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A gap of knowledge lies within the hazard of extreme heat within the United States and 

the public’s response and perception of their own vulnerability. Even with constant 

communication from meteorologist at the National Weather Service and within the broadcast 

industry, there are still ongoing issues which include the possibility that ambient air temperature 

from fixed sites do not accurately reflect what the general population is experiencing, that the 

thresholds for excessive heat warnings are not appropriate, and that the most vulnerable 

individuals do not have the knowledge, and/or ability to protect themselves when extreme heat 

does occur. Assessment of the spatial pattens of heat alerts across the United States, mortality 

risks associated with extreme heat, and days above alert thresholds between 2010 to 2021 will be 

utilized to exhibit cities and regions where thresholds could be inappropriate and to reveal the 

most vulnerable between regions within this period.
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

In the Unites States, there have been more deaths traced back to heat than to any other 

weather phenomenon over the past 30 years (National Weather Service, 2021). However, there is 

a gap in knowledge of the danger and health impacts of heat and the population’s perception and 

response to it. National Weather Service forecasters, broadcasters, emergency managers, and 

health officials are constantly pressing information out to the public when warnings do occur 

within their specific viewing areas. Communication is evolving with stronger warning language 

and sense of urgency, but additional issues include the possibility that the thresholds for 

excessive heat warnings are not appropriate, that ambient air temperature from fixed sites do not 

accurately reflect what the general population is experiencing, and that the most vulnerable 

individuals do not have the knowledge, resources, and/or ability to protect themselves from 

extreme heat. By looking at the frequencies of heat advisories and warnings in different regions 

across the U.S. and comparing them to the frequencies of heat-related deaths and extreme heat 

index values, the effectiveness of heat alerts can be assessed. 

Heat advisories, watches, and warnings provided by National Weather Service (NWS) 

Weather Forecast Offices (WFOs) are not only issued in response to daytime high temperatures 

and humidity. Multiple factors like the time of year, power outages, dry heat, large outdoor 

gatherings, and nighttime temperatures are also considered (Hawkins et al., 2017). As a result, it 

is imperative that forecasters understand the intricacies of not just the weather but also the 



 

2 

county warning area. Since these factors vary from one region to the next, the criteria required to 

officially issue a warning or advisory should be flexible. Through the Hazards Simplification 

Project, the NWS has adjusted its approach to clearly and effectively informing the public, 

including allowing individual WFOs to set their own criteria for heat warnings and watches 

(Hawkins et al., 2017). Indeed, each WFO has the jurisdiction to assign their own heat alert 

criteria to better account for local variations in weather conditions and population vulnerability. 

The local criteria can also be modified. For example, WFOs in the New England region lowered 

their heat advisory criteria in 2017 in response to a study conducted by the Northeast Regional 

Heat Collaborative, which found that the heat index thresholds used did not capture most of the 

heat-related emergency department visits and deaths in the region. They found that lower 

thresholds were needed to account for the relative lack of physiological adaptation and 

inadequate infrastructure to mitigate the effects of extreme heat (NWS, 2017). Ultimately, these 

WFOs changed their heat advisory criteria from a heat index of 95ºF to 99 °F for 2 consecutive 

days or 100ºF to 104ºF for any duration, to a heat index of 95ºF to 104ºF for 2 or more 

consecutive hours.  

Most of the Unties States currently still uses maximum daytime air temperature and heat 

index for their criteria thresholds, along with the additional factors previously mentioned, but the 

western half of the country has taken a shift into a new forecasting tool called ‘Heat Risk’. This 

prototype forecasting procedure uses colors and numbers to identify the corresponding level of 

heat risk. It also pinpoints groups who could have a higher risk within the specific levels. 

Significance above normal temperature, time of year, duration of heat event, and if temperatures 

are at levels that elevate the risk of heat illness are all considered to produce levels/categories 

(NWS HeatRisk Prototype; ‘Overview’, ‘What’s In HeatRisk?). HeatRisk began in 2013 with the 
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California Office of Emergency Services collaborating with the NWS’s western regional 

headquarters about producing a different heat alert tool. Because of the mountainous terrain, 

valleys and coastal area of California, advisory and warning thresholds across the state were not 

consistent. By using the ‘HeatRisk’ prototype, one tool could be used for the entire state. The 

tool has been available since 2014 to the Western United States. The usage continues to increase 

to other surrounding areas of the western part of the Unites States. Much of the state of Colorado 

now obtains heat alerts issued with this tool which began in 2019 when the NWS WFO in 

Boulder, Grand Junction and Pueblo all decided to adopt it (Hawryluk, 2022). The ‘HeatRisk’ 

tool is expected to expand its usage and availability nationally within 2023 (NWS HeatRisk 

Prototype; ‘Overview’). 

While accurate forecasts are important, the public must also understand how to use this 

information to mitigate adverse health effects. Resources are available through the Centers for 

Disease Control and Prevention and the National Oceanographic and Atmospheric 

Administration that include guidance on heat mitigation strategies such as avoiding alcohol, 

wearing lightweight clothing, and drinking regularly even when not thirsty (Hajat et al., 2010). 

Heat-related health effects are entirely preventable if accurate and timely forecasts and 

appropriate resources reach vulnerable individuals. Through the Hazards Simplification Project, 

the NWS has adjusted its approach to clearly and effectively informing the public, including 

allowing individual WFOs to set their own criteria for heat warnings and watches (Hawkins et 

al., 2017). Risk perception naturally changes in the summer months, with some people believing 

they are more prepared and immune, which then leads to ignoring and not acting in response to 

heat warnings (Sheridan, 2010). Within heat warning systems (HWS), guidance on effective 

communication is not always straightforward, and each WFO must communicate in ways that 
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target their geographical region and motivate individuals to change behaviors (Toloo et al., 

2013). 

The issuance of heat warnings, watches or advisories can be in response to heat waves. 

Heat waves are weather events associated with temperature extremes that often lead to 

significant public health and socioeconomic impacts (Robinson, 2001). There are no formal 

criteria for defining a heat wave, though most studies and organizations use relative or absolute 

temperature thresholds over a specific period. Likewise with heat watches and warnings, the 

NWS has national standards but enables individual offices to produce unique thresholds based on 

local variability and climate (Robinson, 2001). Excess mortality resulting from heat waves can 

be substantial.  In August of 2003, much of Europe experienced nine consecutive days with 

maximum temperatures 11 to 12º F higher than the seasonal average. In France alone, this heat 

wave resulted in 14,729 excess deaths, which corresponds to an excess mortality of 55% 

(Fouillet et al., 2006). In the United States, one of the most historic heat waves occurred across 

the Midwest region in July 1995, which claimed at least 700 excess deaths in the city of Chicago 

(Semenza et al., 1996).  

The impacts from heat waves are generally related to their intensity and duration. For 

example, Anderson and Bell (2011) found that for every 1ºF increase in heat wave intensity, 

mortality increased by 2.49%. Mortality also increased by 0.38% for every 1-day increase in heat 

wave duration. In terms of heat-related morbidity, Abasilim and Friedman (2021) found that 

cases of heat stroke in Illinois between 2013 and 2019 were four times higher during heat waves 

compared to non-heat wave days. It is expected that heat waves will become more frequent and 

longer lasting in the future, resulting in even greater excess mortality unless adaptation and 

mitigation strategies are implemented (Habeeb et al., 2015). The success of these strategies will 
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be due in large part to the effectiveness of heat forecasts and warnings and the ability to 

communicate this information to vulnerable populations.  

Understanding the geographical variation in public perception of heat risks is critical to 

assess ways to increase public awareness during dangerous heat waves. Though some may 

perceive the South as a region of lower awareness of heat risk due to an already warm climate 

(“we’re used to it”), a study by Howe et al. (2019) found that the southern U.S. actually has the 

highest heat risk perception, meaning individuals in this region believe they are likely to 

experience a heat wave, that the heat wave would affect them, their family and community, and 

worry about the negative effects it would bring. Beyond a person’s location, other factors such as 

age and race can affect one’s vulnerability and perception of heat waves. For example, Howe et 

al. (2019) found that communities with citizens over 65 years old exhibited lower heat-risk 

perception despite being one of the more vulnerable populations. In contrast, populations with 

higher African American, Hispanic, and Latino citizens tend to have a higher heat-risk 

perception (Howe et al., 2019). Social indices, indicating higher or lower vulnerability levels, 

can be combined with climate indices to indicate areas where heat mitigation strategies and 

resources should be targeted. Such information could be incorporated into projections of both 

population and heat wave characteristics to assess future public health risks from extreme heat. 

Such a study was conducted in Quebec, Canada and found increased risk from extreme heat 

resulting from future changes in demographics and heat waves (Vescovi, 2005).  

Past studies have documented an apparent disconnect between the awareness of the heat 

hazard, perception of risk, and resulting behavioral modification. Sheridan (2006) surveyed 

residents in four cities in North America and found that most respondents were aware of a heat 

wave taking place but did not perceive themselves to be vulnerable and therefore did not make 
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any behavioral adjustments. Moreover, the public struggled to differentiate between a formal 

heat warning and a common understanding that it would simply be “hot outside.” And, while 

they showed awareness of the need to stay hydrated and/or stay inside, they showed little 

awareness of the risk associated with overexertion. It was recommended that the local media 

receive additional training on the heat hazard to increase awareness of the factors that make 

people vulnerable, including poverty, lack of education, excessive outdoor labor (Sheridan 

2006).  

Variations in perception to heat may also be reflected in the patterns of heat-related 

mortality over time. In recent decades, there has been a general decline in heat-related mortality 

in the U.S., which is likely due to the increase of higher education, evolution of heat warning 

systems, and the ubiquity of air conditioning (AC) (Sheridan et al. 2021). An examination of four 

U.S. cities (Chicago, Detroit, Minneapolis, and Pittsburgh) from 1980-1985 found that the rate of 

heat-related mortality was 42% lower among individuals with a central AC unit compared to 

those without one (O’Neill et al., 2014). Lack of AC is an important contributor to heat-related 

health effects and was also recognized during the 1995 heat wave in Chicago. Many of those 

who died had medical conditions and were socially isolated and did not have access to AC 

(Semenza et al., 1996). Mobility, affordability of electricity, social contracts, and personal 

security all impacted whether people in Chicago had the means to cool their home, whether 

through AC or opening windows to improve air flow (Klinenberg, 2015). When considering 

external factors that affect vulnerability, such as social or environmental vulnerability, social 

isolation, being elderly and/or being diabetic, the lack of AC exhibits the greatest spatial 

variation across the U.S. Also, regions with the highest AC prevalence tended to have the lowest 

vulnerability values (Reid et al., 2009).  
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While many parts of the U.S. have exhibited a decline in heat-related mortality over time, 

there are some locations where the decline has been slower or even reversed (Sheridan et al., 

2021). Historically, the Northeast and Northwest regions have experienced the greatest 

proportion of heat-related deaths in the U.S. However, over the last few decades, where heat-

related deaths have been proportionally higher in the Southeast (Bobb et al. 2014). These 

patterns suggest that gaps remain in our understanding of public awareness, perception, and 

adaptive capacity. 

Urban populations are particularly vulnerable to heat due in large part to the urban heat 

island (UHI), which is defined by the occurrence of higher temperatures in cities compared to 

surrounding rural areas. This occurs due to the lower albedo of urban materials, which absorb 

more incoming solar radiation, and their higher heat capacity, which slows the rate at which they 

emit this energy. Tall buildings can also prevent the escape of radiation, particularly at night 

when the UHI is most pronounced. In addition, the lack of vegetation and water relative to 

surrounding rural areas results in more solar radiation being used to heat the urban surface, 

resulting in greater daytime warming (Santamouris, 2001). Reducing the UHI by increasing the 

amount of vegetation (“urban greening”) and incorporating cooling design strategies should 

improve thermal comfort and air quality in cities and help reduce vulnerability to extreme heat 

(Kleerekoper et al., 2012).  

In a warming climate, the likelihood of experiencing extreme heat is expected to increase, 

but the amount of increase (relative to climatologically normal conditions) and the impacts on 

human health will vary geographically. To assess future impacts, changes in climate and 

population characteristics, including acclimatization (Howe et al. 2019), will both have to be 

taken into consideration. When these factors are combined, the Northeast and East Coast are 
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projected to experience the greatest impacts and vulnerability to extreme heat (Jones et al., 2015; 

Howe et al. 2019). Additional resources will be needed in these areas to improve public 

knowledge and perception through reliable heat warning systems (Abasilim & Friedman, 2021). 

To reduce risk from extreme heat, such systems should help fill the gaps in knowledge of the 

danger of heat (i.e. perception), its impact on human health (i.e. vulnerability), and increasing 

frequency of extreme heat (i.e. exposure) (Howe et el., 2019). These systems should also account 

for changes in risk, even among populations that may already have greater awareness, 

perception, and acclimatization to extreme heat. One example is in the Southeast U.S., where 

extreme heat is more common and perception to heat is higher than in the Northeast U.S. But just 

because communities in the Southeast are more accustomed to extreme heat does not mean they 

will not be impacted in the future. The frequency of warm nights in the region, where 

temperatures do not drop below 75ºF, has doubled over the past half century. Not only does this 

affect the comfort and health of people, but it also negatively affects agriculture and other socio-

economic systems (USGCRP 2018). 

Though extreme heat has become more frequent, the U.S. population seems to be 

adapting, as reflected in the general decline in heat-related mortality over the past several 

decades. Therefore, projected increases in mortality and other impacts associated with extreme 

heat in the future imply that climate change is not the sole factor. Instead, a combination of 

factors related to population characteristics (e.g. a large elderly population), hazard 

communication (e.g. heat warnings), risk perception (e.g. behavioral changes), and adaptive 

capacity (e.g. heat mitigation plans), in addition to climate change, are driving current 

projections of future risk from extreme heat (Hondula et al., 2015). 
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Assessing risk to extreme heat has traditionally been done at the scale of populations and 

across relatively broad geographic areas. More recently, advancements in sensor technology 

have allowed researchers to examine various elements of risk (e.g. exposure, vulnerability, 

perception) at the individual level. Taken together, these elements can be used to evaluate an 

individual’s thermal comfort, which is a measure of their experience and level of satisfaction 

with their surrounding thermal environment. Because thermal comfort is assessed at the 

individual level, it exhibits considerable variability in space and time, as well as from one 

individual to the next. As a result, there is no universal metric for thermal comfort, as it depends 

on highly variable and dynamic factors such as clothing, activity, posture, and location 

(Djongyang et al., 2010). Strategies to improve thermal comfort at the individual (e.g. 

pedestrian) level include increased green space and shade availability (Taleghani, 2018).  

Unfortunately, most heat mitigation strategies and warning systems are unable to 

adequately account for individual-level variations in thermal comfort. Instead, measures of heat 

risk that account for exposure, vulnerability, and adaptive capacity are found at much broader 

spatial (and sometimes temporal) scales. This “mis-match” in scales between individual-level 

heat risk and operational heat warning systems can manifest in different ways. One of the more 

notable examples is the misclassification of heat exposure, which can occur when individual 

exposure is assumed to be the same as the ambient air temperature obtained from weather 

stations at fixed sites, such as airports (Lee et al., 2016). Personal heat exposure varies from 

person to person and from location to location. The temperature and relative humidity at an 

airport located in a rural area next to a body of water will be very different than the same 

variables taken while walking through a populated area downtown. Variations in exposure to 

sunlight and shade also occur on scales that fixed site weather stations cannot adequately or 
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routinely resolve. In addition to measuring the ambient thermal environment, assessments of 

personal heat exposure must also account for behavioral and social factors, as well as aspects of 

the built environment (see Figure 1 in Kuras et al., 2017). 

Exposure misclassification creates challenges for heat-health studies, such as identifying 

meteorological thresholds associated with excess mortality and morbidity. The only record of 

weather data is from a fixed site, but because most individuals are not near that site or in similar 

conditions, such as shading, topography etc., the specific weather variables that are assessed 

could be much different. Another challenge is with outdoor activities involving athletic events 

and outdoor occupations. In addition to the severity and duration of exposure, the level of 

exertion and other human energy budget components contribute to an individual’s thermal 

comfort, which is not accurately captured by most operational heat metrics. Within competitions, 

hot outdoor conditions can heavily influence performance and even lead to injury (Ji et al., 

2022). The question remains whether the fixed site weather station observations accurately 

represent conditions at the individual level. One of the solutions to this issue is utilizing 

temperature data from satellites to see more accurate effects that lead to morality (Lee et al., 

2016). 

Heat mitigation strategies go beyond the construction and planning of outdoor spaces. 

Athletes who exercise and/or perform in the heat also must be cautious and have alternate plans. 

The rapid rise of body core temperature due to increased metabolic heat production commonly 

results in decreased performance and exercise capacity. Aerobic fitness, pre-exercise cooling and 

fluid ingestion are the most effective heat mitigation strategies for athletes who plan to 

participate in competitions in warmer climates or seasons (Alhadad, 2019).  
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The primary method of communicating the risk of extreme heat in the U.S. is through 

heat alerts issued by the NWS, namely Heat Advisories and Excessive Heat Warnings. Sheridan 

(2007) found that communication of heat alerts resulted in greater risk perception, though it was 

not clear from the surveys whether the alerts themselves were effective at altering behaviors or 

taking adaptive action. More recent studies have found that heat warnings as a communication 

tool can not only increase risk perception but encourage adaptive behavior (Hass et al. 2021). 

Therefore, this thesis project will explore the spatial and temporal patterns of NWS Heat 

Advisories and Excessive Heat Warnings (referred to collectively as heat alerts) across the 

contiguous U.S., as well as examine how these patterns relate to the observed frequency of 

extreme heat index values, and the frequency of heat-related deaths. The results of this work will 

provide insight into the efficacy of current NWS heat alert products in different parts of the 

country. 
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CHAPTER II 

DATA AND METHODS 

Archived heat alert products issued by the NWS (i.e. Heat Advisories and Excessive Heat 

Warnings) from 2010 through 2021 were retrieved from the Iowa Environmental Mesonet (IEM; 

Iowa State University, 2001). This period was chosen because it overlaps with available 

mortality data retrieved from Sheridan et al which was examined from 2010 to 2018. The NWS 

also issues Excessive Heat Watches; however. these products were not examined as they are 

issued in advance of a warning (typically 24 to 72 hours) and would result in an exaggerated 

count of heat alerts. Heat alert products for each calendar year are contained within zipped 

folders on the IEM website. Within these folders are shapefiles that contain information for all 

products (i.e., tornado warnings and watches, severe thunderstorm warnings and watches, flood 

watches and warning, etc.) issued by each NWS forecast office for that year, including the date 

and time the product was issued and expired, as well as the area it covers. All shapefiles from 

2010 to 2021 that contained all alerts by the NWS were imported into ArcGIS where the attribute 

table was opened. This table contains all individual alerts and their supplement data (i.e., when 

alerts were issued, or expired, what office issued the alert, the computed area of the event, etc.) 

associated with the files used in this study. The “select by attribute” tool was used to retrieve all 

heat advisories and excessive heat warnings issued by all NWS forecast offices in the contiguous 

U.S. for the years 2010 through 2021 (Figure 2.1). These alerts were listed under the ‘PHENOM’ 

column, which lists 2-character identification given by the NWS of the Valid Time Event Code 
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(VTEC) type. The mesonet has a list containing all 2-character identifiers and their respected 

event linked within their ‘Frequently Asked Questions’ (FAQ) page. Excessive heat warnings are 

listed as ‘EH’ and heat advisories as ‘HT’.  

 

Figure 1.1 Select by Attribute tool displayed within GIS. 

 

After heat alerts were separated from the original dataset, and then converted into two 

datasets, one for advisory and one for warning, the datasets were converted to specific points, 

implementing the ‘feature to points’ tool (Figure 2.2). The tool produced the points by utilizing 

the central point of the input feature given. It this case the input features were shapefiles that 

contained all warning or advisories between 2010 to 2021 placed on the map based on their 

‘area_KM2’ column, which is the IEM’s computed area for the event. The IEM generates 

computed areas by an ArcGIS geoprocessing tool named ‘Albers’, which is commonly and best 
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used for land masses that extend east to west in the midlatitudes (Albers; ArcGIS Pro). By 

changing the shapefiles to dots placed on top of a U.S. County map, a count of heat alerts by 

county could be acquired (Figure 2.3) 

 

Figure 2.1 Feature To Point tool displayed within GIS. 

 

Figure 2.2 Each heat alert product within respected county.  
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The years were then merged creating one dataset for warnings and another for advisories. 

The ‘spatial join’ feature was then used to join the points to the map of counties for the 

contiguous U.S. and to create a count of heat alerts based on the counties (Figure 2.4). 

 

Figure 2.3 Spatial Join feature displayed within GIS.  

 

Matching rows of the ‘Join Features’, which are the heat alerts, to the ‘Target Field’, the 

counties, based on their spatial locations allowed for a ‘join count’ column. Located within the 

datasets, this column indicates how many points fell within that county. Using this same column, 

the spatial patterns were able to be made visible (Figure 2.5). 
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Figure 2.4 Layer properties tab displayed within GIS. 

 

The previous steps were then used to joins the points to the National Weather Service 

public forecast zones (Figure 2.6). The majority of forecast zones align with the counties, but 

certain regions have relatively larger counties, mainly the Western U.S., and diverse topography.  

To make their alerts accurate in terms of issuing alerts to precise locations and populations who 

will be impacted, these regions have counties that are dispersed into numerous zones. Spatial 

patterns in the frequency of heat alerts were illustrated by summing the annual counts of alerts by 

type across the entire study period and mapping them at the county and forecast zone levels. 

Furthermore, a flow chart was made to convey this process within GIS, see figure 2.7 below.  
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Figure 2.5 Each heat alert product within respected zone.  

 

Figure 2.6 Flow chart communicating the process of displaying heat alert frequency with GIS.  

Heat Alert Frequency displayed within GIS

Frequency of heat advisory, warning, and total heat alerts on county and zone level were assessed

Column was used to show spatial patterns by changing the color scale (‘Symbology Tab’) 

‘Join Count’ column indicated how many point fell within the county  

Points were joined based on spatial locations to the counties created a ‘Join Count’ column (‘Spatial Join’)

Years were merged based on specific heat alert (i.e., advisory or warning)

Each alert was placed within the center of the county it fell within  (‘Feature to Points’) 

Heat advisories and warnings were placed in individual datasets by year and alert type (‘Select by Attribute’)

Archived heat alert products from 2010 to 2021were pulled from the IEM into GIS
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To determine how the patterns of heat alert products relate to the frequency of heat-

related deaths, mortality estimates for 107 metropolitan areas (cities) in the contiguous U.S. from 

2010 to 2018 were obtained from Sheridan et al. (2021) (Figure 2.8). Each city had a population 

of at least 500,000 based on data from the 2018 U.S. Census. The estimated heat-related 

mortality for each city was calculated from death records across all counties within the city’s 

Census-defined metropolitan statistical area (MSA). Mortality estimates in Sheridan et al. (2021) 

were provided for all genders and ages, as well as specific subsets. These include middle-aged 

(45-64) male, middle-aged female, elderly (65+) male, and elderly female. For purposes of this 

study in comparing mortality to heat alerts, all subsets were assessed. The heat-related mortality 

estimates were given as relative risk ratios, which represent the relative change in mortality on 

EHE (Extreme Heat Event) days compared to non-EHE days. EHE days were defined within 

Sheridan et al. as a day where the EHF (excess heat factor) exceeds the 85th percentile of all 

positive EHF values for the location over the climatological period. The EHF is an index based 

on a 3 day averaged daily mean apparent temperature (Nairn and Fawcett, 2015). To obtain this 

change, the relative risks of mortality were calculated on EHE days for each metropolitan area, 

each age and gender subset, and 9-year period they assessed. The risks were calculated in R 

using a distributed-lag nonlinear model to evaluate the change in mortality on EHE days relative 

to non EHE days. Because there is a delayed response concerning heat to mortality, the relative 

risks were assessed over a 10-day period following an EHE day (Sheridan et al., 2021). The 

selection of this metric was primarily due to the bounds being comparable to the frequency of 

heat alert products. All other metrics had bounds in which their lowest limit was below zero. 

Because each location’s heat frequency can never be negative, this metric’s limits coincided over 

the others given. While other city-level mortality estimates are available in the peer-reviewed 
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literature (e.g. Gasparrini et al. 2015), the Sheridan et al. estimates are used because 1) they 

overlap spatially and temporally with the NWS heat alert products examined and 2) are 

calculated from a relative upper-tail metric (95th percentile apparent temperature) that is better 

aligned with the local NWS thresholds.  

 

Figure 2.7 Figure I from Sheridan et al. 2021 indicating each MSA within their defined area.  

 

To assess how the frequency of heat alerts and heat-related mortality relate to the 

observed frequency of extreme heat index values, hourly air temperature and dew point 

temperature for each city over the full study period (2010-2021) were obtained from a 

representative weather station using the Applied Climate Information System (ACIS), a web-

based data management system maintained by NOAA’s Northeast Regional Climate Center 

(http://climod.nrcc.cornell.edu/climod/hourly/). If there were days with missing data of any kind 

(i.e., temperature, dewpoint, hour), those entire days were taken out of the dataset in R. By the 

http://climod.nrcc.cornell.edu/climod/hourly/
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removal of these days, it was certain that the maximum heat index of each day was assessed. 

With the remaining data, hourly heat index values were calculated from the air temperature and 

dew point observations using the “weathermetrics” package in R, which includes the equations 

that are used operationally by the NWS (Anderson et al. 2016). From each city’s hourly dataset, 

the maximum heat index value was obtained for each calendar day; these values were used to 

determine how many days met or exceeded the threshold at which a heat warning would be 

issued by the local NWS office. Specifically, the thresholds for Excessive Heat Warnings were 

obtained from Figure 3 from Hawkins et al. (2017). Warning criteria that were noted as “locally 

defined” in Hawkins et al. were determined by contacting those NWS offices to obtain their 

specific thresholds or obtained from regional NWS websites. Advisory criteria were obtained 

through the websites of each NWS office or regional headquarters (Appendix, Table 1).  The 

values were represented by 1, which were days over the threshold or 0, days below the threshold. 

The bootstrap method was then used obtain the mean frequency of days at or exceeding heat alert 

thresholds for each city. The dataset was bootstrapped in R and resampled 5000 times. The 

resample number is based on vector size, which was 3000 to 4200 per city, between 250 to 350 

per year after days with missing data were subtracted. Afterwards, confidence intervals were 

produced using the ‘boot.ci’ function. The mean frequency of the number of days above 

thresholds were then able to be observed using the 95 percent confidence intervals. The median 

values of each confidence interval for each city were pulled into an independent dataset to 

discern the correlation between the heat-related mortality estimates and counts of heat alerts 

previously described. This interval was pulled for all days above or equal to heat alert threshold 

criteria. 
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Regional mean number of days above advisory thresholds were able to be assessed based 

on the counts of days above or equal to their specific advisory level for city in that region. 

Regions used were defined by Sheridan et at. where the 107 cities were divided into 8 regions: 

Northeast, Midwest, Central, Southeast, South, Florida, West, and Pacific (Figure 2.8).  The 

aggregating of cities into regional clusters were determined by analyzing temporal variability 

with EHE days across the U.S. This allowed for grouping by the 107 metropolitan areas by 

known heat event experiences that haven taken place with the time period assessed (Sheridan et 

al., 2021). Once the values were calculated of day above or below specific thresholds, 1 being 

above and 0 being below, the counts above for each city within a region were added up using the 

‘sum’ function. After all were obtained, they were put into an independent dataset, using the ‘c’ 

function, and bootstrapped in R to be resampled 10,000 times. The resample number is based on 

vector size, which was between 22 to 6 cities per region. The result was the mean number of 

days above or equal to advisory thresholds for each region. 95 percent confidence intervals were 

then made using the ‘boot.ci’ function and each region was shown by independent boxplots, 

using the ‘boxplot’ function. This was done for each region that was previously explained, and 

defined by Sheridan et al. The null hypothesis would be that each of the cities have the same 

frequency of the number of days above their specific threshold and the alternative would be that 

the means would not be equal. 

Specific cities from a few regions of the U.S. were chosen based on results of their 

number of days above advisory thresholds in context with the 95 percent confidence intervals 

from their corresponding region, spatial patterns across the United States of heat alert products, 

and the relationship between heat related mortality and heat alert frequency for the 107 cities 

examined by Sheridan et al. (2021). These specific cities illustrated an off-diagonal relationship 
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between mortality and heat alerts, meaning they obtained a high number of heat alerts but a low 

amount of mortality or vice versa. Cities chosen also were also within the mean, upper, or lower 

bounds of their regional 95 percent confidence intervals. They were selected to examine their 

mean number of days from 2010 to 2021 above their specific advisory thresholds relative to 

other cities within their region. Once again, the days over or under the specific thresholds were 

calculated and then bootstrapped in R and resampled 5000 times. Confidence intervals were then 

produced. These cities were contrasted on a box and whisker plot to present confidence intervals 

of the frequency of the mean number of days above or equal to advisory thresholds between each 

city. In doing this, locations will be assessed based on the frequency of heat alerts relative to the 

climatological frequency of extreme heat days. The null hypothesis would be that each of the 

cities have the same mean frequency of days above their specific threshold and the alternative 

would be that the means would not be equal. 

By using Excel, each mortality subset estimates from the 107 cities evaluated were linked 

with their corresponding county counts of the total heat alert products, and mean frequency of 

the number of days that fell above or equal to heat alert criteria thresholds. After linked, 

Spearman rank correlations were conducted between the frequency of heat alert products, 

mortality, and frequency of days equal or greater than thresholds. The Spearman correlation was 

chosen over Pearson because the datasets are continuous and the relationship between them is 

non-linear. First, the rank of each city was found based on each group previously described by 

using the ‘RANK.AVG’ function. Then the Spearman rank correlation coefficient between the 

frequency of alerts and mortality, and the frequency of alerts and the number of days equal to or 

greater than alert thresholds were determined by using the ‘CORREL’ function and selecting the 

specific columns. These relationships were then plotted on a scatter diagram with heat related 
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mortality or mean number of days on the x axis and heat alert frequency on the y axis. This was 

done for all 107 metropolitan areas and by regions defined by Sheridan et al. The regional 

correlations were illustrated on bar graphs showing regional variations in the correlation of heat 

alerts and threshold counts with each mortality subset, as well as the regional correlations 

between alert frequency and threshold counts. While the correlation coefficients provide a 

general assessment of the strength and direction of the association between variables, the scatter 

plots allow for the identification of specific cities and regions that do not follow the general 

association. For example, there may be cities with a high frequency of heat alerts but low heat-

related mortality, or cities with a low frequency of heat alerts despite a high count of extreme 

heat days. These “off-diagonal” relationships may indicate more complex or nuanced 

associations between the issuance of heat alert products and resulting health effects.  
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CHAPTER III 

RESULTS 

During this study heat product frequency was first assessed on the county level (Figure 

3.1 and 3.2). Cities within certain states in the Southwest, like Arizona and California, who have 

sizeable counties began to show an inaccurate representation when comparing across the entirety 

of the U.S. In Figure 3.2, this region had an Excessive Heat Warning count for Maricopa County, 

Arizona, where Phoenix is located, over 700. It accumulated to that amount because their WFO 

does not issue heat alerts on the county level but by specific forecast zones. There are multiple 

forecast zones within the jurisdiction of Maricopa County, making heats alert products massively 

expand in size over only one day of extreme heat. In response, figures 3.3 and 3.4 were produced 

to show a more representative view of the frequency of heat alert products across all 48 states by 

utilizing NWS forecast zones. For a majority of the U.S. results were consistent across the 

county and zonal level but for the Southwest region this allowed for a better representation of 

heat products given during this time frame.  
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Figure 3.1 Heat Advisory frequency shown on the county level across the United States from 

2010 to 2021.  

 

Figure 3.2 Excessive Heat Warning frequency shown on the county level across the United 

States from 2010 to 2021.  
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Regions of the United States had diverse frequency between Excessive Heat Warnings 

and Advisories. An example being the West, specifically southern California, southern Nevada, 

and Arizona. Forecast zone 003 in Arizona, which contains a vast portion of Mohave County, 

had an Excessive Heat Warning count of 94 between 2010 to 2021 (Figure 3.4). While the 

advisory count was 0 (Figure 3.3). Numerous surrounding forecast zones had a similar outcome, 

while this specific one was the most extreme case. When speaking to a forecaster from the 

Phoenix WFO, the point was confirmed that the greater issuance of warnings was due to this 

criterion being exceeded more often. If WFOs are consistently reaching above the advisory 

criteria and into warning criteria, a solution would be to raise advisory and warning criteria into 

the necessary bounds that advisories would also be issued. By only issuing warnings, the public 

can become numb to the warning language and in turn does not take the necessary precautions.  

On the contrary, the rest of the United States, especially the Southeast and along the 

Carolinas and Georgia coastline, exhibited a higher frequency of advisories rather than warnings. 

Counties like Bolivar in Northwest Mississippi had over 100 advisories issued but had less than 

50 warnings in the same time period. Louisiana compared to surrounding states had a greater 

portion and consistency of advisories across the entirety of the state.  
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Figure 3.3 Heat Advisory frequency shown by NWS forecast zone across the United States 

from 2010 to 2021.  

 

Figure 3.4 Excessive Heat Warning frequency shown by NWS forecast zone across the 

United States from 2010 to 2021.  
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Two main ‘hot-spot’ regions of the United States are evidently pictured in Figures 3.5 to 

3.6 – The Mid-South (Arkansas, Louisiana, Mississippi, and Oklahoma) and the West (Southern 

California southern Nevada and Arizona). These two areas have the greatest number of warnings 

and advisories compared to the other regions of the United States. Eastern Oklahoma compared 

to its surrounding states had a greater number of heat alerts over the period assessed. This 

specific area also happens to be covered by a different WFO, Tulsa, than the rest of the state, 

Norman. Forecaster bias between the central to eastern portions of the state could explain this 

due to alerts coming from two different WFO but the reason for alerts dipping off into western 

Oklahoma is due to advisory criteria going up from 105ºF to 110ºF. Oklahoma remained with the 

general trend with the rest of the Mid-South, which was a higher frequency of Heat Advisories 

than Excessive Heat Warnings but again, obtained a higher count over the specific area 

especially when it came to warnings.  

 

Figure 3.5 Total Heat Alert Product frequency shown by counties across the United States 

from 2010 to 2021.  



 

29 

 

Figure 3.6 Total Heat Alert Product frequency shown by NWS forecast zone across the 

United States from 2010 to 2021.  

 

There are also regions that have relatively low to 0 alerts, including portions of the 

Appalachian Mountains, intermountain west, and the state of Florida.  For the mountainous 

areas, they experience cooler temperatures than the areas around them which in turn causes them 

to see less alerts. The state of Florida, even with the higher temperatures within the summer 

months and higher average temperature overall, has lower amounts of total alerts in comparison 

to other Southern and Southeastern states. This is due to the state having higher thresholds in 

comparison to other parts of the county, with the advisory thresholds being 108ºF and the 

warning being 113ºF. Higher thresholds within Florida are in part due to the prevailing climate 

but could also be connected to lower risk perception due to acclimatization. Floridian cities 

compared to overall 107 cities studied had the highest alert thresholds for the state as a whole. 

Specific location within different states like McAllen, Texas, located on the southern tip of 
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Texas, and Augusta Georgia, on the western edge of Georgia, had the highest individual advisory 

thresholds being 110ºF and warning up to 115ºF.  

Mean number of days above or equal to advisory thresholds were evaluated by the 8 

regions (Figure 2.8 & Figure 3.7). Multiple regions median fell within another’s interval 

meaning that they are statically similar, including the Northeast and Southeast, Central and 

South, South and West, and the Midwest and Southeast. Central, South, and West regions had 

the highest mean number of days above or equal to their specific thresholds. The central region 

had the highest median, with 115.2 days equal or above the advisory threshold. This stays on 

trend with total heat alerts issued with the same regions also experiencing the highest amount of 

product frequency (Figure 3.5 & 3.6). Pacific had the lowest with a mean of only 3.  

 

Figure 3.7 Confidence intervals for the total number of days above or equal to advisory 

criteria between 2010 to 2021 clustered by regions define by Sheridan et al. (2021) 
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6 cities from each region were pulled to compare frequencies above or equal to advisory 

thresholds. Cities were chosen that had the highest and lowest counts and cities that approached 

closer to the median value within their specific region. By evaluating frequencies, further 

conclusions could be made for the particular rank of each region. Within the Northeast only two 

cities had medians that fell within each other’s intervals, Hartford Connecticut, and Lancaster, 

Pennsylvania (Figure 3.8). We can’t reject the null hypothesis within these 2 cities that their 

mean frequencies are equal and that this result is statistically significant, meaning it is unlikely 

due to mere chance. The additional 4 cities’ frequencies were all higher than the 2 previously 

mentioned. Poughkeepsie, New York and Worchester, Massachusetts had the highest 

frequencies. Poughkeepsie’s higher placement within these 6 cities could in part be due to have a 

lower threshold, 95ºF for advisory and 105ºF for waning. Albany, New York also obtains these 

same thresholds.  

 

Figure 3.8 Confidence intervals for the frequency of days above or equal to advisory criteria 

between 2010 to 2021 for certain Northeastern cities examined by Sheridan et al. 

(2021) 
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The Midwestern cities of Cleveland, Ohio, Youngstown, Ohio and Chicago, Illinois, had 

medians that fell within each other’s intervals and Dayton and Toledo, Ohio as well (Figure 3.9). 

We can’t reject the null hypothesis within these 2 cities in the Midwest that their mean 

frequencies are equal and that this result is statistically significant. Dayton and Toledo also 

obtained the highest frequency values with both medians reaching above .010. The frequency 

values represent the percentage of days that fell above or equal to advisory thresholds from the 

time period as a whole therefore they will be relatively low as most days are not above heat alerts 

thresholds. The Midwest had the highest number of cities falling within each other intervals 

although out of the 6 cities chosen, 4 were out of the state of Ohio, and only 2 sets of those 

cities’ medians fell within each other’s intervals. All Ohio cities have the same thresholds, and 

the cities of Toledo, Cleveland, and Youngstown are all under the same WFO of Cleveland. This 

could suggest a need for modification to local criteria due to the difference in frequencies being 

due to meteorological conditions.  



 

33 

 

Figure 3.9 Confidence intervals for the frequency of days above or equal to advisory criteria 

between 2010 to 2021 for certain Midwestern cities examined by Sheridan et al. 

(2021) 

 

Within the Central region (Figure 3.10), Tulsa, Oklahoma had the highest frequency with 

a median of .055, and Dallas, Texas next at .050. The lowest within this region was Fayetteville, 

Arkansas with a median frequency not even reaching .01. Kansas City, Missouri and Oklahoma 

City, Oklahoma medians fell within each other’s intervals meaning they are statistically similar. 

Dallas, Texas and Tulsa, Oklahoma also had medians within the intervals of the other and 

additionally are statically similar. The Central region had the second greatest spread of 

frequencies with medians stretching from .055 to below .01. Tulsa within the plains of Oklahoma 

versus Fayetteville, Arkansas being located within the Ozarks, even though they are only 113 

miles from one another, obtain the same alert thresholds and are even within the same WFO, see 

this large frequency difference could be due to their contrasting topography or the need for 

criteria within this specific area to be reassessed.  
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Figure 3.10 Confidence intervals for the frequency of days above or equal to advisory criteria 

between 2010 to 2021 for certain Central cities examined by Sheridan et al. (2010) 

 

Augusta, Georgia, and Winston-Salem, North Carolina acquired the lowest frequencies 

with the Southeast (Figure 3.11). These 2 cities along with Greensboro, North Carolina had 

medians fall within each other’s intervals, so we can’t reject the null hypothesis that the means 

are equal and statistically similar, meaning the result is unlikely due to mere chance. Memphis, 

Tennessee reached far beyond the other frequencies within this region with a value of .040. The 

Southeast did not rank high within its mean days above thresholds compared to other regions due 

to a larger count of cities who had low to relatively low alerts. Cities within this region were 

located east of the Mississippi river reaching cities into Kentucky and one in Ohio, with the 

Southern region obtaining the cities west of the river. This allowed the region to capture the 

lower frequencies and mean days within cities in proximity to the Appalachian Mountains, like 

Winston-Salem. It also acquired cities within the Columbia, South Carolina WFO (i.e., Augusta, 
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Georgia, Columbia, South Carolina, Charleston, South Carolina) that have higher advisory and 

warning criteria than their surrounding areas.  

 

Figure 3.11 Confidence intervals for the frequency of days above or equal to advisory criteria 

between 2010 to 2021 for certain Southeastern cities examined by Sheridan et al. 

(2021)  

 

The Southern region had two cities, Little Rock, Arkansas and McAllen, Texas that 

obtained medians that fell within the others’ interval meaning they are statistically similar 

(Figure 3.12). These 2 cities also acquired the highest frequencies with McAllen, Texas being at 

the top within with Little Rock, Arkansas following it, both with frequency values above .05. 

McAllen also obtained this while having the highest thresholds out of all Southern regional 

cities. The Southern region reached the 3rd highest mean overall due to only having 9 cities out of 

the 107 contained within this region and 3 of those falling having median frequency values 

above .03.   
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Figure 3.12 Confidence intervals for the frequency of days above or equal to advisory criteria 

between 2010 to 2021 for certain Southern cities examined by Sheridan et al. 

(2021) 

 

The state of Florida’s spread of frequencies were minor compared to the other 7 regions 

(Figure 3.13). With this compact spread it also collected the statically similar cities. These 

included Jacksonville and Sarasota, Ft Myers and Jacksonville, Ft Myers and Miami, and lastly 

Orlando and Miami. The frequencies within this region were low with Daytona Beach securing 

the highest frequency at a value of .009. The lowest frequency was Orlando which was the only 

inland city out of the 6 chosen. Lower frequencies and mean number of days within Floridan 

cities could be the result of higher thresholds due to higher average temperatures throughout the 

year, 108ºF for advisories and 113ºF for warnings.  
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Figure 3.13 Confidence intervals for the frequency of days above or equal to advisory criteria 

between 2010 to 2021 for certain Florida cities examined by Sheridan et al. (2021) 

 

El Paso, Texas and Provo, Utah obtained the lowest frequencies within the Western 

region (Figure 3.14). These 2 cities and Bakersfield and Fresno, California had medians that fell 

within the other’s intervals. With that, we can’t reject the null hypothesis that the means are 

equal and statistically similar. Phoenix, Arizona, with a mean of .091, obtained the highest 

frequency within the Western region and the highest frequency overall. Results were consistent 

with total heat products on the county level, where Maricopa County also received the highest 

total. This region had the greatest spread of frequencies across all regions from medians of near 0 

to .091. Cities of the mountainous West (i.e., Provo, Utah) and pacific coastline (i.e. Seattle, 

Washington) who had lower frequencies were also included within this region along with hot 

Southwestern cities (i.e., Phoenix, Arizona, and Las Vegas, Nevada) who had some of the 

highest frequencies overall, which created this large spread.  
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Figure 3.14 Confidence intervals for the frequency of days above or equal to advisory criteria 

between 2010 to 2021 for certain Western cities examined by Sheridan et al. 

(2021) 

 

Pacific region frequencies were lowest, even under the Florida region, with the highest 

mean not even reaching .003 (Figure 3.9). Spread of frequencies was only the most concise with 

the lowest median value being 0 and the highest previously mentioned, below .024. This median 

was Los Angeles, California with a value of .024 with Spokane, Washington receiving the next 

highest at .001. Spokane and Los Angeles, Spokane and San Jose, California, and lastly Oxnard, 

San Diego, and San Francisco, all located in California, obtained median values that fell within 

each other’s intervals, meaning we can’t reject the null hypothesis that these cities’ means are 

equal and that their mean are statistically similar. There were only 6 cities included within this 

region with almost all falling along the coast/bay area of California, with Spokane, Washington 

being the lone one on the eastern fridge of Washington.  Low frequencies for the coastal cities 

mentioned have multiple factors that play into their conditions, with the main one being 
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prevailing winds off the coast transport cooler air into the region. Proximity to water also causes 

temperatures to not vary much from day to night and summer to winter, which is an additional 

reason for the compact spread of frequencies.  

 

Figure 3.15 Confidence intervals for the frequency of days above or equal to advisory criteria 

between 2010 to 2021 for all Pacific cities examined by Sheridan et al. (2021) 

 

Correlations were assessed for the continental U.S., using all 107 metropolitan areas, 

between total heat alerts by county to each mortality subset (Figure 3.16). This was additional 

accomplished regionally using the regions once again defined by Sheridan et al (Figure 3.17). 

For the U.S., the highest positive correlation was within men 65 and older, with a value of .198, 

then next highest subset, and only other one with a positive correlation, was the All Mortality 

subset with a much smaller value of .058. These results indicates that across the U.S. when alerts 

are frequent, men who are 65 and older observe higher mortality rates, as well as all mortality 

going up. Possible low assessment within these subsets of individual view of the severity of their 
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risk to heat perception (i.e., risk perception) could be factor, as well as shortcoming within 

communication to this group across the U.S. when alerts are issued. 

 

Figure 3.16 Spearman rank correlations between total heat alerts by county to subset mortality 

estimates for the 107 cities in Sheridan et al. (2021) and median frequency of days 

above or equal to alert thresholds.  
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Figure 3.17 Spearman rank correlations between heat alerts on the county level to subset 

mortality estimates aggregated by region for the 107 cities in Sheridan et al. (2021) 

between 2010 to 2021 (4,384 days total). 

 

Positive correlations were also found regionally, with the All Mortality being the highest 

overall within the Northeast, with a correlation of .388. Within the Midwest and Central regions, 

the highest positive correlations were Females 65 and older, as well as obtaining positive 

correlations with the All Mortality subset. The Midwest also had positive correlation with Men 

65 and older. Men 45 to 64 was the only positive correlation found with the Southeast and 

Southern regions, with a value of .195 for the Southeast and .382 for the South. Florida’s positive 

correlations fell within both females’ subsets, 45 to 64 and 65 and older. Their highest 

correlation was with Females 45 to 64, with a value of .209. Out West positive correlations were 

the highest within Men 65 and older, with a value of .399, and the only other positive correlation 

was minimal with a value of .062 in Females 45 to 64. Pacific cities had a strong positive 

correlation with Men 65 and older, with the correlation reaching .600. Their next highest was 

Females 65 and older, and then the All Mortality subset. Higher positive correlations found 
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within each region convey which age and gender group displays higher rates of mortality as heat 

alerts become more frequent for that specific region. Indications of risk perceptions being low 

within these specific groups in each region could be the reason for the positive correlations 

and/or lack of communication within the most vulnerable groups of each region. 

Across the continental U.S. negative correlations between each gender and age group 

assessed were within Females and Males 45 to 64, and within Females 65 and older (Figure 

3.16). All negative correlations were relatively low with Females over 65 being the most 

substantial with a value of -.036. With the U.S. when alert frequencies rise these subsets see 

lower mortality rates. This could be the result of effective alerts or when assessed on individual 

city levels of alerts issued on the county level, an unnecessary amount when taken into account 

with population vulnerability and overall mortality rates. Within the Western and Pacific regions 

in particular, certain cities like Phoenix, Arizona and Los Angeles, California, have a substantial 

number of total heat alerts in comparison to their All Mortality subset (Figure 3.18). These cities 

had a congruent frequency of days above their thresholds (Figure 3.14 & 3.15) in comparison to 

their alerts issued but again had a lesser than value of mortality. This off diagonal relationship 

could represent a lower population vulnerability to extreme heat, higher risk perception and in 

turn could be a need for alert thresholds to be altered. Cities were also assessed using alerts 

issued by zone to show additional cities with off diagonal relationships other than Western cities 

who have substantial larger counties than the rest of the U.S (Figure 3.19). Central, and 

Southeastern cities also displayed a larger number of heat alerts in comparison to their coinciding 

mortality values. Tulsa, Oklahoma and Memphis, Tennessee were the two cities who showed the 

greatest off relationship. Their frequencies above thresholds were also elevated, both being the 

highest within their regions (Figure 3.10 & 3.11). Again, their mortality values fell short, around 
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average compared to all 107 cities. This results as well could represent a lower population 

vulnerability to extreme heat, higher risk perception and in turn could be a need for alert 

thresholds to be altered. 

 

Figure 3.18 Plot indicating the relationship between Heat Related Mortality (x-axis) and Heat 

Alert Frequency by county (y-axis) for the 107 cities examined by Sheridan et al. 

(2021) between 2010 to 2021 (4,384 days total).  

 

Figure 3.19 Plot indicating the relationship between Heat Related Mortality (x-axis) and Heat 

Alert Frequency by forecast zone (y-axis) for the 107 cities examined by Sheridan 

et al. (2021) between 2010 to 2021 (4,384 days total). 
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Negative correlations regionally were found in a greater extent with the Northeast 

although all values were minimal (Figure 3.17). Each gender and age subset were negative, other 

than All Mortality, with Females 45 to 64 being the highest with a value of -.326. The Midwest 

also had its highest correlations within this same subset, and Males 45 to 64, with a tie of -.462. 

Central region’s negative correlations were within both Males subsets, 45 to 64 and 65 and older. 

All Mortality was the highest negative correlation within the Southeast with Females 45 to 64, 

and Females and Males 65 and older all also obtaining negative correlations. Females 45 to 64, 

and 65 and older, Males 65 and older and the All Mortality subset all had negative correlations 

with the Southern region. The highest of those being within Men 65 and older, with a value of -

.395. Florida had negative correlations within both Males subsets, as well as the All Mortality 

subset. The All Mortality subset within this region doubled the other negative correlations within 

the region with a value of -.627. Within the Western region All Mortality, Males 45 to 64, and 

Females 65 and older all received negative correlations. All correlations were minor with the 

highest -.118 within Females 65 and older. The Pacific region had a high negative correlation 

with Females 45 to 64 with a value of -.771. Men 65 and older also obtained a negative 

correlation within this region with a value of -.405. Within most regions with the U.S. the subsets 

who had negative correlations derived lower mortality rates when seeing a higher heat alert 

frequency. Although within the Pacific region, this is not the case but the opposite. As this region 

of the U.S. obtained little to no heat alerts the negative correlations convey lower alert frequency 

with higher mortality rates within those subsets. Additionally, this could be the result of alert 

thresholds being high given population vulnerability.  

The correlations between threshold exceedance and total heat alerts products were also 

assessed across the continental U.S. with the same 107 cities (Figure 3.16). Specifically, this was 
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the median frequency of days above specific threshold and total heat alerts by county. The 

correlation was moderately positive with a value of .4295, which suggest that the frequency of 

heat alerts is consistent with what expectations given the background climate.  

Positive correlations were also found regionally between thresholds exceedance and total 

alerts given (Figure 3.20). The Southeast, Central, South, Florida, West and Pacific all had 

positive correlations with the Southeast obtaining the highest with a value of .735. Within all 

these regions it can be concluded that when receiving alerts more frequently they also experience 

a higher mean number of days above alerts thresholds.  

The sole negative correlation was acquired by the Northeast with a smaller value of -.090. 

This indicated a small scale of higher alerts versus a lower count of days above thresholds. In the 

Northeast this could mean office issue an excessive number of alerts or have a strict and robust 

heat mitigation plan due to being in a location with population who has higher vulnerability to 

heat. This result is in congruence with the All Mortality subset for this region being the highest 

positive correlation compared to the additional 7 regions, showing a higher mortality risk within 

the population as a whole as the frequency of alerts goes up.  
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Figure 3.20 Spearman rank correlations aggregated by regions between total heat alerts by 

county and median frequency of days above or equal to alerts thresholds.  
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

Spatial patterns of heat alerts across the United State were shown on the county level then 

with NWS forecast zones. While counts for alerts were used from the county-based map, due to 

mortality estimates being on the county level and the need for consistency across the lower 48, 

mortality and patterns within Western counties with forecast zones would reveal a better 

representation of this area. The sole study of this area with mortality could also reveal any 

differences within mortality estimates, and alerts being issued once the Western region began to 

issue and communicate alerts based on the ‘HeatRisk’ tool in place of heat index criteria for each 

WFO.  

Expected days and frequencies above thresholds for specific cities and regions were 

based on past hourly weather data from a fixed site closest to each city. While the heat products 

do show an accurate representation of the minimum products being used, it does not guarantee 

that all were covered during the 11-year timeframe. Because heat products can be issued based 

on more than just heat index, no assumptions can be made that the days studied and listed were 

the only days with heat products. Because of the low amount of heat product days, a speculation 

would be would other specific indices and outside factors that each office considers when issuing 

heat alerts.  

Vulnerable populations and risk perceptions influence communication and thresholds of 

heat alerts across the U.S. Evaluating the vulnerability discussed within age and gender subsets 
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within each region of the U.S., further research could be accomplished on how these results 

influence geographic variations and communication in risk perception. Communication could be 

assessed from the specific population who exhibited higher positive correlations with mortality 

to alerts and the WFO perspective of methods and tools of communicating alerts to the general 

population and the most vulnerable. This could be accomplished by survey with demographic 

questions as well as heat alert perception. Analyzing census data and social vulnerability indices 

for certain forecast zones to determine risk factors for heat related mortality and alert frequency 

would also help give additional details for each region.
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APPENDIX A 

ADVISORY AND WARNING CRITERION FOR THE 107 CITIES ASSESSED 
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Table A.1 107 Metropolitan Cities from Sheridan et al. with Advisory and Warning Criteria. 

Cities Advisory Warning 

Akron OH 100 105 

Albany NY 95 105 

Albuquerque NM 100 105 

Allentown PA 100 105 

Atlanta GA 105 110 

Augusta GA 110 115 

Austin TX 108 113 

Bakersfield CA 100 105 

Baltimore MD 105 110 

Baton Rouge LA 108 113 

Birmingham AL 105 110 

Boise ID 105 110 

Boston MA 100 105 

Bridgeport CT 100 105 

Buffalo NY 100 105 

Charleston SC 110 115 

Charlotte NC 105 110 

Chattanooga TN 105 110 

Chicago IL 105 110 

Cincinnati OH 100 105 

Cleveland OH 100 105 

Columbia SC 110 115 

Columbus OH 100 105 

Dallas TX 105 110 

Dayton OH 100 105 

Daytona Beach FL 108 113 

Denver CO 95 100 

Des Moines IA 105 110 

Detroit MI 100 105 

Durham NC 105 110 

El Paso TX 105 110 

Fayetteville AR 105 110 

Fresno CA 100 105 

Ft. Myers FL 108 113 

Grand Rapids MI 100 105 

Greensboro NC 105 110 

Greenville SC 105 110 

Harrisburg PA 100 105 
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Table A.1. (continued) 

Hartford CT 100 105 

Honolulu HI 105 110 

Houston TX 108 113 

Indianapolis IN 105 110 

Jackson MS 105 110 

Jacksonville FL 108 113 

Kansas City MO 105 110 

Knoxville TN 105 110 

Lakeland FL 108 113 

Lancaster PA 100 105 

Las Vegas NV 105 110 

Lexington KY 105 110 

Little Rock AR 105 110 

Los Angeles CA 100 105 

Louisville KY 105 110 

Madison WI 100 105 

McAllen TX 110 115 

Melbourne FL 108 113 

Memphis TN 105 110 

Miami FL 108 113 

Milwaukee WI 100 105 

Minneapolis MN 100 105 

Modesto CA 100 105 

Nashville TN 105 110 

New Haven CT 100 105 

New Orleans LA 108 113 

New York NY 100 105 

Ogden UT 105 110 

Oklahoma City OK 105 110 

Omaha NE 100 105 

Orlando FL 108 113 

Oxnard CA 100 105 

Philadelphia PA 100 105 

Phoenix AZ 105 110 

Pittsburgh PA 100 105 

Portland ME 95 105 

Portland OR 105 110 

Poughkeepsie NY 95 105 

Providence RI 100 105 

Provo UT 100 105 
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Table A.1. (continued) 

Raleigh NC 105 110 

Richmond VA 105 110 

Riverside CA 100 105 

Rochester NY 95 105 

Sacramento CA 100 105 

Saint Louis MO 105 110 

Salt Lake City UT 100 105 

San Angelo TX 105 110 

San Antonio TX 108 113 

San Diego CA 100 105 

San Francisco CA 100 105 

San Jose CA 100 105 

Sarasota FL 108 113 

Scranton PA 100 105 

Seattle WA 100 105 

Spokane WA 100 105 

Springfield MA 100 105 

Stockton CA 100 105 

Syracuse NY 95 105 

Tampa FL 108 113 

Toledo OH 100 105 

Tucson AZ 105 110 

Tulsa OK 105 110 

Virginia Beach VA 105 110 

Washington DC 105 110 

Wichita KS 105 110 

Winston- Salem NC 105 110 

Worcester MA 100 105 

Youngstown OH 100 105 
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