Lindenwood University

# Digital Commons@Lindenwood University

Theses

**Theses & Dissertations** 

1986

# Emerson E & S Division's Management Technique: An Exploratory Survey Into the Benefits of an Integrated Business Environment

Timothy Fitzsimmons Carr

Follow this and additional works at: https://digitalcommons.lindenwood.edu/theses

Part of the Business Commons

# Emerson Electric E & S Division's Management Technique: An exploratory survey into the benefits of an integrated business

environment

Timothy Fitzsimmons Carr, B.S.C.S.

A Culminating Project Presented to the Faculty of the Graduate School of the Lindenwood Colleges in Partial Fulfillment of the Requirements for the Degree of Master of Business Administration



CZ3e 1986

| Commi | tte  | e   | in   | (          | Ch  | a | <b>r</b> 1 | 96  | •   | 0 | f | 1 | Ca  | I  | d   | i | d | a | C ; | Y | • • | •   | • | • | • | • | • | • | • | •   | • | • | • | • | • | • | • 1 | v   | į.   |
|-------|------|-----|------|------------|-----|---|------------|-----|-----|---|---|---|-----|----|-----|---|---|---|-----|---|-----|-----|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|-----|-----|------|
| Dedic | ati  | or  | ۰.,  |            |     | • | •          | •   |     | • | • | • | • • | •  |     | • | • |   | •   | • | • • | •   | • | • | • | • | • | • | • | • • | • | • | • | • | • | • | •   | . v | i.   |
| Ackno | wle  | d   | gem  | er         | n t |   | •          | • • |     | • | • | • | ••• |    | •   | • | • | • | •   | • | • • | • • | • | • | • | • | • | • | • |     | • | • | • | • | • | • | ••  | vi  |      |
| List  | of   | Ta  | abl  | e          | 5.  | • | •          | • • |     | • | • | • | ••• |    |     | • | • | • | •   | • | •   | •   | • | • | • | • | • | • | • | • • | • | • | • | • | • | • | v   | i i |      |
| List  | of   | F   | i gu | r          | 2 5 |   | •          | • • |     | • | • | • | • • |    | •   | • | • | • | •   | • | •   |     | • | • | • | • | • | • | • | • • | • | • | • | • | • | v | i   | i i |      |
| Sched | lule | e ( | of   | C          | r i | t | i          | ci  | a 1 |   | E | V | er  | 11 | ts  | 1 | t | 0 |     | C | on  | np  | 1 | e | t | e | • | • | • | • • | • | • | • | • | • | • | •   | i x |      |
| Diges | t.   |     |      | •          | • • | • | •          | •   | • • | • | • | • | • • |    |     | • | • | • | •   | • | •   |     | • | • | • | • | • | • | • | • • | • |   | • | • | • | • | •   | . x |      |
|       | Syr  | o   | osi  | 5          | ••• | • | •          | •   | • • | • | • | • | • • |    | • • | • | • | • | •   | • | •   | • • | • | • | • | • | • | • | • | • • | • | • | • | • | • | • | •   | x i | Sec. |
|       | Sur  | nma | ary  | <i>'</i> . | • • | • | •          | •   | ••• | • | • | • | •   | •  | • • | • | • | • | •   | • | •   | 0   | • | • | • | • | • | • | • | • • |   |   | • | • | • | • | •   | x i |      |

| Chapter | 1:   | Inti         | `od | UC  | t | i o | n   | a   | nc  | i   | S | ta  | at  | er | ħe  | n | t | C   | f | 202 | P٢  | •0  | Ы   | • | 20  | • | • | • • | 1 |
|---------|------|--------------|-----|-----|---|-----|-----|-----|-----|-----|---|-----|-----|----|-----|---|---|-----|---|-----|-----|-----|-----|---|-----|---|---|-----|---|
| Ge      | nera | ı <b>.</b> . |     | ••• | • |     | ••  | •   | ••• | • • | • | • • | ••• | •  | ••• | • | • | ••  | • | •   | •   | •   | • • | • |     | • | • |     | 1 |
| Ba      | ckgr | oun          | d   | ••• | • |     | ••  | •   | ••• |     | • | •   |     | •  |     | • | • | • • | • | •   | • • | •   | •   | • |     | • | • |     | 1 |
| Ну      | poth | esi          | 5   | ••• | • |     | ••• |     | •   |     | • | •   |     | •  | ••• | • | • | • • | • | •   | • • | ••• | •   | • | ••• | • | • | ••• | 7 |
| De      | fini | tio          | ns. |     | • |     | • • | ••• | • • |     |   | •   |     | •  | • • |   | • | •   |   | •   | • • |     | •   |   |     | • | • |     | 7 |

| Chapter 2: | Review of   | Li   | tera | ture | • • • | • • • | ••• |     | •••   | 10 |
|------------|-------------|------|------|------|-------|-------|-----|-----|-------|----|
| Electron   | ic Messagin | ig   |      |      | •••   | • • • | ••• | ••• | • • • | 11 |
| Time Mana  | agement     | •••• |      |      |       |       | ••• |     |       | 14 |
| Test Pro   | gram Set De | vel  | opme | nt   |       |       | ••• |     |       | 16 |
| Word & Do  | ocument Pro | oces | sing |      | •••   | •••   | ••• |     | •••   | 17 |
| Computer   | Aided Desi  | gn.  |      |      |       | •••   | ••• |     | •••   | 19 |
| Market V   | alue        | •••• |      |      |       |       | ••• |     | •••   | 21 |
| Project n  | nanagement. |      |      |      |       |       |     |     |       | 23 |

| Chapter 3: Research                 |
|-------------------------------------|
| Section I: Hypothesis Statement and |
| Summary of Research                 |
| Hypothesis26                        |
| Primary Research                    |
| Secondary Research                  |
| Test and Measurement purpose        |
| Research Summary28                  |
| Independent Variables               |
| Dependent Variable                  |
| Experimentation Instruments         |
| Section II: Research Methods        |
| Test Methodology                    |
| Nonexperimental Research            |
| Lab Experimentation                 |
| Test Program Set Development34      |
| Mechanics of the Electronic         |
| Messaging Experiment35              |
| Field experimentation               |
| Word and Document Processing        |
| Experiment                          |
| Time Management Experiment41        |
| Personal Computer Experiment43      |

| Survey research | 47 |
|-----------------|----|
|-----------------|----|

Population culture experiment.....47

| Chapter | 4:      | Summary | and       | Recommendations |
|---------|---------|---------|-----------|-----------------|
| Sur     | nmary   |         | • • • • • |                 |
| Cor     | clusion | 5       |           |                 |
| Red     | ommenda | tions   |           |                 |

| Appendix  | "A"   | Communication Data64                  |
|-----------|-------|---------------------------------------|
| Appendix  | "B"   | Compiler Study                        |
| Appendix  | "C"   | Detailed Network Accounting Records87 |
| Appendix  | "D"   | Interview Survey89                    |
| List of F | Refer | rences                                |
| Vita Auct | oris  | 5                                     |

# COMMITTEE IN CHARGE OF CANDIDACY

Professor E. Jack Kirk, <u>Chairperson and Faculty Advisor</u> Professor Clark C. Compton, Faculty Lindenwood College Professor Terrence G. Peterson, Faculty Lindenwood College

# DEDICATION

То

my inspiration

Christine Angeli Setser

# ACKNOWLEDGEMENTS

I am grateful to my employer and committee members for their time and contribution to this research project.

## LIST OF TABLES

| Table | 1 | - | Types of Messages Sent           |
|-------|---|---|----------------------------------|
| Table | 2 | - | Time Management Experiment42     |
| Table | 3 | - | Personal Computer Experiment47   |
| Table | 4 | - | Carr Survey General Population49 |
| Table | 5 | - | Carr/Hunt General Population     |
|       |   |   | Deviation Analysis               |

# LIST OF FIGURES

| Figure | 1  | - | Typical Test Station Configuration2    |
|--------|----|---|----------------------------------------|
| Figure | 2  | - | Test Program Set Definition3           |
| Figure | 3  | - | The Ideal Emerson Environment          |
| Figure | 4  | - | TPS Work Breakdown                     |
| Figure | 5  | - | Proposed Software System40             |
| Figure | 6  | - | Emerson Intra-Company Correspondence42 |
| Figure | 6a | - | PC Study CPU Usage44                   |
| Figure | 6Ь | - | PC Study Connect Time45                |
| Figure | 6c | - | PC Study Disk Usage46                  |
| Figure | 7  | - | Computer Background50                  |
| Figure | 8  | - | Previous Computer Usage                |
| Figure | 9  | - | Employed at Emerson52                  |
| Figure | 10 | - | Intended Application53                 |
| Figure | 11 | - | Applications Time54                    |
| Figure | 12 | - | Computer Usage Analysis                |

# Schedule of Critical Events

# February 14, 1986

| -  | Event               |   | Due D    | ate |      | Status   |
|----|---------------------|---|----------|-----|------|----------|
| 1. | The Project Idea    | - | November | 7,  | 1985 | Accepted |
| 2. | Preliminary Outline | - | November | 7,  | 1985 | Accepted |
|    | Approval            | - | January  | 19, | 1986 | Accepted |
| з. | The Introduction    | - | January  | 28, | 1986 | Accepted |
| 4. | Rough Draft         | - | February | 14, | 1986 | Accepted |
| 5. | Draft               | - | March    | 18, | 1986 | Accepted |
| 6. | Draft Erratum       | - | March    | 29, | 1986 | Accepted |
| 7. | Final               | - | April    | 12, | 1986 | Accepted |

# Status Key

\* - No Activity

Active - Task in work with complete date listed.

Review - Material submitted to committee for comment.

Complete - Review comments incorporated.

Accepted - Committee has approved material.

Emerson Electric E & S Division's Management Technique: An exploratory survey into the benefits of an integrated business environment

Timothy Fitzsimmons Carr, B.S.C.S.

A Digest Presented to the Faculty of the Graduate School of the Lindenwood Colleges in Partial Fulfillment of the Requirements for the Degree of Master of Business Administration

## DIGEST

#### SYNOPS15

Over the past few years, integrated business environments have become popular in the defense industry. An integrated business environment is a method used to unify all management and engineering activities required for a company to perform on a contract. The following research provides an introduction to the concepts of managing technological business through streamlining the efforts of all human and non-human resources involved, and secondarily, an exploratory survey into some of the important benefits and open issues that are being explored and debated among users, developers and maintainers of test program sets.

#### SUMMARY

What benefits are derived from integrating the technological work place? Can these benefits be justified? This thesis analyzes the productivity enhancements achieved by the management disciplines currently under evaluation by Emerson Electric Electronics and Space Division.

The information presented throughout this research was obtained from field experimentation and published material. Recommendations, analysis, and conclusions are those of the author acting as an independent researcher. The research presents measurements of performance, schedule, and cost effectiveness of the environment and determines whether this approach met the business goal of increased productivity. The analysis focuses on the defense industry's test program set market place. Three key areas requiring improvement will be addressed:

- Performance traceability throughout the project
- Management -- controlling human and non-human resources
- Reduced project risk

The research includes published business and technical reports, trade journals, magazines, software and test reports. In addition to experimentation, survey research methods were used to measure the general perspective of the division's culture.

The hypothesis tested and presented follows:

#### Hypothesis

It is feasible to improve management and engineering productivity using an integrated business environment. The gains in productivity are realized through automatic performance traceability throughout the project life cycle, reducing overall project risk without compromising product quality, and enhancing management awareness for controlling the various financial, schedule, and performance requirements connected with defense-industry contracts. The primary research measures the productivity gains through integrating the environment. The gains in productivity are tested using four methods of experimentation:

1. Nonexperimental Research

2. Lab Experimentation

3. Field Experiments

4. Survey Research

The four methods are required due to the complex nature of measuring the environment's effect on productivity. In each experiment, productivity measurements are made in units of dollars. The units of measure are then common between all experiments.

The nonexperimental research measures performance, traceability and project communications. Initial results indicate a significant correlation between performance and project communication. Additionally, communication and project risk indicate some level of significance.

Lab experimentation evaluates the effects of consolidating the test program set life cycle activities. The consolidation activities deal with centralizing management information and not the hardware. The findings indicate a significant benefit is gained by distributing the hardware architecture between main frames, mini computers and personal computers. Adaptability and reliability of system software is paramount to consolidating the business environment.

Field research deals with management awareness and control. Early results demonstrate that the level of project visibility is improved. Control is measured relative to configuration, schedule, quality and cost management techniques.

The final correlation explores the relationships between project risk and level of productivity of all affected groups. Survey methods were used to measure the overall division culture and its impact on productivity.

The technical conclusion derived from this research indicates overall system productivity gains could exceed a seven to one improvement ratio when one hundred percent operational. However, the research also indicates that for the gain in productivity to be realized, a fundamental change in the division's culture must occur. The report concludes by recommending areas of further research to improve division productivity. Chapter 1: Introduction and Statement of Problem General

This research project explores those elements that influence the success of a company doing business in the test program set defense industry market place. This report measures the effects of integrating the business environment to improve productivity.

To evaluate productivity we must first understand something about the products, the companies and profits of the businesses operating in the government market segment referred to as test program set life cycle.

#### Background

A test program set is a tool used to repair and test electronic and mechanical equipment. For example: Suppose your car is not operating correctly. You decide to take it to a service station for a check up. You arrive at the service station and explain the problem to the attendant. The attendant, being knowledgeable in new car maintenance, connects a car repair device to test points on the vehicle and performs diagnostic checks. Finding the problem, the attendant tells you the estimated cost for the repairs and hands you a bill for the diagnostic tests. This every day occurrence helps to explain two key elements of the test program set market. First, all mechanical and electronic equipment eventually fails and second, the owner of the equipment ends up paying.

The test program set market includes those equipment and services required to support all systems operating in the military services. The total defense test and measurement industry market contains three distinct elements [1]:

 <u>Test stations</u>. The hardware used to diagnose the problem, as illustrated in the example above. Figure
represents the hardware referred to as a Test Station or more technically the automatic test equipment (ATE).



- 2. <u>Test program sets</u>. The TPS consists of those items of hardware, software, and documentation which enable the unit under test (UUT) to be connected to and tested by the designated test station. The TPS is used to effectively test the UUT in accordance with the design requirements [2]. Figure 2 depicts the three elements which comprise a TPS.
- <u>Support</u>. The logistics and management associated with the design, operation and maintenance of the equipment.





The following report will limit its analysis to one of these market segments referred to above as test program sets.

Captain J. P. Hall, commander of the, Naval Air Systems Command writes, "TPS are a big investment necessary to weapon system performance, TPS development has been a "art form" that differed in quality, performance, cost, and schedule" [3]. He continues by explaining the dilemma facing the government and industry with the procurement, development and deployment of TPS. "Planned TPS development projects in the next decade severely extend government resources and imply increasing reliance on contractor support services for on-site monitoring and review increasing emphasis on cost, competition, and firm fixed price contracts place severe constraints on the 'Business-as-usual' Phased State Development Approach" [3a]. He continues to point out that TPS acquisitions are absolutely critical to weapons systems performance and require effective review, testing, and follow on evaluation to ensure that what is fielded is operationally effective and suitable [3b].

Captain Hall concludes his report by urging a proper balance of government/industry participation, risk sharing, and investment.

The new way of doing business described by Captain Hall sounds critical, but is there a market with the funds to

support a large amount of risk sharing and investment? The market, as seen by Frost and Sullivan [4], is projected to be 800 million plus for 1985, up 66 percent from 1984. The future growth rate is expected to rise at an annual twelve to seventeen percent and continue through the year 1996. Lt. Colonel Steven Butcher, commander of the United States Army TPS acquisitions, claims the army spends 70 percent of its support equipment budget on TPS acquisition and only 30 percent of its budget on station hardware [5]. Chapter two literature research further investigates the market value and clearly indicates the marketplace is latent with lucrative market opportunities for years to come.

With the establishment of a lucrative market, the risk sharing and investments required by industry are justifiable and required for a company to commit to supplying products and services to this market [6]. A company failing to invest in bettering its product will face the same dilemma that the United States steel and automotive companies are facing with increased off-shore competition.

For example, David Clutterbuck indicates that the Japanese Mitsubishi Motors Corporation maintains a high productivity rate which gives it leverage over the the international automobile market. He further elaborates that Mitsubishi uses innovative automation, streamlined assembly methods, and workers' total involvement in cost reductions and efficiency improvements, to maintain this leverage or productivity rate to advance its market share [7]. The TPS industry should learn from the perils of the car and steel industries and act to preserve and increase their market share.

Emerson Electric, realizing the commitment level required to meet the increasing market challenge, began evaluating approaches to automating the TPS product life cycle in 1977 as a research and development project refered to as the ATLAS Engine. Other key milestones included [8]:

- 1980 Model 8 Development Environment
- 1981 DS-ATSS Proposal Effort
- 1982 ETS Unix Based Utilities
- 1983 ATSS contract award
- 1984 Integrated Business Environment Concept Study
- 1985 Integrated Business Environment Implementation.

The colloquial of this research is to evaluate Emerson Electric's current participation, risk sharing, and investment in funding the Emerson integrated business environment project.

#### Hypothesis

It is feasible to improve management and engineering productivity using an integrated business environment. The gains in productivity are realized through automatic performance traceability throughout the project life cycle, reducing overall project risk without compromising product quality, and enhancing management awareness for controlling the various financial, schedule, and performance requirements connected with defense-industry contracts.

#### Definitions

<u>Integrated business environment</u> - A system for creating and using the information resulting from the tasks performed by managers, engineers, and other professionals within a company.

<u>Computer software</u> - A combination of associated computer instructions and computer data definitions required to enable the computer hardware to perform computational or control functions [9].

<u>Electronic messaging</u> - A way of moving and storing information electronically; a form of nonsimultaneous interpersonal communication [10].

<u>Time management</u> - The efficient use of the time allotted for completion of a specific task [11].

<u>Test program set development</u> - The engineering disciplines and tools responsible for creating the components of a test program set [12].

<u>Test program set (TPS)</u> - A TPS consists of a test program, documentation and an interface adapter. The TPS is divisible into two major sections, the first being the performance tests and the second being the diagnostic test series.

<u>Word and document processing</u> - The generating of text through the use of computers and specialized software.

<u>Personal computers</u> - Individually used microcomputers with the ability to communicate within the integrated business environment.

<u>Division culture</u> - The policies, traditions and attitudes of an organization.

<u>Unit under test</u> - The device or system being tested. A device could range from a printed circuit board to an aircraft's radar. A system could range from a missile to a F-15 fighter aircraft.

<u>Contribution to productivity</u> - Gains in productivity measured in dollars saved over the current method of work. The results from each experiment are net dollars saved from integrating the environment.

<u>Productivity</u> - The amount of output achieved by managers and staff members as a result of the performance associated with the development of test program sets. <u>Risk profile</u> - The test program set profitability profile currently is plagued with support problems arising from a lack of understanding of modern test program set development procedures.

<u>Computer-Aided Design</u> - An engineering tool designed to aid the engineer in developing the details of the product being produced.

Market value - Funds available in the market place.

<u>Project management</u> - Tasks performed by manager to minimize risk in the workplace.

<u>Product life cycle</u> - The period of time from product inception till the time it is no value.

#### Chapter 2: Review of Literature

The first step in evaluating the effect of an integrated business environment on productivity is understanding the skills and talents used to produce test program sets.

Test program set (TPS) development has proven to be a labor intensive task with few productivity/technology advancements over the past decade [13]. Test program sets and associated documentation are still generated manually. These labor intensive tasks have affected the schedule and cost of several recent Emerson programs. This in turn has caused the procuring agencies to require more detailed documentation, only adding to an already over-tasked work environment [14].

As a result of the enormous cost overruns with the deployment and maintenance of the high tech weapon systems, the United States Department of Defense is trying to get control of these costs by mandating a set of requirements to be conformed with during the procurement, development, and maintenance of test program sets [15]. The enforcement of these standards has generated a market which requires highly technical services and products.

In an effort to study the productivity improvements which are derived from the synergistic effect of integration, research was extracted from numerous publications. Secondary research was conducted via industry interviews and surveys.

The literature research has shown that significant improvements in productivity are achieved by the corporations which have actively pursued integrated solutions. A significant number of this population believe that a failure to invest in the equipment and technology required to adapt the business environment to meet the market requirement is admitting that it is no longer a going concern [16].

The integrated business environment assists in the tasks associated with the procurement, design, development, maintenance, and management of test program set life cycle [17]. It is subdivided into several functional areas or class domains as defined in Chapter 1. The following sections contain differing ideas concerning the impact of each of these facts on productivity.

#### Electronic Messaging

Electronic messaging is a way of moving and storing information electronically--a form of nonsimultaneous interpersonal communication. As electronic messaging systems become more accepted as a medium for office communication, they are becoming a more prominent factor in the way that day-to-day activities are conducted. Electronic message handling offers two improvements over other forms of business communication: Improved movement of information and improved access to information [18].

This medium of communication can take several forms: A notepad, electronic mail, computer conferences, bulletin boards, and electronic journals, all displayed on a computer screen [19].

Organizational productivity can be increased using this method by consolidating office disruptions, such as telephone calls and meetings, into passive rather than active interruptions. It can produce changes in time management, managerial effectiveness, and conversational behavior, and it can also be used to make decisions [20].

Many major corporations have begun to utilize electronic messaging systems. In 1984, more than 100 million electronic messages were sent through the computer systems of public service companies such as Western Union, ITT, General Electric, and MCI. This figure is double that for the previous year. Electronic mail can improve productivity by allowing better control of time, faster dissemination of information, and a more open communications flow. Studies by Booz, Allen and Hamilton have shown that it takes an average of four tries to complete a phone call and 100 phone calls to arrange a meeting between six business professionals. Electronic mail has been shown to provide a five percent to ten percent gain in office productivity [21]. Most experts agree that for an electronic mail system to be successful, it must be endorsed and actively supported by top management [22]. But, ironically, managers and executives are generally the last within their companies to have computer terminals on their desks. The main reason for this is that many executives have been put off from using office automation tools by the difficulty in learning to use the computers and associated software. Once an office automation system is implemented and utilized by all levels of personnel, including top management, the initial orientation time is seen to have been well worth the effort [23].

Recently, Environetics International implemented office automation systems in the law department of a large corporation. Everyone in the firm, from attorneys to clerks, has a terminal and uses text processing systems to draft and edit documents. The organization is pleased with the advantages of its new system, which permits all staff members to use such tools as electronic research and electronic mail. Productivity has improved at all levels, and acceptance has been 100 percent. Users have become proficient in using the system in ways that go beyond the usual scope of their jobs [24].

Whether used for the purpose of scheduling meetings, distribution memos, hooking up to important databases, or any of the many other possible applications, electronic messaging systems have proven to be an effective way of increasing productivity.

#### Time Management

A key factor concerning productivity is efficient utilization of company time, and two problem areas include inefficient use of management time and the way that meetings are conducted.

In many firms, the productivity of middle management resources is neglected, and this neglect could be costly [25].

Organizational impediments are responsible for this oversight, the most common being unnecessary bureaucracy, wasted time, lack of involvement, inefficient delegation of responsibility, and lack of positive reinforcements [26].

There are ways that managerial productivity can be improved, such as elimination of unnecessary paper flows and the appropriate channeling of important information. Also, managers must be encouraged to use their time efficiently and to develop objectives and priorities. Ofner says another effective approach to improving managerial productivity is to establish a senior management task force which will [27] review organizational structure and processes, assess information flows and how they may be automated, develop a time-management program, and review organizational policies and procedures.

Meetings are another example of poorly spent time. They are typically no more than 25 percent efficient. This is discouraging since many managers spend as much as 75 percent of their time in meetings [29].

Thus, planning efforts should be directed at eliminating unnecessary meetings and making productive use of those that must be held. The first elements in planning a meeting are to understand the meeting size, purpose, protocol, and attendance. The leader, while perhaps not the person initiating the meeting, is responsible for setting the agenda, scheduling the meetings, and making all arrangements. For the meeting to be worthwhile, minutes should be taken for future reference or review. The meeting should be held in an orderly fashion, adhering to the subject matter as much as possible, and all points should be addressed. Comments about subjects not in the scope of the meeting should be withheld in the interest of expedition [30].

If company time is better utilized by managers and those conducting meetings, then it logically follows that more can be accomplished in a given time period, thereby increasing productivity.

#### Test Program Set Development

The future test program sets (TPS) will have to incorporate the latest state-of-the-art technologies in order to be able to provide the required functional performance [31]. As a result, new types of engineering design tools will be needed. Creativity and the innovative use of these new automated design tools will be basic in the development of a test program set.

A wide variety of software tools and design aids are available to address the increased complexity and rising costs associated with TPS development. A growing need for a cohesive, integrated system of TPS work tools to consolidate the productivity gains is long overdue [32].

An environment rich in aids would include, but not limited to the following types of tools: test requirements data (TRD) to ATLAS code generator, ATLAS language editors and compiler, and an ATLAS program simulator [33].

This allows full development and logic verification prior to integrating the TPS with the ATE [34]. Documentation support should include flowchart generators, wire-list, parts list generators, graphics for interconnect diagrams and test diagrams, templates for specifications, and generation of parts requisitions [35].

The Maintenance support includes a history of all documents for design change proposal (DCP)/ engineering change proposal (ECP) generation, cost accounting utilities, and the maintenance of the TPS project development logbook, including problem reports [36].

All functional areas are equally important to success of the project life cycle (the design, development, documentation, and maintenance support functions).

#### Word and Document Processing

Documentation has always been a time consuming task for any engineering project. Not just the generation of the information itself, but the clerical process involved consumes a significant amount of time [37].

Until a few years ago, the only method by which to generate text was the typewriter (or pencil and paper). The typewriter has been found to be a not-so-accommodating piece of equipment when it comes to making revisions in a document, such as correcting mistakes, re-formatting certain sections, adding or deleting material [38].

Fortunately, a technological advancement entered the marketplace which revolutionized the business world the word processor [39].

With a word processor, corrections, additions, and deletions can be done with ease. Moving blocks of text from one location to another can easily be done by electronically cutting and pasting. Formatting of the document is easier and not predefined [40]. Word processors possess many other capabilities, such as automatic page numbering and table of contents generation.

In any engineering endeavor there is a need for adequate documentation throughout the system life cycle. Government contracts in particular have specific documentation requirements. One way to improve productivity of an engineering project is to improve documentation productivity using an automated software engineering documentation system [41].

The overall quality of a test program set is directly related to the quality of the TPS documentation. Automatic tools ensure high quality as well as significantly reduce the cost of TPS documentation. The use of a common UUT (unit under test) data base for the generation of the elements of a TPS has the following advantages [42]:

- a. Consistency between all TPS elements generated from the data base. A single change to the data base will be reflected in all documents.
- b. TPS quality is improved by automatic generation of documentation.
- c. TPS quality assessment is available automatically. This essentially guarantees that the TPS engineer does a complete and thorough job.

d. Data entry is reduced significantly, and redundant entry for data repeated in various documents is totally eliminated [43].

Wilkins futher states many companies are under-utilizing this incredibly time-saving innovation and are thereby missing an opportunity for increased productivity.

## Computer-Aided Design

Considering the highly technical nature of test program set development, and the utmost importance of its end application, the method by which the system is designed must be the latest that technology has to offer. Nothing, not even a human being, can be as precise as a computer. This is why computer-aided design must be implemented.

For example, the F-18, a United States Navy fighter plane whose base is on an aircraft carrier, has a 1500-gallon fuel cell, which is manufactured to the Navy's exacting standards by the Engineered Systems department of Uniroyal's Plastic Products division. Design and production problems associated with the project have led Uniroyal to purchase General Electric's Calma Computer-Aided Design System, in order to facilitate the design process and to ensure more exacting standards [44].

The Australian Department of Defense Support also has made a substantial investment in computer-aided

design/manufacturing. The Australian Department of Defense is one of the largest manufacturing operations in Australia, the introduction of this technology was vital to its success. According to DDS Secretary Charles Halton, computer-aided design/manufacturing would allow a major production increase if needed because of changed military circumstances [45].

Another example of a company that realizes the advantages of computer-aided design is the AAI Corporation, which has 15 years experience in developing test programs using many of the commercial digital simulator systems. Having utilized these types of packages, AAI realizes the economic advantages of computer-aided testing techniques [46].

As illustrated, it is clear that computer-aided design is vital in a highly technical field, particularly the defense industry, where the test system can make the difference between life and death.
#### Market Value

According to Lt. Colonel Steven Butcher, the Army spends 70 percent of its support equipment budget on TPS acquisition and only 30 percent of its budget on station hardware. For the Air Force, B-1B depot stations will be about 37 percent of the budget while TPS will require 63 percent of the budget [47].

To cut costs and to test more effectively, the military is developing standards for its automatic test equipment. Sperry Systems Management won the \$54.8 million contract for the Modular Automatic Test Equipment (MATE) program, a set of five guidelines covering ATE acquisition, development of hardware and software, test program sets, instructions for use, and design of units to be tested [48].

The Navy F/A-18 total procurement cost presented in the fiscal year 1984 budget is projected to be \$39,827 billion. Of this total, \$35.5 billion is for the weapon system, \$1.83 billion for initial spares, \$2.405 billion for development, and \$54.3 million for support facilities.

The Navy has adopted a series of cost control procedures for the F/A-18, held competition for test program sets, and selected the weapons tactical trainer and operational flight trainer by competition. It has also adopted practices and procedures in spares and supply acquisition to improve control of spares programs [49]. Sanders Associates has won a \$61.7 million follow-on production contract from the United States Air Force for AN/USM-464 automatic test equipment. The contract calls for production of 40 mobile computer-operated electronic warfare test sets and 27 test program sets, comprised of antenna coupler, cables and software. The AN/USM-464 program is designed to increase the operational readiness of all Air Force EW systems on the flight line [50].

The U.S. Air Force also awarded Sanders a 28.2 million contract for design, test and qualification of automatic test equipment for checkout of air-borne electronic countermeasures (ECM) systems. The award includes provisions under which the Air Force can order additional test sets that could bring the total value of the contract to \$200 million-plus.

A new firm, Technology Development of Arlington, Texas, has been formed to make test program sets for ATE. The company is involved in in providing both hardware and software for test program sets. Its customers will be primarily the government and aerospace contractors [51].

The United States government is not the only customer with a need for this type of technology. Harris has been awarded an \$18.5 million contract by the Canadian government for test program sets for CF-18 aircraft. Software for the system will be developed by seven companies [52]. Clearly, the marketplace is latent with lucrative market opportunities for years to come. With the increase in start-up companies entering the scene, the need for an effective business environment is critical in order for a company to survive. This can be exemplified by the auto and steel industries, in that the increase in foreign competition has caused them to become highly automated in order to compete.

## Project management

According to Burkhart, TPS development contracts are low risk. The reasoning used here is that the TPS developer has the management advantage.

Burkhart further elaborates that the start of TPS development is certain, since the government must provide both UUT data and test stations in a timely manner. It is unlikely that the government can impose special purchase order conditions that require the contractor to accept all changes in the UUT baseline data up to sell-off without cost impact [53]. The key to controlling cost impacts is assessing contract risk. Historical research has shown that performance risk is driven by;

- Integrity of UUT baseline data
- Maturity of ATE system hardware an software
- UUT complexity
- Special purchase order conditions
- Availability of tester equipment and software tools
- Maintenance on all equipment involved
- Personnel skill level
- Availability of TPS development guide
- Availability of station programming manual

TPS developments for ongoing projects have had considerable cost growth due to a common thread. These programs have had the scope of work increase without a corresponding increase in contract price. In general, the cost growth can be traced to the business environment not acting in real time to effectively deal with contract changes [54]. Untimely availability of testers and expensive instrumentation additionally affect the cost picture.

Emerson's performance historically has shown differences in development conditions which produce significantly different contract cost and profitability profile. Providing the proper development requirement and including risk cost into TPS estimates significantly improved contract performance [55]. The Key difference between the successful training and the others is personnel training, TPS development environment and estimated scope of work. Both testers available and UUT baseline changes are conditions that must be managed to prevent cost growth [56].

#### Chapter 3: Research

Section I: Hypothesis Statement and Summary of Research Hypothesis

It is feasible to improve management and engineering productivity using an integrated business environment. The gains in productivity are realized through automatic performance traceability throughout the project life cycle, reducing overall project risk without compromising product quality, and enhancing management awareness for controlling the various financial, schedule and performance requirements connected with defense-industry contracts.

## Primary Research

Measurements of productivity gains through the integrated business environment are tested using four methods of experimentation [57]:

> Part A. Nonexperimental Research Part B. Lab Experimentation Part C. Field Experiments Part D. Survey Research

The four methods are required due to the complex nature of measuring the environmental effect on productivity. In each experiment, productivity measurements are made in units of dollars. The units of measure are then common between all experiments. Defining productivity in measurement units of numerals in each experiment is critical to the overall goal of assessing the net gain of using an integrated business environment. To calculate the net gain or increase in production of the environment, it becomes necessary to sum the results of the nonexperimental research, lab experimentation, field experiments, indicating the net outcome of integrating the business environment.

Survey methods were used to determine the culture of the Emerson Electronics and Space Division. Previous research on the technological businesses has shown that in order to realize increased production through integrated business environment, the individuals making up the business population must adapt to using the tools provided by the environment [58].

The Hunt study evaluates those traits in a population necessary to adapt and benefit from an integrated business environment. This population mix is then compared with the results of the Emerson survey.

## Secondary Research

Published readings such as trade journals, articles, books, interviews, computer database searches, as well as published Emerson materials will supply support of the primary research.

## Test and Measurement Purpose

"In its broadest sense, measurement is the assignment of numerals to objects or events according to rules [59]." This definition expresses the basic rule of measurement in the following research:

## Dollars Saved = Increases in Productivity

The purpose of the experimentation is to quantify productivity gains using dollars saved as the common unit of measurement.

## Research Summary

The following elements of the integrated business environment are to be tested for their contribution to raising the level of productivity involved test program set life cycle tasks.

## Independent Variables

- Electronic Messaging Electronic messaging is a way of moving and storing information electronically--a form of nonsimultaneous interpersonal communication [60].
- Time Management The efficient use of the time allotted for completion of a specific task [61].
- 3. Test Program Set Development The engineering disciplines and tools responsible for creating the components of a test program

4. Word & Document Processing

The generating of text through the use of computers and specialized software.

5. Personal Computers

Individually used microcomputers with the ability to communicate within the integrated business environment.

 Corporate Culture The policies, traditions and attitudes of an organization.

The independent variables' (1 thru 5 above) contribution to productivity gains are measured in dollars saved over the current method of work. The results from each experiment are totaled resulting in net effect of integrating the environment. The sixth independent variable investigates the attitudes towards full deployment of the environment.

## Dependent Variable

Productivity

The amount of output achieved by managers and staff members as a result of the performance associated with the development of test program sets.

The normalized totals of all independent variable experiments equals the net gain in productivity.

## Experimentation Instruments

The following lists of experiment assets were the instruments used to generate, collect, and analyze the data resulting from the experiments:

- a. Twenty four individuals selected at random from engineer, management, administrative, and support groups
- b. Twenty two individuals subdivided into two experimental groups
- c. ALL-IN-1 integrated software
- d. AppleWorks integrated software
- e. Microsoft Chart
- f. Apple Access II telecommunication software
- g. Vax 11/780 super minicomputer
- h. Apple Machintosh microcomputer
- i. Apple IIc microcomputer
- j. VT-220 computer terminals
- k. Smart Team Modem
- 1. EtherNet local communication network
- m. Southwestern Bell communication network

## Section II: Research Methods

#### Test Methodology

Developing and selecting the types of experiments that cover the contributory effect of the independent variables on the dependent variable of productivity requires four research methods. A structure was developed for each experiment which reveals the contribution of each of the environmental elements to production. The following four research experiments were designed to test the primary hypothesis.

## Part A. Nonexperimental Research

In order to test the effects of electronic message types on productivity, it was necessary to design a nonexperimental research method. Kerlinger [62] defines nonexperimental research as a systematic empirical inquiry in which the researcher has no direct control of the independent variables because their manifestations have already occurred [62a]. To study the types of messages sent within the environment, the researcher has no control of the generation of these messages. Available to the researcher was an instrument to collect and type classify the electronic messages being sent. Appendix A contains a complete listing of the raw data gathered during the experiment. The collection and typing of the messages was conducted between November 6, 1985 and March 14, 1986. The instruments used to generate, categorize, and send the messages were controlled throughout the experiment in an effort to minimize the danger of post hoc assumptions [63]. The instrument used to generate the messages was a computer terminal directly linked to the central computer facility operating under the control of ALL-In-1TM[64]. Figure 3 represents this configuration.



The classification of the message content was performed in two methods. The first method was to automatically classify message content by the environment tool used to generate the message. An example of this would be types of messages generated by the Time Management System and Electronic Messaging. The Time Management System classifies message contents into meeting notices and responses, the Electric Messaging System classifies replies to sent messages. The second method of classification is left to the user, and, therefore, out of the control of the research. In this case messages are categorized into two types: personal and work-related.

During the four months of testing, 628 messages were sent and classified into the following types; meeting notices, status reports, message replies, meeting agendas, problem reporting, and non work-related.

Table 1 presents the types, number and percentage of messages sent. In this analysis, we looking at the mix of information sent. To arrive at a productivity contribution value for this experiment, we are only concerned with the meeting notices.

| lable 1 -                           | Types of Messages | Sent             |
|-------------------------------------|-------------------|------------------|
| Туре                                | Number Sent       | Percent of Total |
| <ol> <li>Meeting notices</li> </ol> | 57                | 9.07             |
| 2. Status reports                   | 135               | 21.49            |
| 3. Message replies                  | 67                | 10.66            |
| <ol> <li>Meeting agendas</li> </ol> | 31                | 4.93             |
| 5. Problem reporting                | 121               | 19.26            |
| 6. Non work-related                 | 217               | 34.55            |
| Total                               | 628               | 100.00           |

This nonexperimental research indicates a time-savings of 235.1 hours resulting in a contribution of \$8,578.50.

## Part B. Lab Experimentation

Two lab experiments were performed to determine the contribution of the test program set Development domain and the mechanics of the Electronic messaging system [65].

## Test Program Set Development Experiment

The productivity gain realized is calculated using the percentages listed in TPS Work Breakdown, Figure 4. Those tasks associated with the compiler are entries 5, 7, and 9. Using the figure of 2754 hours required for a typical TPS completion, the compiler is involved in 53.8 percent of the total activity which results in 1481.6 hours. Of course, the compiler is not the only driving force involved here [66]. Applying a five to one performance increase a savings of 395.1 hours is realized.

Appendix B contains a detailed technical description of the methods used to test of the performance of the ATLAS compiler. The result of the experimentation indicate a five to one improvement in overall domain performance [67].

# **TPS WORK BREAKDOWN**

|                                        | MATE<br>GUIDELINES | EMERSON AVERAGE<br>ESTIMATE | TPSWB SAVINGS<br>ESTIMATE | PROJECTED<br>SAVINGS |
|----------------------------------------|--------------------|-----------------------------|---------------------------|----------------------|
| 1. REVIEW TRD ETC.                     | 2%                 | 5%                          |                           | -                    |
| 2. TPS FLOWCHART & SPEC                | T                  | 3.5%                        | 15%                       | .52%                 |
| 3. PDR                                 |                    | 2.3%                        | 5%                        | .115%                |
| 4. DESIGN ITA                          | 40%                | 10.7%                       | 10%                       | 1.07%                |
| 5. GENERATE INITIAL & TEST<br>PROGRAMS |                    | 5.5%                        | 25%                       | 1.325%               |
| 6. CDR                                 |                    | 4.2%                        | 5%                        | .21%                 |
| 7. CODE PROGRAM                        | 1                  | 16.8%                       | 20%                       | 3.36%                |
| 8. FABRICATE TPS HARDWARE              | 15%                | 7.7%                        |                           |                      |
| 9. INTEGRATE ON ATE                    | T                  | 31.5%                       | 10%                       | 3.15%                |
| 10. UPDATE DOCUMENTS                   | 33%                | 9%                          | 25%                       | 2.25%                |
| 11. SELL OFF                           | 10%                | 3.88%                       |                           | -                    |
| •                                      |                    |                             | TOTAL                     | 12.0%                |

Figure 4 - TPS Work Breakdown

The productivity contribution of this experiment to the overall system is derived as follows:

 $HS \times VH = Gain$ 

#### Where:

HS = number of hour saved derived Scheurer Study = 395.1

VH = dollar value of one an hour of engineering this value also includes all direct management effort. This constant is globally defined and used by all experiments = \$35.00.

Gain = \$13,828.50 dollar gain in productivity

## Mechanics of the Electronic Messaging Experiment

A simple test was performed to quantify the benefit of an electronic messaging. An intra-company correspondence memo was written requesting the recipient to notify the sender after receiving the information.

The procedure followed was to send this message via two different communication systems and to record the time of recipient's response. This experiment was repeated twenty times due to the large variance in recipient's response time. The electronic transmissions were constant within 10 percent variance over 20 tests. However, the traditional method had better than 157 percent variance recorded over 20 tests. Therefore, a average was used as the result. The productivity contribution of this experiment to the overall system is derived as follows:

Where:

- HS = number of hour saved derived from the laboratory experiment which calculated the time saved in using an electronic mail delivery system as opposed to the traditional method (the result of experiment 2) = 4.3.
- VH = dollar value of one an hour of engineering this value also includes all direct management effort. This constant is globally defined and used by all experiments = \$35.00.

Gain = \$150.5 dollar gain in productivity

This lab experimental research resulted in a contribution of \$150.5.

## Part C. Field experimentation

Three field experiments [68] were performed to determine the contribution of the word and document processing system, time management system effectively coordinating the meeting of the 22 subjects, and distributing the processing power to personal computers.

## Word and Document Processing Experiment

This experiment evaluates the software necessary to support test requirements document (TRD) to ATLAS generator and flowcharting activities of the document processing element of a TPS program. This software satisfies the critical needs of the TPS engineer in the areas of TRD generation, ATLAS code generation, and tool availability [69]. Preliminary tests indicate productivity improvements of forty to one over current methods could be realized if the system is 100 percent deployed.

The TRD to ATLAS translation software provides a significant improvement in the development time of TPSs. For the tasks of initial generation of code, ECF changes, and high-quality documentation generation, it is easy to see a ten to one improvement over current methods. In a test case recently performed using this software, the above collection of tasks that normally take an estimated two weeks took two hours. This indicates a forty to one improvement. However, the complexity of the test case was lower than average so the improvement factor has been derated by a factor of four to account for this. Six major areas are to be addressed; test requirement document generation, TRD to ATLAS generator, ATLAS to TRD generator, ATLAS Flow Chart generator, functional flow chart generator, test strategy flow chart generator. The package utilizes existing division resources and integrates directly with the current integrated business environment.

A conservative estimate of 20 percent would be saved over the development time. This is based on a ten to 1 performance improvement on the following four tasks listed in the TPS Work Breakdown, Figure 4.

| 1    | ask Description                    | Average* | Savings |  |
|------|------------------------------------|----------|---------|--|
| 2.   | TPS Flowchart & Specifications     | 3.5      | 3.15    |  |
| 5.   | Generation of initial test program | 5.5      | 4.95    |  |
| 7.   | Code Program                       | 16.8     | 15.12   |  |
| 10.  | Update Documents                   | 9.0      | 8.1     |  |
| Tota |                                    | 34.1     | 8 31.27 |  |

\* MATE averages were derived from Sperry System Management, MATE TPS Acquisition, Guide 5, Volumes 3,4,5 Rev. B.

To be conservative, the following cost analysis uses a 20 percent improvement instead of the 31.27 percent improvement stated above. The direct savings in productivity increase on a typical TPS could total \$20,000. Using a 20 percent figure to be conservative, the cost recovery due to effective time savings would be:

Where:

- TPS = number of hour currently spent on TPS development derived from the Burkhart study = 2754
- VH = dollar value of one an hour of engineering this value also includes all direct management effort. This constant is globally defined and used by all experiments = \$35.00
- EF = Efficiency gain factor derived from above experiment = 0.20

Gain = \$19,278 gain in productivity

This lab experimental research results in a contribution of \$19,278 (productivity gain on a typical TPS).

Figure 5 shows the proposed software configuration.





#### Time Management Experiment

To test the effectiveness of the time management system, the following experiment was performed.

- If group A was informed of a meeting then 60 percent attendance would occur.
- If group A was informed of a meeting then 60 percent attendance would occur.

Group A contained 7 professionals trained in the use of the integrated business environment. This included techniques for resolving schedule conflicts and the ability to use a computer terminal to learn of scheduled events. Group B contained 15 professionals with no exposure to the environment and relied upon the traditional information exchange methods.

The experiment was conducted between February 2, 1986 at 2:58 P.M. and February 3, 1986 at 4:00 P.M. The method of experimentation followed the following flow plan:

- An Intra-Company correspondence memo was generated on February 2, 1986 at 2:58 P.M. Figure 6 represents the written communication generated.
- The correspondence was sent to Group A through the environment and to Group B through the traditional system.
- The meeting was held from 3:00 P.M. to 4:00 P.M. on the afternoon of February 3, 1986.

Page 41

- During the meeting, attendance was taken. Neither group was aware of the experiment in progress.
- The attendance record was reviewed, and the results are listed in Table 2.

INTRA-COMPANY CORRESPONDENCE

Date: 2-Feb-1986 02:58p CST From: Tim Carr A43\_CARR Dept: ATE Tel No: 4534

TO: John Doe

Subject: Meeting notice

You are invited to the following meeting:

Scheduled by : A43\_CARR Purpose : The First TPS WorkBench User Conference On : 3-Feb-1986 From : 3:00p To : 4:00p At : Lower HH Auditorium South Priority : A1

Figure 6 Intra-Company Correspondence

|           |   | Time    | Management | Experiment Table        | 2                    |
|-----------|---|---------|------------|-------------------------|----------------------|
| ) <u></u> |   | Members | Attendance | Percent<br>Within Group | Percent<br>Deviation |
| Group     | A | 7       | 5          | 71.4                    | +11.4                |
| Group     | В | 15      | 1          | 6.6                     | -53.4                |

The hypothesis deviation indicates a loss of 53.4 percent in effective time utilization. This resulted in a loss of productive time equalling 15 (number of member in Group B) X 2 (total time in hours involved in attending and preparing for the meeting) X 53.4 \* \$35 (cost per hour) = \$560.7.

The typical TPS projected flow time equals .75 years [70]. During this time, if one meeting is held per week (39 meetings), the loss in productivity would equal: 39 (number of meeting) \* \$560.7 (loss in dollars) = \$21,867.30

This field experimental research results in a contribution of \$21,867.30.

## Personal Computer Experiment

To measure the effects of introducing personal computers into the integrated business environment [71] measurements of CPU usage, connect time, and disk usage were collected. The method used to test performance of the personal computer follows:

 The environment was utilized between October 1985 and January 1986 (inclusive) without personal computers. A detailed usage and cost impact data can be found in Appendix C items B, C, D, E.

- 2. During the month of February 1986, personal computers were introduced into the environment. Detailed usage and cost impact data can be found in Appendix C item A.
- 3. The CPU usage data for the months of October thru February was then plotted. Figure 6a indicates a sharp reduction in the cost incurred from corporate resources during the month of February. It is also significant to note that the corporate computer resources were not eliminated, but the cost incurred was reduced.

CPU Usage



Figure 6a - Personal Computer Study

Page 44

4. The connect time data for the months of October thru February was then plotted. Figure 6b indicates a sharp reduction in the cost incurred from corporate resources during the month of February. It is also significant to note that the corporate computer resources were not eliminated, but the cost incurred was reduced.



Connect Time

Figure 6b - Personal Computer Study

5. The disk usage data for the months of October thru February was then plotted. Figure 6c indicates a a reduction in the cost growth incurred from corporate resources during the month of February.



Disk Usage

Figure 6c - Personal Computer Study

Table 3 summarizes the net monthly savings.

|         | Table | 3 - Personal Computer |        | Experiment      |  |
|---------|-------|-----------------------|--------|-----------------|--|
|         |       | Connect               | CPU    | Disk Allocation |  |
| Savings | %     | 26.06                 | 58.06  | .724            |  |
| Savings | \$    | 224.19                | 491.63 | 12.80           |  |

Total savings per month \$728.62

Given that TPS flow time is equal to .75 years or nine months, the productivity gain would equal:

NM X PG = GAIN

Where:

PG = dollar value avoided in network computer charges, due to distributing local processing to the individuals site using a personal computer. PG = \$728.62

Gain = \$6,557.58 gain in productivity

Results indicate a contribution of \$6,557.58.

## Part D. Survey Research

Population Culture Experiment

This personal interview research [73] was conducted to study the population culture of Emerson Electric by selecting and studying a random sample of 24 individuals of the population. The design of this experiment is based on a pilot study performed by Richard Hunt [74]. The Hunt study investigated a technology based corporation to determine its apparent priorities in terms of perceived needs. The breakdown is based on a sampling of the general population, with special topics based on specialized population subgroups. The Hunt study was completed in September 1981. This is significant when evaluating the perceived needs of an integrated business environment of the 1990s.

The results of the Hunt study serve as the measuring instrument to evaluate the population's perceived needs and the ability for the culture to adapt to full deployment of the integrated business environment.

The interview schedule was designed as a fixed-alternative questionnaire [75]. An example of the interview schedule can be found in Appendix F. All twenty-four interviews were taken on February 21, 1986, between 8 A.M. and 10:30 A.M.

The results of the Carr Survey are listed in Table 4. Totals for all questions are shown in the original groupings as they were asked. The percent within group indicates the number of positive response.

|                                         |          | Percent |
|-----------------------------------------|----------|---------|
|                                         | Total    | Within  |
| Characteristic                          | Positive | Group   |
| Background                              |          |         |
| Computer Science Major                  | 1        | 4       |
| Computer Science Minor                  | 1        | 4       |
| Electrical Engineering Major            | 13       | 54      |
| Electrical Engineering Minor            | 0        | 0       |
| Other Major                             | 4        | 17      |
| On-the-Job Computer Training            | 7        | 29      |
| Vocational School Courses               | i        | 4       |
| No Prior Computer Training              | 3        | 13      |
| Previous Computer Usage                 |          |         |
| Used Computer in College or School      | 14       | 58      |
| Have Home Hobby Computer                | 10       | 42      |
| Used Emerson Scientific Computer Center | 12       | 50      |
| Used other Emerson Computer             | 13       | 54      |
| Used Emerson Word processor PC's        | 5        | 21      |
| Used IBM or Apple PC's                  | 8        | 33      |
| Used other PC's                         | 5        | 21      |
| Never used computer                     | 4        | 17      |
| Employed at Emerson                     |          |         |
| Less than six months                    | 0        | 0       |
| Six to twelve months                    | 1        | 4       |
| One to two years                        | 3        | 13      |
| Two to five years                       | 13       | 54      |
| More than five years                    | 7        | 29      |
| Takan dad Analian biana                 |          |         |
| Descriptions                            |          |         |
| Program Development                     | 11       | 46      |
| Computation                             | 9        | 36      |
| Documentation                           | 10       | 42      |
| Data Retrieval/Manipulation             | 14       | 58      |
| Fersonal Interests                      | 8        | 33      |
| Applications Time-Frame                 |          |         |
| Immediate                               | 8        | 33      |
| Within three months                     | 6        | 25      |
| Within six months                       | 2        | 8       |
| Within one year                         | 2        | 8       |
| Longer than one year                    | 6        | 25      |
| Unsure                                  | 7        | 29      |

## Table 4 - Carr Survey General Population

The background characteristic is designed to measures the ability of the population to adapt to interfacing with computer on a day-to-day bases. If the population's backgound does not include the type of concept Knowledge gained through software literacy then the ability for the population to gain from integrating the environment will not be realized. Figure 7 indicates the the wide range of the populations computer background.



Computer Background

## Figure 7 - Population Distribution Study

Like the background measurement, the previous computer usage characteristic is designed to measure the ability of the population to take advantage of the tools provided by the environment. If the population has previous computer experience, the fear of the keyboard, the primary environment input device, is reduced. With reduced fear the higher level of acceptance. Figure 8 shows that less than half of the population uses a computer during working hours and that seventeen percent of the population has never use a computer at work or home.



Previous Computer Usage

Figure 8 - Population Distribution Study

Page 51

The length of employment characteristic is designed to measure the populations dynamics for change and the influx of new ideas and concepts. Figure 9 reveals that the population contains the dynamics required to benefit from integrating the environment.



# Figure 9 - Population Distribution Study

Measurements of intended applications are used to evaluate the real needs and types of computing resources required by the population. Figure 10 shows that Data base applications are indicated as the populations real needs.



Figure 10 - Population Distribution Study

Measurements of application time-frame are used to evaluate the real needs and urgency of computing resources required by the population. Figure 11 shows that forty eight percent of the population has a real need for computer resources within the next three months.



Applications Time

Figure 11 - Population Distribution Study

Table 5 shows the deviations between the current Emerson population culture and the culture described in the Hunt study. Table 6 summaries the deviation study report. The total absolute variance of 600 indicates that the two populations being compared significantly differ in their cultural make-up. The previous computer subgrouping represents the most critical element of the study.
|                                      |          | in marysis | R.C.      |
|--------------------------------------|----------|------------|-----------|
|                                      | Emerson  | Hunt       | Total     |
|                                      | % Within | % Within   | Group     |
| Characteristic                       | Group    | Group      | Deviation |
| Backpround                           |          |            |           |
| Computer Science Major               | 4        | 49         | 44        |
| Computer Science Major               | 4        | 00         | -4        |
| Electrical Engineering Major         | 54       | 27         | - 27      |
| Electrical Engineering Major         | 0        | 27         | -27       |
| Other Major                          | 17       | 0          | -9        |
| Bo-the-Job Computer Training         | 20       | 22         | 2         |
| Vocational School Courses            | 27       | 32         | 3         |
| No Prior Computer Training           | 12       | 7          | -12       |
| No Frior Computer Training           | 15       | U          | -13       |
| Previous Computer Usage              |          |            |           |
| Used Computer in college or school   | 58       | 92         | 34        |
| Have Home Hobby Computer             | 42       | 32         | -10       |
| Used Emerson Scientific Computer Cen | ter 50   | 60         | 10        |
| Used other Emerson Computer          | 54       | 76         | 22        |
| Used Emerson Word processor PC's     | 21       | 80         | 59        |
| Used IBM or Apple PC's               | 33       | 48         | 15        |
| Used other PC's                      | 21       | 16         | -5        |
| Never used computer                  | 17       | 0          | -17       |
| Employed at Emerson                  |          |            |           |
| Less than six months                 | 0        | 24         | 24        |
| Six to twelve months                 | 4        | 4          | 0         |
| One to two years                     | 13       | 44         | 31        |
| Two to five years                    | 54       | 20         | -34       |
| More than five years                 | 29       | 8          | -21       |
| Intended Applications                |          |            |           |
| Program development                  | 46       | 76         | 30        |
| Computation                          | 36       | 52         | 16        |
| Documentation                        | 42       | 40         | 18        |
| Data Retrieval/Manipulation          | 58       | 56         | -2        |
| Personal Interests                   | 33       | 44         | 11        |
|                                      |          |            |           |
| Applications Time-Frame              |          |            |           |
| Immediate                            | 33       | 88         | 55        |
| Within three months                  | 25       | 12         | -13       |
| Within six months                    | 8        | 4          | -4        |
| Within one year                      | 8        | 8          | 0         |
| Longer than one year                 | 25       | 0          | -25       |
| Unsure                               | 29       | 4          | 25        |

### Table 5 - Hunt/Carr General Population Deviation Analysis

### Table 6 - Total Variance Between Populations

| Group                    | The within group variance |
|--------------------------|---------------------------|
| Background               | 119                       |
| Previous Computer Usage  | 172                       |
| Employed at Emerson      | 110                       |
| Intended Applications    | 77                        |
| Applications Time-Frame: | 122                       |
| Total absolute variance  | 600                       |

Chapter 4: Summary and Recommendations Summary

The research presented an analysis of management techniques being investigated to more effectively manage technological business through streamlining the efforts of all human and non-human resources involved.

The research has indicated a significant cost benefit is derived from integrating the technological work place. The benefits were justified throughout the experimentation as listed in Table 6 with a net productivity gain of \$70,109.88.

### Table 6 - Total Experiment Gain

Part A: Nonexperimental Research.....\$ 8,578.50 Part B: Lab Experimentation

Test Program Set Development....\$13,828.50

Mechanics of the Electronic

Messaging Experiment..\$150.50\*

Part C: Field experimentation

Word and Document Processing

Experiment.....\$19,278.00

Time Management Experiment.....\$21,867.30

Personal Computer Experiment....\$ 6,557.58

Total.....\$70,109.88

\* The result of this experiment used as constant.

The focus of this research presented measurements of the performance, schedule, and cost effectiveness of the environment and determined that this approach met and exceeded the business goal of increased productivity as outlined in TPS Work Breakdown Figure 4. The three key areas requiring improvement were addressed. The four methods of experimentation used succeeded in measuring the complex nature of the environment's effect on productivity. In each experiment, productivity measurements were made in units of dollars. The units of measure were common between all experiments resulting in a gain of 73 percent over current methods a 61 percent above the business goal as stated in Figure 4. The percentage gain of 73 percent was derived by:

E X VH = PC

(GAIN X 100) / PC = PG

Where:

- E = Current Engineering Manhour Requirements per TPS.E = 2754
- VH = dollar value of one an hour of engineering this value also includeds all direct management effort. This constant is globally defined and used by all experiments = \$35.00

PC = Total TPS manhour dollar cost. PC = 96,390.00

### Page 59

### PG = Total percentage project cost avoidance. PG = \$70,1109.88

The technical conclusion derived from this research indicates overall system productivity gains could exceed a seven to one ratio when one hundred percent operational. However, the survey research indicated that for the gain in productivity to be realized, a fundamental change in the division's culture must occur. This report indicates that the integrated business environment succeeded in improving productivity by providing; a common interface, a reduction in TPS development manhours and machine time through increases in compiler throughput and improvements in documentation generation, efficient use company assets, use of personal computers, and improved product quality. The Emerson population study indicates that to improve division productivity a change in the division's culture would have to occur. This could be accomplished by increasing the populations awareness of computers and how these technological resources could benefit them. The computer usage analysis indicates that less than 14 percent of the working population has gained computer knowledge from the employer. The value of SCC is the indicator.

Requires Changing the Corporate Culture



Previous Computer Usage

Computer Usage Analysis

It must be noted, the domestic competition (Honeywell, McDonnell Douglas, AAI, Grumman and Rockwell) has already committed to the use of integrated solution to increase important market share.

The last important point to consider is the difficulty of keeping trained TPS developers. Using the current work methods, the task of generating a TPS and all the associated documentation is undesirable. If the tasks that involve non-thinking processes are automated, it leaves the most challenging core of the technical work to accomplish. Valuable people will, therefore, be less inclined to evaluate other employment options because there is a greater percentage of enjoyable.

### Conclusions

- This method will be recovered in under one year in savings on one in-house project; benefits to other anticipated programs increase the rate of payback even within the first year, and amounts of subsequent cost savings year by year.
- The software configuration is necessary and sufficient to achieve the schedule and operational status goals of this project and support the cost reductions shown.
- None of the wide range of alternatives considered offers as effective a performance/cost ratio during the immediate lifetime of this project.

### Recommendation

To further the populations awareness of the computer revolution and once the resource is developed exploit it.

### Appendix "A"

### Communication Data

### Mail Box Read

| 1  | 628 | MANAGER       | 14-Mar-1986 05:14 | p AR1                                           |
|----|-----|---------------|-------------------|-------------------------------------------------|
| 2  | 627 | NANAGER       | 14-Mar-1986 05:11 | p AR2                                           |
| 3  | 626 | A43 GALLOWAY  | 14-Mar-1986 14:28 | upload of files                                 |
| 4  | 625 | A43 MUNN      | 15-Mar-1986 03:06 | Important Communications                        |
| 5  | 623 | A43_GALLOWAY  | 13-Mar-1986 16:50 | Year One Accomplishments                        |
| 6  | 622 | A43_GALLOWAY  | 12-Mar-1986 19:19 | Neeting notice                                  |
| 7  | 621 | A43_SCHEURER  | 12-Mar-1986 04:02 | p Neeting notice                                |
| 8  | 619 | NANAGER       | 11-Mar-1986 08:29 | p i think this was for you                      |
| 9  | 618 | A43_GALLOWAY  | 10-Mar-1986 22:34 | Meeting notice                                  |
| 10 | 616 | A43_SCHEURER  | 10-Mar-1986 07:43 | Bp Meeting notice                               |
| 11 | 612 | A43_GALLOWAY  | 7-Mar-1986 12:04  | Meeting notice                                  |
| 12 | 611 | A43_SCHEURER  | 7-Mar-1986 11:04  | Meeting notice                                  |
| 13 | 609 | A43 MUNN      | 6-Mar-1986 01:08  | 3p Oh No!                                       |
| 14 | 608 | J10_SHANDS    | 6-Mar-1986 01:08  | Bp ALL in 1 user                                |
| 15 | 607 | MANAGER       | 3-Mar-1986 04:49  | Pp 785 update possible disaster                 |
| 16 | 606 | A43_SCHEURER  | 3-Mar-1986 10:41  | AR Urgency                                      |
| 17 | 605 | A43_MUNN      | 28-Feb-1986 04:37 | 7p Test Program Set WorkBench Background Survey |
| 18 | 604 | A43_MUNN      | 28-Feb-1986 04:21 | p Meeting notice                                |
| 19 | 602 | A43_NUNN      | 3-Mar-1986 09:00  | 5 TPSWB functions                               |
| 20 | 601 | _A43_GALLOWAY | 3-Mar-1986 09:00  | S Put this in my file                           |
| 1  | 600 | A43_SCHEURER  | 28-Feb-1986 02:5  | Pp RE: Phase II AR equipment list               |
| 2  | 599 | _A43_MUNN     | 28-Feb-1986 03:25 | 5p All                                          |
| 3  | 596 | _J10_SHANDS   | 28-Feb-1986 10:3  | D RE: login coded message                       |
| 4  | 592 | _A43_SCHEURER | 28-Feb-1986 07:4  | 6 RE: Disk usage                                |
| 5  | 590 | A43_CARR      | 27-Feb-1986 02:5  | 6p Phase II AR equipment list                   |
| 6  | 587 | MANAGER       | 27-Feb-1986 08:11 | 9 Problems after SCC directory change           |
| 7  | 585 | NANAGER       | 25-Feb-1986 11:0  | 5 Meeting notice                                |
| 8  | 584 | A43_GALLOWAY  | 25-Feb-1986 10:5  | 5 RE: Nike Holmes A                             |
| 9  | 583 | A57_CHRISCO   | 25-Feb-1986 08:5  | 9 SURVEY REPLY                                  |
| 10 | 581 | A43_GALLOWAY  | 24-Feb-1986 23:0  | 8 RE: 615 question and answer period            |
| 11 | 579 | A43_GALLOWAY  | 24-Feb-1986 16:4  | 3 Mac to TYX                                    |
| 12 | 578 | A43_GALLOWAY  | 24-Feb-1986 16:2  | 0 RE: TYX demo comments                         |
| 13 | 577 | _A43_NUNN     | 24-Feb-1986 04:2  | 1p Ailing                                       |
| 14 | 576 | _A43_MUNN     | 24-Feb-1986 04:2  | 1p brighter futures???                          |
| 15 | 575 | A43_SCHEURER  | 24-Feb-1986 02:2  | 4p TYX demo comments                            |
| 16 | 574 | A57_CHR1SC0   | 24-Feb-1986 08:3  | 5 lost the survey due to lack of expertise wrt  |
| 17 | 570 | AAD CALLOUAV  | 24-Eab-100/ 00:2  | A Report on AURR Atlas Compiler                 |
| 10 | 573 | AST CUDICCO   | 24-Feb-1984 08+2  | A Nestino notice                                |
| 10 | 5/2 | HJ/_LINKISLU  | 24-Feb-1904 04.4  | An Meeting notice                               |
| 17 | 30/ | HAD CONTRACT  | 21-Feb-1004 05.1  | On Masting notice                               |
| 20 | 300 | H43_3FENLER   | 21-FED-1700 VJ:1  | op neering notice                               |
| 1  | 565 | A43_SCHEURER  | 21-Feb-1986 04:3  | 8p AutoTestCon                                  |
| 2  | 564 | A38_HAYDEN    | 21-Feb-1986 03:3  | Op Meeting notice                               |
| 3  | 562 | A43 MUNN      | 21-Feb-1986 04:3  | 7p                                              |
| 4  | 561 | _A43_MUNN     | 21-Feb-1986 04:3  | 7p AI1                                          |

| 5       | 560 | A43 MUNN                   | 21-Feb-1986 04:37p hunting season                             |
|---------|-----|----------------------------|---------------------------------------------------------------|
| 6       | 556 | A43 GALLOWAY               | 21-Feb-1986 09:36 Atlas compiler evaluation                   |
| 7       | 553 | A43 GALLOWAY               | 20-Feb-1986 23:17 Meeting notice                              |
| 8       | 552 | A43 CARR                   | 20-Feb-1986 08:59p this is a test                             |
| 9       | 540 | A43 SPENCER                | 13-Feb-1986 10:55 joe security                                |
| 10      | 539 | A43 CARR                   | 12-Feb-1986 08:39p System Security                            |
| 11      | 538 | J10 SHANDS                 | 13-Feb-1986 01:37p A43 allin1                                 |
| 12      | 536 | A43 SCHEURER               | 12-Feb-1986 03:330 Hours                                      |
| 13      | 532 | A43 CARR                   | 10-Feb-1986 11:51n February 10, 1986                          |
| 14      | 529 | A43 NUNN                   | 10-Feb-1986 82:10n All-in-1 size (!!!!)                       |
| 15      | 528 | MANAGER                    | 7-Feb-1984 04:34n mail address                                |
| 16      | 527 | A43 SPENCER                | 7-Feb-1986 01:03n Meeting notice                              |
| 17      | 526 | A43 NINN                   | 10-Feb-1986 02:22n Terminal                                   |
| 18      | 525 | Add NINN                   | 10-Feb-1986 02:22p clowness                                   |
| 19      | 519 | A43 GALLINHAY              | 7-Feb-1986 11:25 DITSIDE STIFF                                |
| 20      | 518 | MANAGER                    | A-Fab-1986 A4:24 Nesting notice                               |
| 20      | 510 |                            | o reb 1700 bolząp neeting notice                              |
| 1       | 517 | A43 SCHEURER               | 6-Feb-1986 05:04p Status Update                               |
| 2       | 516 | A38 HAYDEN                 | 6-Feb-1986 01:040 ETHERNET WORK AROUND                        |
| 3       | 515 | A43 CHAPMAN                | 6-Feb-1986 12:59p Neeting notice                              |
| 4       | 514 | A38 HAYDEN                 | 6-Feb-1986 12:51p Meeting notice                              |
| 5       | 513 | A43 CARR                   | 7-Feb-1986 10:25 Continue Failure of the Lower HH annex       |
|         |     |                            | Terminal Server                                               |
| 6       | 512 | A43 SCHEURER               | 6-Feb-1986 11:15 Meeting notice                               |
| 7       | 510 | A43 SPENCER                | 6-Feb-1986 10:27 Meeting notice                               |
| 8       | 509 | MANAGER                    | 5-Feb-1986 09:34p SOURCE CODE JUNK                            |
| 9       | 508 | NANAGER                    | 5-Feb-1986 08:41p music&macintosh                             |
| 10      | 507 | A43 GALLOWAY               | 5-Feb-1986 14:24 Meeting notice                               |
| 11      | 505 | A43 NUNN                   | 5-Feb-1986 12:53p N-GRASS                                     |
| 12      | 504 | J10 SHANDS                 | 5-Feb-1986 12:530 A43 ALLIN1 Privs                            |
| 13      | 503 | A43 MUNN                   | 5-Feb-1986 12:47p RE: Training Seminar Handout - First TPSWB  |
|         |     |                            | User Conference                                               |
| 14      | 502 | A43 CHAPMAN                | 5-Feb-1986 10:41 Meeting notice                               |
| 15      | 500 | A43 CHAPMAN                | 5-Feb-1986 10:41 Neeting notice                               |
| 16      | 498 | A43 NUNN                   | 5-Feb-1986 08:51 RE: Training Seminar Handout - First TPSWB   |
|         |     | 999929 <del>—</del> 199998 | User Conference                                               |
| 17      | 497 | A43 CARR                   | 4-Feb-1986 10:10p TPSWB overview to be included in TPS        |
| 2572744 |     |                            | Competitivenss Study                                          |
| 18      | 496 | MANAGER                    | 4-Feb-1986 08:51p Meeting notice                              |
| 19      | 494 |                            | Review Minutes                                                |
| 20      | 492 |                            | timothy carr                                                  |
|         |     |                            |                                                               |
| 1       | 489 |                            | TPS Workbench overview                                        |
| 2       | 488 | A43_CARR                   | 4-Feb-1986 05:23p Training Seminar Handout - First TPSWB User |
| -       |     |                            | Conference                                                    |
| 3       | 483 | A43_MUNN                   | 4-Feb-1986 02:34p Latest/Orlando Rumor & Misc items of note   |
|         |     |                            |                                                               |
| 4       | 482 | HAJ NUNN                   | 4-red-1786 Ulilyp RE: Sorted, A-, Son Of                      |
| 5       | 480 | A43_NUNN                   | 4-red-1986 US:10 Sorted, A-, Son of                           |
| 6       | 479 | A43_MUNN                   | 3-reb-1986 04:38p Sorted, A-                                  |
| 7       | 478 | _A43_ALLINI                | 3-Feb-1986 08:03p Account Logging                             |

| 8  | 475 | A43 SCHEURER | 3-Feb-1986 02:04p SCC CONSPIRACY                          |
|----|-----|--------------|-----------------------------------------------------------|
| 9  | 474 | NANAGER      | 3-Feb-1986 02:02n Neeting notice                          |
| 10 | 473 | A43 NUNN     | 3-Feb-1986 M1:30p All-N-1 problem-of-the-day              |
| 11 | 471 | A43 NUNN     | 3-Feb-1986 10:44 None raw random type numors for the mill |
| 12 | 470 | A43 SCHEURER | 3-Feb-1986 09:28 Nysterious liser                         |
| 13 | 469 | A43 SCHEURER | 3-Feb-1986 09:22 Neeting potice                           |
| 14 | 468 | A43 MINN     | 3-Feb-1986 08:40 Meeting Notice PS                        |
| 15 | 467 | A43 NUNN     | 3-Feb-1986 08:38 Neeting potice                           |
| 16 | 466 | A43 L055     | 2-Feb-1986 11:320 r26 usane of themb                      |
| 17 | 464 | A32 SUDA     | 3-Feb-1986 12:200 Network Security Iccue                  |
| 18 | 463 |              | First TPS WorkRench User Conference Training              |
|    |     |              | Slides                                                    |
| 19 | 460 |              | Status Report                                             |
| 20 | 459 | A43 SCHEURER | 31-Jan-1984 NO:52n January 31 1984 status                 |
|    |     |              | er van 1700 U/Tozp vandar / 01,1700 Status                |
| 1  | 458 | A43 MUNN     | 31-Jan-1986 08:52 PC Cheepie Rumor of 1/31/86Have Fun.    |
|    |     | -            | Kiddies!                                                  |
| 2  | 457 | A43 SCHEURER | 30-Jan-1986 10:36p Jan 30.1986 Evening Results            |
| 3  | 456 | A43 GALLOWAY | 30-Jan-1986 09:550 ADDITIONAL SOFTWARE NEEDED             |
| 4  | 454 | A43 MUNN     | 30-Jan-1986 08:53 mail form of outline comp 1/30/86       |
| 5  | 451 | A43 LOSS     | 28-Jan-1986 10:52p what i did this night                  |
| 6  | 450 | A43 CARR     | 27-Jan-1986 11:22p using TPSWB                            |
| 7  | 448 | J10 SHANDS   | 27-Jan-1986 06:46p RE: A43 ALLIN1                         |
| 8  | 446 | J10 SHANDS   | 27-Jan-1986 01:04p RE: A43 ALLIN1                         |
| 9  | 444 | A43_SCHEURER | 27-Jan-1986 11:12 RE: DEC product announcement            |
| 10 | 443 | A43 SCHEURER | 27-Jan-1986 11:10 RE: DEC product announcement            |
| 11 | 441 | A43_GALLOWAY | 26-Jan-1986 21:49 RE: DEC product announcement            |
| 12 | 440 | A43 CARR     | 26-Jan-1986 02:06p DEC product announcement               |
| 13 | 437 | A43 GALLOWAY | 24-Jan-1986 21:49 Meeting notice                          |
| 14 | 436 | A43 SCHEURER | 24-Jan-1986 02:28p Meeting notice                         |
| 15 | 435 | A43 CARR     | 24-Jan-1986 01:39p Datsa Vax Situation                    |
| 16 | 430 | A43 CARR     | 24-Jan-1986 10:10 Vax concerns                            |
| 17 | 427 | A43_SCHEURER | 23-Jan-1986 10:17p Interested potential TPSWB customer    |
| 18 | 426 | A43_SCHEURER | 23-Jan-1986 02:18p Meeting notice                         |
| 19 | 425 | A43_SCHEURER | 23-Jan-1986 02:09p Meeting notice                         |
| 20 | 424 | A43_GALLOWAY | 23-Jan-1986 12:26 Meeting notice                          |
|    |     |              |                                                           |
| 1  | 423 | A43_CHAPMAN  | 23-Jan-1986 11:43 Meeting notice                          |
| 2  | 421 | A43_GALLOWAY | 22-Jan-1986 22:34 RE: 1'm so pisss                        |
| 3  | 420 | A43_GALLOWAY | 22-Jan-1986 22:26 Meeting notice                          |
| 4  | 416 | A43 NUNN     | 22-Jan-1986 04:01p Incubators                             |
| 5  | 414 | A43_SCHEURER | 22-Jan-1986 03:18p Status News                            |
| 6  | 413 | A43_MUNN     | 22-Jan-1986 08:52 concerts                                |
| 7  | 412 | A43_SCHEURER | 21-Jan-1986 10:30p Update                                 |
| 8  | 411 | A43_GALLOWAY | 21-Jan-1986 10:19p SLOW BUT SURE                          |
| 9  | 410 | A43_GALLOWAY | 21-Jan-1986 10:15p Meeting notice                         |
| 10 | 409 | A43_GALLOWAY | 21-Jan-1986 10:15p Meeting notice                         |
| 11 | 408 | A43_GALLOWAY | 21-Jan-1986 10:14p Neeting notice                         |
| 12 | 407 | A43_GALLOWAY | 21-Jan-1986 10:14p Meeting notice                         |
| 13 | 406 | A43_SCHEURER | 21-Jan-1986 09:40p Meeting notice                         |
| 14 | 405 | A43_SCHEURER | 21-Jan-1986 09:39p Meeting notice                         |

2

| 15 | 400 | A43 SCHEURER | 21-Jan-1986 | 09:19p Neeting notice                          |
|----|-----|--------------|-------------|------------------------------------------------|
| 16 | 399 | A43 SCHEURER | 21-Jan-1986 | 09:18p Meeting notice                          |
| 17 | 394 | A43 GALLOWAY | 21-Jan-1986 | 02:43p RE: All problem time management area    |
| 18 | 393 | A43 MUNN     | 21-Jan-1986 | 11:03 Govern-Controlled News Item              |
| 19 | 392 | A43 NUNN     | 21-Jan-1986 | 10:06 All problem time management area         |
| 20 | 391 | A43_NUNN     | 21-Jan-1986 | 09:01 tools and users                          |
| 1  | 389 | A43_CHAPMAN  | 20-Jan-1986 | 04:05p RE: Interrupt menu                      |
| 2  | 387 | A43 CHAPMAN  | 20-Jan-1986 | 10:36 Interrupt menu                           |
| 3  | 386 | A43_SCHEURER | 17-Jan-1986 | 06:55p Optimum Meeting Times                   |
| 4  | 385 | A43 NUNN     | 17-Jan-1986 | 04:45p DAT'S a VAX?                            |
| 5  | 384 | A43 CHAPMAN  | 17-Jan-1986 | 02:55p DATSA VAX and the TPS WorkBench         |
| 6  | 383 | A43 NUNN     | 17-Jan-1986 | 11:07 items of interest from Guehne & misc     |
| 7  | 382 | A43 MUNN     | 17-Jan-1986 | 11:08 chargin' on                              |
| 8  | 379 | A43_SCHEURER | 16-Jan-1986 | 10:26p Thursday Nite Progress                  |
| 9  | 377 | A43 NUNN     | 16-Jan-1986 | 03:15p N-IFTE?                                 |
| 10 | 376 | A43_GALLOWAY | 16-Jan-1986 | 14:38 some progress                            |
| 11 | 374 | A43_CHAPMAN  | 16-Jan-1986 | 09:59 Meeting notice                           |
| 12 | 373 | A43_CHAPMAN  | 16-Jan-1986 | 09:58 Meeting notice                           |
| 13 | 372 | A43_CARR     | 15-Jan-1986 | 04:27p DATSA VAX and the TPS WorkBench         |
| 14 | 369 | A43_GALLOWAY | 15-Jan-1986 | 14:54 Meeting notice                           |
| 15 | 368 | A43_GALLOWAY | 15-Jan-1986 | 14:51 Meeting notice                           |
| 16 | 367 | A43_SCHEURER | 14-Jan-1986 | 10:32p Evening's Results                       |
| 17 | 366 | A43_SCHEURER | 14-Jan-1986 | 10:23p Meeting notice                          |
| 18 | 363 | A43_SCHEURER | 14-Jan-1986 | 03:43p RE: Meeting notice                      |
| 19 | 362 | A43_GALLOWAY | 14-Jan-1986 | 14:17 Meeting notice                           |
| 20 | 361 | A43_SCHEURER | 14-Jan-1986 | 01:52p Meeting notice                          |
| 1  | 357 | A43_GALLOWAY | 13-Jan-1986 | 22:15 STATUS                                   |
| 2  | 356 | A43_SCHEURER | 13-Jan-1986 | 03:26p Resumption of Classes                   |
| 3  | 355 | A43_NUNN     | 14-Jan-1986 | 09:07 cable loan                               |
| 4  | 352 | A43_MUNN     | 10-Jan-1986 | 04:16p RE: User Gripes                         |
| 5  | 351 | _A43_MUNN    | 12-Jan-1986 | 01:15p charges                                 |
| 6  | 348 | A43_MUNN     | 10-Jan-1986 | 01:21p Son of Gripes                           |
| 7  | 347 | _A43_MUNN    | 10-Jan-1986 | 10:58 P/N                                      |
| 8  | 346 | A43_SCHEURER | 10-Jan-1986 | 09:56 Electronic messaging mod. leftovers      |
| 9  | 345 | A43_SCHEURER | 10-Jan-1986 | 09:47 Interview with Bill Liese                |
| 10 | 344 | A43_GALLOWAY | 9-Jan-1986  | 09:15p Current Activity                        |
| 11 | 342 | _A43_MUNN    | 9-Jan-1986  | 05:05p Offlisted?                              |
| 12 | 341 | A43_GALLOWAY | 8-Jan-1986  | 21:13 more done                                |
| 13 | 339 | A43_CARR     | 8-Jan-1986  | 05:45p Charlie Macrenna conversation follow-up |
|    |     |              | (C/Vax MAC  | Version)                                       |
| 14 | 336 | A43_SCHEURER | 8-Jan-1986  | 04:53p Speedy Emerson Paper Mail               |
| 15 | 335 | A43_GALLOWAY | 8-Jan-1986  | 14:07 STUFF DONE                               |
| 16 | 334 | A43_CARR     | 8-Jan-1986  | 01:42p Concerns with TPSWB use. "Unhappy User" |
| 17 | 332 | A43_MUNN     | 8-Jan-1986  | 10:41 Potential User                           |
| 18 | 331 | A43_SCHEURER | 8-Jan-1986  | 10:40 TPSWB ISSUES                             |
| 19 | 328 | _A43_MUNN    | 7-Jan-1986  | 03:38p PAWS                                    |
| 20 | 325 | A43_GALLOWAY | 6-Jan-1986  | 21:33 List generators                          |
| 1  | 320 | A43_CARR     | 6-Jan-1986  | 02:54p Monday Meeting schedule change          |

| 2  | 316 | A43_MUNN      | 6-Jan-1986 01:53p Forms and Voids                             |
|----|-----|---------------|---------------------------------------------------------------|
| 3  | 315 | A43_MUNN      | 3-Jan-1986 04:21p CDC Express Demo Invitation                 |
| 4  | 314 | A43_GALLOWAY  | 3-Jan-1986 15:50 Meeting notice                               |
| 5  | 313 | A43_GALLOWAY  | 3-Jan-1986 15:48 Meeting notice                               |
| 6  | 312 | A43_GALLOWAY  | 3-Jan-1986 15:48 Meeting notice                               |
| 7  | 311 | A43_GALLOWAY  | 3-Jan-1986 15:47 Meeting notice                               |
| 8  | 310 | _A43_SPENCER  | 6-Jan-1986 12:33p DECALC                                      |
| 9  | 293 | A43_CARR      | 3-Jan-1986 11:53 B Shift concerns                             |
| 10 | 283 | A43_GALLOWAY  | 30-Dec-1985 02:39p User display listing generator             |
| 11 | 282 | A43_GALLOWAY  | 30-Dec-1985 01:36p ATLAS COMPILER                             |
| 12 | 281 | A43_GALLOWAY  | 28-Dec-1985 21:39 Atlas Menus                                 |
| 13 | 276 | A43_CARR      | 26-Dec-1985 03:58p Time away from the office - Vacation       |
| 14 | 273 | A43_NUNN      | 26-Dec-1985 02:06p Tools in Boxes                             |
| 15 | 270 | A43_MUNN      | 26-Dec-1985 12:12p MacIntosh Notes of 12/26/85                |
| 16 | 269 | A43_NUNN      | 26-Dec-1985 08:26 file space                                  |
| 17 | 268 | A43_MUNN      | 23-Dec-1985 04:52p re: Summary Minutes 12/19/85 Review        |
|    |     |               | finished! (I hope)                                            |
| 18 | 266 | A43_NUNN      | 23-Dec-1985 03:47p RE: Summary Minutes 12/19/85 Review        |
| 19 | 260 | A43_MUNN      | 23-Dec-1985 12:04p Summary Minutes 12/19/85 Review            |
| 20 | 259 | _A43_NUNN     | 23-Dec-1985 D8:37 Saints N Sinners                            |
|    |     |               |                                                               |
| 1  | 258 | A43_GALLOWAY  | 20-Dec-1985 16:31 Glorious news                               |
| 2  | 257 | A43_SCHEURER  | 20-Dec-1985 04:30p HAPPY HOLIDAYS                             |
| 3  | 256 | A43_NUNN      | 20-Dec-1985 01:34p Reminders                                  |
| 4  | 255 | A43_MUNN      | 19-Dec-1985 01:45p comments and assertions                    |
| 5  | 254 | A43_CARR      | 19-Dec-1985 10:10 TPS Workbench demo                          |
| 6  | 253 | A43_NUNN      | 19-Dec-1985 08:42 mail prompt                                 |
| 7  | 251 | _J10_SHANDS   | 19-Dec-1985 07:58 tyx                                         |
| 8  | 249 | A43_NUNN      | 18-Dec-1985 01:34p Spank Me with a Ruler                      |
| 9  | 247 | A43_NUNN      | 18-Dec-1985 01:03p Sitting it out for a SPELL                 |
| 10 | 246 | _A43_MUNN     | 18-Dec-1985 01:03p Indiana Namecaller                         |
| 11 | 245 | _A32_GUENTHER | 18-Dec-1985 10:16 FMS,CDD,DTR Manuals                         |
| 12 | 244 | A43_CARR      | 18-Dec-1985 10:00 J10_shands schedule                         |
| 13 | 243 | A43_GALLOWAY  | 18-Dec-1985 09:18 Questions For Al                            |
| 14 | 242 | A43_MUNN      | 18-Dec-1985 08:40 Inspector Namecalling                       |
| 15 | 241 | A43_CARR      | 18-Dec-1985 00:02 Morning meeting                             |
| 16 | 239 | _J10_SHANDS   | 18-Dec-1985 09:51 RE: New TYX release                         |
| 17 | 236 | A43_NUNN      | 17-Dec-1985 04:28p getting out of it all                      |
| 18 | 235 | A43_CHAPMAN   | 17-Dec-1985 04:22p great names                                |
| 19 | 234 | A43_CARR      | 17-Dec-1985 03:33p Al. H visit tommarrow                      |
| 20 | 232 | A43_MUNN      | 17-Dec-1985 02:19p return to namecalling place                |
| 21 |     |               |                                                               |
| 1  | 231 | A43_CARR      | 1/-Dec-1985 UZ:11p IXY                                        |
| 2  | 230 | A43_CARR      | 17-Dec-1985 U2:07p SUC Accounting System                      |
| 3  | 226 | A43_NUNN      | 1/-Dec-1983 U9:26 Where to Go                                 |
| 4  | 225 | A43_MUNN      | 1/-Dec-1985 U9:21 Doom and Despair and other recreations      |
| 5  | 224 | A43_CARR      | 17-Dec-1985 U8:32 Tuesday's morning meeting December 17, 1985 |
| 6  | 220 | A43_MUNN      | 16-Dec-1985 09:06 Jammin'                                     |
| 7  | 219 | A43_GALLOWAY  | 16-Dec-1985 U9:U5 Part List System                            |
| 8  | 218 | A43_NUNN      | 14 Dec 1005 00 01 New 5411-                                   |
| 9  | 216 | MANAGER       | 16-Dec-1985 UB:31 New Editor                                  |

| 10 | 214  | J10 SHANDS   | 16-Dec-1985 07:38 wps+                                       |
|----|------|--------------|--------------------------------------------------------------|
| 11 | 210  | A43_CARR     | 14-Dec-1985 10:50 Saturdays Agenda December 14, 1985         |
| 12 | 209  | A43_GALLOWAY | 13-Dec-1985 11:49 RE: Modification to TPS WorkBench estimate |
| 12 | 20.0 |              | or becenber o, 1985                                          |
| 13 | 208  | A42 CAPP     | 13-Dec 1905 00-50 Madiliantia to TDD Useboard attack         |
| 14 | 207  | H43_CHKK     | 13-DEC-1785 U9:58 MODIFICATION TO IPS WORKBENCH ESTIMATE OF  |
| 15 | 204  | AAD MIRRI    | December 6, 1983                                             |
| 14 | 204  | A42 MIRAL    | 12-Dec 1985 02:30p Diographical Sketch                       |
| 17 | 203  | MAS MINN     | 12-Dec-1985 09:27 Beach-Blanket Namecalling                  |
| 10 | 202  | H43 11014    | 12-Dec-1985 U9:07 Trial run                                  |
| 10 | 201  | H43_CHKK     | 12-Dec 1985 US:50 ITA Shipment                               |
| 20 | 200  | H43_CHRK     | 12-Dec-1985 07:29 Indess Morning Reeting                     |
| 20 | 190  | A43_LAKK     | 11-Dec-1985 U7:52 Wednes. Morning's Meeting Agenda           |
| 1  | 195  | _A43_MUNN    | 11-Dec-1985 08:56 Name-calling meets the Smog Monster        |
| 2  | 194  | _A43_MUNN    | 11-Dec-1985 08:56 effect on the Company                      |
| 3  | 191  | _J10_SHANDS  | 11-Dec-1985 07:38 RE: CCU change                             |
| 4  | 190  | _A43_CHAPMAN | 10-Dec-1985 11:01 names again!!!!                            |
| 5  | 189  | _A43_CHAPMAN | 10-Dec-1985 11:00 more names                                 |
| 6  | 188  | _A43_CHAPNAN | 10-Dec-1985 11:00 LEname 7                                   |
| 7  | 187  | _A43_CHAPMAN | 10-Dec-1985 11:00 LEname 6                                   |
| 8  | 186  | _A43_CHAPNAN | 10-Dec-1985 11:00 LEname 5                                   |
| 9  | 185  | _A43_CHAPMAN | 10-Dec-1985 11:00 LEname 4                                   |
| 10 | 184  | _A43_CHAPMAN | 10-Dec-1985 10:35 LEname 3                                   |
| 11 | 183  | _A43_CHAPMAN | 10-Dec-1985 10:35 LEname 2                                   |
| 12 | 182  | _A43_CHAPMAN | 10-Dec-1985 10:34 LEname 1                                   |
| 13 | 181  | _A43_CHAPMAN | 10-Dec-1985 10:34 LEnames                                    |
| 14 | 180  | A43_CARR     | 10-Dec-1985 08:37 Tuesday Morning's Meeting Agenda           |
| 15 | 176  | MANAGER      | 9-Dec-1985 04:21p RE: VT220 owners                           |
| 16 | 174  | MANAGER      | 9-Dec-1985 04:15p RE: VT220 owners                           |
| 17 | 171  | MANAGER      | 9-Dec-1985 01:17p VT220 owners                               |
| 18 | 170  | _A43_NUNN    | 9-Dec-1985 03:28p noose                                      |
| 19 | 169  | _A43_NUNN    | 9-Dec-1985 03:28p FFB                                        |
| 20 | 166  | _A43_NUNN    | 9-Dec-1985 11:34 phinques                                    |
| 1  | 165  | A43 MUNN     | 9-Dec-1985 11:34 M-M                                         |
| 2  | 164  | A43 MUNN     | 9-Dec-1985 11:34 return of name-calling                      |
| 3  | 163  | A43 CARR     | 9-Dec-1985 08:40 Monday Morning Meeting                      |
| 4  | 162  | A43_SCHEURER | 6-Dec-1985 05:24p ABSENCE                                    |
| 5  | 161  | A43_CARR     | 6-Dec-1985 02:41p TPSWBench estimate December 6, 1985        |
| 6  | 160  | A43 CARR     | 6-Dec-1985 09:51 agenda for friday december 6, 1985 meeting  |
|    |      | 77.          | at my desk!                                                  |
| 7  | 159  | A43_SCHEURER | 5-Dec-1985 01:55p Dec. 5, 1985 pm meeting                    |
| 8  | 157  | A43 MUNN     | 9-Dec-1985 08:32 rumors                                      |
| 9  | 154  | A43 MUNN     | 6-Dec-1985 09:52 unowot                                      |
| 10 | 153  | A43 MUNN     | 6-Dec-1985 09:52 name calling                                |
| 11 | 152  | A43 MUNN     | 6-Dec-1985 09:52 sbir                                        |
| 12 | 151  | A43 MUNN     | 6-Dec-1985 09:52 PN & status                                 |
| 13 | 150  | A43 MUNN     | 6-Dec-1985 09:52 luncheon with the Boys                      |
| 14 | 146  | MANAGER      | 5-Dec-1985 11:00 System Janitor                              |
| 15 | 144  | A43_SCHEURER | 2-Dec-1985 05:46p Proper Mail Service                        |

| 16 | 143 | A43 SCHEURER  | 2-Dec-1985   | 05:40p | DEC. 2, 1985 SESSION WITH AL H.             |
|----|-----|---------------|--------------|--------|---------------------------------------------|
| 17 | 142 | A43 GALLOWAY  | 2-Dec-1985   | 16:36  | Access to workbench                         |
| 18 | 141 | A43 MUNN      | 4-Dec-1985   | 09:08  | s-brrrrr                                    |
| 19 | 140 | A43 MUNN      | 4-Dec-1985   | 09:08  | here it is in case you still can't read it! |
| 20 | 139 | A43 NUNN      | 4-Dec-1985   | 09:08  | Din-din with the Purdy People               |
| 1  | 138 | A43 MUNN      | 4-Dec-1985   | 09:08  | terminal illness                            |
| 2  | 137 | A43 NUNN      | 4-Dec-1985   | 09:08  | bio                                         |
| 3  | 136 | A43 MUNN      | 4-Dec-1985   | 09:08  | concert data                                |
| 4  | 135 | A43 MUNN      | 2-Dec-1985   | 03:58n | file reading                                |
| 5  | 134 | A43 CARR      | 2-Dec-1985   | 09:03  | revised meeting date                        |
| 6  | 131 | A43 SCHEURER  | 2-Dec-1985   | 08:27  | Neeting notice                              |
| 7  | 130 | A43 CARR      | 1-Dec-1985   | 11:090 | November 27th morning meeting agenda        |
| 8  | 128 | A43 GALL RUAY | 28-Nou-1985  | 21-14  | Neetino notice                              |
| 9  | 126 | A43 MUNN      | 27-Nov-1985  | 03:10n | Proofing Ald English                        |
| 10 | 125 | A43 GALLOWAY  | 27-Nov-1985  | 19:27  | Neetino notice                              |
| 11 | 124 | A43 CHAPMAN   | 27-Nov-1985  | 10:54  | name                                        |
| 12 | 123 | A43 NINN      | 27-Nov-1985  | 08-48  | musical event                               |
| 13 | 122 | A43 MINN      | 27-Nov-1985  | 00.40  | CD CD                                       |
| 14 | 120 | A43 SCHEURER  | 27-Nov-1985  | 00.30  | Meeting notice                              |
| 15 | 119 | A43 CARR      | 27-Nov-1985  | 08.07  | November 27th monning meeting agenda        |
| 16 | 114 | ino_unit      | 27 1104 1700 | 00.07  | November 27th morning meeting agenda        |
| 17 | 114 | A43 CARR      | 24-Nou-1985  | 11.00  | November 27th morning meeting agenua        |
| 18 | 111 | A43 SCHEURER  | 26 Nov 1705  | 11.07  | One more time                               |
| 19 | 110 | A43 CARR      | 26-Nov-1985  | 09.40  | Tuesday Nouember 24 morning meeting         |
| 20 | 108 | A43_GALLOWAY  | 24-Nov-1985  | 11:07  | Modem at home                               |
| 1  | 107 | A43 CARR      | 22-Nov-1985  | 08:32  | Friday's morning meeting location           |
| 2  | 105 | A43 CHAPMAN   | 26-Nov-1985  | 08:23  | WorkRENCH accessibility                     |
| 3  | 104 | J10 SHANDS    | 26-Nov-1985  | 08:23  | correction                                  |
| 4  | 103 | J10 SHANDS    | 26-Nov-1985  | 08:23  | VAX USADE.                                  |
| 5  | 102 |               |              |        | headersanole                                |
| 6  | 99  | A43 CARR      | 22-Nov-1     | 985 08 | 109 Friday Naovember 22, 1985 8:57a meeting |
|    |     | -             | agenda       |        |                                             |
| 7  | 98  | A43 SCHEURER  | 21-Nov-1985  | 02:52p | INTERLACE LISTER TEST RESULTS               |
| 8  | 97  | A43 SCHEURER  | 21-Nov-1985  | 12:52p | PHONE TRANSFERS                             |
| 9  | 96  | A43 SCHEURER  | 21-Nov-1985  | 12:420 | CLASS                                       |
| 10 | 94  | A57 HARRISON  | 21-Nov-1985  | 03:11p | Help and CB1                                |
| 11 | 93  | A57 HARRISON  | 21-Nov-1985  | 03:11p | Snotty remarks about the WORKbench          |
| 12 | 92  | A57 HARRISON  | 21-Nov-1985  | 03:11p | Addressing error                            |
| 13 | 91  | A57 HARRISON  | 21-Nov-1985  | 03:11p | Mailing address                             |
| 14 | 90  | A57 HARRISON  | 21-Nov-1985  | 03:11p | Alpha BENCH testing                         |
| 15 | 89  | A43 MUNN      | 20-Nov-1985  | 02:53p | DATSA WAYTOGO                               |
| 16 | 88  | A43 MUNN      | 20-Nov-1985  | 02:52p | DATSA Boy                                   |
| 17 | 87  | _             |              |        | marketing pitch                             |
| 18 | 86  | A43 MUNN      | 20-Nov-1985  | 01:14p | nale cajuins                                |
| 19 | 85  | A43 CARR      | 20-Nov-1985  | 08:54  | meeting location change                     |
| 20 | 83  | _A43_MUNN     | 20-Nov-1985  | 11:06  | name calling                                |
| 1  | 80  | A43_CARR      | 19-Nov-1985  | 03:44p | wed. nov 20, 1985 morning meeting           |
| 2  | 78  | A43_GALLOWAY  | 19-Nov-1985  | 09:14  | DECALC                                      |

| 3  | 76 |               |             |        | tpswb specification                         |
|----|----|---------------|-------------|--------|---------------------------------------------|
| 4  | 75 | A43 GALLOWAY  | 18-Nov-1985 | 08:43  | Atlas program development menu              |
| 5  | 74 | A43 CARR      | 18-Nov-1985 | 08:12  | Monday November 18, 1985 meeting notice     |
| 6  | 73 | -             |             |        | TPSWB Marketing Plan                        |
| 7  | 71 | A43 SCHEURER  | 15-Nov-1985 | 04:23p | RE: engineer's notebook                     |
| 8  | 66 | A43 SCHEURER  | 15-Nov-1985 | 09:51  | Meeting notice                              |
| 9  | 64 | A43 SCHEURER  | 14-Nov-1985 | 11:17  | Missed meeting                              |
| 10 | 63 | A43 CARR      | 14-Nov-1985 | 08:02  | seninar                                     |
| 11 | 62 | A43 MUNN      | 15-Nov-1985 | 09:39  | nail                                        |
| 12 | 61 | A43 MUNN      | 15-Nov-1985 | 09:39  | HITS vsn 7.0 requirements                   |
| 13 | 57 | A43 CARR      | 13-Nov-1985 | 05:13p | ARTIFICIAL INTELLIGENCE SATELLITE SYMPOSIUM |
| 14 | 56 | A43 GALLOWAY  | 13-Nov-1985 | 16:24  | Neeting notice                              |
| 15 | 50 |               |             |        | ARTIFICIAL INTELLIGENCE SATELLITE SYMPOSIUM |
| 16 | 49 | A43 SCHEURER  | 12-Nov-1985 | 02:35p | Meeting notice                              |
| 17 | 48 | A43 SCHEURER  | 12-Nov-1985 | 02:33p | Meeting notice                              |
| 18 | 46 | A43 SCHEURER  | 12-Nov-1985 | 09:07  | Meeting notice                              |
| 19 | 45 | A43 SCHEURER  | 12-Nov-1985 | 09:03  | Meeting notice                              |
| 20 | 44 | _A43_NUNN     | 12-Nov-1985 | 09:50  | s;lightly-off-time                          |
| 1  | 39 |               |             |        | Agenda November 12                          |
| 2  | 35 | A43 MUNN      | 7-Nov-1985  | 03:42p | terminal availability                       |
| 3  | 31 | A43 GALLOWAY  | 7-Nov-1985  | 01:29p | new disk pack                               |
| 4  | 30 | J10 SHANDS    | 7-Nov-1985  | 01:29p | move of dirs                                |
| 5  | 28 | A43 SCHEURER  | 6-Nov-1985  | 05:19p | Session with Wash. U. Advisor               |
| 6  | 25 | A43 GALLOWAY  | 6-Nov-1985  | 14:17  | Decalc                                      |
| 7  | 24 | A43 GALLOWAY  | 6-Nov-1985  | 14:04  | Things for Al H. to show/do for us.         |
| 8  | 23 | A43_GALLOWAY  | 6-Nov-1985  | 13:30  | Allini menus                                |
| 9  | 22 | A43 GALLOWAY  | 6-Nov-1985  | 13:15  | Calendar Management                         |
| 10 | 20 | A43 GALLOWAY  | 6-Nov-1985  | 12:48  | RE: mail mistake                            |
| 11 | 19 | A43 MUNN      | 6-Nov-1985  | 12:48p | SW usefulness                               |
| 12 | 15 | A43 GALLOWAY  | 6-Nov-1985  | 10:50  | To Do VS. Action Item                       |
| 13 | 14 |               |             |        | Appropriation Request                       |
| 14 | 11 | A43_CARR      | 6-Nov-1985  | 08:44  | Meeting Agenda                              |
| 15 | 9  |               |             |        | Technical Strategy Meeting of Wendnesday    |
|    |    |               | 6,1985      | 2      |                                             |
| 16 | 8  | _A43_SCHEURER | 5-Nov-1985  | 03:22p | LOCATING YOU                                |
| 17 | 7  | A43_MUNN      | 5-Nov-1985  | 02:04p | TPSWB Files                                 |
| 18 | 3  | SCHEURER      | 5-Nov-1985  | 11:15  | Meeting notice                              |
| 19 | 2  | SCHEURER      | 5-Nov-1985  | 11:13  | Meeting notice                              |
| 20 | 1  | SCHEURER      | 5-Nov-1985  | 11:06  | Meeting notice                              |
|    |    |               |             |        |                                             |

### Mail Box Sent

| 1  | 624 | Jeff Galloway        | 14-Mar-1986           | 02:17  | thesis                                       |
|----|-----|----------------------|-----------------------|--------|----------------------------------------------|
| 2  | 620 | Kin Harrison         | 12-Mar-1986           | 03:56p | Neeting notice                               |
| 3  | 617 | Bob Scheurer         | 10-Mar-1986           | 08:30p | Agenda for phone conversation                |
| 4  | 615 | Kim Harrison         | 10-Mar-1986           | 07:27p | Meeting notice                               |
| 5  | 614 | Looey Munn           | 7-Mar-1986            | 02:55p | Sign-up                                      |
| 6  | 613 | Bob Scheurer         | 7-Mar-1986            | 12:40p | AR parts list                                |
| 7  | 610 | Kim Harrison         | 7-Nar-1986            | 09:02  | Meeting notice                               |
| 8  | 603 | A43 MUNN             | 3-Mar-1986            | 11:05  | RE: TPSWB functions                          |
| 9  | 598 | Jeff Galloway        | 28-Feb-1986           | 11:13  | JRAD brown bag lunch                         |
| 10 | 597 | Jeff Galloway        | 28-Feb-1986           | 10:53  | Encrypted login message translation          |
| 11 | 595 | Bob Scheurer         | 28-Feb-1986           | 08:34  | AR thing                                     |
| 12 | 594 | B. LEISE             | 28-Feb-1986           | 08:17  | Disk usage control                           |
| 13 | 593 | Bob Scheurer         | 28-Feb-1986           | 08:09  | Disk usage                                   |
| 14 | 591 | Kent Chapman         | 27-Feb-1986           | 04:28p | AR Thing                                     |
| 15 | 589 | Bob Scheurer         | 27-Feb-1986           | 02:56p | Phase 11 AR equipment list                   |
| 16 | 588 | MANAGER              | 27-Feb-1986           | 08:37  | RE: Problems after SCC directory change      |
| 17 | 586 | Jeff Galloway        | 26-Feb-1986           | 05:48p | User news                                    |
| 18 | 582 | Jeff Galloway        | 25-Feb-1986           | 09:54  | Nike Holmes A                                |
| 19 | 580 | Jeff Galloway        | 24-Feb-1986           | 05:15p | G15 question and answer period               |
| 20 | 571 | Jeff Galloway        | 24-Feb-1986           | 07:53  | TYX demo                                     |
| 1  | 570 | A43_CHAPMAN          | 24-Feb-1986           | 07:49  | RE: Neeting notice                           |
| 2  | 569 | _A43_MUNN            | 24-Feb-1986           | 07:44  | RE: hunting season                           |
| 3  | 568 | A43_SCHEURER         | 23-Feb-1986           | 10:39  | RE: AutoTestCon                              |
| 4  | 563 | Kent Chapman         | 23-Feb-1986           | 10:23  | TYX demonstration 9a February 24, 1986       |
| 5  | 558 | Kent Chapman         | 21-Feb-1              | 986 11 | :30 Test Program Set WorkBench - TYX status  |
|    |     |                      | review                |        |                                              |
| 6  | 557 | Kent Chapman         | 21-Feb-1986           | 10:29  | Test Program Set WorkBench Background Survey |
| 7  | 554 | A43_GALLOWAY         | 21-Feb-1986           | 08:12  | RE: Meeting notice                           |
| 8  | 551 | Tim Carr             | 20-Feb-1986           | 08:59p | this is a test                               |
| 9  | 550 | Jeff Galloway        | 20-Feb-1986           | 08:54p | Meeting notice                               |
| 10 | 549 | Kent Chapman         | 19-Feb-1986           | 04:22p | ALL-IN-1 software extendsions                |
| 11 | 545 | Kent Chapman         | 18-Feb-1986           | 09:56  | General status of MATE work                  |
| 12 | 544 | Jeff Galloway        | 16-Feb-1986           | 11:35p | Monday Activities                            |
| 13 | 542 | Kim Harrison         | 14-Feb-1986<br>impact | 01:37p | SCC to change disk accounting system - TPSWB |
| 14 | 541 | A43 SPENCER          | 14-Feb-1986           | 11:45  | RE: joe security                             |
| 15 | 537 | Sid Spencer          | 12-Feb-1986           | 08:39p | System Security                              |
| 16 | 535 | Kin Harrison         | 11-Feb-1986           | 09:540 | Autotestcon 86 - Call for Papers             |
| 17 | 534 | Kin Harrison         | 11-Feb-1986           | 08:24  | Autotestcon 86 - Call for Papers "Advancing  |
|    |     |                      | Test Concer           | ts"    | ······································       |
| 18 | 531 | Bob Scheurer         | 10-Feb-1986           | 11:510 | February 10, 1986                            |
| 19 | 524 | TPSWB System Manager | 7-Feb-1986            | 02:13p | Neeting notice                               |
| 20 | 521 | _A43_GALLOWAY        | 7-Feb-1986            | 11:43  | RE: OUTSIDE STUFF                            |
| 1  | 520 | A38_HAYDEN           | 7-Feb-1986            | 11:30  | RE: ETHERNET WORK AROUND                     |
| 2  | 511 | TPSWB SYSTEM MANAGER | 6-Feb-1986            | 11:10  | Meeting notice                               |
|    |     |                      |                       |        |                                              |

Page 73

| 3  | 506 | TPSWB System Manager | 5-Feb-1986 02:55p Meeting notice                                             |
|----|-----|----------------------|------------------------------------------------------------------------------|
| 4  | 501 | A43_CHAPMAN          | 5-Feb-1986 10:58 RE: Meeting notice                                          |
| 5  | 499 | A43_NUNN             | 5-Feb-1986 10:32 RE: Training Seminar Handout - First TPSWB                  |
|    | 405 | K                    | User Conterence                                                              |
| 2  | 473 | Kent Lhapman         | 4-Feb-1986 10:45p Review Minutes "better late than never"                    |
| '  | 493 | KICHARD BURKHART     | 4-Feb-1986 10:10p TPSWB overview to be included in TPS                       |
| 8  | 497 | LODAY NUAR           | A Fab 100/ 05:222 Tableta Casian Undert First TOOLD U                        |
| 0  | 407 | LUCEY HUNN           | 4-reb-1786 03:230 Iraining Seminar Handout - First IPSWB User<br>Conference  |
| 9  | 486 | Kent Chanman         | 4-Feb-1986 03:38n Nesting notice                                             |
| 10 | 485 | Jeff Galloway        | 4-Feb-1986 03:280 Neeting notice                                             |
| 11 | 484 | Roh Scheurer         | 4-Feb-1984 02:55n The onane uine is a isomin                                 |
| 12 | 481 | A43 MINN             | 4-Feb-1004 12:220 DE: Conted A- Con of                                       |
| 13 | 477 |                      | 2-Eab-1004 02:000 Just a pamindan of the meeting                             |
| 14 | 476 | A43 SCHEIDER         | 2-Ent-1004 2:04 Dand Dana int dan CCC CONCDIDACY                             |
| 15 | 472 | A43 SCHEINER         | 2-Eab-100/ 12:520 Dand Dessint (an Mustanian Han                             |
| 14 | 445 | Kim Kannison         | 2-Feb-100/ 12:330 Read Receipt for hysterious user                           |
| 17 | 442 |                      | 3 Teb 100/ 02:50 Methork Security 15500                                      |
| 10 | 455 | AA2 MINN             | 2-red-1700 U2:30p meeting notice                                             |
| 10 | 440 | TONID Test Assess    | 30-Jan-1986 US:00 KE: mail torm of guenne comp 1/30/86                       |
| 17 | 447 | IFOND TEST ACCOUNT   | 27-Jan-1986 11:22p using 195WB                                               |
| 20 | 99/ | _JIU_SHANDS          | 27-Jan-1986 01:08p RE: A43_ALLIN1                                            |
| 1  | 445 | A43_SCHEURER         | 27-Jan-1986 01:04p RE: DEC product announcement                              |
| 2  | 442 | A43_GALLOWAY         | 27-Jan-1986 11:07 RE: DEC product announcement                               |
| 3  | 439 | Kim Harrison         | 27-Jan-1986 10:48 Meeting notice                                             |
| 4  | 438 | Bob Scheurer         | 26-Jan-1986 02:06p DEC product announcement                                  |
| 5  | 434 | D. HOPMANN           | 24-Jan-1986 01:54p Meeting notice                                            |
| 6  | 433 | Kent Chapman         | 24-Jan-1986 01:39p Datsa Vax Situation                                       |
| 7  | 432 | Kent Chapman         | 24-Jan-1986 01:20p Note to G. Bremer concerning "the hacker"                 |
| 8  | 431 | Kin Karrison         | 24-Jan-1986 01:12p Ogden Quote detailing SCC charges incurred                |
|    |     |                      | using TPSWB                                                                  |
| 9  | 429 | A43_ALLIN1           | 24-Jan-1986 10:10 Vax concerns                                               |
| 10 | 422 | Kent Chapman         | 22-Jan-1986 11:09p Neeting notice                                            |
| 11 | 418 | Jeff Galloway        | 22-Jan-1986 08:22p I'm so pisss                                              |
| 12 | 417 | A43_NUNN             | 22-Jan-1986 05:38p RE: concerts                                              |
| 13 | 415 | Kim Harrison         | 22-Jan-1986 03:43p Meeting notice                                            |
| 14 | 403 | Kin Harrison         | 21-Jan-1986 09:32p Meeting notice                                            |
| 15 | 402 | Kim Harrison         | 21-Jan-1986 09:28p Meeting notice                                            |
| 16 | 401 | A43 SCHEURER         | 21-Jan-1986 09:26n RE: Neeting notice                                        |
| 17 | 398 | Kim Harrison         | 21-Jan-1986 09:20n Neeting notice                                            |
| 18 | 397 | Kin Harrison         | 21-Jan-1986 A9:18n Neeting notice                                            |
| 19 | 396 | Kim Harrison         | 21-Jan-1986 09:170 Nesting notice                                            |
| 20 | 390 | A43_CHAPMAN          | 20-Jan-1986 04:43p RE: Interrupt menu                                        |
|    |     |                      |                                                                              |
| 1  | 388 | A43_CHAPMAN          | 20-Jan-1986 03:32p RE: Interrupt menu                                        |
| 2  | 381 | Jeff Galloway        | 17-Jan-1986 10:46 January 17th Beta Test Release                             |
| 3  | 380 | A43_SCHEURER         | 17-Jan-1986 10:29 RE: Thursday Nite Progress                                 |
| 4  | 378 | Sid Spencer          | 17-Jan-1986 10:24 Summary of Vax Charges for the months of<br>Oct. & Nov. 85 |
| 5  | 375 | A43 CHAPMAN          | 14-Jan-1984 01:05n RF: Meeting notice                                        |
| 6  | 371 | Kent Chanman         | 15-Jan-1984 NA+27n DATCA LAY and the TDC HankBanch                           |
|    |     |                      | The same and state which and the fro wurkbench                               |

| 7  | 370 | B. LEISE       | 15-Jan-1986 03:01p Meeting notice                                      |
|----|-----|----------------|------------------------------------------------------------------------|
| 8  | 365 | Kim Harrison   | 14-Jan-1986 10:03p Meeting notice                                      |
| 9  | 364 | A43 SCHEURER   | 14-Jan-1986 03:57p RE: Meeting notice                                  |
| 10 | 360 | B. LEISE       | 14-Jan-1986 02:42p Meeting notice                                      |
| 11 | 359 | Kent Chapman   | 14-Jan-1986 01:07p Meeting notice                                      |
| 12 | 358 | A43 SCHEURER   | 14-Jan-1986 09:13 RE: Resumption of Classes                            |
| 13 | 354 | Jeff Galloway  | 12-Jan-1986 01:38p return of the time away from engineering            |
| 14 | 353 | Jeff Galloway  | 12-Jan-1986 01:27p time away from engineering                          |
| 15 | 350 | A43 NUNN       | 10-Jan-1986 03:59p RE: P/N                                             |
| 16 | 349 | Looey Nunn     | 10-Jan-1986 03:530 User Gripes                                         |
| 17 | 343 | Bob Scheurer   | 9-Jan-1986 05:25p Interview of B. Leise                                |
| 18 | 338 | RICH JENKINS   | 8-Jan-1986 05:45p Charlie Macrenna conversation follow-up              |
|    |     |                | (C/Vax NAC Version)                                                    |
| 19 | 337 | A43 SCHEURER   | 8-Jan-1986 05:24p RE: Speedy Emerson Paper Mail                        |
| 20 | 333 | Sid Spencer    | 8-Jan-1986 01:42p Concerns with TPSWB use. "Unhappy User"              |
|    |     |                | a see along an of another with the set of the set                      |
| 1  | 327 | Bob Scheurer   | 7-Jan-1986 01:29p Tuesday January 7th Agenda                           |
| 2  | 326 | Bob Scheurer   | 7-Jan-1986 11:39 Telephone interrupt                                   |
| 3  | 324 | Jeff Galloway  | 7-Jan-1986 10:36 lunch cancelation, dinner planned                     |
| 4  | 323 | Jeff Galloway  | 6-Jan-1986 08:46p schedule impact                                      |
| 5  | 322 | Kim Harrison   | 6-Jan-1986 08:44p Impact of A and B shift operations on Poject         |
|    |     |                | Engineer                                                               |
| 6  | 321 | Sid Spencer    | 6-Jan-1986 08:17n Workbench reinitialization                           |
| 7  | 318 | Bob Scheucer   | 6-Jan-1986 02:54n Monday Meeting schedule change                       |
| 8  | 317 | Bob Scheurer   | 6-Jan-1986 02:08n January 6th Agenda                                   |
| 9  | 309 | Bob Scheurer   | 6-Jan-1986 09:43 a43 allin1                                            |
| 10 | 308 | Bob Scheurer   | 6-Jan-1986 08:31 New Schedule impact                                   |
| 11 | 303 | Kim Harrison   | 3-Jan-1986 N2:NBn Meeting notice                                       |
| 12 | 302 | Kin Harrison   | 3-Jan-1986 02:07n Meeting notice                                       |
| 13 | 301 | Kim Harrison   | 3-Jan-1986 02:06n Meeting notice                                       |
| 14 | 300 | Kin Harrison   | 3-Jan-1986 02:01n Meeting notice                                       |
| 15 | 299 | Kim Harrison   | 3-Jan-1986 01:46n Meeting notice                                       |
| 16 | 298 | Kin Harrison   | 3-Jan-1986 01:45n Neeting notice                                       |
| 17 | 297 | Kim Harrison   | 3-Jan-1986 01:44n Neeting notice                                       |
| 18 | 294 | Kin Harrison   | 3-Jan-1986 01:43n Meeting notice                                       |
| 19 | 295 | Kim Harrison   | 3-Jan-1986 01:din Neeting notice                                       |
| 20 | 292 | Roh Scheurer   | 3-Jan-1986 11:53 R Shift concerns                                      |
| 20 | 212 | DOD Schedrei   | 5 ban 1700 11:05 D SHITT COLLETINS                                     |
| 1  | 288 | Roh Scheurer   | 3-Jan-1986 08:31 Jan 3 1986 morning meeting Agenda                     |
| 2  | 287 | Kin Harrison   | 3-Jan-1986 07:39 Nesting notice                                        |
| 3  | 284 | Jeff Galloway  | 2-Jan-1986 N4:N9n errors during ATLAS Compile of matri                 |
| 4  | 274 | Roh Scheurer   | 26-Der-1985 D3:58n Time away from the office - Uaration                |
| 5  | 272 | Kent Chanman   | 26-Dec-1985 01:1de Good Work News - For you files and L. Munn          |
|    | 212 | Kent Ghapman   | Poulou                                                                 |
| Å  | 271 | A43 NINN       | 26-Dec-1985 Al:07n RF: MacIntosh Notes of 12/26/85                     |
| 7  | 247 | I. ALNODOWAR - | CLAINS/TRA 24-Der-1985 09:42 Amoro 466608173 Order 1421101 Phonesitter |
| •  | 201 |                | n920 419 Final Ren                                                     |
| 8  | 244 | A43 NINN       | 23-Der-1985 03:37n RF: Summary Minutes 12/19/85 Peniew                 |
| 0  | 242 | A43 NINN       | 23-Der-1985 02:52n RE: Lenothy Ninutes                                 |
| 10 | 252 | Rob Scheupen   | 19-Dec-1985 10:10 TPS Workboach demo                                   |
| 11 | 240 | A43 MINN       | 18-Dec-1985 N1:1do RE: Sitting it out for a SPELL                      |
|    | 210 |                | AU DEC AVON VALATE REA OTICITING IL DUL TOT & DIELL                    |

| 12 | 240 J | leff Galloway  | 18-Dec-1985 10:00 J10_shands schedule                                                      |
|----|-------|----------------|--------------------------------------------------------------------------------------------|
| 13 | 238 B | Bob Scheurer   | 18-Dec-1985 DO:O2 Morning meeting                                                          |
| 14 | 233 B | Bob Scheurer   | 17-Dec-1985 03:33p Al. H visit tommarrow                                                   |
| 15 | 229 B | Bob Scheurer   | 17-Dec-1985 02:11p TXY                                                                     |
| 16 | 228 K | (im Harrison   | 17-Dec-1985 02:07p SCC Accounting System                                                   |
| 17 | 222 B | Bob Scheurer   | 16-Dec-1985 03:05p NAC                                                                     |
| 18 | 217 N | ANAGER         | 16-Dec-1985 08:35 RE: New Editor                                                           |
| 19 | 215   | leff Galloway  | 16-Dec-1985 08:17 WPS+                                                                     |
| 20 | 206 B | Bob Scheurer   | 14-Dec-1985 10:50 Saturdays Agenda December 14, 1985                                       |
| 1  | 205   | Bob Scheurer   | 13-Dec-1985 09:58 Nodification to TPS WorkBench estimate of                                |
|    |       |                | December 6, 1985                                                                           |
| 2  | 198 E | Bob Scheurer   | 12-Dec-1985 08:50 TYX Shipment                                                             |
| 3  | 197 E | Bob Scheurer   | 12-Dec-1985 07:29 Thursday Morning Meeting                                                 |
| 4  | 193 E | Bob Scheurer   | 11-Dec-1985 07:52 Wednes. Morning's Meeting Agenda                                         |
| 5  | 179 E | Bob Scheurer   | 10-Dec-1985 08:37 Tuesday Morning's Neeting Agenda                                         |
| 6  | 175 N | <b>WANAGER</b> | 9-Dec-1985 04:18p RE: VT220 owners                                                         |
| 7  | 173   | Jeff Galloway  | 9-Dec-1985 04:15p I'm So P                                                                 |
| 8  | 172   | ANAGER         | 9-Dec-1985 04:12p RE: VT220 owners                                                         |
| 9  | 168   | A43 MUNN       | 9-Dec-1985 01:12p RE: phinques                                                             |
| 10 | 167   | A43 MUNN       | 9-Dec-1985 01:08p RE: N-N                                                                  |
| 11 | 158   | Bob Scheurer   | 9-Dec-1985 08:40 Monday Morning Neeting                                                    |
| 12 | 156   | R. LEISE       | A-Dec-1985 02:41n TPSuBench estimate December 6, 1985                                      |
| 13 | 149 1 | Roh Scheurer   | A-Dec-1985 09:51 apenda for friday december 6, 1985 meeting                                |
|    |       | bob believier  | at my deck!                                                                                |
| 14 | 147 4 | AA3 SCHEURER   | 5-Dec-1985 11:14 DE: Proper Nail Service                                                   |
| 15 | 133 1 | Roh Scheurer   | 2-Dec-1985 09:03 revised meeting date                                                      |
| 16 | 129   | Rob Scheurer   | 1-Dec-1985 11:09n November 27th morning meeting anenda                                     |
| 17 | 127 1 | Vin Harricon   | 27-Nou-1985 04:37n Nesting notice                                                          |
| 18 | 121   |                | 27-Nov-1985 8:393 Read Persint for November 27th morning                                   |
| 10 | 121   | HIJ_UNK        | meeting anenda                                                                             |
| 10 | 110   | Rob Scheurer   | 27-Nou-1985 08:07 Nouember 27th morning meeting agenda                                     |
| 20 | 117 1 | Kim Hannicon   | 24-Nov-1985 02:220 Meeting notice                                                          |
| 20 |       |                | 20 NOV 1703 02122p neeting notice                                                          |
| 1  | 113   | Bob Scheurer   | 26-Nov-1985 11:09 vax conservation                                                         |
| 2  | 112 6 | A43_SCHEURER   | 26-Nov-1985 9:35a Read Receipt for One more time                                           |
| 3  | 109 1 | Bob Scheurer   | 26-Nov-1985 08:40 Tuesday November 26 morning meeting                                      |
| 4  | 101   | Bob Scheurer   | 22-Nov-1985 08:32 Friday's morning meeting location                                        |
| 5  | 100   | A43_CARR       | 22-Nov-1985 8:19a Read Receipt for Friday Naovember 22, 1985                               |
| 6  | 95    | Bob Scheurer   | 22-Nov-1985 08:09 Friday Naovember 22, 1985 8:57a meeting                                  |
|    |       |                | agenda                                                                                     |
| 7  | 84    | A43 MUNN       | 20-Nov-1985 11:16 RE: name calling                                                         |
| 8  | 82    | Bob Scheurer   | 20-Nov-1985 08:54 meeting location change                                                  |
| 9  | 81    | A43_CARR       | 19-Nov-1985 3:44p Read Receipt for wed. nov 20, 1985 morning                               |
| 10 | 79    | Rob Scheurer   | 19-Nov-1985 03:44n wed, nov 20, 1985 morning meeting                                       |
| 11 | 72    | Roh Scheurer   | 18-Nov-1985 08:12 Nonday November 18, 1985 meeting notice                                  |
| 12 | 70    | Jeff Gallmay   | 15-Nov-1985 01:49n engineer's notebook                                                     |
| 12 | 47    | Jaff Gallman   | 15-Nou-1985 10:48 canceled MAC section                                                     |
| 14 | 45    |                | 15 Nov 1705 10170 Cancered Mid Session<br>15 Nov-1005 0.405 Dasd Dasaint for Missed motion |
| 17 | 0.0   | HIJ JUNEN      | 10 HUV 1703 71476 READ RELEIDE TOP DISSED MEETIND                                          |

| 15 | 60 | Jeff Galloway  | 14-Nov-1985 08:02 seminar                                      |
|----|----|----------------|----------------------------------------------------------------|
| 16 | 59 | A43 CARR       | 13-Nov-1985 5:30p Read Receipt for ARTIFICIAL INTELLIGENCE     |
|    |    | 27.5 v         | SATELLITE SYMPOSIUM                                            |
| 17 | 58 | A43 GALLOWAY   | 13-Nov-1985 05:25p Meeting notice                              |
| 18 | 51 | Jeff Galloway  | 13-Nov-1985 05:13p ARTIFICIAL INTELLIGENCE SATELLITE SYMPOSIUM |
| 19 | 43 | Kim Harrison   | 11-Nov-1985 06:28p Meeting notice                              |
| 20 | 42 | Kim Harrison   | 11-Nov-1985 06:22p Meeting notice                              |
| 1  | 41 | Bob Scheurer   | 11-Nov-1985 06:15p Neeting notice                              |
| 2  | 40 | Jeff Galloway  | 11-Nov-1985 06:01p Agenda November 12                          |
| 3  | 37 | Bob Scheurer   | 9-Nov-1985 03:11p Neeting notice                               |
| 4  | 36 | Bob Scheurer   | 8-Nov-1985 03:06p Meeting notice                               |
| 5  | 34 | Jeff Galloway  | 7-Nov-1985 03:32p wps                                          |
| 6  | 29 | A43 SCHEURER   | 6-Nov-1985 05:25p RE: Session with Wash. U. Advisor            |
| 7  | 27 | A43 GALLOWAY   | 6-Nov-1985 4:20p Read Receipt for Things for Al H. to show/do  |
|    |    | 1. <del></del> | for us.                                                        |
| 8  | 26 | A43 GALLOWAY   | 6-Nov-1985 4:19p Read Receipt for Allin1 menus                 |
| 9  | 18 | Jeff Galloway  | 6-Nov-1985 12:34p mail mistake                                 |
| 10 | 17 | Jeff Galloway  | 6-Nov-1985 11:01 L. Munn                                       |
| 11 | 16 | A43_GALLOWAY   | 6-Nov-1985 10:54a Read Receipt for To Do VS. Action Item       |
| 12 | 12 | Bob Scheurer   | 6-Nov-1985 08:52 agenda                                        |
| 13 | 10 | Bob Scheurer   | 6-Nov-1985 08:44 Meeting Agenda                                |
| 14 | 6  | SCHEURER       | 5-Nov-1985 02:02p Meeting notice                               |
| 15 | 5  | SCHEURER       | 5-Nov-1985 02:00p Meeting notice                               |
| 16 | 4  | SCHEURER       | 5-Nov-1985 01:58p Meeting notice                               |

Appendix "B" Compiler Study

FINISH \$ END, IF \$ END, IF \$ 78 84 90 C \$ C \$ E638000 REST OF WAVEFORM ANALYZER TESTS OUTPUT, SYSTEM STATUS WAVEFORM ANALYZER TEST CONTINUED 05 15 VERIFY 20 END, IF \$ IF, NOGO, THEN \$ DUTPUT, ('FAULTY-UNIT VOLTS', C'638000', 'LL', 'UL', 'MEASUREMENT', C'1A3-A5') \$ IF, 'PRINTER', THEN \$ DUTPUT, USING '/dev/cp', ('PR-FAIL-V', C'638000', 'LL', 'UL', 'MEASUREMENT', C'1A3-A5') \$ 30 35 40 45 50 END, IF \$ INPUT, GO-NOGO IF, NOGO, THEN FINISH \$ END, IF \$ END, IF \$ 5665050 END, IF \$ SETUP, AC SIGNAL USING 'WT178-AC1-1', FREG 10000 HZ, TEST-EQUIP-IMP'50 UHN, VULTAGE-PP 1.5 V, CNX HI A13-1\$ VERIFY, (VOLTAGE-P INTO 'MEASUREMENT'), AC SIGNAL USING 'T7612-VP2-AC', UL 0.85 V LL 0.65 V, VOLTAGE-P MAX 0.75 V, FREG 100000 HZ, TEST-EQUIP-IMP 10000000 OHM, CNX HI A9-1\$ IF, 'PRINTER', IHEN \$ OUTPUT, USING '/dev/cp', ('PRINT-RESULTS', C'639000', 'UL') FUN IE \$ C \$ 06 12 END, IF \$ IF, NOGO, THEN \$ OUTPUT, ('FAULTY-UNII VOLI5', C'639000', 'LL', 'UL', 'UL', 'UL', 'UL', 'IA3-A5') \$ IF, 'PRINTER', THEN \$ OUTPUT, USING '/dev/cp', ('PR-FAIL-V', C'639000', 'LL', 'UL', 'MEASUREMENT', C'1A3-A5') \$ 243036 42 END,1F \$ INPUT, GO-NAGU IF, NAGU, THEN FINISH \$ END, IF \$ END, 1F \$ 54 666284 END, 1F • SETUP, AC SIGNAL USING 'WT178-AC1-1', FREQ 1000000 HZ, TEST-EQUIP-IMP 50 0HM, VOLTAGE-PP 1.0 V, CNX HI A13-1\* VERIFY, (VDLTAGE-P INTO 'MEASUREMENT'), AC SIGNAL USING 'T7612-VP2-AC', UL 0.60 V LL 0.40 V, VULTAGE-P MAX 0.50 V, FREQ 100000 HZ, TEST-EQUIP-IMP 10000000 0HM, CNX HI A9-1\* IF, 'PRINTER', THEN \* OUTPUT, USING '/dev/cp', ('PRINT-RESULTS', C'640000', 'UL' END, IF \* 640000 C 04 08 12 END, IF \$ 16

C

### MATE ATLAS COMPILER (MAC)

STATION SELF-TEST\*

SUMMARY FOR

### 2

| / M | τN  | . 0 | <b>F</b> ( | <b>^</b> |
|-----|-----|-----|------------|----------|
| 111 | 111 | • • |            | • )      |

| FILE   | ATLAS (COMPILE | ) FLOW    | ALLOC     | TOTAL      |
|--------|----------------|-----------|-----------|------------|
| NAME   | TIME           | TIME      | TIME      | TIME       |
| matla  | 24:14          | 6:21      | 8:24      | 38:59      |
| matlb  | 23:12          | 6:36      | 9:49      | 39:37      |
| mat2b  | 20:59          | 6:43      | 12:27     | 40:09      |
| mat3a  | 22:24          | 8:24      | 13:54     | 44:42      |
| mat3b  | 20:02          | 7:59      | 19:49     | 47:50      |
| mat3c  | 10:47          | 3:59      | 9:31      | 24:17      |
| mat3d  | 21:30          | 6:58      | 10:08     | 38:36      |
| mat4a  | 17:09          | 5:40      | 7:42      | 30:31      |
| mat4b  | 7:50           | 3:01      | 4:03      | 14:54      |
| mat4c  | 3:22           | 1:41      | 2:58      | 8:01       |
| mat5b  | 13:15          | 6:04      | 4:45      | 24:04      |
| mat5c  | 34:48          | 12:12     | 8:45      | 55:45      |
| mat5d  | 27:33          | 11:11     | 7:19      | 46:03      |
| mat5e  | 18:36          | 7:48      | 6:04      | 32:28      |
| mat5f  | 19:51          | 8:06      | 6:34      | 34:31      |
| mat5g  | 14:20          | 7:46      | 13:59     | 36:05      |
| mat5h  | 12:33          | 6:41      | 12:39     | 31:53      |
| mat5i  | 12:46          | 6:54      | 13:17     | 32:57      |
| mat5j  | 12:30          | 6:40      | 12:38     | 31:48      |
| mat6a  | 4:55           | 2:00      | 1:21      | 8:16       |
| mat6b  | 12:54          | 3:55      | 4:36      | 21:25      |
| matdwg | 50:33          | 18:32     | 35:21     | 104:26     |
| matrf  | 2:54           | 1:09      | 1:26      | 5:29       |
|        | 408:57         | 156:20    | 227:29    | 792:46     |
|        | (6:48:57)      | (2:36:20) | (3:47:29) | (13:12:46) |

### BITA selftwl (switch processing) - 4:59

Total Required Operation Time - 797:45 (13:17:45)

\* Processing performed on PDS Serial No. 008 MAC VERSION 3.0.0 - BSDB/BITA MAC VERSION 3.0.1 - AC MAC VERSION 3.0.0 - FLOW MAC VERSION 3.0.1 - ALLOC IEEE-716-1982

### WORKBENCH MATE ATLAS COMPILER SUMMARY FOR STATION SELF-TEST \*\*

| FILE   | ATLAS(COMPILE) | FLOW      | ALLOC     | TOTAL     |
|--------|----------------|-----------|-----------|-----------|
| NAME   | TIME 1         | TIME 2    | TIME 3    | TIME 4    |
| matla  | 4:27           | 1:10      | 1:32      | 7:09      |
| matlb  | 4:20           | 1:10      | 1:47      | 7:17      |
| mat2b  | 3:52           | 1:05      | 2:16      | 7:13      |
| mat3a  | 4:21           | 1:20      | 2:32      | 8:13      |
| mat3b  | 3:33           | 1:01      | 3:36      | 8:10      |
| mat3c  | 2:08           | 0:33      | 1:44      | 4:25      |
| mat3d  | 4:06           | 1:08      | 1:51      | 7:05      |
| mat4a  | 3:31           | 0:54      | 1:24      | 5:49      |
| mat4b  | 1:46           | 0:33      | 0:44      | 3:03      |
| mat4c  | 0:54           | 0:17      | 0:32      | 1:43      |
| mat5b  | 2:50           | 1:10      | 0:52      | 4:52      |
| mat5c  | 5:51           | 2:34      | 1:35      | 10:00     |
| mat5d  | 5:14           | 2:19      | 1:20      | 8:53      |
| mat5e  | 3:45           | 1:35      | 1:06      | 6:26      |
| mat5f  | 3:56           | 1:38      | 1:12      | 6:46      |
| mat5g  | 3:03           | 1:24 .    | 2:33      | 7:00      |
| mat5h  | 2:43           | 1:09      | 2:18      | 6:10      |
| mat5i  | 2:46           | 1:12      | 2:25      | 6:23      |
| mat5j  | 2:42           | 1:09      | 2:18      | 6:09      |
| mat6a  | 1:19           | 0:30      | 0:15      | 2:04      |
| mat6b  | 2:43           | 0:42      | 0:50      | 4:15      |
| matdwg | 7:12           | 2:18      | 6:26      | 15:56     |
| matrf  | 0:48           | 0:18      | 0:16      | 1:22      |
|        | 77:50          | 27:09     | 41:24     | 146:23    |
|        | (1:17:50)      | (0:27:09) | (0:41:24) | (2:26:23) |

SWITCH DATABASE PROCESSING TIME: 1:00 (EST.)

TOTAL REQUIRED OPERATION TIME: 147:23 (2:27:23)

PROCESSING PERFORMED ON VAX 11/780 USING PERSONAL ATLAS WORKSTATION (PAWS) VERSION

### PROCESSING DATES:

| ATLAS (COMPI | (LE): | THRUSDAY, SEPTEMBER 5, 1985   | 2:00 | AM |
|--------------|-------|-------------------------------|------|----|
| FLOW         | :     | FRIDAY, SEPTEMBER 6, 1985     | 2:00 | AM |
| ALLOC        |       | TO BE COMPLETED AT LATER DATE |      |    |

REPORT DATE: SEPTEMBER 6, 1985

NOTES: 1) ATLAS (COMPILE) ERROR WITH: MAT3B MAT3C MAT3D MAT4A (SYNTAX VARIATIONS IN TYX COMPILER) 2) FLOW ERROR WITH: MATDWG (SOURCE FILE SIZE PROBLEM)

DIVISION -

- 3) ALLOCATE NOT POSSIBLE AT TIME OF REPORT DUE TO NEW SWITCH DATABASE REQUIREMENT (TIMES SHOWN ARE INTERPOLATED)
- 4) TOTAL TIME WILL VARY WITH USER LOAD. AT TIME OF PROCESSING, NO OTHER USERS WERE BELIEVED TO BE ON THE VAX.

Page 82

### STATION SELF-TEST SOURCE CODE

### COMPILATION RATE COMPARISON

| NAME   | NUMBER<br>OF LINES | MATE ATLAS COMPILE<br>TOTAL TIME (MIN:SEC) | R LINES<br>RATE(MIN.) | TPS WORKBENCH COMPI<br>TOTAL TIME (MIN: SEC) | LER LINES<br>RATE(MIN. |
|--------|--------------------|--------------------------------------------|-----------------------|----------------------------------------------|------------------------|
| matla  | 1044               | 38:59                                      | 26.8                  | 7:09                                         | 146.0                  |
| matlb  | 995                | 39:37                                      | 25.1                  | 7:17                                         | 136.6                  |
| mat2b  | 950                | 40:09                                      | 23.7                  | 7:13                                         | 131.6                  |
| mat3a  | 1089               | 44:42                                      | 24.2                  | 8:13                                         | 132.5                  |
| mat3b  | 1047               | 47:50                                      | 21.9.                 | 8:10                                         | 128.2                  |
| mat3c  | 680                | 24:17                                      | 28.0                  | 4:25                                         | 154.0                  |
| mat3d  | 1358               | 38:36                                      | 35.2                  | 7:05                                         | 191.7                  |
| mat4a  | 1149               | 30:31                                      | 37.7                  | 5:49                                         | 197.5                  |
| mat4b  | 557                | 14:54                                      | 37.4                  | 3:03                                         | 182.6                  |
| mat4c  | 367                | 8:01                                       | 45.8                  | 1:43                                         | 213.8                  |
| mat5b  | 797                | 24:04                                      | 33.1                  | 4:52                                         | 163.8                  |
| nat5c  | 1540               | 55:45                                      | 27.6                  | 10:00                                        | 154.0                  |
| nat5d  | 1208               | 46:03                                      | 26.2                  | 8:53                                         | 136.0                  |
| nat5e  | 901                | 32:28                                      | 32.4                  | 6:46                                         | 140.1                  |
| nat5f  | 1117               | 34:31                                      | 32.4                  | 6:46                                         | 165.1                  |
| nat5g  | 911                | 36:05                                      | 25.3                  | 7:00                                         | 130.1                  |
| nat5h  | 692                | 31:53                                      | 21.7                  | 6:10                                         | 112.2                  |
| nat5i  | 699                | 32:57                                      | 21.2                  | 6:23                                         | 109.5                  |
| nat5i  | 693                | 31:48                                      | 21.8                  | 6:09                                         | 112.7                  |
| na t6a | 415                | 8:16                                       | 50.2                  | 2:04                                         | 200.8                  |
| na t6b | 608                | 21:25                                      | 28.4                  | 4:15                                         | 143.1                  |
| natdwg | 1696               | 104:26                                     | 16.2                  | 15:56                                        | 106.4                  |
| natrf  | 352                | 5:29                                       | 64.2                  | 1:22                                         | 257.6                  |
|        | 20,865             | 792:46                                     | 26.32                 | 146:23                                       | 142.5                  |

AVERAGE PERFORMANCE RATIO:

142.5 26.32 = 5.41:1 SUMMARY OF COMPILER PERFORMANCE

(COMPARISON USING MATE ATLAS COMPILER (MAC) AS REFERENCE STANDARD)

COMPILER PROCESSING SPEED RATIO SEGMENT ATLAS (COMPILE) FLOW

ALLOC

OVER-ALL

5.41:1

5.25:1

5.76:1

5.50:1 (INTERPOLATED)



Processing Speed Ratio

# 541 to 1

### Performance Improvement

### Appendix "C"

Detailed Network Accounting Records

### February 1986 - Item A

|                                                                                 |                                       | 100                              |                                       |                                  |                                |                                                        |                            |                                                    |                                     |                                              | TAPE                       | MISC.                    | TOTAL                               |
|---------------------------------------------------------------------------------|---------------------------------------|----------------------------------|---------------------------------------|----------------------------------|--------------------------------|--------------------------------------------------------|----------------------------|----------------------------------------------------|-------------------------------------|----------------------------------------------|----------------------------|--------------------------|-------------------------------------|
| A43_ALLIN1<br>A43_CARR<br>A43_COLLINS                                           | PRIME<br>19-90<br>99-96<br>-00        | EVENING<br>29.07<br>14.22<br>.00 | TIME<br>NITE<br>22.74<br>14.58<br>.00 | COST<br>80.30<br>221.07<br>.00   | PRIME<br>37-05<br>52-58<br>-00 | ***** CPU<br>EVENING<br>25.28<br>18.16<br>.00<br>22.23 | NIT<br>20.10<br>12.9<br>.0 | E COST<br>0 109.43<br>5 129.82<br>0 .00<br>3 75.23 | PAGES<br>6451<br>91                 | COST<br>.00<br>161.44<br>2.46<br>422.21      | CDST<br>.00<br>6.00<br>.00 | -1155.71<br>.00<br>.00   | -965.98<br>518.33<br>2.46<br>554.38 |
| A43_GALLOWAY<br>A43_LOSS<br>A43_PAWS<br>A43_PAWSDEHD<br>A43_SCHEURER            | 23.51<br>4.47<br>.00<br>.00<br>126.22 | 2.01<br>.00<br>1.33<br>10.92     | -00                                   | 10.98<br>.00<br>1.33<br>263.26   | 4.53<br>.00<br>.00<br>125.33   | 7.08                                                   | -0                         | 0 16.13<br>0 .00<br>0 .84<br>0 343.97<br>0 .00     | 1268<br>6479<br>412<br>25874<br>734 | 317.16<br>161.99<br>10.30<br>646.86<br>18.36 | -00<br>-00<br>2-00<br>-00  | -00<br>-00<br>-00<br>-00 | 161.99<br>12.47<br>1256.09<br>18.36 |
| A43_TTX<br>A43_TTXDEHD<br>A57_CH4ISCO<br>A57_HOLMES<br>J10_ALLIM1<br>J10 BIDWDD | -00<br>-00<br>-19<br>-08              | -00<br>-03<br>-01<br>-00         | .00<br>.00<br>.00                     | .00<br>.03<br>.37<br>.17<br>1.71 | -00<br>-00<br>-72<br>-31       | .00<br>.11<br>.13<br>.00                               | -0<br>-0<br>-0<br>-2       | 0 .00<br>0 .11<br>0 1.60<br>5 .73<br>0 2.85        |                                     | -16<br>-00<br>-00<br>-00                     | .00<br>.00<br>.00<br>.00   | .00<br>.00<br>.00<br>.00 | .14<br>1.97<br>.90<br>4.56          |
| TOTAL                                                                           | 275.19                                | 67.09                            | 38.22                                 | 636.16                           | 248.22                         | 167.19                                                 | 34.3                       | 3 680.71                                           | 6963                                | 1740.94                                      | 8.00                       | -1155.71                 | 1910.10                             |

### January 1986 - Item B

|                              |        |       | TINE | COST             |              | EVENING | TIME **            | COST             | PAGES               | COST                     | COST       | RISC.           | TOTAL   |
|------------------------------|--------|-------|------|------------------|--------------|---------|--------------------|------------------|---------------------|--------------------------|------------|-----------------|---------|
| A43_ALLINI<br>A43_CARR       | 125.93 | 14.25 | 1.33 | 266.78<br>254.70 | 77.06        | 25.24   | 9.72<br>2.97<br>0u | 184.17<br>124.20 | 5008                | 125.21<br>2.40           | .00        | .00             | 504.11  |
| A43_GALLOWAY<br>A43_LEOWARDO | 6.63   | 3.75  | 1.16 | 17.59            | 14.05        | 16.85   | 1.39               | 45.45            | 16414<br>99<br>7193 | 410,36 2,20 177,59       | .00        | .00             | 2.20    |
| A43_PALSUENO                 | 7.80   | 2.47  | .00  | 18.14            | 11.34 259.03 | 2.10    | .00<br>.00         | 24.79            | 358<br>40367<br>704 | 8.96<br>1009.19<br>17.60 | .00        | .00             | 2017.69 |
| A4J_TTIDEND                  | .00    | .00   | .00  | .00              | .00          | 255.27  | 14.94              | .00              | 70142               | .12                      | 00.<br>00. | .00<br>•3458,53 | 327,63  |

### December 1985 - Item C

|              |        | Cubat   | TTINE |        |        | CPU     | TINE  |        |                  | 15K     | S. TAPE | HISC.     | TOTAL            |
|--------------|--------|---------|-------|--------|--------|---------|-------|--------|------------------|---------|---------|-----------|------------------|
|              | PRIME  | EVENING | MITE  | COST   | PRIPE  | EVENING | MITE  | CUST   | PAGES            | COST    | COST    | 73827     | 121212/11/121211 |
|              | 105.19 | 1.01    | 3.38  | 215.11 | 285.28 | 15.18   | 16.14 | 593,79 | 1114-38624514626 | .00     | .00     | ,00       | 808.90           |
|              | 111.51 | 1.17    | 1.76  | 230.40 | 59.44  | 3.98    | 9.82  | 127.74 | 6297             | 107.43  | .00     | .00       | 465.57           |
| AAA COLLINS  | .00    | .00     | .00   | .00    | .00    | .00     | .00   | .00    | 95               | 2.40    | .00     | .00       | 2.40             |
| AAA CALLORAY | 28.01  | .56     | 1.20  | 57.10  | 37.39  | 1.00    | 3.94  | 17.72  | 22554            | 563.86  | .00     | .00       | 694,74           |
|              | .00    | .00     | .00   | .00    | .00    | .00     | .00   | .00    | 90               | 2,25    | .00     | .00       | 2.25             |
| AA3 Allan    | 1.55   | .00     | .00   | 7.10   | 4.40   | .00     | .00   | 8.81   |                  | .00     | .00     | .00       | 15.91            |
| 141 8455     | . 29   | .00     | .00   | . 61   | .96    | .00     | .00   | 1.93   | 5704             | 142.61  | .00     | .00       | 145.15           |
| the states   | .00    | .64     | -00   | .00    | .00    | .00     | .00   | .00    | 75               | 1.89    | .00     | .00       | 1.89             |
|              | 47.97  | .00     | .00   | 95.79  | 42.63  | .00     | .00   | 85.29  | 13168            | 329.22  | .00     | .00       | 510.30           |
| AA3 TTT      |        | .00     | .00   | .00    | .00    | .00     | .00   | .00    | 579              | 14.50   | .00     | .00       | 14.50            |
|              | .00    | .00     | .00   | .00    | .00    | .00     | .00   | .00    | 5                | .15     | .00     | .00       | .15              |
| ATJ_TIADENU  |        |         |       |        |        |         |       |        |                  |         |         | ********* | *******          |
| THE PAL      | 296.49 | 6.74    | 13.34 | 606.17 | 430,10 | 20.16   | 29.90 | 895.28 | 46567            | 1164.31 | .00     | .00       | 2665.76          |
| 1111         |        |         |       |        |        |         |       |        |                  |         | -       |           |                  |

### November 1985 - Item D

|     |               | ******* | . CONNEC | T TIME |        | · · · · · · · | CPU     | TINE ** | ******* | **** 5 | 15K 4+++ | ** TAPE ** | #15C. | TOTAL    |
|-----|---------------|---------|----------|--------|--------|---------------|---------|---------|---------|--------|----------|------------|-------|----------|
| 110 |               | PRINE E | TENINU   | HITC   | COST   | PRIME         | EVENING | MITE    | CUST    | PACES  | COST     | COST       |       |          |
|     | A41_ALLIN1    | 54.01   | .00      | .00    | 108.00 | 113.83        | .00     | .00     | 227.63  | 296074 | 7401,86  | .00        | .00   | 7737.49  |
| i - | A44_CANK      | 91.35   | 3.90     | 10.44  | 195.76 | 68.41         | 4.04    | 5,34    | 143.00  | 2081   | 67.03    | 2.00       | +00   | 408,39   |
| L-  | -A41-CULITINS | .00-    | .00      |        | .00    | .00           | .00     | .00     | .00     |        | 2,40     | .00-       | :00   | 2.40     |
|     | A41 GALLUNAT  | 26.25   | .00      | .00    | 52.59  | 36.85         | .00     | .00     | 73.04   | 21323  | 533.09   | .00        | .00   | 659.32   |
|     | AS J LEUNARDU | .02     |          | .00    | .05    | .13           | .00     | 04      | .27     | 44     | 1.10     | .00        | .00   | 1.42     |
| _   |               | 2.71    | 1.48     | .00    | 7.17   | - Y:00        |         | .00     | 21.77   | 4043   | 101,08   |            |       | -129,97- |
|     | Add Aumh      | 8.55    | .00      |        | 17.10  | 8.30          | .00     | .00     | 10.58   | 410    | 10,25    | 2,00       | .00   | 45.93    |
| i - | A41_PA=5      | 1.45    | .00      | .00    | 0.91   | 1.40          | .00     | .00     | 2.82    | 4051   | 101,28   | .00        | .00   | 111.01   |
| ⊢   | A41_PAYSURNO  | . 10    | .00      | .00    | .75    | .27           | .00     | .00     | .54     | 104    | 2,00     | .00        | .00   | 3:89     |
|     | A44 SCHEUKEN  | 45.54   | .00      | .00    | 91.04  | 65.74         |         | .00     | 111.57  | 9762   | 244.00   | .00        | .00   | 466,67   |
| 1   | 441 174       |         |          | .00    | .00    | .00           | .00     | .00     | .00     | 495    | 12.3#    | .00        | .00   | 12,38    |
| 1   | AAA I TANKAI  |         |          | .00    |        | :00           |         | -00-    | .00     |        |          | .00        | .00   | :12-     |

| AS /_HARAISUN<br>JIU_BIUNUU | .04    |      |       | 1.29   | 1.98   | .ua<br>.uu | .uu<br>.0u | 3.97 94<br>2.24 | 2,36<br>.00 | .00  | .00 | 7.62    |
|-----------------------------|--------|------|-------|--------|--------|------------|------------|-----------------|-------------|------|-----|---------|
| LOTAL                       | 215.44 | 5.44 | 10,44 | 481.59 | 307.07 | 6.57       | 5,34       | .24.63 319141   | 8479.01     | 4.00 | .00 | 9589.83 |

### October 1985 – Item E

|               |        |         |      | ******* | ****** |         |      |          |       | ISK **** | ** TAPE ** | MISC.         | TOTAL   |
|---------------|--------|---------|------|---------|--------|---------|------|----------|-------|----------|------------|---------------|---------|
|               | DOTHE  | EVENING | HTTE | COST    | PRIME  | EVENING | MITE | COST     | PAGES | COST     | COST       | 1010000000000 |         |
|               |        |         | .00  | .00     | .00    | .00     | .00  | .00      | 121   | 3.04     | .00        | .00           | 3.04    |
| #32_3AMS      |        |         |      | .00     | - 00   | .00     | .00  | .00      | 2532  | 63.32    | .00        | .00           | 63.32   |
| AJZ_SIEIN     |        |         |      | 78.84   | 15.61  | 1.57    | - 54 | 33.10    | 2348  | 58.71    | .00        | .00           | 170.65  |
| AAS_LARK      | 34.21  | 1.03    | 1.23 |         |        |         | .00  | 10.54    | 50    | 1.25     | .00        | .00           | 23.72   |
| A43_COLLINS   | 3. 78  | .02     |      | 11.75   | 3.23   |         |      | 1.90     | 538   | 11.45    | .00        | .00           | 16.05   |
| ALL CULL      | . 33   | .00     | .00  |         | . 70   |         |      |          | 17987 | 449.48   | .00        | .00           | 586.19  |
| 443_GALLOWAT  | 43.98  | .00     | .00  |         | 2      |         |      |          |       | 2 17     | .00        | -00           | 3.22    |
|               | .14    | .00     | .00  | -28     | . 29   | .00     | -00  |          |       | 2 20     | .00        | .00           | 2.20    |
| -443_LEONARDO | -00    | .00     | .00  | .00     | .00    | .00     | -00  | .00      |       |          | - 00       |               | 184.54  |
| -443_LOSS     | 3.23   | .00     | .00  | 6.45    | 14.94  | .00     | -00  | 29.87    | 5928  | 148.22   | .00        |               |         |
| A43 MUNN      | 2.32   | .00     | .00  | 4.63    | 1.91   | .00     | .00  | 3.81     | 736   | 18.40    | .00        | -00           | 20.04   |
| AA3 PANS      | 38.15  | .00     | .00  | 76.31   | 131.76 | .00     | .00  | 263.47   | 4481  | 112.04   | .00        | .00           | 451.82  |
| A43 PANSDEND  | .73    | .00     | .00  | 1.43    | 1.51   | .00     | .00  | 3.04     | 106   | 2.66     | .00        | .00           | 7.13    |
| AAT SCHEUPER  | 31.74  | .00     | . 00 | 63.56   | 67.54  | .00     | .00  | 135.10   | 10061 | 251.53   | .00        | .00           | 450.19  |
| 441 777       | . 04   | .00     | - 00 | -07     | -18    | -00     | .00  | .37      | 388   | 9.72     | .00        | .00           | 10.16   |
| ALL TRUDEND   |        |         |      | .03     |        | .00     | .00  | .16      | 4     | .12      | .00        | .00           | . 31    |
| A43_TTADENU   |        |         |      |         |        | .20     | .00  | 1.17     | 20    | .50      | .00        | .00           | 2.66    |
| AST_MARKISUM  |        |         |      | • • • • |        |         |      | 2.34     |       | .00      | .00        | .00           | 2.87    |
| J10_810N00    | .25    | .00     | .00  |         | 1.13   |         |      | 2        |       |          |            |               |         |
|               |        |         |      |         |        |         |      | \$33.87  |       | 1137.21  | .00        | .00           | 2004.91 |
| TOTAL         | 161.24 | 10.36   | 1.25 | 333.83  | 203.31 | 1.85    |      | ,,,,,,,, |       |          |            |               |         |
| 5.85 6.20     |        |         |      |         |        | Page    | e 88 |          |       |          |            |               |         |

### Appendix "D"

## Interview Survey

n an effort to evaluate the impacts of the computer usage here at Emerson the ollowing survey has been developed to further understand the user community. lease complete and return to: 4534 - Timothy Fitzsimmons Carr. Your opperation is greatly appreciated.

lease Check all appropriate circles.

.

| Background:                                 |    |
|---------------------------------------------|----|
| omputer Science Major                       | ٥  |
| omputer Science Minor                       | 0  |
| lectrical Engineering Major                 | 0  |
| lectrical Engineering Minor                 | 0, |
| ther Major                                  | 9  |
| n-theJob Computer Training                  | 0  |
| ocational School Courses                    | 0  |
| p Prior Computer Training                   | 0  |
| Previous Computer Usage:                    |    |
| sed Computer in college or school           | 1  |
| ave Home Hobby Computer                     | 0  |
| ave used Emerson Scientific Computer Center | V  |
| ava used other Emerson Computer             | 4  |
| ave used Emerson Word processor PC's        | ٥  |
| ave used IBM or Apple PC's                  | ٥  |
| ave used other PC's                         | 0  |
| ave never used computer                     | C  |
| Employed at Emerson:                        |    |
| ess than 6 months                           |    |
| to 12 months                                | 0  |
| to 2 years                                  | 0  |
| to 5 years                                  | 0  |
| ore than 5 years                            | *  |
| Intended Applications:                      |    |
| coram development                           | ŋ  |
| omputation                                  | 1  |
| cumentation                                 | D  |
| ata Retrieval/Manipulation                  | 0  |
| ersonal Interests                           | 0  |
| Applications Time-Frame:                    |    |
| amediate                                    | ٥  |
| ithin 3 months                              | 0  |
| ithin 6 months                              | ۵  |
| ithin 1 Year                                | ο, |
| onger than 1 Year                           | ×  |
| sure when                                   | 0  |

### List of References

Chapter 1: Introduction and Statement of Problem

- Sperry System Management, MATE TPS Acquisition, Guide 5 Vol. 3, Rev. a, (1985).
- [2] "U.S. Department of Defense Automatic Test Equipment", Test Program Set Standard MIL-T-85549a (AS)1238-34-st, September (1983).
- [3] J. P. Hall, "Test Program Set Acquisition," Department of the Navy, (Ser Air-5522B,1), December, (1985).
- [4] Frost and Sullivan, Automatic Test Equipment Strategic Business Plan for the '80, Electronic Business, October, (1981).
- [5] Richard Burkhart, Putting the Fun Back in TPSs, Proceedings of the 22nd International Testing Conference, (1986).
- [6] As cited in [3], page 12.
- [7] David Clutterbuck, What Makes Japanese Car Maunufactures So Productive?, International Management [U.K.], Vol: V33N4, page 17-20, April (1978).
- [8] System Specification for the Test Program Set WorkBench, Emerson Electric, July, (1985).
- [9] U. S. Department of Defense, <u>Software Technology for</u> <u>Adaptable Reliable Systems Program Plan</u>, DoD 1238-34-st, (1983).
- [10] Cheryl L. Losey, Electronic Messaging Systems For More Effective Management, IEEE Transactions on Professional Communication, Vol: VPC28N3, pages 35-39, September (1985).
- [11] Alan J. Ofner, Middle Management: The Neglected Resource, Personnel Journal, Vol 64 Number 12, page 14-18, December (1985).
- [12] David B. Loveman, K. Sattley, S. Schuman, P. Timpanaro, and A. Mark, ATLAS Test Support Environment (ATSE). Proceddings of the 20th Automatic Test Conference, pages 621, 1985, (1984).
Chapter 2: Review of Literature

- [13] Gregory M. de Mare and Richard L. Gauthier, Automated Management of TPS Development, AUTOTESTCON Proceedings, page 456, (1983).
- [14] P. Hart, The Military will spend \$800 mil+ in 1985 on automatic test equipment (ATE), vs about \$530mil/yr currently, according to Frost & Sullivan, Electronic Business, page 50, October, (1981).
- [15] As cited in [14], page 50-52.
- [16] W. J. Brownlow and J. R. Elston, Software Automation. Proceedings of the NAECON Conference, pages 738-750, NJ, (1985).
- [17] As cited in [12], page 622
- [18] As cited in [10], page 35.
- [19] As cited in [10], page 37.
- [20] As cited in [10], page 38.
- [21] Weiss Henry Fersko, Electronic Mail: The Emerging Connection, Personal Computing, Vol. 9 N1, pages 71-79, January, (1985).
- [22] As cited in [21], page 77.
- [23] Mitchell H. Goldstein, Office Automation and Executive Productivity, National Productivity Review. Vol: V4N4, page 418, Autumn (1985).
- [24] As cited in [23], page 416.
- [25] As cited in [11], page 14.
- [26] As cited in [11], page 15.
- [27] As cited in [11], page 16.
- [29] R. Franklin Parker, Meetings -- Productive or Counter-Productive, Project Management Journal, Vol 16 Number 4, pages 59-73, (1985).
- [30] As cited in [29], page 72.
- [31] E. M. Melendez, Emerging ATE Engineering Design Tools, AUTOTESTCON Proceedings, page 164-169, (1984).

- [32] Frank A.Pullo and Michael Salvarezza, TPS-PTS: A TPS Productivity Tool Set, Grumman Aerospace Corporation, Bethpage, NY, AUTOTESTCON Proceedings page 142-149, (1984).
- [33] As cited in [32], page 143.
- [34] Programming Standards and Conventions Guide for the Test Program Set WorkBench Firmware, System and Application Computer Programs, Emerson Electric, July, (1985).
- [35] As cited in [32], page 144.
- [36] As cited in [32], page 148.
- [37] Thomas G. Baker, Julie W. Low and Diane B. Revell, Autoated Documentation Support System, Boeing Aerospace Company, AUTOTESTCON Proceedings, page 745-749, (1985).
- [38] As cited in [37], page 746.
- [39] Pamula A. Clark, The Electronic Office, Byte, MA., (1983).
- [40] As cited in [37], page 747.
- [41] As cited in [37], page 749.
- [42] Thomas J Wilkins and Michael G. Ray, Automatic Generation of TPS Documentation Utilizing a common UUT Data Base, GTT Industries, Inc. AUTOTESTCON Proceedings, pages 155-163 NJ, (1984).
- [43] As cited in [42], page 163.
- [44] Mary Emrich, The F-18: Flying Fuel Cell, Maufacturing Systems. Vol:v3n4, pages 40-43, April (1985).
- [45] Barry Critchley, CAD/CAM Comes to the Aid of Defense Industries. Rydge's (Australia), Vol: V57N6, pages 73-76, June, (1984).
- [46] Glenn A. Milles, Schematic to ATLAS. AAI Corporation, AUTOTESTCON Proceedings, pages 150-154, (1984).
- [47] As cited in [5], page 36.
- [48] As cited in [14], page 52.
- [49] L. Conway, Management: Navy Seeks F/A-18 Spares Competition, Aviation Week & Space Technology, pages 129-130, November 28, (1983).

- [50] Business News, Sanders to Provide More EW Test Sets, Defense Electronics, page 42, July (1984).
- [51] Design--Test--Measurement: New Firm to Make Test Program Sets, Electronic News, page 17, June (1985).
- [52] ECMonitor: Programs: Harrs Corporation, Journal of Electronic Defense, October, page 178, (1984).
- [53] As cited in [5], page 4.
- [54] Rao, M.K. Dhirendra. "R&D Project Planning Through PERT: A Note,"<u>ASCI Journal of Management (India)</u>, 11, No. 1 (Sept. 1981), 84-88.
- [55] M.W. Curran, Bracket Budgeting, <u>Handbook of Budgeting</u>, John Wiley & Sons, 1981, p. 667-695.
- [56] As cited in [5], page 36.

Chapter 3: Research Section I: Hypothesis Statement and Summary of Research

- [57] Fred N. Kerlinger, Foundations of Behavioral Research, Third Edition, pages 348-389, Holt Rinebart Winston, (1986).
- [58] Richard Hunt, Vax Notes: General Population Needs Study, Alarm Logs, Vol 1 Number 11, page 13-27, October, (1981).
- [59] As cited in [57], page 391.
- [60] As cited in [10], page 35.
- [61] As cited in [11], page 14.
- Section II: Research Methods
- [62] As cited in [57], page 394.
- [63] As cited in [57], page 394.
- [64] DEC ALL-In-1 Software Product Descriptions, Digital Equipment Corporation, March 1985.
- [65] As cited in [57], page 431.
- [66] As cited in [55], page 680.

- [67] TPS WorkBench Test Results, Emerson Electric, September 5, 1985. (Scheurer, 10).
- [68] As cited in [57], page 466.
- [69] TPS WorkBench Blue Team Review Handout, Emerson Electric, September 5, 1985.
- [70] As cited in [5], page 21.
- [71] Roshan Lal Sharma/Paulo J.T. deSousa/Ashok D. Ingle, <u>Network Systems</u>. Van Nostrand Reinhold Company, NY.
- [72] Louis Becker, Network Control Centers. Computerworld On Communication, MA.
- [73] Babbie, Earl R., <u>Survey Research Methods</u>, Wadsworth Publishing Company, Inc., 1973.
- [74] As cited in [58], page 3.
- [75] As cited in [73], page 139.