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Abstract 

 

Blockchain-deployments are highly secure, but lack in terms of scalability due to 

exponential increase in mining delay w.r.t. chain lengths. To overcome these issues, 

researchers have proposes used for low-complexity mining, sharing techniques, and 

other machine learning optimizations. But these models either depend on underlying 

blockchain, or showcase larger computational delays, which limits their scalability 

levels. Moreover, most of these models do not consider consensus optimizations, 

which further limits their deployment capabilities for large-scale networks. To 

overcome these issues, this text proposes design of an efficient bioinspired model for 

improving QoS of blockchain IoT (Internet of Things) deployments via context-based 

consensus. The proposed model initially collects temporal mining performance from 

existing miner nodes, and deploys a novel Proof-of-Temporal Trust (PoTT) based 

consensus for validating responses of these miners. The PoTT Model uses temporal 

mining delay, energy consumed while mining, and throughput levels for selection of 

high-performance miners for processing block-addition requests. Requests 

approved by these miners are stored on a set of Bacterial Foraging Optimized (BFO) 

sidechains. These sidechains are automatically tuned based on spatial QoS 

performance of the network under real-time conditions. The BFO Model assists in 

segregating existing single-length blockchains into QoS-optimized sidechains. To 

perform this segregation, the BFO Model uses an exhaustive consistency metric that 

combines QoS & security levels that can be applied to specialized applications like 

Industrial IoTs. Thus, segregation into sidechains is done while maintaining high 

security under heterogenous attacks. Due to these optimizations, the model was able 

to reduce mining delay by 3.9%, reduce energy needed for mining by 2.5%, improve 

throughput by 4.5%, while maintaining high attack-detection efficiency under Sybil, 

Distributed Denial of Service (DDoS), and Masquerading attacks.   

 

Keywords- Blockchain, Quality, Service, Security, Temporal, Trust, Bacterial, 

Foraging, Optimization, Delay, Energy, Throughput, Attacks.   

 

 

I. Introduction 

Blockchain technology makes it possible for data management systems to have both openness and security, 

making them applicable in a variety of settings [1, 2, 3]. When used for applications that generate massive volumes 

of real-time data, blockchain systems that store databases will need compliance with high quality of service (QoS) 

criteria (such as social networks, XR services, financial systems, and autonomous control). To fix the throughput 

problems that are brought on by the consensus mechanism, specifically blockchain-based Internet of Things (IoT) 

networks that have real-time Internet of Things (IoT) connection are needed [4, 5, 6]. Bitcoin and Ethereum, the 

two most popular blockchain systems, are only capable of handling three to four and fourteen transactions per 

second (TPS), respectively [7, 8, 9] via use of many-objective optimization algorithm based on the dynamic 
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reward and penalty mechanism (MaOEA-DRP). This is insufficient to keep up with the rates of data creation that 

are associated with Internet of Things networks and credit card transactions. Proof-of-work, often known as PoW, 

is the mechanism of reaching consensus that is used by conventional blockchains [10, 11, 12] that deploy Sharding 

Hash Graphs (SHGs). The Proof-of-Work algorithm consumes a significant amount of power since miners are 

required to continuously conduct hash operations in order to solve mathematical puzzles. In addition, the average 

throughput of a blockchain network decreases as the number of nodes in the network rises. This is because an 

increase in the number of nodes causes an increase in both the cost of computation and the amount of time 

necessary to verify blocks. A blockchain solution that is more advanced than what is currently available is required 

in order to address the scalability problem. EOS [13, 14, 15] use a consensus mechanism known as delegated 

proof of stake (DPoS). This algorithm assigns the responsibility of mining to a select group of nodes. Sharding 

[16, 17, 18] was developed in order to boost the throughput of blockchains. The scalability of the blockchain 

technology and the security it provides are two more crucial qualities. It is possible for a group of malicious nodes 

to carry out a 51% attack if they have sufficient hashing power or voting rights to take control of the consensus 

process and change the data contained in the blockchain [19, 20]. A single-shard takeover assault is a kind of 

attack that may be used by a very small but well-organized group of malicious nodes to seize control of a 

blockchain network and alter its consensus rules [21, 22]. When consensus in blockchain networks is achieved by 

delegation or sharding, this is the scenario that arises (in which only chosen nodes participate in the consensus 

process). Even if malicious nodes do not control the majority of the network, an inaccurate block produced by a 

malicious block producer will be rejected by other honest nodes during the consensus process, and the block will 

not be added to the blockchain. This will occur even if the malicious nodes do not control the majority of the 

network. As a consequence of the fabrication of fraudulent blocks, trustworthy transaction ledgers are unable to 

be connected to the blockchain. This may lead to a large drop in the TPS or a database denial of service (DoS). 

The vast majority of existing blockchain solutions do not simultaneously care about scalability, security, and 

decentralization, despite the trilemma relationship between these three challenges. It is vital to evaluate all 

performance measures at the same time since improving the performance of one component of the blockchain 

may have a significant negative influence on the performance of the other components. In addition, there has not 

been a lot of research done on how to make blockchains more secure and efficient in the face of malicious nodes 

that disrupt consensus. 

It has been shown that the scalability of these models is inferior owing to their reliance on the blockchain that 

serves as the underlying data structure or the occurrence of large processing delays. The vast majority of these 

models also ignore consensus optimizations, which severely restricts their usefulness in very extensive networks. 

In the next section of this paper, the author delves into the intricacies of a wide variety of blockchain-consensus 

models, from which parallel inferences may be made. In Section 3, we investigate how these issues may be 

handled by constructing a bio-inspired model for boosting the quality of service (QoS) of blockchain installations 

using context-based consensus. Specifically, we look at how this model might help improve the QoS of blockchain 

installations. In the fourth section, a number of simulations are run in order to test the performance of the design 

and compare it to other alternative consensus-optimization procedures. The conclusion of the article includes 

some closing thoughts regarding the proposed paradigm as well as some ideas for further refining the paradigm 

so that it may be used in real-time scenarios. 

 

II. Literature Review for existing blockchain techniques 

One of the main objectives of a number of research projects that have looked at the possible uses of blockchain 

technology is managing the enormous amounts of data and transactions that are produced by Internet of Things 

(IoT) applications in a range of businesses. Work in [1] demonstrate use of a consortium blockchain for energy 

trading in an industrial IoT scenario made use of a credit-based payment system as opposed to a cash-based one. 

In [3] introduced a novel resource exchange method based on cloud computing and using the blockchain. In their 

work [11], Singh et al. described a blockchain-based decentralized healthcare administration system. A secure 

device authentication solution based on blockchain technology was developed in [12] to guarantee privacy and 

security in cross-domain industrial Internet of Things networks. A decoupled blockchain solution was also 

proposed in [13] that can manage data from IoT health monitoring devices while maintaining data security. Work 
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in [14] developed a fault-tolerant routing approach to autonomous Internet of Things security that makes use of 

machine learning. The use of cipher block chaining by the authors ensured the secrecy and validity of the data 

that was sent. To evaluate data blocks and offer dependable communication via a trust mechanism in 6G IoT 

networks, Haseeb and colleagues created a fault-tolerant supervised routing model in the study via Deep 

Reinforcement Learning (DRL) [15]. This was done to guard against malicious attacks on these networks. 

Blockchain systems often use a wide range of distinct consensus mechanisms. Bitcoin employs a Proof-of-Work 

(PoW) consensus procedure [16]. A hashing algorithm is the foundation of this technique. On the other hand, 

since PoW requires so many hash operations, it has significant issues with the number of resources it consumes 

and the throughput per second (TPS) it can reach. Other consensus algorithms have been proposed as potential 

remedies for this problem, including practical byzantine fault tolerance (PBFT) and proof of stake (PoS). A vote 

consensus procedure is used to verify blocks using PBFT [17], one of the byzantine fault-tolerant algorithms. 

Even if PBFT might reduce pointless hash operations, a blockchain network's message complexity rises 

dramatically when there are a lot of nodes. Zilliqa handles transactions concurrently in addition to leveraging 

sharding technologies to increase TPS [8]. The two-phased consensus procedure and the added delay brought on 

by sharding both raise the prospect that a single shard takeover attack might compromise the network's security. 

Another solution to the scalability issues that afflict blockchains is the use of a delegated consensus mechanism, 

in which only a small number of nodes that have been designated to participate in the blockchain consensus 

process. For the purpose of carrying out the blockchain consensus procedure, EOS [23, 24, 25] chooses a certain 

number of validators in beforehand. Work in [26, 27, 28] introduced a PBFT-based proof of reputation consensus 

method for a blockchain-based energy trading system in electric cars (EVs). The aggregate reputation of the cars, 

which is established by the ratings each vehicle assigns to the others, determines the number of validators that are 

selected through the consensus process. Li et al. [19] offered a method to defend federated learning environments 

from harmful attacks that was established by committee consensus. The delegated PBFT method, which selects a 

representative for consensus via the vote of NEO currency owners, is used in the NEO scheme that is detailed in 

[29, 30]. Reduced power consumption for the blockchain system is the aim of this approach. As more nodes join 

the consensus process in these delegation-based blockchain consensus solutions, it is anticipated that processing 

costs and communication traffic would go down. However, there are several problems that may jeopardize the 

security and decentralization of the blockchain. The methods for decentralized consensus currently in use do not 

account for the possibility that malicious attacks would significantly affect the blockchain's performance. 

Additionally, no research has been done to determine the best method for calculating the delegation ratio in order 

to ensure the fairness and security of the consensus process. 

A machine learning system known as DRL employs both RL and DL (RL). By providing additional context, DRL 

helps the agent to make decisions that are more informed. The DeepQN developed by DeepMind uses a DNN to 

approximate the state-action values seen in Atari games [21]. The research also focused on strategies for enhancing 

DQN's performance. For instance, [22] addressed the overestimation problem of DQN using a double estimator 

structure. [22] DNN, which consists of two different streams and utilizes an advantage function, aids in improving 

the performance of the DQN system. The pertinent citation is [23]. Research has also been done on how DRL 

technology may enhance the operating efficiency of blockchains. For instance, Liu et al. developed a DRL-based 

blockchain (DRLB) architecture in [24] to boost TPS while still adhering to security, latency, and decentralization 

requirements. With this layout, the blockchain's settings are optimized based on the network's current condition. 

In [25], researchers provide a sharded blockchain architecture that uses DQN to increase TPS. Work in [26] 

created a DRL-based data sharing system that is trustworthy and secure in order to maximize the data collection 

process. A DRL-based method was suggested by Yang et al. [27] with the aim of lowering total energy 

consumption while improving resource allocation. In their study, Dai et al. proposed a blockchain-based content 

caching architecture, using DRL as a method to carry out optimal content caching [28]. This framework was 

created to aid in the process of safeguarding the security and privacy of users. In the blockchain system proposed 

by [29] use of DRL to improve resource allocation while safeguarding the privacy and security of edge-enabled 

internet of things networks. The blockchain-enabled mobile edge computing system created in [30] also improves 

the performance of the blockchain and the cooperative offloading resource allocation problem. However, they do 

not take into account the possibility of attacks occurring even while the blockchain consensus process is still in 
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motion, nor do they offer a defence mechanism that can effectively thwart malevolent nodes in a dynamic 

blockchain network. These two gaps are both significant design problems which are considered in this text.  

III. Design of an augmented Bioinspired model for improving QoS of Blockchain IoT deployments via 

Context-based Consensus 

From the review of existing blockchain models, it can be observed that although blockchain deployments are very 

secure, they are not scalable due to the exponential growth in mining delay relative to chain lengths. Researchers 

have suggested low-complexity mining methods, sharding strategies, and other machine learning optimizations to 

address these problems. These models' lower levels of scalability are a result of their reliance on the underlying 

blockchain or the presence of longer computational delays. Additionally, the majority of these models do not take 

into account consensus optimizations, which further restricts their applicability in large-scale networks. This 

section discusses creating an effective bioinspired model to address these problems by enhancing the Quality of 

Service (QoS) of blockchain IoT (Internet of Things) deployments through context-based consensus. In order to 

validate the responses of these miners, the proposed model, which is depicted in figure 1, first gathers temporal 

mining performance from active miner nodes and then uses a novel Proof-of-Temporal Trust (PoTT) based 

consensus. The PoTT Model uses throughput levels, energy consumption, and the temporal mining delay to 

choose high-performance miners for handling block-addition requests. These miners approve requests and store 

them on a collection of sidechains called Bacterial Foraging Optimized (BFO). Based on the network's spatial 

QoS performance in real-time, these sidechains are automatically tuned. The BFO Model helps separate existing 

single-length blockchains into sidechains with improved QoS. The BFO Model performs this segregation using a 

thorough consistency metric that incorporates security and QoS levels and can be used for specialized applications 

like Industrial IoTs. As a result, sidechain segregation is accomplished while still maintaining high security against 

diverse attacks. 

 

Figure 1. Flow of the optimized sharding process 
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As per the flow of proposed model, it can be observed that initially a Proof-of-Temporal Trust (PoTT) based 

consensus is used, which assists in identification of optimal miners that can add new blocks. Design of this 

consensus is discussed in subsection 3.1, while design of the BFO based sidechaining method is discussed in 

section 3.2, where the selected miner parameters and chain parameters are fused in order to create segregated 

chains. Researchers can refer these sections in order to design their own customized optimum sharding 

deployments for real-time use cases. 

 

3.1. Design of the proposed model for PoTT based consensus 

To perform a Proof-of-Temporal Trust based consensus, exiting miner performance is used for evaluation of trust 

levels. These trust levels are calculated between 2 nodes via equation 1, where different mining performance 

metrics are fused in order to identify optimal miner nodes. 

𝑇𝐿(𝑁, 𝑀) =

𝐷(𝑁)

𝐷(𝑀)
+

𝐸(𝑁)

𝐸(𝑀)
+

𝑇(𝑀)

𝑇(𝑁)
+

𝑃𝐷𝑅(𝑀)

𝑃𝐷𝑅(𝑁)

4
… (1) 

Where, 𝑇𝐿(𝑁, 𝑀) represents the trust level between nodes 𝑁 & 𝑀, while 𝐷, 𝐸, 𝑇 & 𝑃𝐷𝑅 represents their mining 

delay, energy consumed during mining, temporal throughput, and packet delivery ratios, which are calculated via 

equations 2, 3, 4 & 5 as follows, 

𝐷(𝑀) =
∑ 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖

− 𝑡𝑠𝑡𝑎𝑟𝑡𝑖

𝑀𝑟
𝑖=1

𝑀𝑟

… (2) 

Where, 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  & 𝑡𝑠𝑡𝑎𝑟𝑡 represents the completion timestamp and starting timestamp for mining operations, 

while 𝑀𝑟 represents total number of mining requests that have been processed by this set of miner nodes. 

𝐸(𝑀) =
∑ 𝐸𝑠𝑡𝑎𝑟𝑡𝑖

− 𝐸𝑒𝑛𝑑𝑖

𝑀𝑟
𝑖=1

𝑀𝑟

… (3) 

Where, 𝐸𝑠𝑡𝑎𝑟𝑡  & 𝐸𝑒𝑛𝑑  represents the initial and final energy level of miner nodes during the mining process. 

𝑇(𝑀) = ∑
𝑅𝑥(𝑃)𝑖

𝑀𝑟 ∗ 𝐷(𝑀)

𝑀𝑟

𝑖=1

… (4) 

Where, 𝑅𝑥(𝑃) represents the total number of blocks successfully mined by the miner nodes. 

𝑃𝐷𝑅(𝑀) = ∑
𝑅𝑥(𝑃)𝑖

𝑇𝑥(𝑃)𝑖 ∗ 𝑀𝑟

𝑀𝑟

𝑖=1

… (5) 

Where, 𝑇𝑥(𝑃) represents total number of blocks given to the miner node to perform mining operations. Based on 

this trust level, an average trust value is estimated via equation 6, 

𝑇𝑡ℎ = ∑ ∑
𝑇𝐿(𝑖, 𝑗)

𝑁2(𝑀𝑖𝑛𝑒𝑟𝑠)

𝑁(𝑀𝑖𝑛𝑒𝑟𝑠)

𝑗=1

𝑁(𝑀𝑖𝑛𝑒𝑟𝑠)

𝑖=1

… (6) 

Miner nodes with 𝑇𝐿 > 𝑇𝑡ℎ are used for mining operations. The performance obtained during mining is used to 

update the trust levels, thus assisting in deployment of dynamic PoTT based consensus. The miner nodes along 

with existing blockchain configurations are used by a Bacterial Foraging Optimizer (BFO), which assists in 

formation of blockchain shards. This process is discussed in the next sub-section of this text.  

 

3.2. Design of the BFO Model for sharding operations 

The miner configurations along with current blockchain parameters are used to train a BFO Model, which assists 

in formation of blockchain shards. This is done via the following operations, 
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• To initialize the optimization process, a set of parameters are configured as follows, 

o A set of Bacterium used for shard formation (𝑁𝐵) 

o A set of iterations that will be used to form these shards (𝑁𝐼) 

o Rate at which the model will learn from different Bacterium particles (𝐿𝑟) 

o Total number of sidechains & their lengths, that currently present in the network (𝑁𝑠𝑐  & 𝐿𝑠𝑐) 

• A set of Bacterium are continuously reconfigured for 𝑁𝐼 iterations, as per the following process, 

• From the current set of chains, select a chain via equation 7, and generate a set of requests via equation 8, 

𝑁𝑠 = 𝑆𝑇𝑂𝐶𝐻(1, 𝑁𝑠𝑐) … (7) 

𝑁𝑟 = 𝑆𝑇𝑂𝐶𝐻(𝑀𝑖𝑛(𝐿𝑠𝑐) ∗ 𝐿𝑟 , 𝑀𝑎𝑥(𝐿𝑠𝑐) ∗ 𝐿𝑟) … (8) 

Where, 𝑆𝑇𝑂𝐶𝐻 is a Markovian process for stochastically generating different number sets, 

• Simulate 20% of these communications as attacks (Sybil, Masquerading, DDoS, etc.), and remaining 80% 

as normal requests. 

• Simulate these communications via addition of blocks to the selected 𝑁𝑠 shard, and estimate Bacterium 

fitness via equation 9, 

𝑓𝑏 =
[∑ 𝑇𝐿𝑖 − ∑

𝑇𝐿𝑗

𝑁𝑟

𝑁𝑟
𝑗=1

𝑁𝑟
𝑖=1 ]

𝑁𝑟 ∗ 𝑁2(𝑃𝑜𝑇𝑇)

∗ ∑ ∑ [
𝐷(𝑁) − 𝐷(𝑀)

𝐷(𝑀)
+

𝐸(𝑁) − 𝐸(𝑀)

𝐸(𝑀)
+

𝑇(𝑀) − 𝑇(𝑁)

𝑇(𝑁)

𝑁(𝑃𝑜𝑇𝑇)

𝑀=1

𝑁(𝑃𝑜𝑇𝑇)

𝑁=1

+
𝑃𝐷𝑅(𝑀) − 𝑃𝐷𝑅(𝑁)

𝑃𝐷𝑅(𝑁)
] … (9) 

Where, 𝑁(𝑃𝑜𝑇𝑇) represents total number of miner nodes selected by the 𝑃𝑜𝑇𝑇 process.  

▪ This fitness is evaluated for 𝑁𝐵 Bacterium, and then a fitness threshold is calculated via equation 10, 

𝑓𝑡ℎ =
∑ 𝑓𝑏𝑖 ∗ 𝐿𝑟

𝑁𝐵
𝑖=1

𝑁𝐵
… (10) 

▪ Based on this fitness threshold, Bacterium with 𝑓𝑏 > 𝑓𝑡ℎ are reproduced in the next iteration, while others 

are eliminated in current iteration, and regenerated in the next set of iterations. 

• This process is repeated for 𝑁𝐼 iterations, and the given set of Bacterium are continuously reconfigured during 

each of these iterations. 

Once all iterations are completed, then Bacterium with maximum fitness levels is selected, and its fitness is 

compared with a fitness threshold that is estimated via equation 11, 

𝑓𝑡ℎ =
[∑ 𝑇𝐿𝑖 − ∑

𝑇𝐿𝑗

𝑁𝑝

𝑁𝑝

𝑗=1

𝑁𝑝

𝑖=1
]

𝑁𝑝 ∗ 𝑁2(𝑃𝑜𝑇𝑇)

∗ ∑ ∑ [
𝐷(𝑁) − 𝐷(𝑀)

𝐷(𝑀)
+

𝐸(𝑁) − 𝐸(𝑀)

𝐸(𝑀)
+

𝑇(𝑀) − 𝑇(𝑁)

𝑇(𝑁)

𝑁(𝑃𝑜𝑇𝑇)

𝑀=1

𝑁(𝑃𝑜𝑇𝑇)

𝑁=1

+
𝑃𝐷𝑅(𝑀) − 𝑃𝐷𝑅(𝑁)

𝑃𝐷𝑅(𝑁)
] … (11) 

Where, 𝑁𝑝 are the previous mining requests that were processed by the mining nodes. The selected sidechain by 

BFO is split into 2-shards of equal length if equation 12 is satisfied, 

𝑓𝑏(𝐵𝐹𝑂) < 𝑓𝑡ℎ … (12) 
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Else the selected shard is used to add new blocks. This process is repeated for individual block addition requests 

if the delay needed for previous mining is higher than average delay of mining process. Due to which the model 

is able to improve the efficiency of mining even for large-scale IIoT deployments. This efficiency is estimated in 

terms of mining delay, energy needed for mining, mining throughput and mining efficiency in the next section of 

this text. 

 

IV. Comparative analysis of different blockchain techniques 

The proposed model collects temporal mining performance from existing miner nodes before deploying a novel 

Proof-of-Temporal Trust (PoTT)-based consensus for validating responses from these miners. The PoTT Model 

selects high-performance miners for processing block-addition requests using temporal mining delay, energy 

consumed while mining, and throughput levels. The Bacterial Foraging Optimized (BFO) sidechains store 

requests approved by these miners. These sidechains are automatically tuned based on the real-time spatial QoS 

performance of the network. The BFO Model facilitates the separation of single-length existing blockchains into 

QoS-optimized sidechains. The BFO Model uses an exhaustive consistency metric that combines QoS and 

security levels that can be applied to specialized applications such as Industrial IoTs to perform these segregations. 

To estimate performance of this model, it was simulated under the following network conditions. 

Total Miner Nodes: 1k 

Block Size: 2k bytes per block 

Block Addition Interval: 0.0001 seconds per block 

Miner Energy Model: 𝑀𝐸 = 1 𝑚𝐽, 𝑉𝐸 = 0.5𝑚𝐽, 𝐼𝑑𝑙𝑒𝐸 = 0.001 𝑚𝐽 

Where, 𝑀𝐸, 𝑉𝐸 & 𝐼𝑑𝑙𝑒𝐸 represents the energy needed for single mining cycle, energy needed for verification and 

idle energy of the miner nodes. Using these configurations, a set of 2.5 million block addition requests were 

generated, out of which 20% were stochastically modified into attack requests. These attacks include 

Masquerading, Distributed Denial of Service (DDoS), Flooding, and Sybil attacks. Using this configuration, 

nearly 1500 blockchain shards were generated during this process. While generating these shards, the average 

delay of mining (D), average energy needed for mining (E), throughput obtained during mining (T), and mining 

efficiency (ME) was evaluated for different Number of Mining Requests (NM). This performance was compared 

with MaO EA DRP [9], SHG [12], and DRL [15], which are recently proposed mining optimization models used 

for IIoT based blockchain deployments. Based on this strategy, the average delay of mining can be observed from 

table 1 as follows, 

 

NM D (s) 

MaO EA DRP 

[9] 

D (s) 

SHG [12] 

D (s) 

DRL [15] 

D (s) 

BQ BCC 

250k 1.46 2.02 1.93 0.83 

375k 1.80 2.48 2.38 1.03 

500k 2.19 3.02 2.90 1.24 

750k 2.59 3.56 3.42 1.47 

1M 2.94 4.04 3.88 1.67 

1.25M 3.28 4.51 4.33 1.86 

1.5M 3.63 5.00 4.79 2.06 

2M 3.96 5.46 5.23 2.25 

2.5M 4.32 5.95 5.70 2.46 

Table 1. Mining delay needed for addition of large number of blocks 

 

As per this evaluation and figure 2, it was observed that the proposed model is able to improve the mining speed 

by 14.5% when compared with MaO EA DRP [9], 19.4% when compared with SHG [12], and 18.5% when 
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compared with DRL [15] under large number of block addition requests. This mining speed is improved due to 

use of temporal mining delay via PoTT consensus, and use of delay metrics while forming shards. Due to which 

the model can be deployed for high-speed IIoT scenarios. 

 

 

Figure 2. Mining delay needed for addition of large number of blocks 

 

Similarly, the energy needed for these mining operations can be observed from table 2 as follows, 

NM E (mJ) 

MaO EA DRP [9] 

E (mJ) 

SHG [12] 

E (mJ) 

DRL [15] 

E (mJ) 

BQ BCC 

250k 23.43 32.35 31.08 13.29 

375k 24.58 33.92 32.61 13.94 

500k 25.68 35.44 34.06 14.56 

750k 26.96 37.21 35.77 15.30 

1M 28.34 39.12 37.59 16.08 

1.25M 29.82 41.16 39.55 16.92 

1.5M 31.21 43.08 41.39 17.70 

2M 32.46 44.78 43.03 18.41 

2.5M 33.68 46.47 44.67 19.10 

Table 2. Mining energy needed for addition of large number of blocks 

 

As per this evaluation and figure 3, it was observed that the proposed model is able to reduce the energy needed 

for mining by 16.4% when compared with MaO EA DRP [9], 23.5% when compared with SHG [12], and 19.2% 

when compared with DRL [15] under large number of block addition requests. This energy consumption is 

reduced due to use of temporal mining energy via PoTT consensus, and use of energy consumption metrics while 

forming shards. Due to which the model can be deployed for high-lifetime IIoT scenarios. 
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Figure 3. Mining energy needed for addition of large number of blocks 

Similarly, the throughput needed for mining is tabulated in table 3 as follows, 

 

NM Thr. (kbps) 

MaO EA DRP [9] 

Thr. (kbps) 

SHG [12] 

Thr. (kbps) 

DRL [15] 

Thr. (kbps) 

BQ BCC 

250k 1278.6 1334.1 2115.6 2988.0 

375k 1293.3 1349.6 2140.0 3022.5 

500k 1302.9 1359.5 2155.8 3044.7 

750k 1313.8 1370.9 2173.9 3070.3 

1M 1326.2 1383.9 2194.4 3099.3 

1.25M 1339.1 1397.4 2215.9 3129.5 

1.5M 1352.5 1411.3 2237.9 3160.7 

2M 1365.6 1425.0 2259.7 3191.5 

2.5M 1378.1 1438.1 2280.3 3220.6 

Table 3. Throughput obtained during addition of large number of blocks 

 

As per this evaluation and figure 4, it was observed that the proposed model is able to improve the throughput 

obtained during mining by 28.5% when compared with MaO EA DRP [9], 25.4% when compared with SHG [12], 

and 16.2% when compared with DRL [15] under large number of block addition requests. This increase in 

throughput is due to use of temporal throughput during miner selection via PoTT consensus, and use of throughput 

metrics while forming shards. Due to which the model can be deployed for high-data-rate IIoT scenarios. 

 

Figure 4. Throughput obtained during addition of large number of blocks 
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Similarly, the mining efficiency can be observed from table 4 as follows, 

NM ME (%) 

MaO EA DRP [9] 

ME (%) 

SHG [12] 

ME (%) 

DRL [15] 

ME (%) 

BQ BCC 

250k 94.2 93.1 89.0 98.9 

375k 94.3 93.2 89.1 99.1 

500k 94.4 93.3 89.2 99.2 

750k 94.5 93.4 89.3 99.3 

1M 94.6 93.5 89.3 99.4 

1.25M 94.7 93.6 89.4 99.5 

1.5M 94.8 93.7 89.5 99.6 

2M 94.9 93.8 89.6 99.7 

2.5M 95.0 93.9 89.7 99.8 

Table 4. Mining Efficiency obtained during addition of large number of blocks 

 

As per this evaluation and figure 5, it was observed that the proposed model is able to improve the mining 

efficiency obtained during mining by 4.5% when compared with MaO EA DRP [9], 5.3% when compared with 

SHG [12], and 10.5% when compared with DRL [15] under large number of block addition requests. This increase 

in mining efficiency is due to use of temporal PDR during miner selection via PoTT consensus, and use of 

efficiency metrics while forming shards. Due to which the model can be deployed for high-efficiency IIoT mining 

scenarios. 

 

Figure 5. Mining Efficiency obtained during addition of large number of blocks 

Based on these evaluations, it can be observed that the proposed model was able to improve the mining speed, 

reduce mining energy, while improving throughput and mining efficiency when compared with existing models. 

Due to which the proposed PoTT based consensus & sharding model can be used for a wide variety of IIoT based 

deployment scenarios. 

 

V. Conclusion and future scope 

Before deploying a novel Proof-of-Temporal Trust (PoTT)-based consensus for validating responses from these 

miners, the proposed model collects temporal mining performance from existing miner nodes. The PoTT Model 

selects high-performance miners for processing block-addition requests based on temporal mining delay, mining 

energy consumption, and throughput levels. The Bacterial Foraging Optimized (BFO) sidechains store these 

miners' approved requests. These sidechains are automatically optimized based on the network's real-time spatial 

QoS performance. The BFO Model enables the separation of existing blockchains with a single length into QoS-

optimized sidechains. To perform these segregations, the BFO Model employs an exhaustive consistency metric 

that combines QoS and security levels and can be applied to specialized applications such as Industrial IoTs. In 
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terms of mining speed, it was observed that the proposed model can increase mining speed by 14.5% when 

compared to MaO EA DRP [9], 19.4% when compared to SHG [12], and 18.5% when compared to DRL [15] 

when a large number of block addition requests are being processed. Utilization of temporal mining delay via 

PoTT consensus and utilization of delay metrics while forming shards increase the mining speed. Due to this, the 

model is deployable for IIoT scenarios requiring high speeds. Comparing the proposed model to MaO EA DRP 

[9], SHG [12], and DRL [15] in terms of energy consumption during mining, it was found that the proposed model 

reduces energy consumption by 16.4%, 23.5%, and 19.2%, respectively, for large numbers of block addition 

requests. Utilization of temporal mining energy via PoTT consensus and utilization of energy consumption metrics 

during shard formation reduce this energy consumption. Due to this, the model is deployable for IIoT scenarios 

with a lengthy lifetime. 

Estimated in terms of data rate, it was found that the proposed model can increase the throughput obtained during 

mining by 28.5% when compared to MaO EA DRP [9], 25.4% when compared to SHG [12], and 16.2% when 

compared to DRL [15] when a large number of block addition requests are made. This increase in throughput is 

a result of the use of temporal throughput during miner selection via PoTT consensus and the use of throughput 

metrics during shard formation. Due to this, the model is deployable for IIoT scenarios with a high data rate. In 

terms of mining efficiency, it was observed that the proposed model can improve mining efficiency by 4.5% when 

compared to MaO EA DRP [9], 5.3% when compared to SHG [12], and 10.5% when compared to DRL [15] when 

a large number of block addition requests are made. This increase in mining efficiency is the result of the use of 

temporal PDR during miner selection via PoTT consensus and the utilization of efficiency metrics when forming 

shards. Due to this, the model is deployable for IIoT mining scenarios with high efficiency. On the basis of these 

evaluations, it can be concluded that the proposed model improved mining speed, reduced mining energy, and 

increased throughput and mining efficiency in comparison to existing models. Due to this, the proposed PoTT-

based consensus and sharding model is applicable to a wide range of IIoT deployment scenarios. 

In future, performance of this model must be validated on ultra-large-scale networks and can be improved via 

integration of hybrid consensus & miner pools. This performance can also be improved via use of deep learning-

based methods that integrate Transfer Learning via Auto Encoders to learn hash generation patterns from existing 

blockchain deployments that are suited for IIoTs under real-time attack scenarios. 
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