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ABSTRACT 

Herron, Johnathan, Ridley, M.S, University of South Alabama, May 2023. 
G(10, 30) : A Minor-Minimal Intrinsically Knotted Graph. Chair of Committee: Dr. 
Andrei Pavelescu 

In this paper, we shall lay the groundwork for a proof of the minor-minimal 

intrinsic knotting of the graph G(10, 30). We show that this graph is in fact minor 

minimal with respect to the property of intrinsic knotting, i.e that no minor of 

G(10, 30) is intrinsically knotted. Moreover, we discuss the procedure for showing 

that G(10, 30) itself is intrinsically knotted, and provide a collection of subgraphs 

that can be used to aid in a proof. In this way, we hope to contribute to the 

growing list of known minor-minimal intrinsically knotted graphs. 
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CHAPTER I 

INTRODUCTION 

One core component of mathematical research is to characterize given 

mathematical objects–sets, functions, etc.–in terms of their fundamental structure. 

This is observed, for example, in the characterization of continuous functions in 

analysis; continuity or discontinuity over a given domain is perhaps the most 

fundamental feature of a given function, and much e↵ort is spent providing ways to 

determine if a given function is continuous or not. An analogous e↵ort is being 

made in the field of graph theory, where such properties as planarity, knotting, and 

linking are used to characterize a given graph’s shape across its numerous 

embeddings. A graph, being defined by a vertex set and corresponding edge set, is 

inherently a set theoretic object. However, depictions of the graph can reveal a level 

of complexity in the graph’s shape that is obscured by the notation of set theory. 

This includes the existence of knots and links, special constructions within the 

graph that describe the presence and relationship of embeddings of the circle S1 

within the graph. Just as we are often interested in determining if a function is 

continuous across a domain, we are interested if a given graph expresses knotting or 

linking across all of its possible embeddings–properties referred to as intrinsic 

knotting or linking respectively. An intrinsically knotted or linked graph can be 

thought of as a “permanently knotted or linked” graph–the presence of a knot is a 

fundamental component of that graph’s structure, and cannot be removed without 

destroying the graph itself (much in the same way that a continuous function can 
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only be made noncontinuous through a change in the underlying topology of the 

relevant space). However, it should be pointed out that the knot in one embedding 

may not necessarily be the same knot in every other embedding. 

In mathematical research, we are also interested in the most basic examples 

of an object exhibiting a certain property. The motivating question is thus: What is 

the smallest or simplest object that has this property? Once that has been 

determined, it is often easier to characterize the more complicated objects in terms 

of these primitives. In graph theory, where the construction of graphs is so 

important to research, this question is exceedingly important. Minor-minimal 

intrinsically knotted (linked) graphs can be thought of as the most fundamental 

knotted (linked) graphs, from which all others can be generated. Such graphs lose 

their knotting (linking) immediately if any edge is deleted or contracted. And all 

intrinsically knotted (linked) graphs will, in turn, possess an intrinsically knotted 

(linked) graph as a minor. Thus, compiling a complete list of such minor-minimal 

intrinsically knotted (linked) graphs would make the characterization of more 

complicated knotted (linked) graphs significantly easier. For knotlessly (linklessly) 

embeddable graphs, such specimens could never be found as minors–they are the 

“forbidden minors”. This is observed with intrinsic linking, where its list of 

minor-minimal intrinsically linked graphs has been fully described [11]. This has not 

been done for intrinsic knotting. 

Intrinsic knotting (linking) in graphs is not only of interest to the researcher 

of pure mathematics. Graph theory and knot theory together are two fields of 

mathematics which can be applied directly to more practical endeavors. The best 

example would be applications to the field of chemistry, where the properties of a 

molecule are central to its study and use. A molecule can be described by the 

number of atoms and their various relationships through bonding. This can be 
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5 

Figure 1. The graph G(10, 30). 

readily modeled through the use of vertices and edges–graphs. Changes to a 

molecule’s structure can be modeled by changes in embeddings of the corresponding 

graph. One example of this is described in Adams’ The Knot Book where the action 

of enzymes on a DNA strand can be shown to produce knotting in the strand [1]. 

Similarly, if a chemist wished to synthesize a molecule with a knotted or linked 

structure, they could base the molecule upon an intrinsically knotted or intrinsically 

linked graph, where the presence of the desired configuration is guaranteed [1]. 

The goal of this thesis is to contribute to the growing body of research 

around minor-minimal intrinsically knotted graphs. We attempt to prove that the 

graph of ten vertices and thirty edges, denoted G(10, 30), is among the forbidden 

minors of knotlessly embeddable graphs. This graph is depicted with our chosen 

labeling in Figure 1. The edge list, under this labeling, is given by 

3 



{1, 2} , {1, 3} , {1, 4} , {1, 5} , {1, 6} , 

{2, 3} , {2, 4} , {2, 6} , {2, 7} , {2, 10} , 

{3, 5} , {3, 6} , {3, 7} , {3, 10} , {4, 6} , 

{4, 8} , {4, 9} , {4, 10} , {5, 6} , {5, 8} , 

{5, 9} , {5, 10} , {6, 7} , {6, 8} , {7, 8} , 

{7, 9} , {7, 10} , {8, 9} , {8, 10} , {9, 10} . 

It should be noted that the vertices of G(10, 30) can be broken into eight 

equivalence classes up to symmetry: {1} , {2, 3} , {4, 5} , {6} , {7} , {8} , {9} , {10} . 

This indicates that any cycle including the vertex 2 should be mirrored by the 

corresponding cycle where 2 is replaced by 3, provided we also switch 4 and 5 at the 

same time. For example, the cycle (1, 3, 6, 5) is mirrored by the cycle (1, 2, 6, 4) 

under graph symmetry. 

This graph was first introduced in a paper by Mattman et al. as an example 

of an intrinsically knotted graph with µ-invariant 5 [8]. Moreover, it is given as an 

example of a minimal-order knotted graph with an edge-contraction minor that is 

linklessly embeddable. By proving that this graph is minor-minimal with respect to 

the property of intrinsic knotting, and by providing a starting point for the proof of 

its intrinsic knotting, we are moving one step closer to providing a formal proof that 

G(10, 30) is among the forbidden minors for knotlessly embeddable graphs. This 

will not only help to prove the assertion in the paper mentioned above, but will also 

carry us forward in making a complete list of such forbidden minors. 
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CHAPTER II 

REVIEW OF EXISTING BODY OF KNOWLEDGE 

We begin by considering the progression of definitions and results from the 

most foundational definition in graph theory to those theorems utilized directly in 

our work. To start, we shall consider the formal definition of a graph, and then 

proceed through the other basic notions of graph theory and knot theory. 

Definition 1. Let V be a set, and [V ]2 ⇢ P(V ) a subset of the power set of V 

containing all two-element subsets of V . A graph G = (V, E) is an ordered pair of 

sets E and V such that E ✓ [V ]2 
. The set V is the set of vertices of G, and the set 

E is the set of edges of G. A graph is said to be complete if E = [V ]2 
. A graph is 

said to be simple if every pair of vertices is connected by at most one edge 

(otherwise, it is a nonsimple graph). 

Example 1. Let V = {a, b, c, d, e} . Then we find that 

[V ]2 = {{a, b} , {a, c} , {a, d} , {a, e} , {b, c} , {b, d} , {b, e} , {c, d} , {c, e} , {d, e}} 

is the set of all possible edges between the vertices of the graph on V . The pair 

F = (V, E) where 

E = {{a, b} , {a, c} , {a, d} , {b, c} , {c, d} , {d, e}} 

5 



�

�

a 
e a 

b 

C 
C d 

is a graph of five vertices and six edges. The graph K5 = (V, [V ]2) is the complete 

graph on five vertices. Both F and K5 are shown in 2. 

Figure 2. Two graphs on five vertices. F is shown to the left, and K5 to the right. 
Both of these graphs are simple. 

In addition to Definition 1, we have additional terminology to describe the 

environment of a graph. Given G = (V,E), two vertices x, y 2 V are said to be 

incident if the edge {x, y} 2 E. Similarly,  two  edges  {x, y} and {y, z} would be said 

to be adjacent. The degree of a given vertex x is the number of sets in E to which x 

belongs. This corresponds graphically to the number of edges incident to x. 

A cycle  of a  graph  G = (V,E) is a subgraph  G = (V 0
, E

0) where  

V
0 = {x1, x2, . . . , xn} and E 0 = {{x1, x2} , {x2, x3} , . . . , {xn 1, xn} , {xn, x1}} , where 

n 3. We use the notation (x1, x2, . . . , xn) to  represent  a cycle  in  a graph, and  call  

it an n-cycle. A Hamiltonian cycle is a cycle which touches every vertex in a graph 

exactly once. 

Given a graph G, it  is  often of interest  to consider other  graphs  produced by  

acting upon G with various operations. The most basic operations are edge or 

vertex deletions. In set theoretic terms, this amounts to considering nontrivial 

subsets of the vertex set V or the edge set E, and  examining  the  graph  described  by  

those subsets. In the case of an edge deletion, we simply remove the edge between 

two vertices. With regards to vertex deletions, we delete a given vertex and all 
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edges which are incident to it. The result of such deletions is a subgraph, defined in 

Definition 2. 

Definition 2. Let G = (V, E) be a graph. Then some graph G0 = (V 0, E 0) is said to 

be a subgraph of G if E 0 ✓ E and V 0 ✓ V. We denote the graph-subgraph relation by 

G
0 ✓ G. 

Example 2. In Figure 2, we find that F is a subgraph of K5, obtained through the 

deletion of the following edges: {a, e} , {b, d} , {d, e} , {c, e} . 

Figure 3. Contracting the edge {x, y} 

Subgraphs are not the only graphs that can be produced from a given graph, 

however. Let x, y be vertices of G with {x, y} 2 G, such that  

{x, a1} , {x, a2} , {x, a3} , . . .  

are the edges incident to x and 

{y, b1} , {y, b2} , {y, b3} , . . .  

are the edges incident to y. We  can  contract  the  edge  {x, y} by removing it from E 

and by replacing x and y with a single new vertex xy. Moreover,  we  replace  all  

edges incident to x and y with the following edges 

{xy, a1} , {xy, a2} , {xy, a3} , . . . ,  {xy, b1} , {xy, b2} , {xy, b3} , . . .  

7 
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Graphically, this amounts to combining x and y into xy, a  new  vertex which is  

incident to all vertices incident to x and y individually. We also remove any double 

edges that might result from such a contraction; it should be noted, however, that 

non-simple contractions can be used to obtain a certain desired structure (as we 

shall observe later on in our research). An example of this is shown in Figure 3. 

This leads us to the next definition. 

Definition 3. Let G and H be graphs such that H is obtained from G through a 

sequence of edge deletions and/or contractions, and vertex deletions. Then we call 

H a minor of G. 

We should point out that there are technically two possible edge contraction 

operations. One of them, as described above, preserves all edges from the original 

graph–possibly resulting in a non-simple graph. The other edge contraction would 

ignore any repeated edges, resulting in a simple graph. 

Example 3. Consider F first given in Example 1. We can apply a (nonsimple) 

edge contraction on {a, b} to produce a minor F 0 shown in Figure 4. Note that F 0 is 

by extension a minor of K5 through the edge contraction and the same sequence of 

edge deletions that produced F as a subgraph. Indeed, F itself is a minor as well as 

a subgraph of K5. F  0 is a minor but not a subgraph of K5. 

Figure 4. An edge-contraction minor of F . 
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Definition 4. A graph G is said to be minor minimal with respect to some property 

if G possesses the property but no minor H possesses that property. 

Figure 5. Y and Y transformations.  

We shall consider one more operation which is more directly relevant to our 

work: Y and Y transformations. First, it is necessary to introduce some 

specific terminology. Let G be a graph such that for vertices a, b, c 2 V we have 

edges {a, b} , {b, c} , {a, c}. Then  T = ({a, b, c} , {{a, b} , {b, c} , {a, c}}) is a triangle  

of G. A  Y (Delta-Wye) transformation on T is an operation such that a new 

vertex v is introduced, and the edges {a, b} , {b, c} , {a, c} are all replaced by 

{a, v} , {b, v} , {c, v} . The Y transformation is the  inverse  of  this operation,  

taking a collection of edges {a, v} , {b, v} , {c, v}, deleting  the  vertex  v and forming 

edges between a, b, and  c. Both of these operations are shown in Figure 5. 

Definition 5. Let G and H be two graphs. If H can be obtained from G by a single 

Y transformation, then we call H a child of G. G is called the parent of H. 

Graphs related through a finite sequence of Y and Y transformations are 

called cousins. The family of G is the collection of all graphs obtained through a 

finite sequence of Y and Y transformations. 

Example 4. Once again, consider the graph F given in Example 1. We can see 

that F possesses two triangles, the 3-cycles (a, b, c) and (a, d, c). We can apply a 
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Y transformation on (a, b, c) to produce F1, shown in Figure 6. Note the 

inclusion of a new vertex v. This graph F1, being the result of a single Y 

transformation on F , is a child of F . 

Both F and F1 have a Y -configuration in the edges {a, d} , {c, d} , and {d, e} . 

We can apply a Y transformation to produce the cousin F2. 

Figure 6. Cousins of F. 

Necessary to the study of graph theory is the ability to describe graphs as 

images rather than simply sets. This is handled mathematically through the notion 

of the embedding, and specifically the homomorphic embedding, given in Definition 

6. 

Definition 6. Let G = (V, E) and H = (U, F ) be two graphs. A function 

: V �! U is said to be an embedding of G in H if for all x, y 2 V where 

(x) =  (y), we find that x = y. We call a homomorphic embedding if for all 

x, y 2 V where {x, y} 2 E, we find that { (x), (y)} 2 F . 

From the definition above, and taking to be a homomorphic embedding, we 

find that the set (V ) =  { (x) :  x 2 V } along with the corresponding edge set 

(E) =  {{ (x), (y)} : x, y 2 V, {x, y} 2 E} is, e↵ectively, the representation of the 

graph G within H. When we take H to be a space of real numbers Rn then 

(G) = (  (V ), (E)) would be a picture of G in this more familiar setting–what we 

will call an embedding of G in Rn. For  our  purposes,  we  are  interested  only  in  the  
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cases where n = 2  or  n = 3. These are necessary to begin describing planar, linked, 

and knotted graphs. 

Definition 7. A graph G is said to be planar if there is an embedding of G in R2 

that contains intersections only at common endpoints. 

Planar graphs can be thought of as the most basic kind of graph which has a 

defined structure. These are graphs which can be depicted without edges 

intersecting anywhere other than the endpoints. In terms of structural complexity, 

they can be thought of as being somewhat simple. The next level of structural 

complexity can be found in graphs which are, in a sense, almost planar. 

Definition 8. A graph G = (V,E) is said to be t-apex if the graph G0 = (V 0
, E

0) 

where V 0 = V {v1, v2, . . . , vt} is a planar graph., where v1, . . . , vt is some collection 

of elements out of V. 

Now let us consider the linking and knotting of graphs. These notions are 

more commonly found in the field of knot theory; as such, it is more useful to 

consider knots and links in terms of the circle S1 
. 

Definition 9. A collection of disjoint embeddings of S1 
in R3 

is known as a link. 

Definition 10. Two embeddings of S1 
are said to be splittably linked if there exists 

two disjoint embeddings of the 2-sphere, each containing one of the two embeddings 

of S1 
. If no such pair of 2-spheres exist, then the two embeddings are said to be 

non-splittable. 

To determine if two embeddings of S1 are linked, it is useful to calculate the 

linking number of the two embeddings, denoted lk(C1, C2), where C1 and C2 are the 

two embeddings. Linking number is calculated by considering all crossings between 

the S1 embeddings, setting an orientation to the edges, and applying a value 

11 
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associated with the two possible types of crossings. The two crossings and their 

corresponding values are defined in Figure 7. This rule assumes that we are 

Figure 7. Types of crossings. Orientation of the edges must first be defined. 

projecting our links onto R2 
. Then, the values are summed, with the result divided 

by 2. The final value, the linking number, determines whether or not the pair of S1 

are splittably linked or not. Given two embeddings of S1 , C1 and C2, we denote  

their linking with the notation C1 [ C2. This provides us with the following useful 

theorem. 

Theorem 1. Two embeddings of S1 
are non-splittably linked if their linking number 

is nonzero. 

We now extend the notion of links to graphs. 

Definition 11. Let G be a graph. Then G is said to be intrinsically linked if every 

embedding of G in R3 
contains a non-splittable link. Otherwise, the graph is said to 

be linklessly embeddable. 

Definition 12. A knot is a embedding of S1 
, a circle, in R3 

. A knot projection is a 

representation of a knot in R2 
. A knot is said to be nontrivial if it cannot bound a 

2-cell (disc) in R3 
. 

Definition 13. A graph G is said to be intrinsically knotted if every embedding of 

G in R3 
contains a nontrivial knot. Otherwise, the graph is said to be knotlessly 

embeddable. 
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In the previous definitions, we developed the language necessary to discuss 

the theoretical backbone of our work. The notions of intrinsic linking and intrinsic 

knotting were first confronted in the seminal paper “Knots and Links in Spatial 

Graphs,” by J. Conway and C. Gordon. In the paper, Conway and Gordon proved 

that every embedding of the complete graph on seven vertices, K7, cycles a 

nontrivial knot, and that every embedding of the complete graph on six vertices, 

K6, contained a nontrivial link [3]. Both of these graphs are depicted in Figure 8. 

Figure 8. The graphs K6 and K7. K6 is the first graph proven to be intrinsically 
linked, and K7 is the first graph to be proven to be intrinsically knotted. 

The proof of the intrinsic knotting of K7 required the use of the arf invariant, 

which is given by 

↵(K) =  

8 
>< 

>: 

0, K is pass equivalent to the trivial knot 

1, K is pass-equivalent to the trefoil knot 

for the knot K [1]. Two knots are said to be pass-equivalent if one can be obtained 

from the other through a sequence of pass moves–which are changes in the 

projection of a knot made by passing a pair of oppositely-oriented edges through 

another pair of oppositely-oriented strands. For further discussion of pass moves 

and pass-equivalence, consider p.222-231 of Adams’ The Knot Book [1]. Every 

non-trivial knot is pass equivalent to the trefoil knot. Conway and Gordon defined a 

function 2 Z2 to be the sum of all arf invariants of every Hamiltonian cycle of K7 
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in an arbitrary embedding, showed to be invariant under changes in edge crossing, 

and found at least one embedding of K7 containing the trefoil knot. With one 

embedding known to be knotted, and so having one instance that (K7) = 0,6 it  can  

be concluded that every embedding is knotted since is invariant. It should be 

noted that the proof for the intrinsic knotting of K7 is significantly more involved 

than the proof for the intrinsic linking of K6. 

With these two examples established, research has moved towards 

characterizing all intrinsically knotted/linked graphs. In terms of intrinsic linking, 

this was successful, as P.D. Seymour, Neil Robertson, and Robin Thomas proved in 

their 1995 paper titled “Linkless Embeddings of Graphs in 3-space” that every 

intrinsically linked graph must have at least one of seven specific graphs as 

minors [10, 11]. These graphs are the Petersen family graphs, all of which are 

obtained through a sequence of Y and Y transformations from  K6. This 

family is depicted in Figure 9. Prior to this, H. Sachs showed that the Petersen 

family graphs were all minor minimal intrinsically linked [13]. Between the two 

results, a class of “forbidden minors” was established for linklessly embeddable 

graphs. This could be used to easily determine if a given graph was intrinsically 

linked or not. If a graph had one of the Petersen family as a minor, it would be 

intrinsically linked. No such list of forbidden minors exist for knotlessly embeddable 

graphs. 

Robertson and Seymour proved that the set of minor-minimal intrinsically 

knotted graphs must be finite [12]. This was done by proving for every graph H and 

some infinite set of graphs whose minors are not isomorphic to H, some member of  

the set is isomorphic to a minor of another member. By taking the set of 

minor-minimal intrinsically knotted graphs to be infinite–none of whose minors are 

isomorphic to some graph H–then there must exist a minor of one graph in the set 
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G(l0,15) 

Figure 9. The Petersen family. These seven graphs are the “forbidden minors” for 
linklessly embeddable graphs. 

which is isomorphic to another graph in the set. This is, of course, a contradiction, 

as no minor of a minor-minimal intrinsically knotted graph is intrinsically knotted, 

and the property of knotting is preserved under isomorphism. Therefore, the set of 

forbidden minors for knotlessly embeddable graphs must be finite. Further research 

into this problem has narrowed down this list; the only minor-minimal intrinsically 

knotted graphs on eight or fewer vertices are K7 and K3,3,1,1 [2]. Moreover, it has 

been shown that any intrinsically knotted graph must have at least 21 edges [7]. 

The work presented here relies heavily upon two results in particular 

regarding intrinsic knotting. First and foremost, we have the following Lemma 

proved by J. Foisy [4]: 
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Lemma 1 (Foisy, 2002, [4]). Given an embedding of D4, 6= 0  if lk(C1, C3) 6= 0  

and lk(C2, C4) 6= 0. 

This lemma, which we shall call “Foisy’s Lemma”, requires some explanation. 

The graph D4 is a graph on four vertices with eight edges, depicted in Figure 10. 

This graph is comprised of four cycles, formed from the double edges between 

vertices. The cycle C1 corresponds to the two edges between vertices 1 and 2. The 

cycle C3 sits opposite C1, being formed by the double edges between 3 and 4. 

Similarly, C2 is formed by the vertices 2 and 3, and C4 by 1 and 4. If the linking 

number between C1 and C3 is nonzero in an embedding, then they are linked. 

Similarly, if the linking number between C2 and C4 is nonzero in a given embedding, 

they are linked. In the case where both pairs are linked, we have a doubly-linked D4 

graph. By Foisy’s Lemma, such a graph guarantees that we have a knotted 

embedding (the invariant used in Conway and Gordon’s paper is nonzero [3]). 

The success of Foisy’s Lemma in proving graphs to be intrinsically knotted can be 

observed in Foisy’s papers “Many More Intrinsically Knotted Graphs,” where he 

proves that the graphs G15, H15, J14 and J14 
0 are all intrinsically knotted using the 

lemma [6]. 

Foisy’s Lemma outlines our primary tool for proving that G(10,30) is 

intrinsically knotted. We show that for every embedding of G(10, 30) there exists a 

doubly-linked D4 subgraph. The linking shall be provided by identifying pairs of 

intrinsically linked subgraphs within G(10, 30)–specifically any instances of a 

Petersen family graph. Each subgraph shall have a full list of pairs of cycles, at least 

one of which must be linked in an arbitrary embedding. By going through each pair 

and assuming linkage, we shall try and demonstrate that, when coupled with 

another pair of assumed-linked cycles out of the other graph, they will form a 
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doubly-linked D4 subgraph. Optimally, we shall need a single pair of Petersen 

family subgraphs of G(10, 30). 

Figure 10. The graph D4. The linked cycles in a doubly-linked D4 graph are colored. 

To supplement Foisy’s Lemma in cases where a D4 is not readily produced 

from the pairs of cycles on hand, it is necessary to utilize a result from homology 

theory. The following statement of the lemma is given in Foisy’s paper “A Newly 

Recognized Intrinsically Knotted Graph” [5]: 

Lemma 2 ( [5]). Let 1, 2 and 3 to be simple closed curves in R3 
such that 2 \ 3 

is an arc, and both 2 \ 1 and 1 \ 3 are empty. Suppose that [ 2] is non-trivial in 

H1(R3
1; Z2). Then precisely one of [ 3] and [ 2 + 3] is non trivial in 

H1(R3
1; Z2). 

One can understand this lemma from a purely physical perspective. Given 

three simple closed curves which exhibit nontrivial linking, if two curves intersect 

over an arc (a common edge between the curves), then the linking must occur on at 

least one side of this common edge. Consider Figure 11, which shows a pair of 

cycles: (a, b, d, c) and  (e, f, g). The 4-cycle (a, b, d, c) is further made  up  of  two  
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3-cycles, (a, b, c) and  (b, c, d). We may take 1 to be the simple closed curve defined 

by (e, f, g), and 2 and 3 the simple closed curves defined by (a, b, c) and  (b, c, d) 

respectively. We find that 2 and 3 intersect over the edge {b, c} (an arc), and that 

1 \ 2 and 1 \ 3 are both empty. By Lemma 2, if (a, b, d, c) and  (e, f, g) are  

linked, then either (a, b, c) and  (e, f, g) are linked,  or (b, c, d) and  (e, f, g) are linked.  

Figure 11. A pair of linked cycles. 

Showing G(10, 30) to be minor minimal with respect to the property of 

intrinsic knotting shall make use of a theorem proven by P. Blain, G. Bowlin, T. 

Fleming, J. Foisy, and others1 [2]. 

Theorem 2 (Blain et al., 2007, [2]). No 2-apex graph is intrinsically knotted. 

In the special cases where this theorem fails to provide immediate results, we 

turn to a result from Motwani, Raghunathan, and Saran [9]. 

Theorem 3 (Motwani et al, 1988, [9]). Y exchanges preserve intrinsic linking 

and knotting. 

1
This result was also proven concurrently by Ozawa and Tsutsumi. 
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CHAPTER III 

SURVEY: PROOF THAT G(10, 30) IS INTRINSICALLY KNOTTED 

The first step in proving that G(10, 30) is among the forbidden minors of 

knotlessly embeddable graphs is showing that it is intrinsically knotted. The proof 

of G(10, 30)’s intrinsic knotting is based entirely upon Foisy’s Lemma, with the goal 

being to identify a doubly-linked D4 graph in every embedding of G(10, 30). Given 

that manually checking every embedding for the desired D4 graph would be 

impossible, we shall instead take advantage of certain subgraphs G(10, 30) possesses. 

More specifically, we shall identify a number of subgraphs of G(10, 30) which are 

members of the Petersen family of graphs, and so are known to be intrinsically 

linked. For each such subgraph we find, we produce a complete list of all possible 

linkable cycles. By the definition of intrinsic linking, in any given embedding of the 

subgraph, and so G(10, 30) itself, at least one pair in this list will be linked. 

With a list of Petersen subgraphs and corresponding lists of linkable pairs, 

we can then develop a body of casework based upon assuming one pair in one 

subgraph links simultaneously with another pair in another subgraph. With these 

two pairs of linkable cycles, we can manually show that (through some sequence of 

edge contractions) a doubly-linked D4 graph can be produced from the two pairs. 

By Foisy’s Lemma, we find the embedding described by this assumption will be 

knotted. If we can show every linkable pair in one subgraph generates a 

doubly-linked D4 graph with other linkable pairs of another subgraph or subgraphs, 

then we will e↵ectively cover every embedding in a manageable number of cases. 
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Figure 12. Subgraph A: K3,3,1 in G(10, 30). K3,3,1 is an intrinsically linked graph, as 
it is a member of the Petersen family. 

We begin by identifying as many Petersen subgraphs of G(10, 30) as possible. 

This can be done manually by recognizing the proper vertex-edge arrangements in 

the edge-list of G(10, 30). In this way, we have identified a subgraph of G(10, 30) 

which is a K3,3,1 Petersen graph (shown in Figure 12). The graph K3,3,1 is obtained 

through two Y transformations and a Y transformation on  K6, and  in  

every embedding one of the following cycles must be linked: 

(4, 6, 8) [ (5, 10, 7, 9), (5, 6, 8) [ (4, 9, 7, 10) 

(4, 9, 8) [ (6, 5, 10, 7), (5, 9, 8) [ (6, 4, 10, 7) 

(4, 10, 8) [ (6, 5, 9, 7), (5, 10, 8) [ (4, 6, 7, 9) 

(7, 6, 8) [ (4, 9, 5, 10), (7, 9, 8) [ (4, 6, 5, 10) 

(7, 10, 8) [ (4, 6, 5, 9). 

Taking this graph as the basis for our proof, we would identify a second 

Petersen subgraph along with all of its linkable pairs, and for each pair given above 

demonstrate that every pair in the second Petersen graph will form a D4 graph from 

that given pair. Given that K3,3,1 has nine linkable pairs, we would expect that 

there would be nine cases–with at least one subcase for each pair of cycles out of the 

complementary Petersen subgraph. Fortunately, we can reduce this casework by 
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utilizing the inherent symmetry of G(10, 30). Under the graph symmetry, we find 

that by switching 2 with 3 and 4 with 5, we obtain isomorphic cycles and (as we 

shall see shortly) even subgraphs. Thus, the pair (4, 6, 8) [ (5, 10, 7, 9) is an 

isomorphic copy of (5, 6, 8) [ (4, 9, 7, 10) under the graph symmetry. Similarly, 

(4, 9, 8) [ (6, 5, 10, 7) is mirrored by (5, 9, 8) [ (6, 4, 10, 7) and (4, 10, 8) [ (6, 5, 9, 7) is 

mirrored by (5, 10, 8) [ (4, 6, 7, 9). Thus, any result found regarding one of these 

pairs can be readily duplicated for the isomorphic copy, and we can shorten our 

number of cases from nine to six. 

Figure 13. Subgraph G(10, 15) 5 in  G(10, 30). 

The G(10, 15) subgraph is produced from K6 through four consecutive Y 

transformations. In addition to the K3,3,1 described above, twenty-four of these 

Petersen G(10, 15) graphs have been identified as subgraphs of G(10, 30). Of the 

twenty-four subgraphs, we have precisely twelve unique graphs and their isomorphic 

copies under the {2, 3} and {4, 5} equivalence. The list of twelve is given in Table 1 

at the end of this chapter. To obtain the other twelve subgraphs, simply switch 2 

with 3 and 4 with 5 in each edge list. For example, we have identified the G(10, 15) 
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subgraph (#5 in Table 1, and so labeled G(10, 15) 5) shown in Figure 13, which 

possesses the following linkable pairs of cycles: 

(5, 9, 7, 6, 8) [ (1, 2, 4, 10, 3), (4, 9, 5, 8, 10) [ (1, 2, 6, 7, 3) 

(3, 10, 8, 6, 7) [ (1, 5, 9, 4, 2), (3, 10, 4, 9, 7) [ (1, 5, 8, 6, 2) 

(2, 4, 9, 7, 6) [ (1, 5, 8, 10, 3), (2, 4, 10, 8, 6) [ (1, 5, 9, 7, 3). 

Its copy under graph symmetry, G(10, 15) 5⇤ , is shown in Figure 14. The 

list of linkable pairs of cycles in G(10, 15) 5⇤ can be readily found by simply 

switching 2 with 3 and 4 with 5 in the cycles of G(10, 15) 5. Thus, we find that 

the complete list of linkable cycles associated with G(10, 15) 5⇤ would be: 

(4, 9, 7, 6, 8) [ (1, 3, 5, 10, 2), (5, 9, 4, 8, 10) [ (1, 3, 6, 7, 2), 

(2, 10, 8, 6, 7) [ (1, 4, 9, 5, 3), (2, 10, 5, 9, 7) [ (1, 4, 8, 6, 3) 

(3, 5, 9, 7, 6) [ (1, 4, 8, 10, 2), (3, 5, 10, 8, 6) [ (1, 4, 9, 7, 2). 

Figure 14. Subgraph G(10, 15) 5⇤ in G(10, 30). This graph is obtained by switching 
2 with  3 and 4  with 5 in  the original subgraph.  

Either graph, with six pairs of linkable cycles, will correspond to six cases if 

used in the proof of G(10, 30)’s intrinsic knotting. Here we may point out where the 

di#culty in the proof lies. Let us take the K3,3,1 subgraph given in Figure 12, and 
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suppose that for each of its nine pairs of cycles there is a G(10, 15) graph in Table 1 

for which every cycle in that G(10, 15) pairs perfectly with a single cycle out of 

K3,3,1. Even taking into account graph symmetry, we would find a total number of 

thirty-six cases. For each of the six unique cycles of K3,3,1, we would test six cycles 

out of one G(10, 15). 

We have identified one more Petersen subgraph of G(10, 30) which might 

prove useful in the proof of G(10, 30)’s intrinsic knotting. The graph shown in 

Figure 15 is a Petersen graph of seven vertices and fifteen edges, produced from K6 

through a single Y transformation. The only possible linkable pairs are made of 

a 3-cycle  linked  with a 4-cycle  (with the two cycles disjoint).  We find that  the  

complete list of all possible linkable pairs is 

(9, 10, 7) [ (4, 8, 5, 6), (9, 5, 8) [ (4, 6, 7, 10), 

(8, 7, 9) [ (5, 10, 4, 6), (10, 9, 5) [ (4, 8, 7, 6), 

(8, 5, 10) [ (4, 9, 7, 6), (8, 7, 10) [ (4, 9, 5, 6), 

(4, 9, 8) [ (6, 5, 10, 7), (4, 8, 10) [ (6, 5, 9, 7), 

(4, 9, 10) [ (6, 5, 8, 7). 

Figure 15. A G(7, 15) subgraph of G(10, 30). 

Thus, it would correspond to nine cases in the proof. 
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With these subgraphs in mind, let us now consider a few examples of how the 

casework in the proof would go. Let us take K3,3,1 as the central graph in the proof; 

label it subgraph A. The goal would be to find for  each  of  its  six  unique  cases  a  

subgraph, the linkable pairs of which would form a doubly-linked D4 graph. Let us 

take the first pair given, (4, 6, 8) [ (5, 10, 7, 9), and label it A1. Let  us  test  

G(10, 15) 5 against  this first case,  and so consider  six subcases  for each pair in  

G(10, 15) 5–for ease, let us label G(10, 15) 5 as  subgraph  B, and  its  six cycles  

B1-B6. 

Case A1. Assume that (4, 6, 8) [ (5, 10, 7, 9) is a pair of linked cycles, and 

consider the six linkable pairs of cycles in subgraph B1-B6. We  shall  consider  

six subcases–each a pairing of A1 with a pair of cycles from B. 

Subcase A1-B1. Suppose that (5, 9, 7, 6, 8) [ (1, 2, 4, 10, 3) is a pair of 

linked cycles in subgraph B, and  so in  G(10, 30). Consider Figure 16 

Figure 16. A1 and B1. 

If we contract the edges {6, 8} , {5, 9} , {9, 7} , {4, 2} , {2, 1} , and {1, 3} in such 

a way as to leave double edges,  we will produce a doubly-linked  D4 graph (two 
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pairs of linked cycles on opposing sides of a D4). Thus, by Foisy’s Lemma, we 

find that any embedding with A1 and B1 linked is knotted. 

Subcase A1-B2. Suppose that (4, 9, 5, 8, 10) [ (1, 2, 6, 7, 3) is a pair of linked 

cycles in B. Note that {4, 8} exists in G(10, 30). Thus, by Lemma 2, we find 

that if (1, 2, 6, 7, 3) links with (4, 9, 5, 8, 10), it must link with either (4, 8, 10) 

or (4, 8, 5, 9) (possibly both). Consider Figure 17. We find that we obtain a 

doubly-linked D4 graph in either case, and conclude that if A1 and B2 are 

linked simultaneously, then by Foisy’s Lemma that embedding of G(10, 30) is 

knotted. 

Figure 17. A1 and B2. The  green  edge  corresponds  to  {4, 8}; splitting the cycle 
(4, 9, 5, 8, 10) into (4, 8, 10) and (4, 8, 9, 5) along this diagonal produces two ways of 
obtaining the doubly-linked D4. To  the  left,  we  have  the  case  for  (4, 8, 10), and to 
the right we have (4, 8, 9, 5). 

Subcase A1-B3. Suppose that (3, 10, 8, 6, 7) [ (1, 5, 9, 4, 2) is the linked pair 

of cycles in B. Consider  that  the  edge  {3, 6} is present in G(10, 30). By 
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Lemma 2, since (1, 5, 9, 4, 2) is linked with (3, 10, 8, 6, 7), we find that it must 

link with either (3, 6, 7) or (3, 6, 8, 10). Consider Figure 18. We find that in 

either case we have the desired D4 graph. Thus, if A1 and B3 are the two 

linked pairs of cycles, G(10, 30) is knotted. 

Figure 18. A1 and B3. The  green  edge  corresponds  to  {3, 6}; splitting the cycle 
(3, 10, 8, 6, 7) into (3, 6, 7) and (3, 6, 8, 10) along this diagonal produces two ways of 
obtaining the doubly-linked D4. To  the  left,  we  have  the  case  for  (3, 6, 7), and to the 
right we have (3, 6, 8, 10). 

Subcase A1-B4. This case requires some further attention. 

Subcase A1-B5. Suppose that (2, 4, 9, 7, 6) [ (1, 5, 8, 10, 3) is the linked pair 

of cycles in B. We  find  that  the  edges  {2, 7} and {5, 10} exist in G(10, 30). We 

apply Lemma 2 to both cycles, and so must consider four distinct origins for 

the D4 graph. Consider Figure 19. 

Subcase A1-B6. Suppose that (2, 4, 10, 8, 6) [ (1, 5, 9, 7, 3) is the linked pair 

of cycles in B. We  recognize  that  the  edge  {2, 10} exists in G(10, 30), and 

apply Lemma 2 across this diagonal. Consider Figure 20. 
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Figure 19. A1 and B5. As with the prior figures, the green edges mark diagonals 
over which we apply Lemma 2. We are cutting apart (2, 4, 9, 7, 6) into (2, 6, 7) and 
(2, 4, 9, 7), and (1, 5, 8, 10, 3) into (1, 5, 10, 3) and (5, 8, 10). The top left considers 
(5, 8, 10) and (6, 2, 7), the top right considers (1, 5, 10, 3) and (6, 2, 7) , the bottom 
left considers (5, 8, 10) and (4, 2, 7, 9), and the bottom right considers (1, 5, 10, 3) and 
(6, 2, 7, 9). In the two right cases, we must follow the work up with an edge contraction 
on {1, 4} and {1, 6} . In all cases the result is a doubly-linked D4 graph. 

Preferably, every case would yield the desired doubly-linked D4 graph. We 

would have shown that every embedding of G(10, 30) where (4, 6, 8) [ (5, 10, 7, 9) 

forms a nontrivial link, there is another nontrivial link found somewhere in 
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Figure 20. A1 and B6. We  break  up  (2, 4, 10, 6, 8) into the cycles (2, 4, 10) (left) and 
(2, 10, 6, 8) (right). Both yield the D4 after contracting an ambient edge ({3, 6} and 
{1, 4} respectively). 

G(10, 15) 5 that  will yield the  D4 graph and produce a knot. Under the graph 

symmetry, we would then conclude that the same is true if (5, 6, 8) [ (4, 10, 9, 7) is 

linked, with the complementary pair coming from G(10, 15) 5⇤ 
. However, we find 

that one case was left unexplored: A1 and B4. This corresponds to assuming that 

we have an embedding where (4, 6, 8) [ (5, 10, 7, 9) and (3, 10, 4, 9, 7) [ (1, 5, 8, 6, 2) 

are both linked pairs. Under this assumption, however, we find that we have a 

problem; observe that under Lemma 2 we can break the cycle (5, 10, 7, 9) along the 

diagonal {9, 10} into two 3-cycles (5, 10, 7) and (7, 9, 10). If (4, 6, 8) is linked with 

(5, 10, 7, 9) as we assume, then the linking must occur through either (5, 10, 7) or 

(7, 9, 10). It is possible to show that, should the first occur, we will produce a 

doubly-linked D4 graph. However, in the case where (4, 6, 8) links with (7, 9, 10), we 

run into a serious issue. The 3-cycle (7, 9, 10) is present in the cycle (3, 10, 4, 9, 7). 
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Under Lemma 2, we find that (3, 10, 4, 9, 7) can also be broken along two diagonals: 

{7, 10} and {9, 10} . The result of this is three di↵erent 3-cycles: (7, 3, 10), (7, 9, 10), 

and (4, 9, 10). Putting this information together, we find that there is a case where 

we could have (4, 6, 8) [ (7, 9, 10) a linked pair and (7, 9, 10) [ (1, 5, 8, 6, 2) a linked 

pair. There are other cases besides this, and many of those will yield a D4 graph. 

However, for the proof we must show every possible arrangement of linking yields 

this graph. This is impossible in the case of (4, 6, 8) [ (7, 9, 10) and 

(7, 9, 10) [ (1, 5, 8, 6, 2). The doubly-linked D4, as given in Figure 10, requires that 

each pair of linked cycles not share vertices. They lie on opposite sides of the graph. 

Since (7, 9, 10) is linked in what would be both a red and blue cycle, we find that 

separating the two pairs into the D4 graph is impossible. This pairing on its own 

must then be disregarded. 

The case of A1-B4 illustrates the inherent di#culty in a proof of a graph’s 

intrinsic knotting. For a case to work, every one of the subcases must result in a 

doubly-linked D4 minor, or else an entirely new set of casework must develop to 

accommodate the problematic pair of linkable cycles. 

G(10, 30) has been shown using Mathematica to be intrinsically knotted. 

However, a formal proof of this would follow much in the same way as the examples 

presented above. The subcase A1-B4 indicates that G(10, 15) 5 may not  be the  

best choice to pair with the K3,3,1. However, with this discussion a path has been 

laid for future attempts into showing the graph’s intrinsic knotting. The subgraphs 

presented here are given explicitly to aid in this endeavor. On the next page, Table 

1 presents the  twelve unique  G(10, 15) subgraphs, which o↵er the most promising 

start to the proof. This is largely due to each graph having only six pairs of linkable 

cycles, and so representing six individual cases. The goal of the proof should be to 

minimize the casework as much as possible. 
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Table 1. A list of unique G(10, 15) subgraphs of G(10, 30). 

Label 
G(10, 15) 1 

Edge List 
{1, 2} , {1, 4} , {1, 6} , {2, 3} , {2, 7} , {3, 5} , {3, 10} , {4, 9} , 

{4, 10} , {5, 6} , {5, 9} , {6, 8} , {7, 8} , {7, 9} , {8, 10} 
G(10, 15) 2 {1, 3} , {1, 4} , {1, 5} , {2, 4} , {2, 6} , {2, 10} , {3, 6} , {3, 7} , 

{4, 9} , {5, 8} , {5, 10} , {6, 8} , {7, 9} , {7, 10} , {8, 9} 
G(10, 15) 3 {1, 2} , {1, 4} , {1, 5} , {2, 7} , {2, 10} , {3, 5} , {3, 6} , {3, 10} , 

{4, 6} , {4, 9} , {5, 8} , {6, 7} , {7, 8} , {8, 9} , {9, 10} 
G(10, 15) 4 {1, 2} , {1, 3} , {1, 5} , {2, 4} , {2, 7} , {3, 6} , {3, 10} , {4, 6} , 

{4, 9} , {5, 8} , {5, 9} , {6, 8} , {7, 8} , {7, 10} , {9, 10} 
G(10, 15) 5 {1, 2} , {1, 3} , {1, 5} , {2, 4} , {2, 6} , {3, 7} , {3, 10} , {4, 9} 

{4, 10} , {5, 8} , {5, 9} , {6, 7} , {6, 8} , {7, 9} , {8, 10} 
G(10, 15) 6 {1, 2} , {1, 3} , {1, 4} , {2, 6} , {2, 7} , {3, 5} , {3, 10} , {4, 8} , 

{4, 9} , {5, 6} , {5, 9} , {6, 8} , {7, 9} , {7, 10} , {8, 10} 
G(10, 15) 7 {1, 3} , {1, 4} , {1, 6} , {2, 6} , {2, 7} , {2, 10} , {3, 5} , {3, 7} 

{4, 9} , {4, 10} , {5, 8} , {5, 10} , {6, 8} , {7, 9} , {8, 9} 
G(10, 15) 8 {1, 2} , {1, 4} , {1, 5} , {2, 7} , {2, 10} , {3, 5} , {3, 6} , {3, 10} 

{4, 6} , {4, 8} , {5, 9} , {6, 7} , {7, 9} , {8, 9} , {9, 10} 
G(10, 15) 9 {1, 2} , {1, 5} , {1, 6} , {2, 3} , {2, 4} , {3, 7} , {3, 10} , {4, 8} 

{4, 9} , {5, 9} , {5, 10} , {6, 7} , {6, 8} , {7, 9} , {8, 10} 
G(10, 15) 10 {1, 2} , {1, 4} , {1, 5} , {2, 3} , {2, 7} , {3, 6} , {3, 10} , {4, 8} 

{4, 10} , {5, 6} , {5, 9} , {6, 8} , {7, 8} , {7, 9} , {9, 10} 
G(10, 15) 11 {1, 3} , {1, 4} , {1, 5} , {2, 3} , {2, 6} , {2, 10} , {3, 7} , {4, 8} 

{4, 10} , {5, 6} , {5, 9} , {6, 8} , {7, 8} , {7, 9} , {9, 10} 
G(10, 15) 12 {1, 2} , {1, 3} , {1, 4} , {2, 6} , {2, 10} , {3, 5} , {3, 7} , {4, 8} 

{4, 9} , {5, 8} , {5, 10} , {6, 7} , {6, 8} , {7, 9} , {9, 10} 
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CHAPTER IV 

PROOF THAT G(10, 30) IS MINOR MINIMAL WITH RESPECT TO 

INTRINSIC KNOTTING 

We now come to the second component of the research–demonstrating that 

no minor of G(10, 30) is intrinsically knotted. Recall that a minor of a graph is a 

graph formed by the deletion or contraction of an edge or edges of the original 

graph. It should be noted that a minor of a minor is a minor of the original graph; 

thus, we may concern ourselves only with the “first generation” of minors–those 

generated by deleting or contracting each individual edge in G(10, 30). By showing 

that these first-generation minors are not intrinsically knotted, we will show that all 

subsequent minors in general are not intrinsically knotted. 

The first step in this process is to test if each deletion and contraction minor 

is 2-apex. By Theorem 1, this is su#cient to show that the minor is knotlessly 

embeddable. In Table 2, we have listed all thirty edges of G(10, 30), as well as the 

results of testing each corresponding deletion or contraction minor for being 2-apex. 

The values in the “Deletion” and “Contraction” columns correspond to the vertices 

which, when deleted from the appropriate minor, result in a planar graph. Thus, we 

find that every single-edge contraction and most of the single-edge deletion minors 

are 2-apex, and so knotlessly embeddable [2]. Let us consider an example. 

Take the edge {1, 2} . By deleting this edge, we obtain the graph 

G(10, 30) {1, 2}, a  minor of  G(10, 30), as depicted on the left in Figure 21. If we 

then delete the vertices 4 and 7, we will also delete the twelve edges that are 
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Table 2. Analysis of the single-edge deletion/contraction minors of G(10, 30). 

Edges Deletion Contraction Y Triangle Vertices Figure 
{1, 2} 4,7 5,7 - - Figure 21 
{1, 3} 5,7 4,7 - -
{1, 4} 5,7 7,10 - -
{1, 5} 4,7 7,10 - -
{1, 6} 7,10 4,7 - -
{2, 3} 7,10 4,5 - -
{2, 4} 7,10 5,7 - -
{2, 6} 5,7 4,5 - -
{2, 7} 4,5 4,5 - -
{2, 10} 4,5 4,5 - -
{3, 5} 7,10 4,7 - -
{3, 6} 4,7 4,5 - -
{3, 7} 4,5 4,5 - -
{3, 10} 4,5 4,5 - -
{4, 6} * 5,7 (5,6,8) v, 7 Figure 22, 23 
{4, 8} 6,7 1,7 - -
{4, 9} 1,7 2,4 - -
{4, 10} * 1,7 (2,3,10) v, 7 
{5, 6} * 4,7 (4,6,8) v, 7 
{5, 8} 6,7 1,7 - -
{5, 9} 1,7 2,5 - -
{5, 10} * 1,7 (2,3,10) v, 7 
{6, 7} * 4,5 (2,3,7) v, 10 
{6, 8} 6,8 6,7 - -
{7, 8} 7,8 1, 7 - -
{7, 9} 2,4 1,7 - -
{7, 10} * 1,7 * * Figure 24 
{8, 9} * 1,7 (2,3,10) v, 7 
{8, 10} 1,7 6,7 - -
{9, 10} 6,7 1,7 - -

incident to 4 and 7: 

{1, 4} , {2, 4} , {4, 6} , {4, 8} , {4, 9} , {4, 10} , {2, 7} , {3, 7} , {6, 7} , {7, 8} , {7, 9} , and 

{7, 10} . With these twelve edges removed, the resulting minor of G(10, 30) {1, 2} 

(and by extension G(10, 30)) can be depicted as a planar graph. One embedding of 

this minor is given in Figure 21 on the right. Note the absence of edge crossings. 
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Thus, by Theorem 1 on page 18, we may conclude that the minor G(10, 30) {1, 2} 

is knotlessly embeddable. 

Figure 21. The case of G(10, 30) {1, 2} . The minor produced by deleting the edge 
{1, 2} is shown on the left. By deleting the vertices 4 and 7, and so all relevant edges, 
we obtain the planar graph on the right. 

However, we find that seven of the thirty deletion minors are not 2-apex: 

{4, 6} , {4, 10} , {5, 6} , {5, 10} , {6, 7} , {7, 10} , {8, 9} . For these cases, a closer 

analysis is required. By Theorem 2 on page 18, we know that applying a Y 

transformation on a graph will preserve intrinsic linking and knotting. For the seven 

cases, we deleted the necessary edge, and identified all triangles in the resulting 

graph. We then manually applied a Y transformation on each triangle, until a 

cousin graph was identified as being 2-apex. Thus, by Theorem 2, the original 

minor must also be knotlessly embeddable. The results of this analysis are described 

in the “ Y Triangles” and “Vertices” columns of Table 2. The 3-cycle stated in 

the column is the triangle in the corresponding minor which underwent a single 

Y transformation to produce a cousin graph, and the vertices given are those 
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that, when deleted give a planar minor of that cousin. Let us consider an example 

of this process. 

Figure 22. The case of G(10, 30) {4, 6} . We have identified the triangle (5, 6, 8), 
given in green. Applying a Y transformation on (5, 6, 8) gives the cousin on the 
right, which we call H. 

Consider the edge {4, 6} . We have found that the minor G(10, 30) {4, 6} is 

not 2-apex. By manually applying a single Y transformation to each triangle in 

G(10, 30) {4, 6} , we have found a cousin, H, of  G(10, 30) {4, 6} which is 2-apex. 

This is the graph obtained by a Y transformation on the triangle (5, 6, 8). We 

delete the edges {5, 6} , {5, 8} and {6, 8} in G(10, 30) {4, 6}, and  replace  them  

with the edges {5, v} , {6, v}, and  {v, 8}–incident to a new vertex v. Both  

G(10, 30) {4, 6} and H are show in Figure 22. The graph H is 2-apex, producing 

a planar  graph  H 0 after the deletion of v and 7, shown in Figure 23. Therefore H 

cannot be intrinsically knotted by Theorem 1, and by extension G(10, 30) is not 

intrinsically knotted by Theorem 2. 

Even after applying this process, there still remains a single case which is 

unresolved–the minor associated with the deletion of the edge {7, 10} . A single  
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Figure 23. A planar embedding of H 0 
. 

Y transformation was applied to every triangle in the deletion minor 

G(10, 30) {7, 10} ; none of this minor’s children were found to be 2-apex. As such, 

we simply identified a knotless embedding of the minor–a counterexample to the 

claim that G(10, 30) {7, 10} is intrinsically knotted. This knotless embedding was 

found by deleting the vertices 4 and 7 from the minor, as well as the edge {1, 2} to 

yield a planar graph. We drew underneath this planar graph (meaning behind the 

plane of the graph) the edge {1, 2}, which would cross underneath any of  the edges  

in the planar subgraph. After this, the vertex 7 and all relevant edges (all edges 

incident to 7 in the original graph with the exception of {7, 10}) were  drawn further  

behind the subgraph, with the edges incident to 7 crossing underneath the planar 

graphs edges. Finally, we applied the same process to 4, drawing all of the edges 

incident to 4 underneath the preexisting edges. The result of this process is given in 

Figure 24. 

35 



�Figure 24. A knotless embedding of G(10, 30) {7, 10} . 

Thus, every minor of G(10, 30) has been found to be knotlessly embeddable, 

and G(10, 30) is minor-minimal with respect to the property of intrinsic knotting. 
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CHAPTER V 

CONCLUSION 

From the work demonstrated in Chapters III and IV, we find that a firm 

foundation has been laid for a formal proof of the minor-minimal intrinsic knotting 

of G(10, 30). While G(10, 30) has not been shown to be intrinsically knotted in this 

thesis, a large number of tools are o↵ered for the completion of that specific result; 

this includes some new results in addition to the pre-existing theorems presented in 

Chapter II. In particular, all twenty-four G(10,15) subgraphs of G(10, 30) have been 

identified, which alone presents us with a large bank of subgraphs from which we 

can develop the casework for the proof. Several examples have been drawn up to 

demonstrate the general technique, and in the case of A1-B4 an example is given of 

the kind of situations which must be avoided for the proof to hold. Furthermore, 

with the work done in Chapter IV we have e↵ectively completed half of the proof by 

showing that G(10, 30) has no intrinsically knotted minors. 

Considering the results presented in this thesis, the next logical step forward 

is to finish the proof outlined in Chapter III. We believe that we have su#cient tools 

to tackle this problem, and it is only a matter of time before the full proof can be 

provided. 
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