
University of Huddersfield Repository

Shah, M.M.S., McCluskey, T.L. and West, Margaret M.

An Investigation into Using Object Constraints to Synthesize Planning Domain

Original Citation

Shah, M.M.S., McCluskey, T.L. and West, Margaret M. (2009) An Investigation into Using Object 
Constraints to Synthesize Planning Domain. In: ICAPS 2009 Doctoral Consortium, September 19th 
2009, Thessaloniki, Greece.

This version is available at http://eprints.hud.ac.uk/6649/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/56981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An Investigation into Using Object Constraints to Synthesize Planning Domain
Models

M.M.S.Shah and T. L. McCluskey and M.M.West
School of Computing and Engineering

The University of Huddersfield, Huddersfield HD1 3DH, UK
email s.shah@hud.ac.uk

Abstract

This thesis work concerns the area of automated acquisition
of planning domain models from one or more examples of
plans within the domain under study. It assumes that an ad-
equate domain model for a domain can be composed of ob-
jects arranged in collections called object sorts. Recently, two
systems have had success in using this underlying assump-
tion: the Opmaker2 system (McCluskey et al. 2009), and
the LOCM system (Cresswell, McCluskey, and West 2009).
The former requires only one solution plan as input, as long
as it contains at least one instance of each operator schema
to be synthesized. It does require a partial domain model as
well as the example plan, and the initial and goal states of
the plan. In contrast LOCM requires no background infor-
mation, but requires many instances of plans before it can
synthesize domain models. Our aim is to build on these sys-
tems, and establish an experimental and theoretical basis for
using object - centred assumptions to underlie the automated
acquisition of planning domain models.

Introduction
This thesis work concerns the area of automated acquisition
of full or partial domain models from one or more examples
of plans within the domain under study. One motivation is
that the knowledge engineering of such domain models by
hand into languages such as PDDL is inefficient and labo-
rious. Another is to help planning agents become more au-
tonomous. Agents that have planning capabilities may need
the ability to acquire and refine domain models, if they en-
counter new domains.

Our work assumes that an adequate domain model for
a domain can be composed of objects arranged in collec-
tions called object sorts. We use the assumptions of Simp-
son et al’s object-centric view of domain models (Simpson,
Kitchin, and McCluskey 2007). Here a planning domain
model consists of sorts of object instances, where each ob-
ject behaves in the same way as any other object in its sort.
Sorts have a defined set of states that their objects can oc-
cupy, and an object’s state may change (called a state transi-
tion) as a result of a domain action’s execution.

Recently, two systems have had success using this under-
lying assumption: the Opmaker2 system (McCluskey et al.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2009), and the LOCM system (Cresswell, McCluskey, and
West 2009). The former requires only one solution plan as
input, as long as it contains at least one instance of each
operator schema to be synthesized. It does require much
background knowledge, however, including a partial domain
model, as well as the training plan itself, and the initial and
goal states of the plan. In contrast LOCM requires no back-
ground information, but requires many training plans before
it can synthesize domain models. We aim to build on these
systems, and establish an experimental and theoretical basis
for using object - centred assumptions to underlie the auto-
mated acquisition of planning domain models.

Related Work
Work in the general area of knowledge acquisition for plan-
nig is growing, with current events such as ICKEPS 2009,
and the ICAPS 2009 workshop in ”Learning Structural
Knowledge From Observations”, both of which are very rel-
evant to the thesis study. One can classify work by consider-
ing what inputs the systems require, and what their outputs
are, as given in the list below. Let us assume a system ”ob-
serves” training plans containing action instances, and tries
to synthesize operator schema representing groups of these
action instances. The features of the systems may include
the following.
• Observations(s): Are many sequences of training plans

required or just one? Are the plans assumed to be correct?
How are they represented e.g. as an action name followed
by a list of parameters representing objects affected?

• Training help: As well as the observed plan, is there other
data supplied? e.g. a system might be supplied with the
initial and goal state that the plan solves, as well as partial
or full intermediate state information.

• Constraints: is there a background set of constraints as-
sumed about the world which help in the synthesis stage?
For example, in the object-centric approach we assume
that objects are affected by actions, and an object is input
to an action in the state that it leaves the previous action.

• Partial Model: is there a pre-defined specified language
of predicates or fluents? e.g. most systems assume that
the user has specified a set of fluents in which the world
is described, thus constraining the system’s range of ap-
plications.



• Algorithm: this refers to the characteristics of the algo-
rithm used to synthesize operators: does it use deduction
and/or induction, or hill climbing or other search tech-
niques?

• Output: this is normally a set of operator schema or meth-
ods, but could also include a set of heuristics to be used
to speed up planning. The expressiveness of the out-
put schema language is important in determining where
a system is capable of adequately synthesizing a domain
model. One way of characterising this is to use the levels
in PDDL as a form of measure.

There has been a great deal of related work in this area un-
der the assumption that the output is a literal-based STRIPS-
like domain model. In this work, it is generally the case
that predicates or fluents are predefined, and the aim of the
system is to use example plans, either incrementally or all
at once, to induce or deduce operator schema in terms of
these fluents. We will mention several recent systems. In the
ARMS system (Wu, Yang, and Jiang 2005), a domain model
is output in the form of STRIPS-type operator schema, with
the input being multiple examples of training plans. ARMS
does not require intermediate state information, but requires
background knowledge such as types, relations,initial and
goal states, and relies on many training plans containing
valid solution sequences. In the SLAF approach (Shahaf
and Amir 2006) expressive operator schema can be output
(at least to ADL level), but SLAF requires as input speci-
fications of fluents, as well as partial observations of inter-
mediate states between action executions. Learning expres-
sive theories from examples is a central goal in the Inductive
Logic Programming (ILP) community, and some systems
build on this considerable body of work. For example, in
his thesis (Benson 1996), Benson describes an ILP method
for learning very expressive operator schema, using multiple
examples, in an incremental fashion.

There is also a body of research aimed at learning hierar-
chical domain models, mainly in the ”HTN” variety. Prac-
tical planning domains are based on ‘hierarchical task net-
work’ decomposition, and it could be claimed that these sys-
tems learn heuristics encapsulated within an HTN method.
HTNs can be very difficult to construct manually and au-
thors have worked in producing these using methods from
machine learning. In (Nejati, Langley, and Konik 2006)
the authors describe how they induce teleoreactive logic pro-
grams from expert traces. The teleoreactive programs index
methods by the goals they achieve. They use methods de-
rived from explanation based learning to chain backwards
from the end result of the sample trace. Theoretical work on
HTN planning is presented in (Ilghami et al. 2005). This pa-
per introduces a formalism whereby situations are modelled
where general information is available of tasks and sub-
tasks, together with some plan traces. In the early work all
information about methods was required except for the pre-
conditions. This limitation is overcome in later work by the
same group (Ilghami, Nau, and Munoz-Avila 2006) a new
algorithm ‘HDL’ (HTN Domain Learner) is presented which
learns HTN domain descriptions from plan traces. Between
70 and 200 plan traces are required to induce the descrip-

tions. HTN-MAKER is presented in (Hogg and Munoz-
Avila 2007). This receives as input a STRIPS domain model,
a collection of STRIPS plans and task definitions and pro-
duces an HTN domain model. The experimental hypothesis
is that after a few problems have been analysed an HTN do-
main model will be ultimately obtained able to solve most
solvable problems. A version of the logistics-transportation
domain is chosen for the experiment and good results are ob-
tained. However these good results are not replicated for the
blocks-world domain. One problem is the large number of
methods which have to be learned, where one method might
subsume another.

A motivating example
The Ring World
To motivate the work on synthesizing domain models from
an object perspective, we use an example from computer
games, called the ”Ring World”. The idea is, for each group
of characters in the game, we need to create a domain model
specifying the actions that they can take. After this, a plan-
ning engine can then be used to generate plans and create
the illusion of goal directed behaviour. The game was de-
signed as follows: there is one overall ’database’ which can
completely describe any state of the game. Different sets of
characters have different sets of capabilities: one is a set of
knights that attempt to bring about a set of goals (eg acquire
the Ring, kill orcs). Another is a set of orcs, with goals such
as blocking doors, disabling knights etc. Each set of char-
acters can use deliberative planning to try to achieve their
goals, execute their plans and replan when their plans are
no longer executable. The player character within the game
could, for example, play the role of a ’wizard’ that observed
one force’s plans and attempted to help achieve them.

A step towards implementing the game might be to con-
struct a planning domain model with operator schema rep-
resenting the capabilities of the characters, and the effects
of their actions. Sets of operator schema, representing the
views of the overall domain model, have to be generated for
this, one for each set of characters. These views would con-
stitute distinct operator sets, whereas the object structures
would be common to all and constitute the central database.

An example snapshot (or state) of the Ring World is illus-
trated in Figure 1. For example, from the point of view of
the force controlling the knights:
• knights can move between rooms and passages. Move-

ment will take place via propositional steps such as
“move-into-room” and “move-to-passage”;

• passages can be blocked by orcs or locked doors;
• locked doors need to be opened by the correct key;
• knights can acquire keys from trolls if they are near them

and offer them some treasure in exchange;
• orcs that are sleeping can be killed by a knight if it is

near them and has a weapon (however the weapon is then
spent);

• orcs that are awake are similar to sleeping orcs except the
knight needs to pick up protection first (a shield or a spell)
before fighting them;



Figure 1: A state of the Ring World

• hidden treasure can found by a knight if it is in the same
room as the treasure.

For example, consider the state in Figure 1. Assume that
a goal to be achieved is for the knight “Aragorn” to acquire
the ring. Then the planner would have to generate a plan for
him to move through rooms and passages to acquire a key to
unlock one of the passages leading to r2 (the only route to
the ring in r1); and to acquire some treasure so that he can
trade it for protection, so that he will be able to overcome
the orc guarding room r1, when he eventually arrived there.

Use of Object Centred Constraints in Determining
Object Transitions
We will use the Ring World example to illustrate the idea of
how object constraints can help with the domain model syn-
thesis process. In this case, we would like to use constraints
to determine the complete set of transitions of individual ob-
jects as they are effected by actions in a training plan.

We assume that a correct training plan is input, with
initial and goal state as training help. Additionally, assume
that we have partial domain model that includes only a
propositional encoding of the Ring World, with the treasure
object necklace being described as in one of 4 states:
hidden, held by knight, taken by troll, offered for barter.
Assume a training plan of

“Find necklace, Offer necklace, Exchange necklace”

The initial state is ”hidden”, and the final state is
taken by troll. As shown in Figure 2, there are 7 possible
paths through the object state space, using the assumption
that the object changes state at each step. In this case it
would not be possible to trace a deterministic path through
the space of propositions, from the training sequence, as the
constraints on initial and goal states are insufficient.

If we introduce a relational, object representation, then
this introduces extra constraints. Assume that any piece of
object treasure (?t) can occupy one of four abstract states,
where it might be related to a ring (?r), a knight (?k), or a
troll (?m), as follows:

hidden(?t,?r)
holding(?t,?k)
taken(?t,?m)
offered(?t,?k,?m)

Returning to the example with the new representation, as-
sume the initial state is “hidden(necklace,r7)”, the final is
“taken(necklace,troll1)”, and we use the training sequence
from the example above. We reproduce this in the syntax
used by the Opmaker system (McCluskey et al. 2009), be-
low (where the character ‘@’ is used to distinguish an object
that does not change state as a result of an action):
find_treasure(@knight1,@r7,necklace),
move_to_passage(knight1,p67,r7),
present(@george,@p67,@troll1,necklace),
exchange(necklace,key1,@george,@p67)

We can now trace a unique path through the state space of
the necklace, using object constraints, from the initial state
”hidden(necklace,r7)”. The first four possible transitions
are:
hidden(necklace,r7)=>

holding(necklace,knight1)
hidden(necklace,r7)=>

offered(neckalce,knight1,?troll)
hidden(necklace,r7)=>

taken(necklace,?troll)
hidden(necklace,r7)=>

hidden(necklace,?r)

Given that the first step in this sequence does not refer to a
troll, or two different rooms, only the first of the four possi-
ble forms of transition below would be possible, as it is the
only one which leads to an instantiated transition. The last
transition would only be possible if two distinct rooms had
been specified in the sequence step. The transitions effected
by move to passage do not affect the necklace, so this step
can be ignored. The next step leads to the following transi-
tions:
holding(necklace,knight1)=>

holding(necklace,?knight)
holding(necklace,knight1)=>

offered(neckalce,knight1,troll1)
holding(necklace,knight1)=>

taken(necklace,troll1)
holding(necklace,knight1)=>

hidden(necklace,?room)

Hence the second and third transitions are possible. The first
is ruled out as there is no new knight object specified to in-
stantiate ”?knight”, and in the last there is no value specified
for ”?room”. Keeping both these options open, we can ex-
amine the last transition, which must change the necklace
into state “taken(necklace,troll1)”. This constraint eliminate
the third option in the step above, leaving transition
offered(neckalce,knight1,troll1) =>

taken(necklace,troll1)



Figure 2: Seven paths through object space

Figure 3: A unique path through object space

as the only option available. This unique path of transi-
tions through the object state space of sort treasure is illus-
trated in Figure 3.

Summary
The aim of this thesis work is to explore the scope and po-
tential of using object-centred constraints to assist the ac-
quisition of planning domain models from examples. We
plan to build on the recent work embodied in the object-
centred systems of Opmaker2 (McCluskey et al. 2009), and
LOCM (Cresswell, McCluskey, and West 2009); whereas
they have produced promising experimental results, there is
a need to analyse them theoretically, to find the limits of their
output domain models, and the conditions under which they
are successful.

In this paper we have reviewed some of the large amount
of related work, and introduced a classification for systems
that learn planning operator schema. We introduced an ex-
ample domain to illustrate the kind of constraints that an ob-
ject centred approach can bring, and stepped through an ex-
ample sequence showing how a unique object transition path
can be determined.

References
Benson, S. S. 1996. Learning Action Models for Reactive
Autonomous Agents. Ph.D. Dissertation, Dept of Computer
Science, Stanford University.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of Object-Centred Domain Models from Plan-
ning Examples. In Proceedings of ICAPS 2009.
Hogg, C., and Munoz-Avila, H. 2007. Learning Hierar-
chical Task Networks from Plan Traces. In Proceedings of

the ICAPS’07 Workshop on Artificial Intelligence Planning
and Learning.
Ilghami, O.; Nau, D. S.; Muoz-Avila, H.; and Aha, D. W.
2005. Learning preconditions for planning from plan
traces and HTN structure. Computational Intelligence
21(4):388–143.
Ilghami, O.; Nau, D. S.; and Munoz-Avila, H. 2006.
Learning to do htn planning. In Proceedings of the Six-
teenth International Conference on Automated Planning
and Scheduling, 390 – 393.
McCluskey, T.; Cresswell, S.; Richardson, N.; and West,
M. M. 2009. Automated acquisition of action knowledge.
In International Conference on Agents and Artificial Intel-
ligence (ICAART), 93–100.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning hier-
archical task networks by observation. In ICML ’06: Pro-
ceedings of the 23rd international conference on Machine
learning, 665–672. New York, NY, USA: ACM Press.
Shahaf, D., and Amir, E. 2006. Learning partially observ-
able action schemas. In AAAI. AAAI Press.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L.
2007. Planning Domain Definition Using GIPO. Journal
of Knowledge Engineering 1.
Wu, K.; Yang, Q.; and Jiang, Y. 2005. ARMS: Action-
relation modelling system for learning acquisition models.
In Proceedings of the First International Competition on
Knowledge Engineering for AI Planning.


