoring only the programs in its library, most of them believe it is valuable. 

Ross ( 1991, p. 39) reported the results of a survey to support that contention. For ex-

ample, 92% of the respondents replied affirmatively (8% negatively) to the question: 

"Has DYNAMOD helped you understand better how to visualize program execution 

dynamics?" 

The PV prototype system (Brown, Caning, Herot, Kramlich & Souza, 1985) 

and FIELD (Reiss, 1990a) also support the use of graphics to view data structures 

during program execution. Users of both systems can step through the statements 

of C programs. The code and data are displayed in separate windows. 

Unlike many of the previous systems, graphical statements are not inserted into 

programs to view execution in the PV system. Instead a technique called, binding 

is utilized to map diagrams to variables. For example a programmer could create a 

rectangle and divide it into various sections by inserting lines. Then, by making ap-

propriate menu selections, the programmer could map that diagram to a C structure 

variable. Each section of the diagram would correspond to one field in the structure. 

The binding of diagrams to variables may be established before or after the code 

to be animated is compiled. This is considered a key feature of the PV system. 

Unfortunately Brown et. al. ( 1985) did not describe how it is accomplished. 

FIELD is a sophisticated program animation system that integrates UNIX edit-

ing, debugging and compiling facilities with tools for program and data visualiza-

tion. The modules in the system communicate by passing messages according to a 

mechanism Reiss (1990a, p. 89) called, selective broadcasting. Briefly, in this com-

munication mechanism all messages are sent to a controller routine that selectively 

redirects them to other modules. This is possible since each module, at start-up, 
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registers message patterns that it should receive with the controller. (Precise details 

concerning message passing in FIELD are described in Reiss, 1990b.) 

When using FIELD to debug code that manipulates a data structure, the pro-

grammer normally makes requests to update the displays. Alternatively, though, the 

programmer can force the data structure displays to be updated at particular pre-

specified statements. Program execution can be monitored graphically in this way. 

The values of variables can also be displayed in a window. When this window is 

visible, variables local to the currently active routine are displayed first, followed by 

global variables. A summary of the program visualization systems discussed above 

appears in Table 22, 

Table 2.2: Program Monitors and Animators 

Identification Classification Purpose Year 

Logo Subset Monitor Making Instructional Films 1975 

P1/i Subset Monitor Making Instructional Films 1975 

Unix Shell Program Monitor Instruction 1983 

PV System Animator Debugging and Instruction 1985 

GPEM Monitor Instruction 1990 

FIELD Animator Debugging 1990 

DYNAMOD Animator Instruction 1991 

2.2 Debuggers 

In the previous section, program monitors were defined as software tools that gener-

ate textual displays to depict program execution. Since debuggers function in that 

manner they are program monitors. However unlike systems described previously, 

debuggers are designed exclusively to help programmers find and correct run-time 
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errors. To convey a sense for how programmers utilize them, typical debugging fea-

tures are described next. Then the debugger, Dbxtool (Sun Microsystems, 1990a) 

and the debuggers in Turbo Pascal (Borland, 1988), Dr. Pascal (Visible Software, 

1989) and MagPie (Delisle, Menicosy & Schwartz, 1984) are discussed. 

Debugging tools provide the following facilities: 

• displays for the values of variables 

• execution suspension/resumption 

• code stepping 

• a subroutine instantiation display 

As a program runs, the values of unstructured and structured variables are typi-

cally displayed in a clearly marked section of the monitor. The values are displayed 

beside or below their variable names. Users may view the values of variables indefi-

nitely by suspending program execution. A suspended program may be restarted or 

resumed from the point at which it was halted. Some debuggers can suspend execu-

tion when a particular key is pressed. However, inserting special statement markers, 

called breakpoints, into a program before execution begins is the usual suspension 

technique. 

Code stepping permits the programmer to execute source statements one at a 

time. It can be implemented by inserting a breakpoint at each statement. Some 

debuggers support the following enhancement to single stepping: if the statement 

being executed calls a subroutine, the user can step through the code in the routine 

or resume single stepping when it returns. Lastly, debuggers generally provide a 
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facility through which programmers can determine the order in which subroutines 

were called. 

For each of the three commercially developed debuggers below, the user-interface 

is described. Also, the displays for unstructured data types and arrays are cited. 

Further, the technique for monitoring subroutine instantiation, including parameter 

passing and the scoping of variables, is noted. Magpie, the last system discussed 

in this section is treated uniquely because it was developed by researchers in an 

academic setting. 

2.2.1 Dbxtool 

Programmers working in the SunView Window Environment (Sun Microsystems, 

1990b) can use the generic debugger, Dbxtool. It can be used to debug programs 

written in C, Fortran, Pascal and Modula-2 or a combination of those languages. 

The Dbxtool window consists of five subwindows. The status subwindow displays 

information such as the active file name and the line number range of the code 

displayed in the source subwindow. The buttons subwindow contains the commands 

that can be selected by positioning and clicking a mouse. Alternatively, debugging 

commands can be typed in the command subwindow. This window also contains 

output generated by the program. The display subwindow can be used to monitor 

how the values of variables and results of expressions change. 

Values are displayed beside their variable names. Only one variable is displayed 

on each line. Consequently they quickly scroll out of view; however, even though 

it is tedious, they can be scrolled back into view. Arrays are displayed as lists. 

Appropriately, two-dimensional arrays are displayed in rows and columns. 
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In Dbxtool it is difficult to determine when a Pascal subroutine is called because 

the source code subwindow does not change. Also there is no attempt to depict 

parameter passing. Consequently the programmer, without assistance, must notice 

that the formal parameters become equal to the actual parameters when a subroutine 

is called. To determine the flow of control through subroutines, the programmer can 

only get a listing of the order in which subroutines were called. Lastly, the scope of 

a local variable is indicated by preceding its name with the name of the subroutine 

that contains it. 

2.2.2 Turbo Pascal 

The debugging environment in Turbo Pascal consists of three windows. The edit and 

watch windows are displayed initially. The edit window contains source code and 

status information similar to that displayed by Dbxtool. The watch window contains 

variables and their values. Commands are selected by key strokes, either directly or 

from pull-down menus. The edit and watch windows are displayed simultaneously 

a1thouh each window can be enlarged to cover the full screen. The user must switch 

to the output window to view displays generated by the program. 

Again here, values are displayed beside their variables names and only one vari-

able appears on each line. Text that scrolls out of view can be brought back into 

sight. The values in one-dimensional arrays are displayed suitably in a list. Two-

dimensional arrays are displayed in nested lists. The linear nature of the nested list 

display is an awkward way to depict multi-dimensional arrays. 

In contrast to Dbxtool, subroutine calls are depicted appropriately by dip1aying 

the code that will be executed next in the edit window. Unfortunately parameter 
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passing and subroutine flow are treated in the same manner as they are in Dbxtool. 

With respect to scope, the watch window can contain a variable from anywhere in 

the program. As a result, accessible local and global variables are indistinguishable. 

However, the words, "unknown identifier" do appear beside variable names that are 

not within the scope of the currently executing routine. 

2.2.3 Dr. Pascal 

The debugging or visibility screen in Dr. Pascal is divided into four sections. The 

top line shows which function keys need to be pressed when initiating debugging 

commands. The second line, called the procedure line, displays a list of subroutine 

names that indicates the order in which subroutines were activated. It is updated 

every time a subroutine is called or exited. 

Below the procedure line is the output area. In this area, program source code 

and the values of variables are displayed. Output from the program is displayed in 

the fourth and lowest section of the screen. Generally, the quality of the displays in 

Dr. Pascal are below the standard of the day. For example, the screen can only be 

configured in two colour combinations. Further, one of those combinations obscures 

certain characters to the point where they cannot be read. 

Once again, values are displayed beside their variable names. In this system, 

though, more than one variable appears on a single line. In addition, unlike the two 

previous debuggers, the programmer does not need to specify which variables should 

be monitored. The display areas in Dr. Pascal contain as many variables as can be 

shown. 

Multiple display areas are created during program execution. The main program 
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and each subroutine call generate a distinct display area when instantiated. These 

display areas, complete with source code, scroll on and off the screen. To the detri-

ment of the programmer, when all of the variables in a routine cannot be displayed, 

there is no way to scroll the hidden variables into view at run-time. After termi-

nating execution, the programmer can move the declaration of the hidden variables 

ahead of declarations of variables that were visible. However when the program is 

run again, previously visible variables will be hidden. While that course of action 

may seem nearly futile, it is all that the programmer can do. 

Arrays are displayed suitably. One-dimensional arrays are displayed on a single 

line. Two-dimensional arrays are displayed in rows and columns. 

The activation of subroutines is dramatically displayed by the appearance of 

display areas. Also, the procedure line is updated as noted earlier. The display 

areas are also useful for depicting local variables. The code in which local variables 

may be accessed appears directly beside or above, depending on the programmer's 

preference, the display areas containing them. Global variables are contained in other 

display areas that are evident if they have not scrolled off the screen. Unfortunately, 

parameter passing is treated in the same subtle way as it is in the two previous 

debuggers. 

2.2.4 Magpie 

All aspects of the Magpie programming environment are integrated. In this envi-

ronment the Pascal programmer accesses both source code and information about 

its execution state through windows, called browsers. The windows are divided into 

sections, referred to as panes. Commands are selected from pop-up menus via a 
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mouse. Each type of pane has a unique menu. 

One way to view the execution state of a program is to display a set of code and 

stack browsers. A code browser contains the executable statements for one scope 

level (i.e., a subroutine or the main program). A stack browser consists of three 

panes. The leftmost pane contains a list of names that depicts the order in which 

subroutines were activated. When the programmer selects one of those activations, 

the variables local to it are placed in the middle pane; Also, the values of those 

variables are displayed in the last pane. Note also that one variable is displayed per 

line and one-dimensional arrays are represented linearly. This monitoring method 

can be used to review completed actions. The user must write event monitoring code 

to single step through a program, as discussed below. 

According to Delisle, Menicosy and Schwartz (1984, p. 55), "Execution and de-

bugging functions are implemented by instrumenting the actual code for a procedure 

with debugging code." (The reader may find the previous statement more illuminat-

ing by substituting, "supplementing" for "instrumenting.") The debugging code is 

written in Pascal but it does not become part of the program source code. Instead, 

the code is entered into an event monitoring browser. 

Since debugging code is written in Pascal the potential for execution monitoring is 

greater in Magpie than in all three of the previous debuggers, at least for experienced 

-programmers. In contrast, inexperienced programmers are restricted to the execution 

reviewing technique described earlier. - 
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2.3 The Instructional Foundation of EPAS 

In addition to computer science, this research extends to fields such as educational 

psychology and instructional design. A separate examination of both of those in-

terdisciplinary fields is beyond the scope of this work. The reader interested in an 

extensive discussion on the contribution of those fields to the development of in-

structional software environments is directed to van Berkum and de Jong (1991). 

For alternative viewpoints, the reader is directed to Hannafin and Reiber ( 1989) 

and Merrill (1987). For the purposes of this research, discussion of computer-based 

instructional simulations will be restricted to the instructional design theory upon 

which the tutorial module in EPAS is based. 

The tutorial module within EPAS is based on the instructional theory for the 

design of computer-based simulations developed by Reigeluth and Schwartz (1989). 

Before describing that theory it will be worthwhile to gain insight into the extent to 

which Reigeluth and Schwartz perceive the viability of computer-based simulation 

systems, such as EPAS. The following two quotations are provided for that purpose. 

The advent of the computer has made possible a new and exciting form 
of learning environment, the simulation. We now have the technology for 
a powerful form of instruction that is both dynamic and interactive and 
that can provide considerable variety within a simulated environment. 
Even a personal tutor is incapable of such versatility (Reigeluth and 
Schwartz, 1989, p. 1). 

The dynamic and interactive nature of computer-based simulations pro-
vides an ideal medium for teaching students content that involves change 
(Reigeluth and Schwartz, 1989, p. 2). 

When briefly discussing an instructional design theory, as is the case here, it is 

possible to focus exclusively on the prescriptive aspects of the theory. This is in 
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keeping with the Reigeluth's (1983, p. 4) assertion: "[Instructional design theories 

are] concerned primarily with prescribing optimal methods of instruction to bring 

about desired changes in student knowledge and skills." The Reigeluth and Schwartz 

instructional theory for the design of computer-based simulations consists of the four 

phases, introduction, acquisition, application and assessment. 

The introductory phase should contain a sample simulation with simultaneous 

descriptions. In this way the learners should become aware of how the simulation 

will proceed. Also the learners should understand how to use ihe program. For 

example, they should know how to select items from menus to initiate the learner 

control features. 

Following the introduction is the acquisition phase. During this stage the learner 

should acquire knowledge about a principle or the steps of a procedure. The de-

veloper may select an expository or discovery approach in this phase. For example, 

if the expository approach is taken to teach a principle, the principle would simply 

be stated. Alternatively, the discovery approach makes the learner formulate the 

principle by attending to simulations in which the principle is applied. 

Throughout the application phase the learner should develop the ability to use the 

principle or procedure introduced in the previous stage. The most pertinent aspect 

of this phase is the opportunity for divergent practice. It is essential to include the 

following two features in the practice exercises. First, the practice items must force 

a user response. Second, the response must be accompanied by feedback. 

The purpose of the assessment phase is to determine the extent to which the 

student mastered the content. The test items should be based on the objective. 

Further, they should be new to the learner and vary in difficulty and divergence. 
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The theory also provides guidelines for variations on the general model. The 

guidelines allow the developer to amend the model to accommodate a particular 

target audience or set of objectives, for instance. The precise manner in which 

EPAS incorporates the prescriptive elements of this theory is detailed in Chapter 3. 

2.4 Summary 

The two basic types of program visualization systems, algorithm animators and pro-

gram animators, were discussed. The algorithm animators were defined as systems 

that depict programs in an abstract manner. These systems were described briefly 

because they are quite unlike EPAS. In contrast, program animators received greater 

attention because, in keeping with EPAS, they depict program execution concretely. 

Specifically, three program animators were discussed. The use of graphics to depict 

data structures was cited as the primary function of those systems. 

Further, it was shown that program monitors, which are similar to program ani-

mators, have also been developed to help programmers visualize execution. Program 

monitoring systems depict execution concretely, but do not use graphics for that 

purpose. Much attention was directed to the special type of program monitor, the 

debugger. Debuggers provide facilities through which programmers can attempt to 

locate and correct errors. However, using them to gain insight into parameter passing 

mechanisms or to determine the scope of a variable can be difficult. The complexity 

of the program visualizations systems reviewed varies markedly. However, even the 

most sophisticated ones do not depict run-time stack activity graphically, nor do 

they permit reverse execution. 
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The last part of the review describes the prescriptive elements of an instructional 

design theory for the development of computer-based educational simulations. The 

theory presents techniques for teaching procedures and principles. According to 

the theory, the four phases, introduction, acquisition, application and assessment, 

should be incorporated into instructional simulation software. For the purposes of 

this summary, the first and last phases are self-explanatory. The key aspect of the 

second phase is the presentation of instruction. The application stage provides the 

learner with opportunities for divergent practice. Learner responses in this stage 

must be accompanied by feedback. Lastly, it should be noted that the theory, is 

rather new and consequently, largely untested. 



Chapter 3 

Methodology 

The tools and techniques used to test the hypothesis stated in Chapter 1 are described 

in this chapter. The most important tool used in this research is EPAS. Consequently, 

the modules in it are examined first. The compilation modules, namely the scanner, 

parser and symbol table generator are described briefly. In contrast, the anima-

tion and tutorial modules are described in detail. Lastly, the small study that was 

conducted to test EPAS is described. 

3.1 The Compilation Modules 

Before a compiler can be written, a grammar must be defined precisely. An extended 

Backus-Naur Form (BNF) description of the Pascal grammar compiled by EPAS 

appears in Appendix A. Technically, since the BNF description is free of left-recursion 

and left common factors it defines an LL(1) grammar. For clarity of expression, the 

BNF for EPAS was derived from Pascal BNF descriptions found in Cherry ( 1980) 

and Sun Microsystems (1989). 

In practice, EPAS treats identifiers, unsigned integers, unsigned reals and char-

acter strings as terminals in the grammar. Thus for EPAS, the grammar rules 

effectively end with the definition of the expression list tail. (A line appears in 

Appendix A at that point.) 

The compilation modules in EPAS are described briefly for two reasons. First, 

29 
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compilation modules are present in EPAS because they would exist in a complete 

program animation system. Including them in the prototype is necessary to gain 

insight into how they should be enhanced to create a complete system. EPAS would 

still fulfill its restricted program animation function if all of the compilation modules 

were replaced by one short routine that simply read the characters from an input 

program file and placed them into an array. Second, techniques for developing com-

pilation modules are well documented in textbooks (e.g., Aho, Sethi & Ullman, 1988 

and Fischer & Leblanc, 1988). 

3.1.1 The Scanner 

Scanning in EPAS begins by reading the first three characters in the input file. If 

the input file contains fewer than three characters, scanning is terminated and an 

error message is displayed. Each time a character is processed, a new character is 

read. 

To determine what token is presently being scanned, the first character is exam-

ined. If it is a letter, the token to be returned will be that of the identifier or a 

reserved word. Consequently, characters from the input file are read and collected 

until a character other than a letter, a digit or the underscore is encountered. The 

collected characters form an identifier or a reserved word. 

Next, the minimal-perfect hashing technique described in Chicelli ( 1980) is used 

to distinguish between identifiers and reserved words. Chicelli's hashing technique 

ensures that a comparison at only one array location is needed to make the distinc-

tion. Just one test is necessary because the hash value of each of the thirty-seven 

reserved words is unique. 
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When the characters of an identifier or reserved word have been collected, a hash 

value is calculated. Then the collected characters are compared against those in the 

reserved word array at the one location denoted by the hash value. If all characters 

match, the appropriate reserved word token is returned, otherwise the identifier token 

is returned. 

If the first character is not a letter, it may be a digit. If so, the token to be 

returned will be either the integer or real constant. After storing the first digit, 

contiguous digits, if any, are read and collected. Additionally a decimal point, an 

exponent indicator (i.e., e or E) and a plus or minus sign for an exponent may be 

read. If a decimal point or an exponent indicator is present, the real constant token 

is returned. Alternatively the integer constant token is returned if those chracters 

are absent. 

If those first two cases are not pertinent, the first character could be an apos-

trophe. The apostrophe uniquely defines the presence of a string constant. In this 

case, characters are read until the next single apostrophe or newline character is 

encountered. If a newline character is encountered before a terminating apostrophe, 

an error message is generated. When two consecutive apostrophes are present, a 

single apostrophe is appended to the string. 

If the current character is not a letter, a digit or an apostrophe, it could be the 

first character of a two-character token (e.g., >= or <>). To determine if it is, 

the first character and the one following it are tested to determine if one of the five 

two-character tokens is present. If one of them is present, it is returned. 

If the four previous cases do not apply, the first character could be a one-character 

token (e.g., the semicolon, the colon or the comma). When this is so, the token 
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denoting the single character is returned. 

If all five of the previous cases have been considered and a token has not been 

returned, an invalid character is present. In this event, an error message is generated. 

Also note that source code comments, initiated by { or (*, and white-space 

characters such as newline, tab and spacebar are disregarded by the scanner. This is 

the usual practice because white-space characters do not form any part of a token. 

Furthermore, characters in comments are not part of the code of a program. 

3.1.2 The Parser 

A top-down recursive descent parser was incorporated into EPAS. Since EPAS parses 

an LL(1) grammar, each rule was written as a subroutine. For example, the rule: 

<program >::=< program heading >< declarations >< block >. 

was written in C as: 

program( 

{ 
program_headingO; 
declarations 0; 
blockO; 
match_tokens (PERIOD_TOKEN); 

} 

The angle brackets were stripped from the nonterminal, < program > to form 

the subroutine name. The remaining part of the rule determined the contents of the 

subroutine. In particular, each nonterminal became a subroutine call and the one 

terminal forced a call to the match-tokens routine. 

The match-tokens routine determines if the currently scanned token is the same 

as the expected one. The expected token is specified as the argument in the call to 
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match-tokens. In the example, the PERIOD-TOKEN is expected. 

In a syntactically valid program, all scanned tokens match the expected tokens. 

The parser does not attempt to recover from syntax errors. However, it does generate 

an error message that identifies the mismatched tokens. 

Lastly, to increase processing speed, tail-recursive subroutines were written iter-

atively. For example, the rule: 

< label list tail >::= , < label >< label list tail> I < empty > 

was written in C as: 

label_list_tail() 

{ 
while (token = get-next-token() COMMA_TOKEN) { 

match_tokens (COMMA_TOKEN); 
label(); 

} 
3. 

3.1.3 Symbol Table Generation 

While parsing, one symbol table is created for each new block level. When the end 

of a level is detected, its symbol table is rescinded. In this way, memory assigned to 

dynamically allocated structures is recovered. 

Figure 3.1 contains a simplified representation of the symbol table structures 

that would be generated if the program below were parsed. It is included only to 

exemplify a limited number of the structures related to symbol table generation. A 

complete analysis would cover several pages. 

program sample; 
const 

BBB = 4; 
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var 

BAC integer; 

procedure levell(a : integer; var b integer); 

var 

c: 

begin 

end; 

begin { Main } 
end. 

The structure at the top of Figure 3.1 is the only structure related to symbol 

table generation that is fixed at run-time. It is a thirty-two element array of pointers 

to symbol table structures: The symbol tables contain 211 pointers to symbol table 

entry structures. 

There are eight symbol table entries in the figure. Seven of them correspond to 

the seven identifiers in the program. The other symbol table entry is the system type 

declaration, integer. Every symbol table entry contains an identifier. Identifiers are 

passed through a hashing function to determine symbol table entry positions. The 

hashing function computes the sum of the characters in an identifier and returns that 

sum modulo 211. Identifiers that hash to the same position are resolved by chaining 

their entires in a linked list. This is shown for the identifiers, BBB and BAC 

The figure also contains two parameter entry structures attached to the subrou-

tine declaration entry, levell. As shown, parameter entries form a linked list. Each 

entry defines a value, variable or subroutine parameter. In addition, each parameter 

entry points to a data type. 
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Figure 3.1: Symbol Table Structures 
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3.2 The Animation Module 

This module was designed to depict run-time stack activity for eleven specific Pascal 

programs. The animation module, like all others in EPAS, was written in C and runs 

on a color SPARC station. In contrast to the other modules, this one calls X-Window 

library routines. Generally, X-Window library routines are useful for developing user-

interfaces. For example, the routines can be used to create, manipulate and destroy 

windows. - 

Details concerning this module are presented in three parts. First, the statement 

execution and pace adjustment features of the animation module are noted. Also, 

the programming techniques used to incorporate them are documented. Second, 

statement execution examples are presented. The examples depict all of the run-

time stack activities implemented in EPAS. In the final part, the reverse execution 

feature is discussed. 

3.2.1 Statement Execution and Pace Adjustment 

The animator performs one of three functions. The user indicates which function 

will be performed by using a mouse to select a menu item. The three menu items 

are Next, Adjust Pace and Previous. 

Next is selected to execute program statements one at a time. The user can view 

run-time stack activities as a statement is executed. In EPAS, a stack of rectangles is 

used to depict the consecutive set of memory cells in a run-time stack. All run-time 

stack activities access the stack of rectangles. Table 3.1 contains the five run-time 

stack activities implemented in EPAS and indicates how each one is depicted. 
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Table 3.1: Run-time Stack Activities in EPAS 

Activity Change to the Stack 
Declaration 
Output 
Procedure Call 
Module End 
Memory Read/Write 

a memory cell is assigned to a specific variable 
memory cells may be read to access variables 
memory cells are assigned to parameters 
local variables are removed from memory cells 
values are read from and written to memory cells 

The program execution simulations are controlled by the values in a data file. 

Each line of the data file contains twenty-six values and defines one stack activity. 

•Data file entries are described briefly below. Specific details concerning stack event 

entries are presented in the next two sections. 

The first seven entries identify one or two program segments that will be high-

lighted. Highlighted program segments include variable declarations and executable 

statements. A program segment is highlighted when it is the next statement to be 

executed. Usually only one segment is highlighted. However in the case of a proce-

dure call, both the calling statement and the coriesponding procedure heading are 

highlighted. 

The eighth entry identifies one of the five stack activities. The interpretation of 

the remaining entries depends on the identity of the stack activity. The information 

required by the animator for each of the stack activities is listed in Table 3.2. 

With respect to Table 3.2, the following points are important. 

• Each source and target stack cell is uniquely identified by one integer. 

• The number of parameters in Procedure Calls is limited to three. 

• Three source and two target cells can be referenced by one Memory Read/Write 
activity, at most. 



38 

Table 3.2: Data Requirements for Stack Activities 

Stack Activity Data Requirements 
Declaration variable name 

number of indices (array declarations only) 
Output output string 

position (row & column) of the string in the Output Window 
source cells 

Procedure Call procedure name 
number of parameters 
formal parameter names 
formal parameter types 
constant values or stack cell identities 

Module End module name 
number of local variables 

Memory 
Read/Write 

number of source cells 
the source cells 
number of target cells 
the target cells 
the value for the target cells 
previous stack events that modified the target cells 

These limitations apply only to the prototype, EPAS. A complete system should not 

be constrained in the same manner. The limitations were imposed after analysis of 

the eleven input programs revealed that they were sufficient for animation purposes. 

The user can control the speed of the animator by selecting Adjust Pace. To 

adjust animator speed, the mouse is used to select one of the bars in the Delay 

Window. A picture of the Delay Window appears in Figure 3.2. A direct relationship 

exists between the length of the bars and the length of time it takes the animator to 

complete operations. 

The speed of the animator is most evident when a stack cell is highlighted. That 

is, when the background color of a cell is gray instead of white. The amount of time 
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Delay 

Done 

Figure 3.2: The Delay Window 

that a cell remains highlighted can vary from zero to twelve seconds. 

3.2.2 Statement Execution Examples 

The general layout of the simulation screen in EPAS is shown in Figure 3.3. Both 

Code Window 

program code_window; 

(This window contains Pascal code 
and the menu with which the user 

controls the simulation. 

begin 

end. 

Previous 

Next 

Adjust Pace 

Stack Window 

Output Window 

Figure 3.3: General Layout of the Simulation Screen 

the length and the width of the windows were reduced by approximately fifty-three 
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percent to display them on the page. The actual width of each window is sixteen 

centimeters. The actual lengths of the code, stack and output windows are twenty-

two, fifteen and one half and six centimeters, respectively. Also note that there are 

actually twenty-one stack cells instead of the eight shown in the figure. 

For each simulation, a complete Pascal program is displayed in the Code window. 

The next statement to be executed appears red. All other program statements are 

black. (In the figures of this document, the next executable statement is written in 

boldface type.) The menu in the lower portion of the Code window is used to control 

the simulation. The Stack window contains the run-time stack in which variables and 

their values appear. Output generated by write and writein statements is displayed 

in the Output window. 

The Code Window in Figure 3.4 contains the program that is used for all of the 

following five execution examples. When EPAS is running, each executable state-

ment is highlighted individually. However, rather than highlighting each statement 

separately and displaying the Code window five times, the pertinent statements are 

highlighted simultaneously. Th6 highlighted statements are numbered on the basis 

of execution order. 

Figure 3.5 shows the stack window before and after executing the first highlighted 

statement. Declarations allocate space on the stack for variables. They do not 

assign values to variables. Consequently after declarations, the values of variables 

are undefined. This is depicted in the figure by the question marks. 

The second highlighted statement is a Memory Read/Write event. The state 

of the stack before, during and after it is executed is shown in Figure 3.6. Before 

execution, only index is undefined. Notice that one variable is allocated by the system 
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Code Window 

program reverse; 

{ This program assigns 6 random numbers between 0 and 99 to 
array, Nnums.N Then it reverses the order of the numbers in 
"nums." } 

var 
integer; 

index : integer; 

nums : array[L6] of integer; { 1 } 

procedure swap(previous_x : integer; var x, y: integer); 

{ This procedure swaps the two numbers mapped 
by the parameters, x and y. } 

begin 
x:=y; 
y := previous_x 

end; { 4} 

begin { Main} 
for i 1 to 6 do 
begin 

nums[i] := random(100); 
write(nums[i]:4) 

end; 
writein; 

for i:=lto3do 
begin 

index := 7-i; { 2} 
swap(nums[i], nums[i], nums[index]); 

end; 

for i 1 to 6 do 
write(nums[i]:4) { 5 } 

end. 

{3} 

Figure 3.4: Sample Program Code Window 
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Stack Window 

Main 

Index: ?? 

I: 

(a) Before Execution 

Stack Window 

Main 

nums[6]: ?? 

nums[5]: ?? 

nums[4]: ?? 

nums[3]: ?? 

nums[2]: ?? 

nums[1]: ?? 

index: ?? 

I: ?? 

(b) After Execution 

Figure 3.5: Depicting a Declaration 

for holding results generated when evaluating expressions. To simplify matters for 

the learner, one system variable is allocated for the main program and for each 

procedure. Variable names allocated by the system always begin with the characters 

%exp. The system variable in Figure 3.6 is %expl. 

The first task in processing the highlighted assignment statement is computing 

the expression 7 - i. Execution Step 1 shows the variable i against a light gray 

background to indicate a memory read operation. The black background filling the 

system expression cell depicts an impending write operation. (In EPAS, cells are 

always highlighted with a light gray background against red text for values of source 

cells and blue text in the case of target cells. Also the background fills the entire cell, 

not just the area of a cell outside the rectangular region containing a variable and 

its value.) Note that the value 7 was written to %expl during previous processing; 
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Stack Window 

Main 

%expl: 7 

nums[6]: 93 

nums[5]: 35 

nums[4]: 90 

nums[3]: 47 

nums[2]: 6 

nums[1]: 76 

Index: ?? 

I: 1 

(a) Before Execution 

Stack Window 

Main 

%expl 6 

nums[6]: 93 

nums[5]: 35 

nums[4]: 90 

nums[3]: 47 

nums[2]: 6 

nums[1]: 76 

Index. M 

I: 1 

(c) Execution Step 2 

Stack Window 

Main 

%expl: 7 I 
nums[6]: 93 

nums[5]: 35 

nums[4]: 90 

nums[3]: 47 

nums[2]: 6 

nums(1]: 76 

Index: ?? 

 j' • 

(b) Execution Step I 

Stack Window 

Main 

%expl: 6 

nums[6], 93 

nums[5]: 35 

nums[4]: 90 

nums[3]: 47 

nums[2]: 6 

nums[1]: 76 

index: 6 

I: 1 

(d) After Execution 

Figure 3.6: Depicting a Memory Read/Write Event 
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it was not written to it because 7 appears in the current expression. 

In the example, 7 - i is 6 because i is 1. When the 6 has been written to %expl, 

it is then read and, in accordance with the assignment statement, should be written 

to the variable index. This is shown in Execution Step 2. After execution, the value 

of index is 6. 

A procedure call is the third highlighted statement. The procedure heading that 

corresponds to it is also highlighted. The last frame in Figure 3.6 shows the stack 

before the call is made. During execution, the value parameter is passed first. This is 

shown in the first frame of Figure 3.7. The dashed line depicts the connection from 

the actual parameter to the formal parameter. The dashed line disappears when 

the formal parameter has been assigned the actual parameter value. This result is 

shown in the second frame of Figure 3.7. Also, the links from the formal variable 

parameters to their actual parameters are displayed. The formal variable parameter 

links exist until the procedure is exited. 

A Module End event is the fourth highlighted statement. Figure 3.8 shows the 

stack before and after the highlighted Module End event is executed. Local variables 

and the module name are actually removed gradually. 

The last stack activity example is an Output event. Since Output events never 

write values to memory, the stack remains unchanged throughout execution. How.-

ever, values are written to the Output Window. Figure 3.9 shows the constant stack 

state throughout the execution of the last highlighted statement. It also displays the 

changes to the Output Window. 
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Stack Window 

swap 

--

previous—x: ?? 

Main 

%expl: 6 

nums[6]: 93 

nums[5]: 35 

nums[4]: 90 

nums[3]: 47 

nums[2]: 6 

nums[1] 76F4OR 

Index: 6 

I: 1 

(a) Execution Step 

Stack Window 

swap 

Y: 

x: 

( 

previous—x: 76 

Main 

%expl: 6 

nums[6]: 93 

( 

nums[5]: 35 

nums[4]: 90 

nums[3]: 47 

nums[2]: 6 

nums[1]: 76 

index: 6 

I: 1 

(b) After Execution 

Figure 3.7: Depicting a Procedure Call 
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Stack Window 

swap  

Main 

%exp2: ?? 

Y: S  

S  

previous—x: 76 

%expl: 6 

nums[6]: 76 (  
nums[5]: 35 

nums[4]: 90 

nums[3]: 47 

nums[2]: 6 

nums[1]: 93 

Index: 6 

I: 1 

( 

(a) Before Execution 

Stack Window 

Main 

%expl: 6 

nums[6]: 76 

nums[5]: 35 

nums[4]: 90 

nums[3]: 47 

nums[2]: 6 

nums[1]: 93 

index: 6 

I: I 

(b) After Execution 

Figure 3.8: Depicting a Module End Event 
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Stack Window 

Main 

%expl: 2 

nums[6]: 76 

nums[5]: 6 

nums[4]: 47 

nums[3]: 90 

nums[2]: 35 

nums[1]: 93 

index: 4 

I: 2 

(a) Before and After Execution 

Output Window 

76 6 47 90 35 93 
93-

(b) Before Execution 

Output Window 

76 6 47 90 35 93 
9335 

(c) After Execution 

Figure 3.9: Depicting an Output Event 

The data file entries for the stack events described above are listed in Figure 3.10. 

As noted earlier, the first seven entries (i.e., Fields A to G) define program segments 

for highlighting purposes. Consequently those fields are not described further, except 

in the case of Output events. As noted below, Fields E to G serve a different purpose 

in Output events. Fields Y and Z are discussed in the reverse execution section. 

The data file entries in the first line of Figure 3.10 are used to depict the Decla-

ration event exemplified in Figure 3.5. Field I contains the variable named defined 

in the declaration. The string, "??" in Field J is displayed in the Stack Window 

to show that the initial value of a variable is undefined. The value in Field P de-

fines the number of stack cell allocations. Six stack cells are allocated for this array 
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Highlighted 
Statement 
Number 
from Figure 3.4 

1 

2 

3 

4 

5 

Stack Event Field Letters 

A B C D E F G H I J K L M NOPORSTUVWXYZ  

2 9 3 4 9 11 23 0 nums ?? • 6 -1 1 1 1 1 1 1 1 -1 -1 

1 31 9 14 -1 -1 -1 1 6 • -1 2 1 8 1 -1 0 8 -1 23 2 

2 32 935 11 15 46 2 swap 76 previous_x x y 3 -1 -1 1 2 2 2 2 7 -1 -1 

1 19 3 3 -1 -1 -1 3 swap • 4 3 -1 1 2 2 -1 2 7 -1 -1 

1 36 616 1 4 -1 4 8 -1 1 -1 -1 -1 3 -1 -1 -1 -1 

Note: Numeric fields not used contain -1 
Text fields not used contain 

Field Descriptions 

A Number of program segments to highlight 
B Row number of first highlighted segment 
C Column number of first highlighted segment 
D Length of first highlighted segment 
E Row number of second highlighted segment 
F Column number of second highlighted segment 
G Length of second highlighted segment 
H Stack event identity number 

0- Declaration 
1 - Memory Read/Write 
2- Procedure Call 
3 - Module End 
4- Output 

1-0 Utility strings 

P-X Utility values 

V Previous pertinent stack event number for target cell 1 
Z Previous pertinent stack event number for target cell 2 

Figure 3.10: Stack Event Entries 

declaration event. The other fields in Declaration events are not used. 

Data file entries on the second line of Figure 3.10 are used to depict the Memory 

Read/Write event exemplified in Figure 3.6. Fields Q and R specify the number 

of target and source cells respectively. The number of source cells does not include 

references to system expression cells. Fields S to U and V to X reference target and 

source stack cells. The stack cells are numbered in ascending order beginning with 

zero. Since there are twenty-one stack cells the top one is Cell 20. 

In this Memory Read/Write event thre are two target cells (as per Field Q). 

Consequently there are two execution steps as shown in Figure 3.6. In the first 
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execution step, Cell 8 (Field S) is the target cell and Cell 0 (Field V) is the source 

cell. Whenever there are two target cells, the system expression cell targeted in the 

first execution step is always the source cell in the second execution step. In this 

case, Cell 1 (Field T) is the second target cell and Cell 8 (Field W) is the second 

source cell. The value written to the target cells is located in Field J. 

The data file entries for the Procedure Call depicted in Figure 3.7 appear in the 

third line of Figure 3.10. The name of the procedure is given in Field I. The names 

of the formal parameters are listed in Fields M to 0. The number of parameters is 

stated in Field P. 

Values denoting parameter type are given in Fields S to U. This example uses 

two different parameter types. Parameter Type 1 (Field S) is a value parameter 

that receives a value from a variable. In contrast, Type 0 is a value parameter that 

receives a constant value. Type 2 (Fields T and U) is a variable parameter. Fields V 

to X specify actual parameter cells. These values are used to display parameter 

arrows. Note that Field J contains the datum for the value parameter. 

The entries on the fourth line of Figure 3.10 are used to depict the Module 

End event in Figure 3.8. Field I contains the procedure name. Field P specifies the 

number of local variables, including the system expression variable. Field Q contains 

the number of parameters. With one exception, Fields S to X in the Procedure Call 

above and in this Module End event are the same. Field V in the Module End event 

is not used because knowledge of the actual parameter cell that mapped to the formal 

value parameter is not required at module termination. Recall that arrows linking 

actual and formal value parameter cells exist only when a procedure is called, not 

when it is terminated. 
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In Output events, such as the one on the fifth line of Figure 3.10, only one code 

segment is highlighted. Thus, Fields E to G are available for other information. 

Fields E and F contain the row and column references at which the output string 

will be displayed in the Output Window. Field G is not used. Field P holds a 

value for indexing the array of output strings. Lastly, as is the case for Memory 

Read/Write events, Fields R and V supply source cell information. 

3.2.3 Reverse Execution 

When the user selects Previous from the animator menu, the previous program state 

is restored. Previous can be selected repeatedly until the first statement has been 

reversed. The techniques for reversing the five stack activities are described below. 

To reverse a declaration for an unstructured variable, the topmost cell is popped 

off the stack. In the case of an array declaration, the topmost set of cells is removed 

from the stack. Popping the topmost stack cell is a two-step process in EPAS. First, 

the topmost stack cell window is destroyed. Also, if the cell contained a variable 

parameter, the arrows pointing to the corresponding actual parameter cell are erased. 

Second, the pointer to the topmost array element in the stack maintained by EPAS 

is decremented. 

An Output event is rescinded by deleting its string from the Output Window. 

To accomplish this, the string is actually written to the Output Window again. 

However, the string disappears because the background color is used to display the 

text. The stack is unaffected when this event is reversed because output events do 

not write values to memory. Consequently, the Stack Window is not changed. 

To reverse a Procedure Call, the stack is restored by popping off the cells that 
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were allocated to parameters. Since the number of parameters is given in stack events 

that define Procedure Calls (see Table 3.2), the number of parameters to pop is also 

known. The method for popping cells was discussed in the context of declaration 

reversal. 

In contrast to Procedure Calls, a Module End event is nullified by pushing cells 

back on the stack. Table 3.2 showed that the number of local variables in a module 

is known. The number of local variables is also the number of cells that must be 

restored. The two-step process for restoring cells is the converse of the method for 

popping them. 

The following example illustrates how a Memory Read/Write event is reversed. 

Figure 3.11 contains a Pascal program and stack events that correspond to declara-

tions and statements. While the stack events are incomplete, they contain the data 

necessary to discuss reverse execution. Note that zero entries in previous pertinent 

stack event numbers indicate that they would never be referenced. For instance, 

since stack event # 5 targets one memory cell, only one previous stack event would 

ever be referenced. Also note that variable names are not referenced in Memory 

Read/Write events. 

Figure 3.12(a-e) shows the state of the stack, after executing Stack Events 4 

through 8 in Figure 3.11. Stack Event 8 first changes the system variable, expi and 

then it alters the programmer defined variable, a. After executing Stack Event 8, 

execution is reversed. The result of the reversal is shown in Figure 3.12(f). The 

previous values of %expl and a were located in Stack Events 7 and 5, respectively. As 

shown by the equivalence of Frames d and fin Figure 3.12, rescinding Stack Event 8 

returns the state of the stack to what it was after Stack Event 7 was executed. 
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stack event number 
stack event type 
variable name 
value 

  previous pertinent stack event number for target cell 1 
- previous pertinent stack event number for target cell 2 

program sample; 

var 

a: Integer; ( . Declaration a ?? 0 01 

b : Integer; ( 2. Declaration b ?? 0 0) 

C: Integer; ( 3. Declaration c ?? 0 0) 

begin (4. Declaration %expl ?? 0 0) 

a:. 6; is. Read/Write 6 1 0) 

b := 14; (6. Read/Write 14 2 0) 

c :. a - b; (7. Read/Write —8 4 3} 

a : a + b (8. Read/Write 20 7 5) 

end. 

Figure 3.11: Sample Program and Stack Events 

3.3 The Tutorial Module 

In keeping with the instructional design model, the tutorial module begins by in-

troducing the simulation system. This is done by presenting two sample program 

execution simulations. By participating in them, learners become familiar with the 

layout of the screen, how they should use the mouse to enter data and how the 

simulation will proceed. 

In EPAS, learners advance through three sections. The first section pertains to 

one-dimensional arrays, the second to value parameters and the third to variable 

parameters. Each section presents a brief introduction and three program execution 

simulations. The introduction to the section on value parameters appears in Fig-

ure 3.13. The three simulations fulfill the acquisition, application and assessment 

phase requirements of the instructional design model. (The instructional design 

model was presented in Section 2.3.) 
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Stack Window 

Main 

%expl: ?? 

C: ?? 

b: ?? 

a: ?? 

(a) After Stack Event #4 

Stack Window 

Main 

%expl: ?? 

c: ?? 

b: 14 

a: 6 

(c) After Stack Event #6 

Stack Window 

Main 

%expl: 20 

C: -8 

b: 14 

a: 20 

(e) After Stack Event #8 

Stack Window 

Main 

%expl: ?? 

c: ?? 

b: ?? 

a: 6 

(b) After Stack Event #5 

Stack Window 

Main 

%expl: -8 

C: -8 

b: 14 

a: 6 

(d) After Stack Event #7 

Stack Window 

Main 

%expl: -8 

C: -8 

b: 14 

a: 6 

(f) After Reversing Stack Event #8 

Figure 3.12: Forward and Reverse Execution 



54 

Value Parameters 

Parameters are used to transmit data to and from the 
main program and subroutines. Actual parameters are the 
values, possibly present in variables, that are passed to 
subroutines. Formal value parameters are variables that 
receive actual parameter data. The following example 
serves to clarify this terminology and depict value 
parameter passing. 

After completing the following example and exercise, you 
should be able to correctly identify memory locations 
allocated to actual and formal parameters. 

Begin 

Figure 3.13: The Introduction to the Value Parameter Section 

In the first simulation of each section, when stack activity not previously encoun-

tered by the learner is completed, an instructional notation appears. An instructional. 

notation explains why the most recently executed statement affected the stack in 

the way it did. For example, after executing the Procedure Call highlighted in Fig-

ure 3.14(a), an instructional notation pertaining to parameter passing is displayed. 

The actual notation appears beside the run-time stack in Figure 3.14(b). 

The second simulation in each section generates opportunities for practice and 

provides feedback based on the learner's responses. When practicing, the learner 

is directed to identify the source and/or target cells that will be accessed when the 

next statement is executed. For example, the highlighted statement in Figure 3.15(a) 

generates the directive in Figure 3.15(b). 

The learner has the option to change stack cell selections. Eventually though, the 
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Code Window 

program display_triangle; 

{ This program calls a procedure to display lines of a triangle.) 

var 
integer; 

procedure make_Iine(stop : integer); 

(This procedure displays a line of asterisks. } 

begin 
for i:= 1 t stop do 
write(*) ; 

writeln(*P) 
end; ( make—line) 

begin { "Main") 
make_Iine(3); 

for  := 2downtol do 
make—line(!); 

w riteln(*I) 
end. 

(a) 

Stack Window 

The actual parameter 3 
was passed to the formal 
parameter 'stops. 

make—line 

Main 

stop: 3 

%exp: ?? 

?? 

(b) 

Figure 3.14: An Instructional Notation 



56 

Code Window 

program display_figure; 

This program calls two procedures to display a figure.) 

var 
integer; 

procedure interior(total_rows: integer; ch : char); 
var 

integer; 
begin 

for i := 1 to total rows do 
w riteIn(*, ch, ch, *); 

end; 

procedure exterior(ch : char); 
begin 
writeln(ch, ch, ch, ch); 

end; 

begin ( "Main") 
for i:=lto3do 

if i mod 2 = 0 then 
interior(i,  

else 
exterior(*) 

end. 

(a) 

Stack Window 

Click on the formal 
parameter cell accessed 
next. 

%exp2: ?? 

1 

interior 

Main 

ch + 

total—rows: 2 

111 

%expl: true 

i: 2 

(b) 

Figure 3.15: A Directive to Identify a Stack Cell 
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learner must select Next to proceed. When Next is selected, source and target cells 

are highlighted as described in the previous section. Feedback is provided in this 

manner. In addition, when the learner makes an incorrect selection, a tone sounds 

and the word, Incorrect appears in the Stack Window. 

In each section, the third simulation tests the learner on the material covered most 

recently. Again during this program execution simulation, the learner is required to 

identify source and target cells. The number of correct responses to the directives 

is calculated. This is done on a per program basis. A per program tally is used 

to monitor use of the Previous option, All data are written to a file when the last 

simulation has been completed. 

All eleven programs incorporated into EPAS are shown in Appendix B. They are 

listed in order of presentation to the learner. Recall that the first two programs are 

presented in EPAS for introductory purposes. 

Throughout the development of the animation and tutorial modules, changes were 

made on the advice of faculty members, graduate students and learners representative 

of the target group. For example, the approach to highlighting source and target cells 

was modified by changing the background cell color in addition to the foreground 

color. Also, the pace adjustment feature was enhanced to increase the range of timing 

delays. 

3.4 The Study 

Two aspects of the study conducted to test EPAS are described in this section. First, 

characteristics of the learners who participated in the study are noted. Second, the 
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procedures followed during the study are discussed. 

All of the participants were undergraduate students who had completed one com-

puter literacy course prior to running EPAS. In fact, all of the students took the 

same course in which they completed one word processing, one spreadsheet and one 

database assignment. They also completed two rudimentary Pascal programming 

assignments. 

Each student wrote a four-line program containing a single output statement to 

complete the first programming task. However, in writing programs to meet all of the 

requirements of both assignments, the students had to use input/output, assignment, 

looping and conditional statements. Also they had to include procedures without 

parameters. The student participants were never assigned tasks that involved arrays 

or parameter passing. 

It should also be noted that three of the eight participants had no experience 

with a mouse input device. Before these students started working on EPAS, the 

researcher instructed them on how to use a mouse. They used the mouse to create, 

select, scale and drag objects in a drawing program to acquire mouse manipulation 

skills. (In EPAS, only mouse movement and single button clicking are necessary.) 

Lastly, with respect to the learners, all of them participated voluntarily. 

Each student was scheduled to participate at some time during a three-day period. 

The availability of only one computer ensured that students would work individually. 

Upon arrival, each participant worked through the two sample program execution 

simulations with the researcher. At that time, the researcher advanced the following 

suggestions: 

1. look at the statement highlighted in the code window 
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2. try to determine which run-time stack cells will be accessed when the high-
lighted statement is executed 

3. select Next to see if you were correct 

After running EPAS, the participants completed a short questionnaire and returned 

it to the researcher. 

3.5 Summary 

All of the modules in EPAS were described in this chapter. The compilation modules 

were documented briefly. Incontrast, close attention was paid to the program visual-

ization features implemented in the animation module. In addition, all components 

of the tutorial module were discussed. 

The small study conducted to test EPAS was also described in this chapter. 

Briefly, eight undergraduate students viewed two program execution simulations to 

learn about EPAS. Then they worked through nine more programs to learn about 

arrays, value parameters and variable parameters. Collectively the nine programs 

presented instruction, provided learners with an opportunity to practice and assessed 

performance. For subsequent evaluation, EPAS stored the results for each student 

in a file. 



Chapter 4 

Results 

Four types of results are discussed in this chapter. First, the extent to which the 

learners correctly identified stack cells is examined. Second, the tallies pertaining 

to the use of the Previous feature are noted. Third, the questionnaire data are 

summarized and brief statements about each item are provided. Fourth, comments 

written by the students who participated in the study are included. 

4.1 Stack Cell Identification 

The learners were required to identify stack cells during practice and quiz programs. 

Table 4.1 contains the percentages of correctly identified stack cells for each learner, 

as obtained on the three practice programs. 

Table 4.1: Percentages of Correctly Identified Stack Cells (Practice Programs) 

Learner Number 
Practice Program 1 2 3 4 5 6 7 8 Mean 

Arrays 75 63 75 75 88 75 25 100 72 
Value Parameters 100 75 100 75 100 100 75 100 91 
Variable Parameters 100 69 63 63 88 100 50 88 78 

Mean 92 69 79 71 92 92 50 96 80 

For practice, the learners had to identify eight stack cells on the array program. 

Also, they had to identify four cells on the value parameter program. The variable 

parameter program directed the learners to identify sixteen cells. 

60 
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Considering the practice programs collectively, the students correctly identified 

stack cells eighty percent of the time. The students had the most difficulty identi-

fying stack cells on the array program. On the other hand, stack cells on the value 

parameter program proved easiest to identify. However, recall that the learners were 

required to identify only four stack cells in the value parameter program. 

Stack cell identification results for the three quiz programs are cited in Table 4.2. 

On the array, value parameter and variable parameter quiz programs, the learners 

were required to identify nine, ten and eighteen stack cells respectively. On these 

programs, the learners correctly identified stack cells eighty-three percent of the time. 

This represents a modest three percent improvement over the practice- programs. 

Also with respect to the quiz programs, note that the learners performed best on the 

array program and worst on the variable parameter program. 

Table 4.2: Percentages of Correctly Identified Stack Cells (Quiz Programs) 

Quiz Program 1 2 
Learner Number 
3 4 5 6 7 8 Mean 

Arrays 100 67 78 89 89 100 89 100 89 

Value Parameters 100 80 80 100 60 60 80 80 80 

Variable Parameters 94 78 56 78 89 96 44 100 79 

Mean 98 75 71 89 79 85 71 93 83 

The decrease in performance in the value parameter section is notable. However, 

the validity of the results obtained on the value parameter practice programs is 

questionable because only four stack cells had to be identified by each learner. Thus 

it is suspected that those results overestimate the actual abilities of the learners to 

identify stack cells involved in the passing of value parameters. 
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A reasonable procedure for analyzing the results in the two tables, given the small 

number of subjects, is to compare the practice and quiz program scores to determine 

if the students improved. Table 4.3 shows the differences in quiz and practice pro-

gram scores, without regard for magnitude. The strictly positive differences in the 

array section indicate that all learners improved. This Sign Test result is statisti-

cally significant since the probability of eight successes in eight trials by chance is 

approximately 0.004. With respect to the value and variable parameter sections, no 

statistically significant trends are evident. Also, due to the equal number of positive 

and negative differences among the mean scores, no trend for overall performance is 

discernible. 

Table 4.3: Comparing Performance on the Quiz and Practice Programs 

Learner Number 
Programming Topic 1 2 3 4 5 6 7 8 

Arrays ++++++++ 
Value Parameters = + - + - - + - 

Variable Parameters - + - + + - - + 
Means 

However, if the questionable value parameter data are excluded, the mean scores 

in Tables 4.1 and 4.2 would change as shown in Tables 4.4 and 4.5. Table 4.6 

shows the signs obtained when the adjusted means are compared. By chance, the 

probability of attaining seven or eight successes in eight trials is 0.035 (0.031 + 

0.004). Thus this Sign Test result indicates that the practice exercises were probably 

beneficial. 

Lastly in this section, the average results attained on the quiz programs, as listed 
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Table 4.4: Practice Program Scores (Excluding Value Parameter Data) 

Learner Number 

Practice Program 1 2 3 4 5 6 7 8 

Arrays 75 63 75 75 88 75 25 100 
Variable Parameters 100 69 63 63 88 100 50 88 

Mean 88 66 69 69 88 88 38 94 

Table 4.5: Quiz Program Scores (Excluding Value Parameter Data)• 

Learner Number 

Quiz Program 1 2 3 4 5 6 7 8 

Arrays 100 67 78 89 89 100 89 100 

Variable Parameters 94 78 56 78 89 96 44 100 

Mean 97 73 67 84 89 98 67 100 

Table 4.6: Comparing Overall Performance 

Learner Number 

Tutorial Section 1 2 3 4 5 6 7 8 

Practice Programs 88 66 69 69 88 88 38 94 

Quiz Programs 97 73 67 84 89 98 67 100 

Difference 
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in the final column of Table 4.2, are graphed in Figure 4.1. The graph shows that 

the learners, on average, achieved better than seventy-five percent accuracy (i.e., the 

mastery level) on all stack cell identification quiz programs. Given this result it is 

evident that after using EPAS, the learners were able to master stack cell identi-

fication tasks pertaining to one-dimensional arrays, value parameters and variable 

parameters. 
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Figure 4.1: Stack Cell Identification Results for the Quizzes 
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4.2 Use of the Previous Feature 

The number of times that the learners selected Previous is a precise indication of 

how often they reversed execution. Tallies accumulated while monitoring the use of 

the Previous option are given in Table 4.7. Each entry in the program identification 

column consists of a programming topic followed by a letter. The example, practice 

and quiz tutorial sections are distinguished by the letters E, P and Q respectively. 

Table 4.7: Previous Use Tallies 

Program Learner Number Program 

Identification 1 2 3 4 5 6 7 8 Totals 

Arrays (E) 5 3 3 10 0 0 23 4 48 

Arrays (P) 1 9 3 54 13 4 19 1 104 

Arrays (Q) 9 0 1 5 11 0 6 3 35 
Value Parameters (E) 0 0 0 14 3 0 0 0 17 

Value Parameters (P) 0 0 1 47 6 0 0 0 54 

Value Parameters (Q) 0 0 0 2 4 0 0 5 11 

Variable Parameters (E) 0 3 0 2 4 3 1 1 14 
Variable Parameters (P) 0 5 7 49 6 0 4 0 71 

Variable Parameters (Q) 0 1 1 33 1 1 0 0 37 

Learner Totals 15 21 16 216 48 8 53 14 391 

According to Table 4.7, Previous was selected 391 times. Exactly 3000 unique 

stack events, 375 for each of the eight learners, were executed. Thus on average, 

execution was reversed once for every 7.7 (3000 * 391) stack events. 

The totals for the learners indicate that all of them reversed execution. However, 

the variance of use is remarkable. One learner accounts for more use than all of the 

others combined. Perhaps this one learner perceived the feature as rather novel. In 

any case, this learner's use of Previous skews the results. For example, the per learner 
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use rate drops from 48.9 (391 * 8) to 25.0 (175 * 7) when the tallies accumulated by 

Learner Number 4 are not considered. 

Reverse execution data pertaining to the three tutorial sections are presented in 

Table 4.8. The reversal frequencies are stack event to previous tally ratios. Thus, a 

reversal frequency of 7.8, for example, would mean that execution was reversed once 

for every 7.8 stack events. 

Table 4.8: Reverse Execution Data by Tutorial Section 

Tutorial 
Section 

Number of 
Stack Events 

Previous 
Tallies 

Reversal 
Frequency 

Example 
Practice 
Quiz 

792 
1024 
1184 

79 
229 

83 

10.0 
4.5 

14.3 

The variability in the reversal frequencies is perplexing. In contrast to the ex-

ample programs, the learners were directed to select particular cells in the practice 

programs. Perhaps this encouraged them to attend more closely to stack activities. 

This greater attention could have led them to recognize more of their misconceptions 

and thus increased their use of Previous. 

However, the same contention is not plausible in accounting for the usage dif-

ference on the practice and quiz programs. In fact, the learners were directed to 

select stack cells in both of those settings. Motivation may account for the difference 

here. Perhaps the learners simply regarded the practice programs as more suitable 

for review than the quiz programs. 

The reverse execution data are grouped by Programming Topic in Table 4.9. In 

the array section, the learners selected the reverse execution feature once for every 
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five stack events, approximately. Execution was reversed about half as often in each 

of the parameter sections. It is believed that complexity of task and fatigue account 

for much of the variance in those reversal frequencies. 

Table 4.9: Reverse Execution Data by Programming Topic (All Eight Learners) 

Programming 
Topic 

Number of 
Stack Events 

Previous 
Tallies 

Reversal 
Frequency 

Arrays 
Value Parameters 
Variable Parameters 

856 
872 
1272 

187 
82 
122 

4.6 
10.6 
10.4 

Lastly, recall that the average scores in the value parameter section were lower on 

the quiz program than on the practice program. One possible explanation for that 

was discussed earlier. As an alternative, perhaps the students underestimated the 

complexity of value parameters and consequently attended to the value parameter 

programs less diligently than the others. Indeed, Table 4.7 reveals that, excepting 

Learner Number 4, the students used the reverse execution feature sparingly in the 

value parameter section. In fact, if the exceptionally high tallies for Learner Number 

4 are not considered, the reverse execution results in Table 4.9 would be adjusted as 

shown in Table 4.10. 

Table 4.10: Reverse Execution Data by Programming Topic (Seven Learners) 

Programming 
Topic 

Number of 
Stack Events 

Previous 
Tallies 

Reversal 
Frequency 

Arrays 
Value Parameters 

Variable Parameters 

749 
763 
1113 

118 
19 

38 

6.3 
40.2 
29.3 
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4.3 The Questionnaire Data 

On the questionnaire, the first five items refer to specific features incorporated into 

EPAS. The next three items pertain to the acquisition of programming knowledge. 

The overall utility of the tutorial component in EPAS is the topic of the last rated 

item. 

All items were rated on Likert scales that ranged from zero to four. Responses at 

the low end of the scale indicated negative feelings. In contrast, high ratings denoted 

positive feelings. All learner responses to the questionnaire are listed in Table 4.11. 

In addition, the means for each learner and item are included. 

Table 4.11: Learner Responses to the Questionnaire 

Item Learner Number 
Number 1 2 3 4 5 6 7 8 Mean 

1 4 3 4 4 4 3 3 3 3.5 
2 4 4 4 4 4 4 4 3 3.9 

3 4 4 4 4 4 4 2 4 3.8 

4 3 4 4 4 4 3 3 2 3.4 

5 4 4 4 3 3 4 4 4 3.8 

6a 3 2 3 4 3 2 2 4 2.9 

6b 4 3 4 4 3 3 3 4 3.5 

6c 4 3 4 3 3 3 2 4 3.3 

7 3 3 4 4 4 4 4 4 3.8 

Mean 3.7 3.3 3.9 3.8 3.6 3.3 3.0 3.6 3.5 

The responses are strikingly uniform. None of the seventy-two responses are 

below, two.' On the scale, the values 2, 3 and 4 were selected 6, 23 and 43 times, 

respectively. Following are brief comments about each item. 
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Item 1. How useful was the Pace Adjustor feature? 

The mean response for this item is 3.5. Thus, it seems that the Pace Adjustor 

feature is worthwhile and should be retained if EPAS is developed further. 

Item 2. How appropriate was the use of color for highlighting cells? 

Seven of the eight learners selected the most favourable response in assessing this 

item. Indeed, the color highlighting technique for cells should remain the same in a 

complete system. 

Item 3. Overall, how useful was the mouse/windowinterface? 

Learner responses to this item were nearly identical to the previous one. Appar-

ently, the user-interface was at least functional. Nevertheless it would need to be 

more flexible in a complete system. This issue is discussed further in Chapter 5. 

Item 4. How useful was the Previous feature? 

Considerable consistency in the learner responses to this item and in their use 

of the Previous feature is evident. Based on the learner responses and frequency of 

use, this feature is important. Techniques for incorporating it into a full system are 

examined in Chapter 5. 

Item 5. How fair were the quizzes? 

Six of the eight learners selected the maximum score for fairness. Similarly, the 

other two learners judged the quizzes as fair by rating them at the maximum value 

minus one. 
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Item 6a. How confident are you that you could incorporate arrays into programs? 

The mean score for this item is 2.9. Notice also that there is more variability 

in the responses to this item than to any other. Two of the learners selected the 

maximum value for confidence. The others were divided equally in selecting either 

two or three. Considering the three programming topics, arrays, value parameters 

and variable parameters, the learners are least confident that they could incorporate 

arrays into programs. Curiously though, the average quiz score in the array section 

exceeds the average quiz scores in the parameter sections. 

Item 6b. How confident are you that you could incorporate value parameters into 

programs? 

Of the three programming topics covered in the EPAS tutorial, the learners are 

most confident that they could write code using value parameters. Again the learners 

were divided equally in their responses. Although this time they selected either three 

or four. Given that performance in the value parameter section decreased, this level 

of confidence may indicate a false sense of understanding. 

Item 6c. How confident are you that you could incorporate variable parameters 

into programs? 

For this item, six of the eight learners selected the same confidence rating as in 

the previous one. One scale point reductions are evident in the responses of the 

other two learners. Generally, the learners believe they could incorporate variable 

parameters into programs. 
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Item 7. Overall, how useful was the tutorial? 

For this item, the mean response is 3.8. As such the learners seem to regard the 

tutorial as valuable. 

4.4 Learners' Comments 

The last item on the questionnaire called for written comments on any aspect of 

EPAS. All of the learners took advantage of this opportunity to express their opin-

ions. Occasionally the learners expressed constructive criticisms. For the most part, 

though, they wrote complimentary remarks. A sampling of the responses appears 

below. 

• When you get an incorrect answer, it would be nice to see the question again 
- also to see where you messed up. 

• If you choose incorrectly on the quiz, a bit of an explanation might help when 
indicating what the correct choice should have been. 

• The use of blue-red highlights is great. 

• I think this is an interesting and useful way of learning. It is more "hands-on" 
than watching a black-board. 

• The variable parameter section was well explained - although I tended to forget 
instructions given earlier - the Previous function was great on this aspect. 

• Overall, I found it very instructive and helpful. 

4.5 Summary 

First in this chapter, stack cell identification results from the practice and quiz pro-

grams were discussed. Those results indicate that the learners were able to identify, 



72 

to the point of mastery, target and source stack cells referenced in statements that 

manipulate one-dimensional arrays, value parameters and variable parameters. 

Also in this chapter, data accumulated to monitor use of the Previous feature 

were cited. Those data indicate that the Previous feature is important. This claim is 

supported by responses to one of the items on the questionnaire. Other results based 

on the questionnaire were also discussed. Lastly, remarks written by the learners were 

quoted. 



Chapter 5 

Enhancing EPAS 

Given the encouraging results presented in the previous chapter and the fact that 

EPAS is a prototype, one suggestion for further research seems obvious. That is, a 

complete compilation/animation system should be developed by enhancing EPAS. 

Techniques for creating such a system are developed in this chapter. Additional 

suggestions for further research are advanced in Chapter 6. 

Before attempting to enhance the existing system, one ought to recognize how a 

complete program animation system based on EPAS would be limited. First note 

that all complete program animation systems must, at times, display only a subset 

of the data in a program. This realization is based on the fact that a program can 

generate vast quantities of data. Indeed, so much data that they cannot be displayed 

on one screen simultaneously. 

In addition, a complete program animation system based on EPAS would rep-

resent the run-time stack in a linear manner. Although a linear stack representa-

tion is consistent with actual run-time stacks, it is not suitable for depicting multi-

dimensional arrays and record structures because they are conceptually different. 

Also dynamically allocated data structures, which are assigned space in a set of 

memory locations called the heap, would not be depicted on the stack. 

73 
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5.1 A Framework for Enhancing EPAS 

Two approaches to developing a complete system based on EPAS are evident to the 

researcher. Both of them are discussed below. Beyond this section, though, only one 

approach is pursued. 

First, one could enhance EPAS so that it would create data files of stack events, 

similar to the ones used in the existing system. To accomplish this, information 

from the scanner could be accessed to generate the data that would be used to 

highlight program declarations and statements in the Code Window. Also, variable 

and parameter names could be written to stack events. In addition, stack cells could 

be assigned numbers in a manner similar to the way variables are actually allocated 

memory locations. That is, stack cells could be assigned offset values relative to a 

frame pointer. 

For this approach to be sucàessful, two outstanding issues remain to be resolved. 

First, the values that would be assigned to variables must be written to stack events. 

Second, for each stack cell, the number of the last stack event to reference it as a 

target must be determined. This is necessary to enable reverse execution. 

To calculate the values of variables and acquire reverse execution information, 

the input program must be executed. During execution, the values of variables and 

target stack cell reference data could be written to a file. Then, this information 

could be combined with the data generated by the parser to define stack events. 

This approach would enable most of the existing code to be retained in some 

form. However, there are serious disadvantages. First, an overhead penalty would 

be incurred by creating files and then combining the data within them. Second, 
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this two-step (execute, then animate) approach could not be used to fully implement 

the reverse execution feature. For example, when reversing a readin statement, the 

previous values of the input variables could be restored; however, new input values 

could not be assigned because stack activities would be replayed as opposed to re-

executed. Another consequence of this two-step approach is that the animator could 

not be enhanced to include debugging functions such as the interactive assignment 

of values to variables and subsequent expression evaluation. For these reasons, this 

method for improvement will not be pursued subsequently. 

As an alternative, one could enhance EPAS by writing a code generation module 

for execution, animation and reverse execution purposes. In contrast to the previous 

approach, a considerable amount of new code would have to be written. However, 

using the code generation approach, all stack activities could be reversed and debug-

ging features could be added. Techniques for using this approach to enhance EPAS 

are examined in the next section. 

5.2 Compilation and Animation Issues 

A pseudocode model for code generation is shown in Figure 5.1. The model depicts 

the translation of an arbitrary Pascal declaration or statement. The context of the 

translation is nonstandard. Unlike typical translations, this one incorporates the 

program animation features present in EPAS (i.e., reverse execution and run-time 

stack display). The pseudocode representation is similar to assembly language, but 

it is not machine specific. Each unique line of the pseudocode model is discussed 

next. 
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line REVERSE—P: { code to reverse the 
numbers previous statement) 

1 START: UPDATE_ CODE _WINDOW a, b, c 
2 GET EXECUTION DIRECTION 
3 IF previous, BRANCH REVERSE _P 
4 "embellished translated code" 
5 UPDATE CODE. WINDOW a, b, c 
6 BRANCH_N EXT 
7 REVERSE: UPDATE_ CODE _WINDOW d, e, f 
8 "restoration code" 
9 BRANCH START 

10 NEXT: UPDATE _CODE WINDOW d, e, f 
11 GET EXECUTION _DIRECTION 
12 IF previous, BRANCH REVERSE 

0 

0 

0 

code—refs: row 
column 
length 

0 

0 

0 

Figure 5.1: Executable Code Model 

REVERSE..P is the label at which code for reversing the previous stack activity 

would appear. It was included because the code for the translated stack activity, 

which begins at the label START, references it. Subsequently the model is discussed 

in two parts. First, statements pertaining to forward execution are examined. Then, 

reverse execution features are detailed. 

5.2.1 Forward Execution 

The first and fifth lines of a translated stack activity call a system routine to update 

the Code Window. Three arguments would be passed to it. One argument would be 

a value denoting an offset from the label, code-refs. Code-refs marks the beginning 

of the data storage area for source code references. A second value passed to this 
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routine would be the number of code segments to display. Recall that for a procedure 

statement, its corresponding heading is also displayed. Third, a value that specifies 

the display color must also be forwarded to this routine. This value would be one of 

two numbers since text in the Code Window is either red or black. Note that this 

routine should also be able to scroll text. For instance, when the line or lines to be 

highlighted next do not appear in the Code Window, they should be scrolled into 

view. 

The second translated line is a call to GET-EXECUTION-DIRECTION. This 

routine would ultimately return Next or Previous in accordance with the the user's 

desire to proceed forward or backward through a program. Also, this routine would 

allow the user to adjust the pace of the animation. For implementation purposes, the 

existing code for selecting execution direction and pace adjustment could be linked 

to executable files. 

The third translated line is the conditional branch to code that would reverse 

the previous stack activity. Reverse execution is discussed subsequently. Thus, this 

discussion proceeds to the next line of the model. 

Since the model is based on an arbitrary stack activity, specific translation details 

are not given. However, embellished translated code would consist of standard code 

and instructions for animating stack activity and reversing execution. The following 

example shows how standard executable code would be embellished. The code in 

Figure 5.2, could be used to translate the Pascal assignment statement, b := a + 4. 

The comments in the braces serve to document the code. 

The second instruction is based on the assumption that a is declared first in the 

current module. The fourth instruction assumes that b is declared second and that 
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LOAD Rl,4 
LOAD R2, [FP] 
ADD Rl,R2 
STORE Fl? +2,Ri 

Register #1 Ri) becomes 4 
Register #2 R2) becomes the value of "a") 
Ri becomes Ri + R2) 
the value of Ri is stored in "b" } 

Figure 5.2: Sample Translated Code 

two bytes are allocated for each of the variables, a and b. Figure 5.3 depicts these 

run-time stack assumptions. The Frame Pointer (FP) denotes the beginning of the 

current module. The rather standard code in Figure 5.2 would be embellished as 

shown in Figure 5.4. Again, details concerning each unique line are discussed. 

FP 

value of "b" 

value of "a" 

Note: each cell represents two bytes of memory 

Figure 5.3: A Typical Run-Time Stack 

Figure 5.5(a) shows how run-time stack data for one variable would be organized 

as a record to accommodate the embellished translated code. The second frame 

of Figure 5.5 shows the run-time stack after executing the statement, b := a + 4. 

The additional data in the run-time stack would be used for display purposes, as 

described subsequently. 

The first and seventh lines of the embellished translated code are identical to the 

first and third lines of the standard code. Further, the second and fifteenth lines 

only differ from the second and fourth lines of the standard code by the offset values. 

For example, in the standard code, the variable a is at the frame pointer. In the 
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line 
numbers  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

LOAD R1,4 
LOAD R2, [FP +4] 
DISPLAY FP, 1 
DISPLAY FP + 12,2 
DELAY 
DISPLAY FP, 0 
ADD R1, R2 
STORE pvalues...ptr += 2, [FP + 16] 
STORE FP+16,R1 
DISPLAY FP + 12, 1 
DISPLAY FP + 6,2 
DELAY 
DISPLAY FP + 12, 0 
STORE p_values_ptr += 2, [FP + 10] 
STORE FP+10,R1 
DISPLAY FP + 6,0 

display "a" in source mode) 
display "%expl" in target mode } 

(display "a" in normal mode 

save "%expl" 
"%expl" becomes Ri (i.e. "a" + 4) } 
display "%expl" in source mode 
display "b" in target mode) 

display "%expl" in normal mode } 
save "b" } 
"b" becomes Ri 
display "b" in normal mode } 

Note: "%expl" is a variable created by the system 

Figure 5.4: Embellished Translated Code 

value or address (variable size) 

data type (1 byte) 

variable name pointer (2 bytes) 

size (1 byte) 

(a) 

FP 

21 

Integer 

.  

6 

21 

Integer 

6 

17 

integer 

6 

"%expl" 

(b) 

Figure 5.5: The Enhanced Run-Time Stack 
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embellished version, it is four bytes from the frame pointer. The twelve additional 

lines in the embellished code are DELAY, STORE and DISPLAY instructions. 

The DELAY instruction would suspend execution for a time period set by the 

user via the Adjust Pace feature or for the default duration. STORE instructions 

write values to memory. In the STORE instructions, the first argument is the address 

at which a value is written. Optionally, a pointer to an address can be incremented 

after the STORE operation is completed or decremented before the operation is 

performed. For example, at Line 8 and Line 14, p_valucs_ptr (i.e., previous values 

pointer) is incremented by two. Actually, the STORE instructions at these lines 

write values to memory in case the user reverses execution. The second argument is 

a reference, either a register or address, to the vlue that is written to memory. 

The calls to the DISPLAY routine are used to display data in Stack Window cells. 

They are also used to highlight cells. Two arguments are passed to the DISPLAY 

routine. The first argument is the run-time stack address of the record containing 

data to be displayed. The second argument defines how the data will be displayed 

in a cell. They could be displayed in normal mode (black text against a white back-

ground), source mode (red text against a light gray background) or target mode (blue 

text against a light gray background). 

A mapping between run-time stack addresses and absolute cell locations in the 

Stack Window would be maintained during program execution. The mapping for 

the sample statement is shown in Figure 5.6. When a, b and %expl were allocated 

space in the run-time stack, the addresses of those variables would have been writ-

ten to memory. In particular, to the area in memory beginning at the pointer, 

displayed-data. Given the maximum height of a window on a SPARC station and a 
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FP 

displayed_data 

21 

integer 

S  

stack addresses  

5000018 

6 

21 

integer 

S  

5000012 

6 

17 

Integer 

S  

5000006 

6 

0 

0 

0 

5000012 

5000006 

5000000 

5000000 

%exp1" 

Stack Window Cell 2 

Stack Window Cell 1 

Stack Window Cell 0 

Stack Window 

Main 

%expt 21 

b: 21 

a: 17 

0 

0 

0 

{ Cell 2} 

{Celll } 

{ Cell 0} 

Figure 5.6: Mapping Addresses To Stack Window Cells 

suitable cell height, approximately forty cells could be displayed. One address must 

be maintained for each cell. 

All of the changes to the Stack Window, as defined by the DISPLAY instructions 

in the embellished translated code, could have been made by accessing data in a 

standard run-time stack. However, since many programs executed in an enhanced 

EPAS environment would contain more data than could be shown at once, the user 

ought to have some control over what part of the stack is displayed. Accordingly, a 

window scrolling mechanism could be implemented in an enhanced run-time stack 
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environment. 

For example, assume that a currently executing module contains fifty integer 

variables. Also, forty of them are presently displayed in the Stack Window and the 

user has just clicked on a scroll bar arrow to indicate that the next variable should 

be displayed. By adding the address of the last displayed variable to the value in its 

size field, the address of the next variable could be computed. Then, each stack cell 

mapping address could be moved down one position and the new address written 

at the top. Lastly, using the other, fields in the enhanced run-time stack, the Stack 

Window could be redrawn. Given that a standard run-time stack does not contain 

size information, performing even the first step of that stack scrolling procedure 

would not be possible. 

Even though the code in Figure 5.4 translates a simple Memory Read/Write 

event, it serves well to demonstrate how other stack activities would be implemented. 

Indeed, most stack activities access source and/or target stack cells. For example, 

code generated for Output events would often display cells in source mode. Further, 

Declaration events would generate code to display cells in normal mode. Procedure 

Calls would generate the same type of code as Declarations. For display 'purposes, 

even Module End events could be implemented by generating DISPLAY instructions 

that would write data to a cell using the background window color. 

With respect to Stack Window displays, some consideration must be given to 

the various data types. Displaying values of simple data types such as boolean, 

char, programmer-defined scalar and integer would be straight forward. Displaying 

values of type real would be more complex. Nevertheless, they could be represented 

consistently to a finite number of decimal places or in exponential notation. Lastly, 
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depicting the pointer type would be the most complicated. 

As was done in EPAS, an arrow should be drawn to represent a pointer. Searching 

for the value of a pointer variable (i.e., an address) in the displayed-data area in 

memory would reveal if an arrow could be drawn precisely. If the address were 

found, an arrow would be displayed. Note that a tally for the number of currently 

displayed pointers must be kept to ensure that arrows would be drawn in unique 

vertical positions. If the address were not among the displayed ones, a line extending 

to the bottom of the Stack Window could be drawn to show that the appropriate 

cell is not presently displayed. Discussion of the issues pertaining to the DISPLAY 

routine and the notion of embellished translated code is now complete. Consequently, 

the discussion returns to the code generation model in Figure 5.1. 

The fifth line of the model calls UPDATE-CODE-WINDOW. Highlighted text in 

the Code Window would be rewritten in black to indicate that execution of a stack 

activity had been completed. The sixth translated line, an unconditional branch to 

the label NEXT, completes the execution of a stack activity. 

After the system highlighted the next code segment, the user would select the 

execution direction again. Asuming the user selects previous, the conditional branch 

after the call to GET-EXECUTION-DIRECTION would pass control to the code at 

the label REVERSE. 

5.2.2 Reverse Execution 

Removing the highlighted segment in the Code Window would be the first action 

taken at REVERSE. Then to rescind the previous stack activity, actions specific to its 

type would be taken. Restoration code is discussed below. The last reversal instruc-
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tion in the model (Line 9), BRANCH START, would pass control to the beginning 

of the now current stack activity, given that restoration had been completed. 

Reversing each of the five types of stack activities is discussed separately. To 

rescind a Memory Read/Write event, the values of cells would be restored and the 

Stack Window updated. Pseudocode for reversing the example statement, b := a+ 4 

is shown in Figure 5.7. The first two lines restore cells and the last two update the 

Stack Window. To understand stack cell restoration, visualize the state of memory 

after the example statement has been executed. Figure 5.6 may help in this regard, 

but Figure 5.8 depicts memory more fully. 

STORE FP + 10, jp_yalues_ptr -= 2 
STORE FP + 16, p_values_ptr = 2 
DISPLAY FP+6,0 
DISPLAY FP+12,0 

restore "b" } 
restore "%expl" 
display "b" in normal mode) 
display "%expl" in normal mode) 

Figure 5.7: Reversal Code 

For this explanation, the focus will be the lowest block of memory in Figure 5.8. 

The block of previous values would be treated as a typical last-in first-out stack. 

Thus, since the embellished translated code targeted %expl and then b, the STORE 

instructions in the reversal code restore b and then %expl. Note that before data 

would be retrieved, p_values...ptr would be decremented. 

Procedure Calls allocate space on the run-time stack for parameters. Parameters 

are initialized, they do not have previous values. Thus, values would not be 

restored when a Procedure Call is rescinded. Rather, the cells in the Stack Window 

allocated for the parameters would be deleted. An exception to this technique would 

be made for the system input routines, Read and Readin. Calls to those procedures 

would be treated as Memory Read/Write events. Consequently, values would be 
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stack addresses  

5000018 

21 

integer 
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restored when those calls were reversed. In addition, the Output Window would 

be updated. Updating the Output Window is described below in the context of 

reversing Output events. 

Rescinding a Declaration event would be similar to reversing a Procedure Call 

that contained one parameter. Consequently, Declaration event reversal would be 

straight forward and is not discussed further. 

To reverse a Module End event, local variables must be put back on the stack. 

Seemingly then, the final values of local variables should be stored in case a Module 

End event is reversed. However, a run-time stack does not obliterate values when a 

module is exited. Rather, the dynamic link of a module is followed and the frame 

pointer is simply changed. Thus the final values of local variables are still on the 

run-time stack. As such, to rescind a Module End event, a series of DISPLAY 

instructions would be used to update the Stack Window. 

To rescind an Output event, a string from the Output Window must be deleted. 

Each time an Output event was executed, the string it generated would be stored in 

memory. Also, its row and column positions in the Code Window would be retained. 

Using this information, an Output event would be rescinded by writing its string 

in the background window color to the Output Window again. Unlike Memory 

Read/Write events, since Output events do not target cells, there would be no need 

to restore stack cells. Consequently, the Stack Window would not be changed. 

Lastly, note that during programming efforts to enhance EPAS, some of the 

techniques discussed above would almost certainly be modified. Nevertheless, they 

do provide a starting point for enhancement. 
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5.3 Incorporating a Tutorial Module 

The tutorial module in EPAS displayed instructional notations and provided practice 

and testing facilities. Similarly, an enhanced EPAS should provide those features. 

Moreover, based on student responses, an explanation feature should be added. It 

would serve to explain why particular stack cells were accessed as a specific state-

ment was executed. The explanation feature could be activated when a stack cell is 

identified incorrectly or at the request of the user. Two methods for incorporating a 

tutorial module into an enhanced system are described below. 

For both methods, two additional routines would be inserted into the object code 

file. One routine would display instructional notations, directives and explanations. 

The other routine would allow the user to identify stack cells in response to direc-

tives. It would also score the responses. For the first routine, an instructor would 

have to supply the text to be displayed. For the second routine, the number of stack 

cells to select and the identities of specific stack cells must be supplied. Once again 

an instructor would provide these data. To assist teachers, some'general instruc-

tional notations could be generated whenever typical statements, such as for, while 

and if, were encountered. Similarly the system could supply some directives and 

explanations, but this could only be done for specific programs. 

In the first method, an instructor would define when the tutorial routines should 

be called by inserting procedure statements into Pascal source programs. Data that 

must be passed to the tutorial routines would appear in the procedure statements as 

actual parameters. In particular, a text string would be passed to the first routine. 

The second routine would contain an integer parameter that defines an absolute 
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stack cell location. 

The second method would involve writing a tutorial editor in an instructor version 

of the enhanced EPAS. The instructor version would consist of the enhanced EPAS 

program and two options for inserting tutorial features. In addition to the menu 

selections in EPAS, Previous, Next and Adjust Pace, the instructor version would 

contain Instruction and Directive. 

After viewing a stack event, an instructor could add an instructional notation 

by selecting Instruction. Before viewing a stack event, directives could be entered. 

After selecting Directive, the instructor would be prompted to enter text. Then the 

instructor would use the mouse to click on specific stack cells. Also, the instructor 

would be prompted to enter text for explanation purposes. Lastly, the tutorial editor 

would generate files that would be accessed when students used the enhanced EPAS 

system. 

5.4 Summary 

This chapter explored techniques for improving EPAS. The goal for improvement was 

the development of a complete program animation system consisting of compilation 

and animation components. Also, methods for incorporating a tutorial module in 

the enhanced system were discussed. 



Chapter 6 

Discussion 

This chapter contains a summary of the thesis. In addition, suggestions for further 

research are advanced. Finally, conclusions are drawn. 

6.1 Summary 

The research conducted for this thesis pertained the acquisition of computer pro-

gramming knowledge. The brief history of programming presented in Chapter 1 

revealed that, in contrast to the past, programmers today use abstract processes to 

manipulate data. To help students acquire the skills necessary to cope with computer 

programming abstractions, an experimental program animation system (EPAS) was 

developed. Functional and technical descriptions of EPAS are summarized later. 

A small study was conducted to test the effectiveness of EPAS. The study in-

cluded only eight students because EPAS is a prototype. The primary purpose of 

the study, as defined by the hypothesis in Chapter 1, was to determine the extent to 

which students acquired programming knowledge pertaining to arrays, value param-

eters and variable parameters. The most significant results of the study are noted 

subsequently. 

Program visualization research was reviewed in Chapter 2. Program visualiza-

tions systems can be classified as either program animators or algorithm animators. 

Both types of systems are similar in that they depict run-time activity. 

89 
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However, the manner in which program and algorithm animators depict execution 

differs substantially. Program animators show how values in memory are altered by 

each statement. Alternatively, algorithm animators operate on a more abstract level 

to depict the operation of a specific routine. For example, an algorithm animator 

might depict sorting actions by comparing and swapping bars of varying heights 

(representing random values) until the bars are in ascending order. In contrast, a 

program animator depicting the same routine would highlight lines of code and show 

how each statement compares or swaps values in memory. 

Since EPAS functions as a program animator, the algorithm animators were 

reviewed briefly. The review revealed the scope of specific algorithm animators and 

some of their advantages and disadvantages: The discussion of program animators 

proceeded along two lines. Some systems use graphics for depicting execution while 

others are strictly text-based. The text-based systems were referred to as program 

monitors to distinguish them from the graphics oriented program animators. 

The discussion of specific program monitors and animators revealed that the 

systems vary considerably in scope and complexity. Again, advantages and disad-

vantages of the systems were noted. In addition, implementation details were dis-

cussed. Four specialized program monitors, called debuggers, were also reviewed to 

provide insight into how programmers can monitor executing programs when seeking 

to identify and correct errors in them. 

In the final section of Chapter 2, the theoretical basis for the tutorial module 

in EPAS was discussed. At the foundation of the tutorial module is a relatively 

new instructional theory (Reigeluth and Schwartz, 1989) that defines how computer-

based simulations should be designed. Only prescriptive aspects of the theory were 
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reviewed. 

In brief, Reigeluth and Schwartz maintain that computer-based simulations ought 

to contain the four phases, introduction, acquisition, application and assessment. 

Further, specific features should be included in each of the phases. For instance, a 

sample simulation with simultaneous explanations should be included as part of the 

introduction. In the acquisition phase, new material is presented. Opportunities for 

practice are provided in the application phase and test items are presented in the 

assessment phase. 

Functional and Technical details of EPAS were described in Chapter 3. Func-

tionally, EPAS depicts the execution of eleven specific Pascal programs. The first 

two programs, when animated, serve to introduce the system. Thus, they account 

for the first phase of the Reigeluth and Schwartz model. The remaining nine pro-

grams are divided into three sections for instruction on arrays, value parameters and 

variable parameters. Each section contains three programs. Within each section, 

the program animations take the learner through the acquisition, application and 

assessment phases of the model. One program is animated for each phase. 

When EPAS is executing, the screen is divided into three windows. One of the 

Pascal programs is displayed in the Code Window. The Stack Window contains 

a consecutive set of rectangles arranged vertically. The set of rectangles depicts 

the run-time stack. Output that would be generated by the program in the Code 

Window is displayed in the Output Window. 

• To depict execution, one statement in the Code Window is highlighted. The 

values that would be read from and written to memory, if the highlighted statement 

were executed, are identified in the Stack Window. If the highlighted statement is a 
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write or writein statement, output data are displayed in the Output Window. Note 

that Stack Window activity does not always depict memory reading and writing. For 

example, when a declaration is highlighted, a variable name is placed in a stack cell. 

In Chapter 3, five stack activities were defined to account for all of the statements 

found in the eleven Pascal programs animated by EPAS. The manner in which each 

stack activity changes the stack was specified in Table 3.1. 

Technically, EPAS contains three major components that were written in the C 

programming language. The three modules are shown in Figure 6.1. The size of each 

module, with respect to the entire system, is also given in the figure. 

Animation 
Component 

23% Compilation 
Component 

58% 

Tutorial 
Component 

19% 

Figure 6.1: The Major Components of EPAS 

The compilation modules consist of a scanner, a parser and a symbol table gen-

erator. Even though they are operational, they exist in EPAS primarily for en-

hancement potential. EPAS could have been written without them, but discussing 

enhancements to the compilation modules would have been difficult if they were not 
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included. The animation module controls Stack Window activity. Specifically, it 

contains X-Window calls to display data in stack cells, highlight stack cells and draw 

parameter arrows. When appropriate, the animation module performs the converse 

of those functions. 

The tutorial module ensures that all phases of the instructional model are pre-

sented appropriately. This module also contains X-Window calls. In particular, the 

calls display instructional material and permit the user to respond to directives. Fur-

ther, the tutorial module provides feedback during the practice phase and scores the 

responses entered during the quiz program animations. 

Also described in Chapter 3 were the procedures followed during thd EPAS as-

sessment study. In short, eight students with little computing and programming 

experience viewed the eleven program animations described above. The program 

animations presented new programming processes to the students. At various times 

during the animations, the students were directed to identify specific stack cells by 

moving and clicking the mouse input device. 

Analyzing the extent to which the students correctly identified stack cells pro-

vided insight into their ability to determine how statements manipulate run-time 

stack data. The methods and findings of the analysis were reported in Chapter 4. 

On average, the students correctly identified stack cells more than seventy-five per-

cent of the time. This level of achievement was regarded as satisfactory because 

it exceeded the seventy-five percent mastery level established before the study was 

conducted. 

Since the future viability of EPAS was regarded as important throughout this 

research, data were collected to determine if the reverse execution feature in EPAS 
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should be retained in an enhanced system. In particular, tallies were kept to de-

termine precisely the number of times execution was reversed. It appears that the 

feature should be retained because the students, on average, reversed execution once 

for every eight stack events. 

Methods for enhancing EPAS were discussed in Chapter 5. By creating addi-

tional data files, EPAS could animate more programs. However, this approach to 

improvement would never serve programmers seeking to visualize their code. Thus, 

the ultimate goal for improvement is the development of a system that would animate 

any Pascal program. 

Most of the discussion addressed compilation and animation issues. More specif-

ically, a method for generating code that could animate stack activity and reverse 

execution was detailed. The method involves modifying a typical run-time stack 

by adding data for animation purposes. Also to reverse execution, a data store for 

previous values must be maintained and additional executable code generated. 

Lastly and briefly, approaches to updating the tutorial module were described. 

The main enhancement theme in this discussion was the development bf an editing 

tool to assist instructors. By using the editing tool, teachers could insert instructional 

notations and directives into tutorial programs. 

6.2 Suggestions for Further Research 

This section proposes four paths for further research. The first two paths could be 

pursued immediately. In contrast, the last two options could only be considered if 

EPAS were enhanced. 
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First, additional insights into the utility of EPAS could be gained by testing the 

effectiveness of animations that depict recursion. This could be done by creating 

data files for recursive programs and following the study methodology described in 

Section 3.4. In this case, though, it may be beneficial to seek second-year computer 

science students for testing purposes. In addition, another aspect of testing could be 

incorporated. In particular, the students could be asked to write a recursive program 

after completing the stack cell identification quiz program. 

Second, one could seek to incorpprate EPAS into various instructional contexts. 

For example, by making only minor modifications to the existing data files, programs 

in languages such as C could be animated. In fact, only Code Window display infor-

mation would have to be changed. Given the popularity of C, this ease of modification 

feature is important. As a second example, one could pursue the use of EPAS in a 

compiler writing course. Initially, just by changing the existing instructional nota-

tions, students could be shown how variables are assigned run-time stack locations. 

Subsequently, modifying the animation module so that it would depict static and 

dynamic links could prove beneficial. 

Third, it is important to note that one could embellish a combination com-

piler/animator based on EPAS by adding a debugger. Unlike most debuggers, the 

one in the enhanced system would not have to display values of variables because 

the animator would fulfill that function. However, it should contain other standard 

debugging features. For instance, the debugger should allow a programmer to change 

the values of variables and then resume execution. Further, it should permit the use 

of breakpoints. Interestingly, one should be able to incorporate forward and reverse 

breakpoints into an enhanced system. Programmers may be able to reduce debug-
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ging time by using reverse breakpoints. For example, using such a technique could 

reveal an incorrect value faster than a forward execution breakpoint. 

Fourth, when a stable enhanced system has been developed, summative evalu-

ations should be performed. For example, one could compare the effectiveness of 

traditional classroom instruction versus the enhanced system. Additionally or alter-

natively, one could compare the quality of programs developed in standard debugging 

settings versus the combination compiler/animator/debugger environment. Further, 

one could compare development times in both of those environments. 

6.3 Conclusion 

This research showed that students gained knowledge about programming concepts 

and techniques by viewing program animations. Depicting run-time stack activity 

was the focus of the program animations. To further this research, the prototypic 

program animation system developed for this study, called EPAS, should be enhanced 

to accept a broad range of Pascal programs as input. An enhanced system may help 

students debug simple programs. In addition, the tutorial module in EPAS should 

be incorporated into the complete program animation system. It is recognized that 

developing a system with those components would be complex. Therefore, changes 

to the existing system should be made over a considerable length of time. Further, 

the system should be monitored throughout the development process to maximize 

its potential. 



97 

References 

Aho, A.V., Sethi, R. & Ullman, J.D ( 1988). Compilers: principles, techniques and 
tools. Menlo Park, California: Addison-Wesley. 

Amenda, D.K. (1990). The graphical pascal execution model. Unpublished manu-
script, The University of Calgary, Department of Computer Science. 

Baecker, R. (1975). Two systems which produce animated representations of the 
execution of computer programs. SIGCSE Bulletin, 7(1), 158-167. 

Baecker, R. (1981). Sorting out sorting. 16 mm colour and sound film. Dynamic 
Graphics Project, The University of Toronto. Presented at ACM Siggraph 
Conference, Dallas, Texas, August, 1981. 

Baecker, R. (1988). Enhancing program readability and comprehensibility with 
tools for program visualization. Proceedings of the .10th International Confer-
ence on Software Engineering, Singapore, April 11-15, 356-366. 

Boehm, B.W. ( 1981). Software engineering economics. Englewood Cliffs, New 
Jersey: Prentice-Hall. 

Borland. ( 1988). Turbo Pascal reference guide (Version 5.0). Scotts Valley, Cali-

fornia. 

Brown, G.P., Caning, R.T., Herot, C.F., Kramlich, D.A. & Souza, P. ( 1985). Pro-
gram visualization: Graphical support for software development. IEEE Com-
puter, 18(8), 27-35. 

Brown, M.H. ( 1988). Exploring algorithms using Balsa-IT. IEEE Computer, 21(5), 

14-36. 

Brown, M.H. & Sedgewick, R. ( 1984). A system for algorithm animation. Computer 
Graphics, 18(3), 177-186. 

Cherry, G.W. (1980). Pascal programming structures: an introduction to systematic 
programming. Reston, Virginia: Reston. 

Chicelli, R.J. (1980). Minimal perfect hash functions made simple. Communica-
tions of the ACM, 23(1), 17-19. 

Delisle, N.M., Menicosy, D.E. & Schwartz, M.D. ( 1984). Viewing a program-
ming environment as a single tool. Proceedings of the ACM Sigsoft/Sigplan 



98 

Software Engineering Symposium on Practical Software Development Environ-
ments, April, 1984; Software Engineering Notes, 9(3); and Sigplan Notices, 
19(5), both May, 1984, 49-56. 

Eckhouse, R.H. & Morris, L.R. ( 1979). Minicomputer systems. Englewood Cliffs, 
New Jersey: Prentice-Hall. 

Fischer, C.N. & LeBlanc, R.J. ( 1988). Crafting a compiler. Menlo Park, California: 
Benjamin/Cummings. 

Gurwitz, R.F., Fleming, R.T. & Van Dam, A. (1981). MIDAS: A microprocessor 
display and animation system. IEEE Transactions on Education, E-24(2), 126-
133. 

Hannafin, M.J. & Rieber, L.P. (1989). Psychological foundations of instructional 
design for emerging computer-based instructional technologies: Part I. Educa-
tional Technology - Research and Development, 37(2), 91-101. 

Hille, R.F. & Higginbottom, T.F. ( 1983). A system for visible execution of pascal 
programs. The Australian Computer Journal, 15(2), 76-77. 

Knuth, D.E. & Pardo, L.T. ( 1980). The early development of programming lan-
guages. In N. Metropolis, J. Howlett & G. Rota (Eds.), A history of computing 
in the twentieth century (pp. 197-273). New York, New York: Academic Press. 

Krishnamoorthy, M.S. & Swaminathan, R. (1989). Program tools for algorithm 
animation. Software - Practice and Experience, 19(6), 505-513. 

Lafore, R.W. (1984). Assembly language primer for the IBM PC & XT. Scarbor-
ough, Ontario: Plume. 

London, R.L. & Duisberg, R.A. ( 1985). Animating programs using smalltalk. IEEE 
Computer, 18(8), 61-71. 

Merrill, M.D. ( 1987). The new component design theory: instructional design for 
courseware authoring. Instructional Science, 16(1), 19-34. 

Mills, H.D. (1975). The new math of computer programming. Communications of 
the ACM, 18(1), 43-48. 

Myers, B.A. (1989). The state of the art in visual programming and program 
visualization. In A. Kilgour & R. Earnshaw (Eds.), Graphics tools for software 
engineers (pp. 3-26). Cambridge, Great Britain: Cambridge University Press. 



99 

Nassi, I. & Schneiderman, B. ( 1973). Flowchart techniques for structured program-
ming. SIGPLAN Notices, 8(8), 12-26. 

Plattner, B. & Nievergelt, J. ( 1981). Monitoring program execution: A survey. 
IEEE Computer, 14(11), 76-93. 

Protsko, L.B., Sorenson, P.G., Tremblay J.P. & Schaefer, D.A. ( 1991). Towards the 
automatic generation of software diagrams. IEEE Transactions on Software 
Engineering, 17(1), 10-21. 

Reigeluth, G.M. (1983). Instructional design: what is it and why is it? In G.M. Rei-
geluth (Ed), Instructional-design theories and models: an overview of their 
current status (pp. 3-37). Hillsdale, New Jersey: Lawrence Eribaum. 

Reigeluth, G.M. & Schwartz, E. ( 1989). An instructional theory for the design of 
computer-based simulations. Journal of Computer-Based Instruction, 16(1), 
1-10. 

Reiss, S.P. ( 1985). PECAN: program development systems that support multiple 
views. IEEE Transactions on Software Engineering, SE- 11(3), 276-284. 

Reiss, S.P. ( 1990a). Interacting with the FIELD environment. Software - Practice 
and Experience, 20(S1), 89-115. 

Reiss, S.P. (1990b). Connecting tools using message passing in the FIELD program 
development environment. IEEE software, 7(4), 57-66. 

Ross, R.J. (1991). Experience with the DYNAMOD program animator. The Pa-

pers of the Twenty-Second SIC CSE Technical Symposium on Computer Science 
Education, San Antonio, Texas, March 7-8; SIGCSE Bulletin, 23(1), 35-42. 

Savitch, W.J. ( 1991). Pascal (An introduction to the art and science of program-
ming). Redwood City, California: Benjamin/Cummings. 

Shu, N.C. (1988). Visual programming. New York, NY: Van Nostrand Reinhold. 

Stasko, J.T. ( 1990). Tango: A framework and system for algorithm animation. 
IEEE Computer, 23(9), 27-39. 

Sun Microsystems ( 1989). Pascal reference manual (Revision A). Mountain View, 

CA. 

Sun Microsystems (1990a). Debugging tools manual (Revision A). Mountain View, 
CA. 



100 

Sun Microsystems ( 1990b). Sunview programmer's guide (Revision A). Mountain 
View, California. 

van Berkum, J.J. & de Jong, T. (1991). Instructional environments for simulations. 
Education and Computing, 6(3,4), 305-358. 

Visible Software. ( 1989). Dr. Pascal user manual (Version 2). Princeton, New 
Jersey. 

Williams, M.R. (1985). A history of computing technology. Englewood Cliffs, New 
Jersey: Prentice-Hall. 

Wirth, N. ( 1976). Algorithms + data structures = programs. Englewood Cliffs, 
New Jersey: Prentice-Hall. 



Appendix .A 

The Grammar Parsed By EPAS 

101 



102 

(program) :: (program heading) (declarations) (block) 

(program heading) ::=> program (identifier) (program parameters) 

(program parameters) :: ((identifier list) ) I (empty) 

(identifier list) :: (identifier) (identifier list tail) 

(identifier list tail) :: , (identifier) (identifier list tail) I (empty) 

(declarations) ::- (label declaration part) (constant declaration part) 
(type declaration part) (variable declaration part) 
(subroutine declaration part) 

(label declaration part) ::==> label (label list) I (empty) 

(label list) :: (label) (label list tail) 

(label list tail) :: , (label) (label list tail) I (empty) 

(label) :: (unsigned integer) 

(constant declaration part) :: const (constant declaration list) j (empty) 

constant declaration list) :: (constant declaration) 
(constant declaration list tail) 

(constant declaration) :: (identifier) = (constant) 

(constant declaration list tail) :: (constant declaration) 
(constant declaration list tail) I (empty) 

(constant) :: (sign) (constant tail) I (character string) 

(constant tail) :: (unsigned number) I (constant identifier) 

(unsigned number) ::= (unsigned integer) I (unsigned real) 

(sign) ::= + I - I (empty) 

(constant identifier) ::==> (identifier) 

(type declaration part) ::==> type (type declaration list) I (empty) 
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(type declaration list) ::= (type declaration) (type declaration list tail) 

(type declaration) ::= (identifier) = (type) 

(type declaration list tail) :: (type declaration) 
(type declaration list tail) I (empty) 

(type) :: (simple type) I ^ (type identifier) I 
(structured type) I packed (structured type) 

(simple type) ::= (identifier) (simple type identifier tail) I 
+ (simple type sign tail) I - (simple type sign tail) I 
(character string) (partial range type) I (unsigned number) 
(partial range type) I (enumerated type) 

(simple type identifier tail) :: (partial range type) I (empty) 

(simple type sign tail) ::= (unsigned number) (partial range type) 
(constant identifier) (partial range type) 

(partial range type) :: .. (constant) 

(enumerated type) :: ((identifier list) ) 

(type identifier) :: (identifier) 

(structured type) :: array [(simple type list) ] of (type) I file of (type) 
set of (type) I record (field list) end 

(simple type list) :: (simple type) (simple type list tail) 

(simple type list tail) ::= , (simple type) (simple type list tail,)' I (empty) 

(field list) ::' (field) (field list tail) I (variant part) 

(field list tail) :: ; (field list) I (empty) 

(field) ::=' (identifier list) : (type) I (empty) 

(variant part) ::==> case (identifier) (variant part interior) of (variant list) 

(variant part interior) ::= : (type identifier) I (empty) 
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(variant list) :: (variant) (variant list tail) 

(variant list tail) ::=' ; (variant) (variant list tail) I (empty) 

(variant) := (constant list) ((field list) ) I (empty) 

(constant list) :: (constant) (constant list tail) 

(constant list tail) :: , (constant) (constant list tail) I (empty) 

(variable declaration part) ::= var (variable declaration list) I (empty) 

(variable declaration list) ::= (variable declaration) 
(variable declaration list tail) 

(variable declaration) :: (identifier list) (type) 

(variable declaration list tail) ::= (variable declaration) 
(variable declaration list tail) I (empty) 

(subroutine declaration part) ::- (procedure heading) 
(subroutine declaration tail) ; (subroutine declaration part) 
(function heading) 
(subroutine declaration tail) ; (subroutine declaration part) I (empty) 

(subroutine declaration tail) ::= (identifier) I (declarations) (block) 

(procedure heading) :: procedure (identifier) (formal parameters) 

(function heading) ::= function (identifier) (formal parameters) 
(type identifier) 

(formal parameters) ::= ( (parameter list) ) I (empty) 

(parameter list) :: (parameter) (parameter list tail) 

(parameter list tail) :: ; (parameter) (parameter list tail) I (empty) 

(parameter) ::= (identifier list) (type identifier) 
var (identifier list) : (type identifier) I 
(procedure heading) I (function heading) 

(block) ::=4> begin (statement list) end 
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(statement list) :: (statement) (statement list tail) 

(statement list tail) :: ; (statement) (statement list tail) I (empty) 

(statement) ::= (identifier) (statement identifier tail) 
for (identifier) := (expression) (for loop tail) 
while (expression) do (statement) I 
repeat (statement list) until (expression) I 
if (expression) then (statement) (if tail) I 
case (expression) of (case statement list) end I 
with (variable list) do (statement) I 
(block) I 
(label) (statement) I 
goto (label) I 
(empty) 

(statement identifier tail) :: ((actual parameter list) ) 
(variable tail) (expression) I 
(empty) 

(actual parameter list) :: (actual parameter) (actual parameter list tail) 

(actual parameter list tail) :: , (actual parameter) (actual parameter list tail) 
(empty) 

(actual parameter) :: (expression) (actual parameter taill) 

(actual parameter taill) ::= : (expression) (actual parameter tail2) I (empty) 

(actual parameter tai12) :: : (expression) I (empty) 

(variable) ::= (identifier) (variable tail) 

(variable tail) :: [(expression list) ] (variable tail) 
• (field identifier) (variable tail) I 

(variable tail) I (empty) 

(variable list) ::= (variable) (variable list tail) 

(variable list tail) ::= , (variable) (variable list tail) I (empty) 

(for loop tail) ::==> to (expression) do (statement) I 
downto (expression) do (statement) 
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(if tail) :: else (statement) I (empty) 

(case statement list) :: (case list element) (case statement list tail) 

(case statement list tail) :: ; (case list element) (case statement list tail) 
(empty) 

(case list element) ::= (constant list) (statement) I 
otherwise (statement) I (empty) 

(field identifier) ::= (identifier) 

(expression) :: (simple expression) (expression tail) 

(expression tail) ::= (relational operator) (simple expression) I (empty) 

(simple expression) :: (term) (simple expression tail) 

(simple expression tail) ::= (adding operator) (term) (simple expression tail) 
(empty) 

(term) :: (factor) (term tail) 

(term tail) ::= (multiplying operator) (factor) (term tail) I (empty) 

(factor) ::=:> nil j not (factor) I (character string) J (sign) (factor sign tail) 
[(set element list) ] 

(factor sign tail) :: ((expression)) (unsigned number) 1 
(identifier) (factor identifier tail) 

(factor identifier tail) ::= ((actual parameter list) ) I (variable tail) 

(set element list) :: (set element) (set element list tail) I (empty) 

(set element list tail) ::= , (set element) (set element list tail) I (empty) 

(set element) :: (expression) (set element tail) 

(set element tail) ::= (expression) I (empty) 

(relational operator) ::= = ( I (= I ) = I ) I in 

(adding operator) :: + I - or 
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(multiplying operator) :: * J / I div J mod f and 

(expression list) :: (expression) (expression list tail) 

(expression list tail) ::= , (expression) (expression list tail) I (empty) 

(empty) :: 

(identifier) ::= (letter) (identifier tail) 

(identifier tail) ::= (letter) (identifier tail) I (digit) (identifier tail) 
- (identifier tail) I (empty) 

(unsigned integer) ::= (digit) (unsigned integer tail) 

(unsigned integer tail) :: (digit) (unsigned integer tail) I (empty) 

(unsigned real) :: (unsigned integer) (unsigned real interior) 

(unsigned real interior) :: (unsigned integer) (unsigned real interior tail) I 
(unsigned real tail) 

(unsigned real interior tail) :: (unsigned real tail) I (empty) 

(unsigned real tail) ::- e (scale factor) I E (scale factor) 

(scale factor) :: (sign) (unsigned integer) 

(character string) ::= ' (string element list) 

(string element list) :: (string element) (string element list tail) 

(string element list tail) ::= (string element) (string element list tail) I (empty) 

(string element) ::= (any character except apostrophe or newline) I, 
(apostrophe image) 

(apostrophe image) :: 

(letter) :: AI B ICl El F G 11111 J 1K I U M N 10 P1 Q I 
RI SIT I U IV 1W IX IY I Z I  lb I  Idle I fjg I h Ii Ii I 

(digit) ::- 0111213141516171819 
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program division-by-repeated-subtraction; 

{ This program computes 27 divided by 7. 
The quotient and remainder are calculated 
by repeated subtraction. } 

var 
dividend, quotient : integer; 

begin { "Main" } 
dividend 27; 
quotient := 0; 

while dividend ≥ 7 do 
begin 

dividend := dividend - 7; 
quotient := quotient + 1 

end; 

write( ' Seven goes into twenty-seven, ', quotient, ' times. 
writeln( 'The remainder is ', dividend,  

end. 

program swap 2numbers; 

{ This program uses a procedure to swap two numbers. } 

var 
a, b, si, s2 : real; 

procedure swap; 

{ This procedure uses the local variable "temp" to 
swap the two numbers in the global variables, "si" & "s2." } 

var 
temp : real; 
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begin 
temp := si; 
si s2; 
s2 := temp 

end; { Swap } 

begin { "Main" } 
a := -7.61; 
b := 3.2; 
writeln('a = ', a:2:2, ' b = 
writein; 

sl := a; 
s2 := b; 
swap; 
a si; 
b := s2; 
writeln('a = ', a:2:2, ' b = ', b:2:2) 

end. 

program array-demo; 

{ This program initializes an array to 6 random numbers between 
1 and 4. It then searches the entire array for the number 3. 
The positions in the array containing the number 3 are displayed. } 

var 
i : integer; 
nums: array[1..6] of integer; 

begin { "Main" } 
for i := 1 to 6 do 

nums[i] := random(4) + 1; 

for i := 1 to 6 do 
if nums[i] = 3 then 

writeln( 'A 3 is in position 
end. 

i) 
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program tally-random-numbers; 

{ This program generates 6 random numbers between 1 and 3. 
It also computes the number of times each random number is drawn. 

var 
sums : array[1..3] of integer; 
i : integer; 
value: integer; 

begin { "Main" } 
for i := 1 to 3 do 

sums[i] := 0; 

for i := 1 to 6 do 
begin 

value := random(3) + 1; 
sums[value] := sums[value] + 1; 

end; 

for i := 1 to 3 do 
writeln(i, ' was drawn ', sums[i], time(s).'); 

end. 

program quizi; 
var 

i: integer; 
nums: array[1..3] of integer; 
sum: real; 
difference : real; 
mean: real; 
result : real; 

begin { "Main" } 
sum := 0.0; 

} 
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for i := 1 to 3 do 
begin 

nums[i] := random(10); 
sum := sum + nums[i] 

end; 
mean := sum / 3; 

sum := 0.0; 
for i := 1 to 3 do 

begin 
difference := abs(nums[i] - mean); 
sum := sum + difference 

end; 

result sum / 3; 

writeln('The mean is ,mean:3:3);j 
writelr( 'The result is ', result:3:3); 

end. 

program display-triangle; 

{ This program calls a procedure to display lines of a triangle. } 

var 
i : integer; 

procedure make_line(stop : integer); 

{ This procedure displays a line of asterisks. 

var 
i : integer; 

begin 
for i := 1 to stop do 

write('*'); 
writeln( '*') 

end; { make-line } 

} 
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begin { "Main" } 
makeiine(3); 

for i := 2 downto 1 do 
makeiine(i); 

writeln( '*') 
end. 

program display-figure; 

{ This program calls two procedures to display a figure. } 

var 
i : integer; 

procedure interior(totaLrows : integer; ch : char); 
var 

i : integer; 
begin 

for i := 1 to total-rows do 
writeln('* 1, ch, ch,  

end; 

procedure exterior(ch: char); 
begin 

writeln(ch, ch, ch, ch); 
end; 

begin { "Main" } 
for i := 1 to 3 do 
i i mod 2 = 0 then 

interior(i, '+) 
else 

exterior( '*') 
end. 
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program quiz2; 
var 

chars : array[1..2] of char; 
i, j : integer; 

procedure display(chl, ch2 : char); 
var 

i : integer; 
begin 

for i := 1 to 2 do 
write(chl, ch2); 

writein 

end; { "display" } 

begin { "Main" } 
chars[l] := 
chars[2] := 

for i := 1 to 2 do 
begin 
j := 3 - 
display (chars [i], chars[j]) 

end; 

display('+', '+') 
end. 

program loan-payments; 

{ This program computes the number of months, it takes to 
pay off a $2000 loan, given monthly payments of $750.00 and 

interest charged at 12% per year. } 

var 
principal : real; 
months: integer; 
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procedure payment(var principal : real; var time : integer); 

{ This procedure simulates a monthly payment. } 

var 
interest : real; 

begin 
interest := principal * 0.01; 
principal := principal + interest; 
principal := principal - 750.00; 
time := time + 1 

end; { payment } 

begin { "Main" } 
principal := 2000.00; 
months := 1; 

repeat 
payment (principal, months); 

until principal < 750.00; 

writeln( 'It will take ', months, ' months to pay off the loan.'); 
writeln('However, in the last month only $', principal:2:2); 
writeln( 'plus interest must be paid.') 

end. 

program reverse; 

{ This program assigns 6 random numbers between 0 and 99 to 
array, "nums." Then it reverses the order of the numbers 

in "nums." } 

var 
• i : integer; 
index: integer; 
nums: array[1..6] of integer; 

procedure swap(previous_x : integer; var x, y : integer); 
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{ This procedure swaps the two numbers mapped 
by the variable parameters, x and y. } 

begin 
x := y; 
y := previous..x 

end; { swap } 

begin { "Main" } 
for i := 1 to 6 do 

begin 
nums[i] := random(100); 
write(nums [i] :4) 

end; 
writein; 

for i := 1 to 3 do 
begin 

index := 7 - i; 
swap(nums[i], nums[i], nums [index]) 

end; 

for I := 1 to 6 do 
write(nums[i] :4) 

end. 

program quiz3; 
var 

i : integer; 
nums: array[1..4] of integer; 
counter : integer; 
index : integer; 

procedure move(var numi, num2, ctr : integer); 
var 

temp : integer; 
begin 
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temp := numi; 
numl := num2; 
num2 := temp; 

ctr := ctr + 1 
end; { move } 

begin { "Main" } 
for i := 1 to 4 do 

begin 
nums[i] := random(5); 
write(nums[i] :3) 

end; 
writein; 

repeat 
counter := 0; 
for i := 1 to 3 do 

begin 
index := I + 1; 
if nums[i] > nums[index] then 

move(nums [i], nums[index], counter) 
end 

until counter = 0; 

for i := 1 to 4 do 
write(nums[i] :3) 

end. 


