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NULL MODELS AND DISPERSAL DISTRIBUTIONS: 
A COMMENT ON AN ARTICLE BY CALEY 

In a recent article Caley (1991) outlined a null model for dispersal distributions 
against which he suggested empirical data should be compared. He first presented 
Waser's geometric model (Waser 1985), which can be derived as follows: Dispers- 
ing individuals move in a straight line from the natal site and settle in the first 
unoccupied site they encounter. If unoccupied sites occur independently at ran- 
dom with probability t as a result of turnover within the habitat, then the distribu- 
tion of dispersal distances will follow a geometric distribution in which the proba- 
bility of settling at distance i is given by 

p(i) = t( l  - t)' for i  = 0, 1 ,2 ,3 , .  . . (1) 

Note that distance traveled in this model is measured in terms of the mean size 
of the home range and that the natal site is designated site 0. In this model 
individual dispersal behavior is deterministic, in the sense that individuals settle 
with probability l at the first unoccupied site they encounter. Thus, if we know 
the distribution of occupied and unoccupied sites and the direction in which an 
individual is dispersing, then we know exactly how far the individual will travel. 
Caley suggests that when this model is applied, a null model should also be fitted 
in order to determine which provides the best description of the data. The null 
model suggested by Caley is the exponential distribution for which the probability 
density function is 

This distribution is derived by assuming that the probability that an individual 
will settle in the next short interval, Ax, is approximately PAX, which is indepen- 
dent of the distance traveled, X .  It is also assumed that individual dispersal dis- 
tances are statistically independent. Note that in this model it is the stochasticity 
in individual behavior in a homogeneous environment that generates the observed 
distribution of dispersal distances. In contrast, the geometric model assumes 
individual behavior is deterministic (see above) and that stochasticity in the envi- 
ronment (i.e., the presence of occupied and unoccupied sites) generates the dis- 
persal distribution. 

The main problem with Caley's approach is that the geometric distribution and 
the appropriate discrete form of the exponential distribution are, in fact, identical. 
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To see this, note that in order to form a discrete distribution from the exponential 
distribution we integrate over each home range 

1 b 1  

p(i) = Pe P'dx for i  = 0, l , ? ,  . . 

Now p(0) = 1 - r P P ,  which is t in the geometric model. Substituting for t = 1 
- in equation (1) gives equation (2), demonstrating the equivalence of the 
two distributions. This equivalence arises because in both models the probability 
of an individual's settling is independent of the distance traveled (i.e., the dis- 
tance-specific rate of settling is a constant). Given this equivalence, it is difficult 
to see how Caley obtains the results presented in his figure 1, in which the two 
distributions appear very different. What it appears Caley has done is to equate 
the mean of the geometric distribution to the mean of the continuous exponential 
distribution in order to obtain the value of P for the exponential model, giving 
p = tl(1 - t). Using this procedure, I have been able to obtain Caley's figure 
1A and B, but not C, which appears to be incorrectly drawn. What Caley should 
have done is to solve t = 1 - r-B for p, giving P = -ln(l - 1):  when this 
expression is used, the probability distributions are identical. 

In order to obtain parameter estimates, Caley equates the observed mean dis- 
persal distance to the mean of the theoretical distribution being fitted. A far better 
approach would be to use maximum likelihood estimation methods (Cox and 
Oakes 1984); these allow explicit tests of exponentiality (Cox and Oakes 1984, p. 
43) and departures from exponentiality to be characterized. In an earlier article, 
a collcaguc and I (Rccs and Long 1993) give a biological examplc that allows for 
discreteness in the data and truncation. 

Caley (1991, p. 524) states that "if both a null model and a deterministic model 
can predict the shape of the same empirical distribution of dispersal distances, 
the underlying processes of dispersal cannot be safely attributed to the process 
described by the deterministic model." This statement implicitly assumes that 
we may infer individual behavior patterns from population-level data. The fact 
that the geometric model and Caley's null model generate identical patterns at the 
population level should caution us against interpreting population-level patterns in 
terms of the behavior of individuals without information on individual behavior. 

In the models presented above, all dispersing individuals are assumed to be 
identical. When this is true we may infer how the probability of an individual's 
settling varies with distance traveled (though not the underlying behavioral mech- 
anism; see above). In a heterogeneous population this is no longer true (Vaupel 
et al. 1979; Rees and Long 1993). Consider a population composed of two types 
of individual. Type 1 individuals occur with probability p, and each type disperses 
according to an exponential distribution but with different P's: then any individual 
will have a constant probability of settling independent of the distance traveled. 
However, if we looked at the population as a whole, ignoring between-individual 
differences, then the probability of settling would no longer be independent of 
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FIG. 1 .-Distance-specific rate of settling as a function of the distance traveled for individu- 
als of types 1 and 2, each of which disperse according to an exponential distribution, and 
for a population initially composed of equal proportions of each type. Parameter values: 6, 
= 0.5, ( j 2  = 0 . 1 , ~  = .5. 

the distance traveled. The population-level distance-specific rate of settling, h ( x ) ,  
is 

where p ,  and p, define the exponential dispersal distributions for individuals of 
types I and 2 ,  respectively. Note that if p = 1 then h(x)  = p,,  whereas if p = 0 
then h ( x )  = p,. So, if there is no between-individual variability then the probabil- 
ity of settling is independent of the distance traveled. The initial rate of settling 
is h(0) = p p ,  + (1 + p)P,, whereas as X -. m, h(x)  + p ,  if P, < P,, or h(x)  -. 
p, if PI > p,. Thus, initially the distance-specific settling rate is simply the average 
of the two types present in the population. However, at greater dispersal dis- 
tances the population becomes dominated by those individuals with the lower P. 
This means that the population-level distance-specific settling rate declines with 
increasing distance even though at the individual level it is constant (see fig. 1). 
Thus, we cannot infer how the probability of an individual's settling varies with 
distance traveled, let alone the underlying behavioral mechanisms. To quote Pie- 
lou (1977, p. 123): "It must be concluded that the fitting of theoretical frequency 
distributions to observational data can never by itself suffice to 'explain' the 
pattern of a natural population." 
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