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Tornadic outbreaks occur annually, causing fatalities and millions of dollars in damage. 

By improving forecasts, the public can be better equipped to act prior to an event. False alarms 

(FAs) can hinder the public’s ability (or willingness) to act. As such, a probabilistic FA 

forecasting scheme would be beneficial to improving public response to outbreaks. 

Here, a machine learning approach is employed to predict FA likelihood from Storm 

Prediction Center (SPC) tornado outbreak forecasts. A database of hit and FA outbreak forecasts 

spanning 2010 – 2020 was developed using historical SPC convective outlooks and the SPC 

Storm Reports database. Weather Research and Forecasting (WRF) model simulations were done 

for each outbreak to characterize the underlying meteorological environments. Parameters from 

these simulations were used to train a support vector machine (SVM) to forecast FAs. Results 

were encouraging and may result in further applications in severe weather operations. 
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CHAPTER I 

INTRODUCTION 

Tornadic outbreaks occur in the United States every year, causing numerous fatalities and 

costing millions of dollars in damage, thus highlighting the importance of mitigating outbreak 

impacts. For example, the April 3-4, 1974 “Super Outbreak” spawned 148 tornadoes, and it is 

estimated that if the event were to happen today, the insured losses could reach as much as $3.5 

billion from wind damage (i.e., tornadoes and derechos) alone (Beatty 2004). In more recent 

history, the April 27, 2011 “Super Outbreak” generated 199 tornadoes over a 24-hour period 

which resulted in 316 fatalities (Sanders et al. 2020), more than 2,700 injuries, and 

approximately $4 billion dollars in damage (Knupp et al. 2014). Another recent impactful event 

was the 2020 Easter Outbreak, which was responsible for 145 tornadoes and 30 tornado-related 

fatalities during the two-day period (Guyer 2021). These major tornado outbreaks are troubling 

to those living in regions prone to severe weather, as well as forecasters. By improving tornado 

outbreak forecasts, the public can be better equipped to act prior to an impactful event.  

However, false alarms (FAs), which are forecasted outbreaks that do not materialize, can hinder 

the public’s ability (or willingness) to take action. Many studies have examined the effects of 

individual tornado FAs (Barnes et al. 2007, Brotzge et al. 2011, and Walters et al. 2020), but the 

scope and impact of FA forecasts with tornado outbreaks is mostly unknown.  

Anecdotal evidence implies that FAs, in the context of individual tornadoes, reduce 

public response to subsequent warnings related to severe weather, which prompted research into 
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this issue (Barnes et al. 2007, Simmons and Sutter 2009). The Simmons and Sutter (2009) study 

showed an increased number of fatalities and injuries sustained from tornadoes that occur in 

areas with a higher false alarm ratio (FAR). With a 1 standard deviation increase in the FAR, 

expected fatalities increased by 12%–29% and expected injuries by 13%–32% (Simmons and 

Sutter 2009), providing evidence for the assumed relationship between FA tornadoes and 

casualties. A FA diminishes the reliability of a warning and forecasting system, and the loss of 

credibility has significant implications in how people respond (e.g., less likely to interrupt what 

they are doing to take shelter, replanning activities the day an outbreak is forecasted to occur, 

etc.). It is reasonable to assume that the same applies to FAs in the context of tornado outbreaks, 

though at a broader scale. Though purely speculative, FAs and the overuse of certain words such 

as “bust” can desensitize the public to future events no matter the magnitude. Outbreak forecasts 

are challenging, and our culture frowns upon planning for the worst and nothing occurring. 

Occasionally, there appears to be frustration if nothing happens and there was preparation 

involved. 

These concerns suggest the need for research and education to systemically improve 

outbreak forecasting by reducing this FA problem, which would improve public response, and 

potentially reduce future casualties. To address this issue, this project will quantify the likelihood 

that an outbreak forecast is a FA forecast, alerting forecasters of FA potential, based on 

atmospheric predictors that best separate FA and actual outbreak environments. 
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CHAPTER II 

BACKGROUND 

Overview of Tornado Outbreaks 

Tornado outbreaks are rather rare, occurring about 20–30 times each year in the United 

States (Schneider et al. 2004). While rare, a formal definition for a tornado outbreak does not 

exist. However, the American Meteorological Society’s Glossary of Meteorology defines an 

outbreak as “multiple tornado occurrences associated with a single synoptic-scale system” 

(Glickman 2000). Past work has expanded on this description using different variables and 

varying criteria to create a definition specific to their areas of research. Some studies (Pautz 

1969, Galway 1977) define an outbreak by the number of tornadoes that occurred, while other 

studies include additional parameters in their definition (Doswell et al. 2006, Fuhrmann et al. 

2014, Shafer and Doswell 2010). Doswell et al. (2006) avoided specifically defining an outbreak, 

but instead produced a ranking of different outbreak cases using the previously stated American 

Meteorological Society’s Glossary of Meteorology definition. This ranking index was 

implemented on tornadic outbreaks and nontornadic outbreaks, which were classified as six or 

fewer tornado reports. The present study will define outbreaks and FAs loosely based on this 

criterion, which will be outlined in a later section. 

Tornado Outbreak Meteorological Characteristics 

Mercer et al. (2012) address the synoptic-scale patterns of tornado outbreaks and 

nontornadic outbreaks. Through this same study, many case studies (Fujita et al. 1970, Ferguson 
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et al. 1987, Corfidi et al. 2010, Roebber et al. 2002, Agee et al. 1975, Lee et al. 2006) were found 

to have comparable synoptic conditions prior to the development of each type of outbreak. 

Tornado outbreaks had three key features: 

• Upper-level trough west of the outbreak location that prompted the intensification 

of a surface cyclone through synoptic-scale processes. 

• Upper-level jet streak coupled with the center of rapid surface pressure falls 

leading to the deepening of a synoptic cyclone and an increase in vertical shear. 

• Development of an intense surface cyclone that includes an area of greater 

moisture that allows for the generation of large amounts of instability in the warm 

sector. 

As for nontornadic outbreaks, Johns and Hirt (1987) provide environmental 

characteristics preceding the development of derechos, one of the most common types of 

nontornadic outbreaks: 

• Rather shallow upper-level trough west of the location of the outbreak. 

• Propagation of the trough toward the region of derecho development 

(characterized as 500 mb height falls of 60 meters in 12 hours before the 

derecho). 

• Ample instability due to moisture located in the warm sector of the surface 

cyclone that results from the approaching upper-level trough. 

To analyze the patterns of the two outbreak types, Mercer et al. (2012) initialized 

Weather Research and Forecasting (WRF) model simulations for each outbreak type (tornadic 

and nontornadic). Tornado outbreak fields were characterized by a robust 500-mb trough with an 

associated vorticity maximum. The trough composites associated with tornado outbreaks showed 

all mid-level trough tilt types (i.e., positive, negative, and neutral tilts). Tornado outbreaks also 

revealed stronger low-level temperature advection than the nontornadic outbreaks, which likely 

enhanced both vertical forcing within the outbreak, a larger magnitude of moist, unstable air into 

the outbreak region, and veering wind profiles that enhanced vertical wind shear. Atmospheric 
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soundings in their study also unveiled statistically significant larger helicity and bulk shear 

values for tornado outbreaks than for the nontornadic outbreaks. Overall, their study revealed the 

significance of helicity and shear, particularly directional shear with veering wind profiles, for an 

environment associated with a tornado outbreak. These findings, specifically shear, are also 

consistent with other past work (Mercer et al. 2009, Shafer et al. 2010). The characteristics 

mentioned here should also be considered when determining variables to quantify differences in 

accurate and FA tornado outbreak forecasts for this research. 

Tornado Outbreak Forecasts 

Though literature focusing on tornado outbreak forecasting is sparse, some studies have 

assessed Storm Predication Center (SPC) convective outlooks as a proxy for an outbreak 

forecast. Metrics such as probability of detection (POD) and false alarm ratio (FAR) can 

highlight the quality of these outlooks when assessing forecast accuracy. For the slight risk 

outlook category provided by SPC, Hitchens and Brooks (2012) found an increase in the POD 

during 1973-1993 followed by the frequency of hits (FOH) increasing, indicating a growth in 

areal coverage of slight risk followed by smaller, better positioned areas of risk. 

While literature pertaining specifically to FA outbreak forecasts is sparse, several studies 

have addressed outbreak forecasting issues. Hales et al. (1997) discussed the 27 March 1994 

outbreak which occurred with an abnormal synoptic setup (i.e., absence of a deepening surface 

low, strong upper-level trough, and jet streak dynamics). Forecasters at the Storm Prediction 

Center (SPC) knew there was an unstable air mass present across the outbreak area after 

analyzing the upper air data and the sounding taken at 1200 UTC on 27 March, as mentioned in 

their Day One Convective Outlook issued at 1500 UTC (Figures 2.1 and 2.2; Hales et al. 1997). 

Convective instability increased during the overnight hours due to low-level temperature and 
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moisture advection. Wind fields also became favorable for supercell development (i.e., increased 

vertical speed and directional shear). SPC forecasters were able to anticipate the formation of 

supercells with some nonclassical atmospheric characteristics and they effectively updated their 

forecast outlooks accordingly. This tornado outbreak event would be considered a correct 

outbreak forecast (COF) as the outbreak occurred where forecasters anticipated it to happen 

(Figure 2.3; Hales et al. 1997). 

 

Figure 2.1 Day One Convective Outlook issued at 1500 UTC 27 March 1994. 
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Figure 2.2 Graphic of the Day One Convective Outlook referenced in Figure 2.1. 

 

 

Figure 2.3 Tracks of the tornadoes during the 27 March 1994 outbreak with their F-scales. 
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A more difficult forecasting challenge arose for the tornado outbreak on 3 May 1999, as 

documented by Thompson and Edwards (2000) and Edwards et al. (2002). With this event, the 

buoyancy and shear were favorable and synoptic conditions seemed ideal for an outbreak, but the 

lack of convergence in the dryline regions and a thick cirrus cloud deck that lowered the 

potential for heating and mixing in the boundary layer near these drylines caused models to 

underrepresent the outbreak threat until a few hours prior to its initiation. At that time, the initial 

supercell developed during a break in the thick cirrus deck. Surface temperatures were also 

sufficiently high enough to minimize convective inhibition and so the convective outlook 

forecasts were updated to reflect the more favorable storm environment. This tornado outbreak 

event is considered more of an initial “miss” scenario, since there was a consensus that severe 

weather would happen with some supercell thunderstorms, but the exact location was unclear 

(Figures 2.4 a-e). 

 

Figure 2.4 Maps of SPC Day One categorical convective outlook risk areas with ending valid 

times at 1200 UTC 4 May 1999. The beginning valid times are on 3 May 1999 at 

(a) 0600 UTC, (b) 1300 UTC, (c) 1630 UTC, (d) 2000 UTC, and (e) 4 May 1999 

at 0100 UTC. 
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Opposite of a COF or a miss, FAs are forecasted outbreaks that do not occur. While there 

are many studies that focus on FAs in the context of individual tornadoes (Barnes et al. 2007, 

Brotzge et al. 2011, and Walters et al. 2020), there are not many that concentrate on FAs in the 

context of tornado outbreaks. Mercer and Bates (2014) touches on FAs within SPC’s outbreak 

forecasts (as estimated by convective outlooks). They assessed differences in FA and COF 

forecast environments at the synoptic scale through the generation of outbreak composites. The 

study found that FAs had weak synoptic scale setups, and while there were not many differences 

between high- and low-accuracy forecasts, there was evidence that some meteorological 

variables were good indicators of FAs. These variables included limited vertical shear, thermal 

advection, differential vorticity advection, and jet streak magnitudes, which resulted in 

significant forecast uncertainty that ultimately resulted in a FA forecast (Mercer and Bates 2014). 

Higher accuracy forecasts were characterized by high amounts of warm air advection (WAA), 

while low accuracy forecasts had weaker WAA. This implies inadequate amounts of energy and 

therefore uplift to create tornado outbreaks, leading to a FA case. Their FA composites also 

exhibited less organized differential vorticity advection distant from a surface low as well as 

weaker jet streaks and limited vertical wind shear. These fields are feature candidates in the 

current study. Pressure, wind speeds, moisture aloft and at the surface, lapse rates, and surface 

temperature were nearly identical amongst the composites, indicating these factors did not 

strongly differ among the high and low accuracy forecasts. 

The Mercer and Bates (2014) study also noted patterns of seasonality for FAs, where 

most occurred in the summer and fall months. Most tornadoes and tornado outbreaks occur 

during the spring, and these seasonal observations show that tornado outbreaks that do not occur 

during the “regular season” have higher forecast uncertainty, suggesting research needs to be 
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done to establish the synoptic scale parameters connected with off-season outbreaks. This 

suggests seasonality could be useful in predicting FA outbreak forecasts as well. Specifically, 

seasonal differences in convective availability potential energy (CAPE) may play a role in FAs. 

CAPE is usually higher during the warm season and lower during the cool season. As such, fall 

events may require enhanced synoptic-scale vertical forcing for convective initiation to occur. 

Additionally, wind shear supportive of supercell development and tornadoes are more frequent 

during the spring and fall seasons than during the summer. It is understandable why most 

tornadoes and tornado outbreaks occur during the ”regular season”, as it is more common for 

favorable instability and wind shear to be collocated. In the summer, wind profiles are normally 

less favorable for mid-level cyclone development. The lifted condensation level (LCL) is also 

particularly affected by season. Higher LCLs are common with many primarily nontornadic 

outbreaks during the warm season, due to the existence of hot, dry, well-mixed boundary layers 

(Shafer et al. 2010).  

Past work has been focused on synoptic-scale discrimination of tornadic and nontornadic 

outbreaks as well as ranking and identifying outbreak types. Many studies (Mercer et al. 2009 

and Shafer et al. 2010) used a ranking scheme (Doswell et al. 2006) to select the top 50 tornadic 

and nontornadic outbreaks to evaluate the synoptic-scale variables best used to differentiate 

between the outbreaks. These studies found that kinematic parameters (i.e., bulk shear) were the 

most effective at differentiating between the tornadic and nontornadic outbreaks while 

thermodynamic variables were the least useful. Mercer et al. (2012) also agreed with these 

results and stated the Weather Research and Forecasting (WRF) model has great skill at 

discriminating between the two outbreak types. This may be the case as the WRF model is a 

mesoscale model that uses a “compressible, nonhydrostatic dynamical core” (Shafer et al. 2009). 
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Studies have expressed the need for more research into the false alarm outbreaks and 

operational classification techniques (Mercer et al. 2009, Mercer et al. 2012, Mercer and Bates 

2014). The present study takes a step toward accomplishing those goals, as it seeks to determine 

whether a statistical classifier, specifically logistic regression and support vector machines 

(SVM), can correctly identify COFs and forecasts of events that resulted in a FA. This will be 

done by first identifying variables that show the largest differences among FA and COF 

environments, working under a null hypothesis that these environments are indistinguishable. It 

is expected that by identifying these environmental differences, an improved ability to identify 

FA outbreak environments will be possible, which will help to improve outbreak forecasts in the 

future.
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CHAPTER III 

DATA & METHODS 

Datasets 

This study evaluated a 10-year period (2010-2019) using data supplied by the SPC’s U.S. 

Tornadoes (1950-2021) dataset (https://www.spc.noaa.gov/wcm/). Data from the year 2020 were 

also included for model verification such that the study spans 11 years. This database includes 

information regarding tornado intensity, path length, timing, etc., as well as information about 

severe hail and wind reports. Outbreaks were limited to a single day (defined as 6 AM to 6 AM 

CST the next day), such that individual days within a multi-day event were treated as 

independent events. The valid time for an outbreak was set as a three-hour window during which 

the outbreak reached its peak tornado production. If multiple three-hour windows produced the 

same peak outbreak tornado rate, the first of these windows was used. 

As the ultimate goal of this work was to create a probabilistic classifier that will identify 

upcoming outbreaks as “likely” or “unlikely” to yield a FA, a defined an outcome of 1 represents 

a 100% chance of a FA and an outcome of 0 represents a 100% chance of a COF. To classify 

outbreaks into these two categories, a list of verified tornadic and nontornadic outbreaks were 

needed. This project followed Doswell et al. (2006) by examining severe weather reports in 24-

hour periods as stated above. 

To formulate these lists, the SPC tornado database was used to isolate tornado outbreaks 

with above-average and below-average tornado counts. Importantly, past research (Shafer and 

https://www.spc.noaa.gov/wcm/
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Doswell 2010) showed that the annual mean tornado counts within outbreaks had an upward 

trend prior to 2010. However, recent updated storm report information post-2010 showed this 

upward trend largely flattened. To verify this shift, the yearly means were calculated and plotted 

for this study's 11-year period (Figure 3.1). The slope of the resulting trend line (m = -0.530, p = 

0.245) showed a non-significant negative slope, which is counter to the results from Shafer and 

Doswell (2010)’s study period. As a result, the global mean over the 11-year study period was 

used to categorize outbreaks as above-average and below-average. With a global mean of 5.630 

tornadoes per outbreak, an overall mean of six (a value also used in Doswell et al. 2006) was the 

value chosen to establish COF and FA cases. 

 

Figure 3.1 The yearly means calculated for the study period, and it’s fitted trend line. 
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The SPC’s Day One tornado probability forecasts include 2%, 5%, 10%, 15%, 30%, 

45%, and 60% neighborhood probability contours in addition to probabilistic graphics that depict 

severe and general thunderstorm threats across the continental United States (CONUS). For each 

event, the SPC’s Convective Outlook Archive (https://www.spc.noaa.gov/archive/) at 1200 UTC 

was explored to identify events that occurred on days with at least a 10% tornado probability 

percentage present (Figure 3.2). 

 

Figure 3.2 Example event from 31 March 2016, with a 10% tornado probability. 

 

 

 

https://www.spc.noaa.gov/archive/
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This approach assumes that a SPC tornado probability forecast of 10% or higher suggests 

the SPC is expecting an outbreak of tornadoes over the specified 10% region. With this in mind, 

10% was chosen to formulate the final list of cases. Thus, six or more tornadoes within the 

forecasted 10% outbreak region was defined as a COF, while a 10% region that had fewer than 

six tornadoes (and thus was below-average) within it was counted as a FA. While the number of 

10% cases has slightly declined over the period of this study (Figure 3.3), the 10% tornado 

probability region yielded a reasonable sample size for both FAs and COFs, with 93 FA cases 

and 109 COF cases being found over the total 11-year period (Figure 3.4 and 3.5). 

 

Figure 3.3 The number of cases with a 10% tornado probability over the study period, with a 

fitted trend line. 
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Figure 3.4 COF Case Dates (YYYYMMDD). 

 

Figure 3.5 FA Case Dates (YYYYMMDD). 
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Methodology 

 To emulate an operational forecasting environment, a nonhydrostatic mesoscale 

numerical weather prediction model was needed to predict meteorological conditions underlying 

each outbreak. Given the desire for a true forecast mode, initial conditions for atmospheric and 

soil fields were obtained from the NCEP GFS 0.5° analysis valid at 0000 UTC for each outbreak 

date, and lateral boundary conditions were updated every three hours using the corresponding 

GFS forecast fields. COF and FA cases from April 2011 were excluded as this period had date 

and time discrepancies in the data. These GFS model data were used to initialize a Weather 

Research and Forecasting (WRF) model simulation of each outbreak to characterize the 

underlying outbreak environment on the synoptic scale and mesoscale. WRF output was used to 

build a predictor matrix of severe weather parameters that have been shown useful in past 

research in characterizing tornado outbreak environments. The WRF simulations employed the 

same physics parameterizations as the National Severe Storms Laboratory version of the WRF 

Model (WRF-NSSL; Kain et al. 2008, Skamarock et al. 2008). However, this study used 12-km 

grid-spacing with a model initialization at 0000 UTC, a model period of 36 hours, and a cumulus 

scheme, which contrasts with the WRF-NSSL. The use of a 12-km grid rather than the WRF-

NSSL 4-km was done to reduce simulation run time, and a cumulus scheme was included to 

determine when to generate a convective column and how fast to make the convection act 

(Dudhia 2014). WRF version 4.0 was used with a domain encompassing most of the United 

States except for portions of the west (Figure 3.6). Other model specifications during the 11-year 

analysis period were unchanged and are listed in Table 3.2.  Initially, 132 predictors were chosen 

for the analysis and were based on spatial and temporal statistics among 22 unique 

meteorological predictors (Table 3.3). 
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Figure 3.6 Domain of the GFS ensemble simulations generated with WRF version 4.0. 

 

Table 3.1 Model configuration and physic parameterizations used in the GFS ensemble 

simulations generated with WRF version 4.0. (**deviates from WRF-NSSL) 

Grid Configuration 

Initial Conditions 0.5° GFS analysis from 0000 

UTC 

Lateral Boundary Conditions 3-h 0.5° GFS analyses 

Horizontal Grid Spacing 12 km** 

Number of Grid Points 343 x 240 

Number of Vertical Levels 35 

Model Top 50 mb 

Time Step 24 s 

Physics Parameterizations 

Cumulus Kain-Fritsch scheme** 

PBL Mellor-Yamada-Janjic scheme 

(Mellor and Yamada 1982; 

Janjić 2002) 

Surface Layer Eta similarity 

Land Surface Model Noah Land Surface Model 

(Chen and Dudhia 2001) 

Microphysics WRF Single-Moment 6-class 

scheme (Hong and Lim 2006) 

Shortwave Radiation Dudhia scheme (Dudhia 1989) 

Longwave Radiation RRTM scheme (Mlawer et al. 

1997) 
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Table 3.2 22 overall predictors based on spatial and temporal statistics. 

Overall Predictors Reference 

Surface CAPE (J/kg) Stensrud et al. (1997) 

Surface CIN (J/kg) Markowski (2002) 

Surface LCL (m) Rasmussen and Blanchard (1998) 

Most Unstable CAPE (J/kg)  

Ukkonen and Mäkelä (2019) 

 
Most Unstable CIN (J/kg) 

Most Unstable LCL (m) 

LI (K) 

SRH (0-1 km) (m2/s2)  

Colquhoun and Riley (1996) SRH (0-3 km) (m2/s2) 

Effective SRH (m2/s2) 

Bulk Wind Difference (0-1 

km) (m/s) 

 

 

Weisman and Klemp (1984) Bulk Wind Difference (0-6 

km) (m/s) 

Effective Bulk Wind 

Difference (m/s) 

SCP Grams et al. (2012) 

 STP 

Specific Humidity (g/kg)  

 

 

 

 

Mercer and Bates (2014) 

Temperature (K) 

Temperature Advection (850 

mb) (K/s) 

Wind Magnitude (300 mb) 

(m/s) 

Wind Magnitude (850 mb) 

(m/s) 

Vorticity Advection (500 mb) 

Lapse Rate (700-500 mb) 

(K/m) 

 

 As each of the 22 predictors had both spatial variability within the outbreak region and 

temporal variability at each gridpoint, dimension reduction was completed to represent the 

spatial outbreak environment as individual predictors. This was done in two ways. First, the 

outbreak’s spatial maximum and mean within the 10% outbreak region for each of the 22 

predictors was computed for each date for each WRF timestep (yielding a 24-hour time series of 

spatial maximum/mean for each outbreak) (Figure 3.7). Next, the temporal minimum, maximum, 
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and mean were computed from these spatial time series’. Using these dimension reduction 

methods, each of the 22 predictors had 6 possible subsets, yielding 132 total WRF-derived 

predictors for the machine learning models. 

 

Figure 3.7 Example of a spatial calculation for one (SRH 0-1 km) of the 22 meteorological 

predictors. Every predictor’s (x) spatial mean and maximum are computed within 

the 10% outbreak region for each date for each WRF timestep (i = 0-23 hours), 

yielding a 24-hour time series of spatial mean/maximum for each outbreak. 

 As the machine learning methods are sensitive to predictor magnitude, normalization of 

the predictors was done to ensure each predictor had equal predictive weight in the models. The 

normalization was done as follows: 

𝑋′𝑖 =
(𝑋𝑖 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
 (3.1) 

where X′i is the normalized data for parameter i; Xi is the original data for i; Xmax is the maximum 

of i; and Xmin is the minimum of i (Zhang et al. 2018). This results in scaling all predictors from 0 

to 1. 
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As this number of predictors is near the size of the number of outbreaks spanning 2010 – 

2019 (187), it was necessary to reduce the predictor set to a more manageable size to reduce the 

likelihood of overfitting or an ill-posed statistical model. Three feature selection methodologies 

were utilized to reduce the predictor set and determine which yielded the best predictor set and, 

therefore, the best performing model. The first method employed was a forward selection 

stepwise methodology where the goal was to maximize the model skill in detecting FAs via a 

logistic regression. Stepwise was selected due to its ability to handle numerous amounts of 

potential predictors and quickly choose the most beneficial predictors from the available options. 

The forward stepwise procedure works by adding predictors cumulatively based on the amount 

of skill they provide. The resulting analysis yields a list of predictors sorted in order of 

increasing skill offered to the model. Skill was measured by the Heidke Skill Score (HSS) which 

is explained shortly. 

 The next method that was utilized was permutation testing. This was completed to assess 

which predictors have the best overall separation (that is statistically significant), between FA 

and COF environments, which logically would prove useful in distinguishing FAs and COFs. A 

permutation test is a data resampling method that determines if the means of two distributions 

are different (Efron and Tibshirani 1993, Mercer and Richman 2007, Mercer et al. 2009, Potvin 

et al. 2010). Permutation tests with 2000 replications were conducted on each of the 132 

predictors and the 2010-2019 outbreaks, where the FA and COF cases are treated as the separate 

testing entities. The resulting p values from those tests were compared against rejection criteria 

of 0.05, 0.025, 0.01, and 0.001 (corresponding to the 95%, 97.5%, 99%, and 99.9% confidence 

limits). While these criteria led to an increasingly high probability of committing a type II error, 
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the distinctness of the predictors was greatest when this p-value threshold was smallest (which 

should suggest the best classification performance). 

The final method employed to better assist with the feature selection process was 

principal component analysis (PCA). PCA is a linear analysis procedure which decreases the 

dimensionality of a dataset by transforming the dataset into a new dataset. This new dataset is 

comprised of linear combinations of the original data which are known as principal components 

(PCs). PCA begins with the primary equation: 

𝒁 = 𝑭𝑨𝑇 (3.2) 

where Z is the original matrix in standard anomaly form, F is the PC score matrix, and A is the 

matrix of PC loadings used to transform Z into F (Wilks 2019, Mercer et al. 2012, Mercer and 

Bates 2014). The first step to solving this equation for F and A is to obtain a correlation matrix 

for Z. Once R is computed (the correlation matrix), the eigenanalysis is performed: 

𝑹 = 𝑽𝑫𝑽𝑇 (3.3) 

where R is diagonalized into an eigenvalue matrix D with an associated eigenvector matrix V. 

Once we have the eigenvalues and eigenvectors, we can compute the loading matrix A as: 

𝑨 = 𝑽𝑫1/2 (3.4) 

After this is completed, the score matrix F can be solved: 

𝑭 = 𝒁(𝑨𝑇)−1 (3.5) 

and the variance explained by each PC can be computed: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =
𝜆𝑛

∑𝜆𝑛

(100%) (3.6) 
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where λn represents the eigenvalues derived from the PCA. The PC scores were used as 

predictors in both models. They were thought to be beneficial as they provide unique, 

uncorrelated variability within the predictor space that can summarize covariability within the 

predictors as a small subset. This makes the model more concise at the expense of losing some 

variance explained. 

The resulting predictors from each of the feature selection methods were then used in a 

logistic regression and a support vector machine (SVM; Haykin 1999, Cristianini and Shawe-

Taylor 2000) to assess the classification skill. Both methods are statistical analysis techniques 

that are used to predict a binary outcome (i.e., the probability of a FA versus a COF in this 

present study). This probability can be utilized as a forecast application. A threshold cutoff 

probability (typically based on climatology) can then be used to categorize each probabilistic 

forecast as FA or COF. 

While logistic regression is well known (Wilks 2019), SVM is a more novel machine 

learning technique. A SVM defines a multidimensional hyperplane for classification between 

binary classes (here FAs and COFs). This technique has been used in previous meteorological 

studies (Richman et al. 2005, Trafalis et al. 2005, Mercer et al. 2008, Mercer et al. 2009), but its 

presence in literature pertaining to tornado outbreaks is limited. However, the SVM model was 

selected for this study due to its ability to model nonlinearly separable data. SVMs attempt to 

solve for the hyperplane surface, which, according to Haykin (1999), is mathematically given as: 

𝒘𝑇𝒙 + 𝑏 = 0 (3.7) 
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where w is a vector of weights, x represents the covariates, and b is an intercept. Since SVMs are 

classification machines designed to distinguish between classes, modifications to the hyperplane 

equation for our two classes can be represented as: 

𝒘𝑇𝒙 + 𝑏 ≥ 0    𝑓𝑜𝑟  𝑑𝑖  = 1  (3.8) 

 

𝒘𝑇𝒙 + 𝑏 ≤ 0    𝑓𝑜𝑟   𝑑𝑖 = 0  (3.9) 

 

The goal of SVM is to distinguish best between the two classes (here 1 for FA and 0 for 

COF). To ensure the best result, the distance between the points closest to the separating 

hyperplane must be maximized. Figure 3.8 shows an example of binary data that are optimally 

separated into two separate classes, represented by 1 and -1 (Mercer et al. 2008). 

 

Figure 3.8 A representation of an SVM model where the dashed line is the best solution. 
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Many datasets that utilize SVMs are not linearly separable. In cases such as these (i.e., 

this present study), the data are input into a kernel function so a separating hyperplane can be 

found (Cristianini and Shawe-Taylor 2000, Schölkopf and Smola 2002). The kernel function 

projects the data into a nonlinear hyperspace where they may retain this nonlinear separability. 

For this study, the SVM was tuned using the following kernel functions: 

1. Gaussian radial basis kernel 

𝐾(𝒙, 𝑥𝑖) = 𝑒
(− 

1
2𝜎2‖𝒙−𝑥𝑖‖

2)
  (3.10) 

 

2. Polynomial kernel 

𝐾(𝒙, 𝑥𝑖) = (𝒙𝑇𝑥𝑖)
𝑝 (3.11) 

 

In addition to kernel functions, the SVM also requires the cost coefficient C and the 

associated parameters of the kernel functions, which are tuned through cross validation. This 

cross validation was conducted by withholding 80% of the dataset for training and using the 

remaining 20% for subsequent validation. This was repeated 1000 times using a bootstrapping 

method (i.e., random sampling of training/testing) to obtain confidence intervals on the 

performance statistics. Numerous kernel functions, configurations, and cost coefficients were 

tested using this cross-validation dataset to determine the optimal values of these SVM 

parameters for our dataset to improve the classification skill. The greater values of cost heighten 

the influence of non-separable points and decrease the complexity of the problem. Higher degree 

polynomial kernels allow a more flexible decision boundary. Gamma regulates the impact of 

new features. The lower the gamma value, the less influence the new features will have on the 
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decision boundary. The tuning parameters for the Gaussian radial basis kernel and polynomial 

kernel included (Adriano et al. 2009): 

• Cost: 100 - 103 (by factors of 10) 

• Gamma: 0.01, 0.05, 0.1, 0.2, 0.5 

• Degrees: 1 - 5 (for polynomial kernel) 

To evaluate the performance of the classification, contingency statistics were calculated 

(Wilks 2019) on the results of both the logistic regression and the SVM. The contingency 

statistics require the creation of a contingency table (Table 3.4). 

Table 3.3 Contingency table, where a represents the number of correctly classified yes’s (1s, 

FAs), b represents predicting yes (FA) but observing no (COF), c represents 

predicting no (COF) but observing yes (FA), and d represents the number of 

correctly classified no’s (0s, COFs). 

 

Forecast 

Obs 

Yes (1, FA) No (0, COF) 

Yes (1, FA) 

No (0, COF) 

a b 

c d 

 

Four contingency statistics are then computed from the contingency table. Hit rate (HR), 

also known as the probability of detection (POD), is given as: 

𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑐
 (3.12) 

This statistic is the ratio of correct yes (FA) forecasts to the total number of yes (FA) 

observations. Higher values indicate better classification. The false alarm ratio (FAR) is given 

as: 

𝐹𝐴𝑅 =
𝑏

𝑎 + 𝑏
 (3.13) 
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This statistic is the number of misclassified COFs versus the total number of times a yes (FA) is 

predicted. A lower value is indicative of lower false alarms, which is desirable. Heidke skill 

score (HSS) is given as: 

𝐻𝑆𝑆 =
2(𝑎𝑑 − 𝑏𝑐)

(𝑎 + 𝑐)(𝑐 + 𝑑) + (𝑎 + 𝑏)(𝑏 + 𝑑)
 (3.14) 

HSS is the measure of success of the forecast relative to what it would be by chance without the 

underlying assumption of the distributions being the same. Values close to 1 are better. The best 

SVM configuration was found using the median bootstrap replicate HSS values of each 

configuration, as HSS is an objective measure of discrimination and increases with increasing 

POD concurrent with decreasing FAR. Doswell et al. (1990) demonstrated that the HSS was 

superior to the critical success index (CSI) for evaluating forecasts of rare events because it gave 

credit for a correct forecast of a nonevent. The final contingency statistic considered herein is 

bias (BIAS): 

𝐵𝐼𝐴𝑆 =
𝑎 + 𝑏

𝑎 + 𝑐
 (3.15) 

which is the ratio of the number of yes (FA) predictions to the number of no (COF) predictions. 

An unbiased forecast has a bias value of 1, while values less than 1 predict too many 0s (COFs) 

and values greater than 1 predict too many 1s (FAs).  

Finally, these contingency statistics were used to assess the performance of the feature 

selection methodologies and ultimately the logistic regression and SVM models, determine the 

optimal configuration of the SVM, and evaluate the performance of the optimal model 

configurations on the 2020 case data. 
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Feature Selection Methodologies 

Of the three feature selection methodologies employed (i.e., stepwise, permutation 

testing, and PCA), stepwise proved to yield the best predictor set and therefore the better logistic 

and SVM model results. Continency statistics were computed for both the SVM and logistic 

models after each feature selection method was utilized (Tables 3.5, 3.6, and 3.7). These results 

show that the HSS values for the logistic and SVM models utilizing the stepwise predictors had 

the highest values when compared to the best performing versions using predictors from PCA 

and permutation testing. However, the SVM HSS value of the best performing permutation test 

was close to that of the SVM which utilized predictors reduced via stepwise. 

Table 3.4 Model results utilizing the 10 optimal predictors that were computed using 

stepwise. 

Logistic Regression 

HSS 0.353 

BIAS 1.063 

POD 0.684 

FAR 0.357 

SVM 

HSS 0.323 

BIAS 1.133 

POD 0.667 

FAR 0.389 
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Table 3.5 Model results utilizing PCA with different numbers of kept PCs. Variance 

explained is also included. 

Logistic Regression 

 3 PCs 

Kept 

4 PCs 

Kept 

5 PCs 

Kept 

6 PCs 

Kept 

7 PCs 

Kept 

8 PCs 

Kept 

HSS 0.250 0.240 0.248 0.239 0.255 0.248 

BIAS 1.061 1.071 1.177 1.154 1.156 1.133 

POD 0.619 0.625 0.667 0.667 0.667 0.667 

FAR 0.412 0.421 0.429 0.429 0.417 0.421 

SVM 

 3 PCs 

Kept 

4 PCs 

Kept 

5 PCs 

Kept 

6 PCs 

Kept 

7 PCs 

Kept 

8 PCs 

Kept 

HSS 0.197 0.197 0.234 0.180 0.202 0.202 

BIAS 1.143, 

1.154 

1.056 1.118 1.231 1.222 1.235 

POD 0.632 0.600 0.625 0.667 0.647 0.667 

FAR 0.000, 

0.000 

0.000 0.421 0.000 0.444 0.447 

Variance Explained 

 3 PCs 

Kept 

4 PCs 

Kept 

5 PCs 

Kept 

6 PCs 

Kept 

7 PCs 

Kept 

8 PCs 

Kept 

0.522 0.580 0.629 0.671 0.701 0.731 

 

Table 3.6 Model results utilizing permutation testing of the 10 optimal predictors. 

Logistic Regression 

 p < 0.001 p < 0.01 p < 0.025 p < 0.05 

HSS 0.205 0.198 0.138 0.138 

BIAS 1.000 1.053 1.053 1.000 

POD 0.583 0.583 0.546 0.539 

FAR 0.429 0.436 0.471 0.469 

SVM 

 p < 0.001 p < 0.01 p < 0.025 p < 0.05 

HSS 0.308 0.281 0.271 0.264 

BIAS 1.053 1.063 1.077 1.077 

POD 0.611 0.611 0.625 0.625 

FAR 0.375 0.389 0.400 0.409 

 

It is not a surprise that models utilizing predictors chosen by stepwise regression 

performed well as stepwise regression can handle significant amounts of potential predictors and 
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select the top predictor variables from the available options. As for PCA, it should be used 

mainly for variables that are correlated and in linear modeling contexts. In other words, it forces 

a linear relationship, so a nonlinear modeling approach won't work well with linearly separable 

data. If there is weak correlation between variables, PCA does not work well to reduce data. 

Correlation values always range from -1 for a negative relationship to 1 for a positive correlation. 

Values at, or close to, zero indicate no linear relationship or a very weak correlation. The 

correlation matrix values in this case determined that most of the correlation coefficients are 

smaller than 0.5 (Figure 3.7). This shows why PCA may not have been the most helpful in 

reducing the number of predictors and producing a successful SVM and logistic model. 

 

Figure 3.9 Histogram of the best performing PCA correlation matrix values. 
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Lastly, for permutation testing, the null hypothesis is more specific. You must assume 

that the samples used for testing have identical distributions (i.e., shape, center, and spread). 

Permutation testing presumes that the only difference between the samples is the random 

assignment. A reason why the best performing SVM utilizing predictors from permutation 

testing is so close to that of the SVM utilizing predictors from stepwise may be due to the small 

sample size. The best performing model with permutation testing predictors was the model 

utilizing p-values less than 0.001. Only 34 predictors had p values less than 0.001. Permutation 

tests are also effective when parametric assumptions are not met. As permutations only require 

exchangeability, they are a very robust test. 

Optimal SVM Configuration 

As stated previously, the stepwise feature selection method proved to yield the best 

predictor set and therefore the better logistic and SVM model results. Because of this, confidence 

intervals were completed for each contingency statistic on the versions of both the logistic 

regression and the SVM (Figures 3.10a-d) that utilize the predictors chosen by the stepwise 

selection. Regarding the comparison of models that has been done in this study, it has been found 

that the SVM and the logistic regression have close overall performance measures. The 

contingency statistics show that the two models are statistically indistinguishable. While the 

overall numbers for logistic were slightly better, the uncertainty in both models suggests that 

either method yields similar predictability, meaning linear separability works decently for this 

problem. The SVM parameters for the top ten configurations are given in Table 3.8. 
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Figure 3.10 Confidence intervals on the contingency statistics of the best performing versions 

of the logistic regression and SVM models (α = 0.05), including: (a) HSS, (b) 

BIAS, (c) FAR, and (d) POD. 

 

Table 3.7 Top ten performing SVM configurations in order of decreasing HSS. 

HSS 0.323 0.320 0.317 0.316 0.316 0.316 0.316 0.316 0.316 0.315 

Kernel Poly Poly Poly Poly Poly Poly Poly Poly Poly Poly 

Degree 1 1 1 1 1 1 1 1 1 1 

Gamma 0.5 0.05 0.5 0.2 0.01 0.01 0.1 0.2 0.5 0.5 

Cost 1 10 10 1 100 1000 1000 1000 1000 100 

 

As stated above, a kernel function is regularly applied in SVMs if the data are not linearly 

separable (which was hypothesized here), as the kernel can occasionally find a decision 

hyperplane that separates the classes better than a linear classifier. The SVM performance must 

also be optimized based on the tuning parameter listed above. The optimal configuration for this 

study revealed a linear polynomial kernel, which yields a solution very similar to a logistic 
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regression (a linear separability within the data). Further, the lower cost suggests points far from 

the decision boundary should be used in its weighting, which ultimately suggests the SVM, 

despite being linear, is a complex classifier for this problem. The gamma value also increases the 

influence of additional features on the hyperplane boundary, which is likely the reason for the 

small subset of features performing best (as seen in the feature selection discussion above).   
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CHAPTER IV 

RESULTS & DISCUSSION 

Interpretation of Predictors 

The predictors chosen by the stepwise model (Table 4.1) showed that relatively greater 

discrimination between outbreak types occurs with thermodynamic variables rather than 

kinematic. This is consistent with the findings from studies like Shafer et al. (2010) and Grams et 

al. (2012). Shafer et al. (2010) found that storm-relative helicity parameters supplied better 

discrimination power between WRF model composites of tornado outbreaks and primarily 

nontornadic outbreaks, compared to CAPE. Grams et al. (2012) found that convective mode, 

composite parameters, and kinematic variables (i.e., 0-1 km and 0-6km bulk wind difference) 

provided greater discrimination between tornadic events than thermodynamic variables (i.e., 

mixed layer CAPE, mixed layer CIN, mixed layer LCL). 
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Table 4.1 The 10 optimal predictors utilized in the log regression and SVM models in order 

of increasing HSS values. The results are cumulative, such that HSS on the last 

row represents HSS when retaining all 10 predictors listed here. 

Variable Spatial 

Component 

POD FAR BIAS HSS 

Min Daily Temperature 

Advection (850 mb) (K s-1) 

Max 0.612 0.402 1.024 0.268 

Mean Daily Surface CIN (J 

kg-1) 

Mean 0.659 0.341 1.000 0.375 

Min Daily Vorticity 

Advection (500 mb) (s-2) 

Mean 0.647 0.267 0.882 0.455 

Max Daily Vorticity 

Advection (500 mb) (s-2) 

Max 0.671 0.250 0.894 0.487 

Min Daily Surface MUCAPE 

(J kg-1) 

Mean 0.682 0.247 0.906 0.500 

Mean Daily Vorticity 

Advection (500 mb) (s-2) 

Max 0.694 0.244 0.918 0.511 

Mean Daily SCP Mean 0.706 0.241 0.929 0.523 

Min Daily Surface CIN  

(J kg-1) 

Max 0.694 0.213 0.882 0.543 

Mean Daily Surface 

MUCAPE (J kg-1) 

Mean 0.706 0.211 0.894 

 

0.554 

Min Daily Surface MUCIN 

(J kg-1) 

Max 0.706 0.189 

 

0.871 

 

0.575 

 

Nevertheless, Grams et al. (2012) does stress that certain thermodynamic parameters may 

provide relatively high levels of discrimination when comparing a significant tornado outbreak 

and a FA environment where significant severe storms did not occur. Mercer and Bates (2014) 

supported this result as well, showing warm air advection (WAA) was weaker with cold air 

advection comparatively stronger and more widespread in FA outbreak cases. This suggests that 

forecasters may have overlooked the lack of strong WAA in FA outbreak cases when 

considering other factors (e.g., kinematic variables) favorable for tornado outbreaks, leading to 

an incorrect outbreak expectation. Bootstrap confidence intervals on the mean temperature 

advection for both FAs and hits show that there is a significant difference between the two 
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outbreak types (Figure 4.1). The mean for COFs is statistically greater than that for FAs, 

signifying that past research such as Mercer and Bates (2014) was correct in its findings. 

 

Figure 4.1 Confidence intervals on the means of the minimum daily temperature advection of 

FAs and COFs (α = 0.05). 

 

Most unstable CAPE (MUCAPE) is a measure of instability that indicates the amount of 

potential energy available to the most unstable parcel of air found within the lowest 300mb of the 

atmosphere while being lifted to the level of free convection (LFC). According to Dean and 

Schneider (2008), the probability of severe thunderstorms and tornadoes increased when 

MUCAPE and 06 km bulk shear values were greater. The relationship of these environments to 

the performance of watches issued by the SPC were then analyzed to find that, the good area 
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percentage (the percentage of tornadoes in the issued watch versus outside of the watch) for 

tornadoes in tornado watches had a propensity to decrease as MUCAPE values fell below 1000 J 

kg1 (Dean and Schneider 2008). This suggests forecasters do a better job of forecasting when 

MUCAPE values are high and larger uncertainty exists for tornado development in low CAPE 

environments, which are more common in the cool season. This implies that FA forecasts may 

have commonly occurred due to the interpretation of levels of MUCAPE during cooler seasons. 

Weaker tornadoes are common in low-CAPE environments during these cooler seasons across 

the Southeast United States (Childs et al. 2018). During meteorological fall and winter, 22 FAs 

occurred during this study period, with the FA outbreaks having lower average MUCAPE values 

than the COFs. Bootstrap confidence intervals on the mean MUCAPE for both FAs and COFs 

show there is not a statistical difference between cases (Figures 4.2 and 4.3). 
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Figure 4.2 Confidence intervals on the means of the minimum daily surface MUCAPE of FAs 

and COFs (α = 0.05). 
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Figure 4.3 Confidence intervals on the means of the mean daily surface MUCAPE of FAs and 

COFs (α = 0.05). 

 

In addition to the apparent importance of CAPE from the feature selection methodology, 

CIN also was revealed as an important distinguishing characteristic of FA environments. While 

CIN, in general, is thought to inhibit convective activity and thus reduce the probability of severe 

storms, in some cases, enhanced moisture and/or diurnal heating overcome the CIN, and result in 

a greater than baseline probability of a storm reaching severe strength (Davies 2004). Thus, in a 

FA context, elevated CIN coupled with marginal synoptic-scale vertical forcing may have led a 

forecaster to anticipate convection that never materialized (hence a FA). According to the 

confidence intervals completed on the means of the FAs and COFs for each of the CIN 
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predictors, those intervals overlap, which concludes that the difference in means between groups 

is not statistically significant (Figures 4.4 – 4.6). Since there is no significant difference in the 

average values between outbreak types, this confirms that CIN values may have led a forecaster 

to predict convective storms that never occurred. 

 

Figure 4.4 Confidence intervals on the means of the minimum daily CIN of FAs and COFs (α 

= 0.05). 
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Figure 4.5 Confidence intervals on the means of the mean daily CIN of FAs and COFs (α = 

0.05). 
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Figure 4.6 Confidence intervals on the means of the minimum daily MUCIN of FAs and 

COFs (α = 0.05). 

 

The supercell composite parameter (SCP) is an index that includes MUCAPE, effective 

storm relative helicity, and effective bulk wind difference (Thompson et al. 2004): 

𝑆𝐶𝑃 = (
𝑀𝑈𝐶𝐴𝑃𝐸

1000 𝐽𝑘𝑔−1
) × (

𝐸𝑆𝑅𝐻

50 𝑚2𝑠−2
) × (

𝐸𝐵𝑊𝐷

10 𝑚𝑠−1
) (4.1) 

While each of the optimal predictors so far have been thermodynamic in nature, this 

composite index includes both thermodynamic (i.e., MUCAPE) and kinematic variables (i.e., 

ESRH and EBWD). As such, it makes sense as to why this predictor had a higher HSS value and 

was therefore one of the better predictors in differentiating between outbreak type. The three 

parameters embody combinations of thermodynamic and vertical wind shear potential to best 
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separate supercells from non-supercells. Each of the three ingredients are normalized to supercell 

threshold values following the work done by Thompson et al. (2003) and Thompson et al. 

(2007), where larger values of SCP indicate greater overlap of the three ingredients. Based on 

past research by Thompson et al. (2003), SCP has a strong ability to distinguish between tornadic 

and other supercell groups, where the differences in the means were statistically significant 

across all categories. According to Krocak et al. (2021), as SCP increased across a range of more 

frequently observed values (e.g., 0–10), the percentage of warned tornadoes increased. The same 

can be said for Thompson et al. (2012), where larger values of the effective-layer SCP more 

often saw right-moving supercells that produced significant tornadoes, and smaller values of 

SCP saw weaker tornadoes or supercells that generated hail and/or damaging winds. Average 

SCP values were slightly higher for the COF cases than for FAs; however, when comparing the 

confidence intervals for those groups, those intervals overlap (Figure 4.7). This concludes that 

the difference in means between groups is not statistically significant. 
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Figure 4.7 Confidence intervals on the means of the mean daily SCP of FAs and COFs (α = 

0.05). 

 

The final optimal predictor is vorticity advection, which was the only individual 

kinematic variable (though it is not a typical severe weather diagnostic variable). In past 

research, such as Mercer and Bates (2014), the FA group has the weakest relative vorticity 

maxima, which in turn resulted in smaller differential positive vorticity advection (DPVA), an 

indicator of mid-level rising motion. In Mercer and Bates (2014), FAs had the weakest DPVA 

six hours before the outbreak. This was to be expected, as nontornadic outbreaks are known to 

have weaker DPVA than tornado outbreaks (Mercer et al. 2012). In this study, FAs had weaker 

vorticity advection than the COF cases (Figures 4.8 – 4.10) apart from the maximum daily 
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vorticity advection, which had a slightly higher mean. Vorticity advection helps diagnose areas 

of rising or sinking motion. Positive vorticity advection (PVA) at 500 mb implies divergence is 

occurring in the upper troposphere, and therefore, rising motion is occurring. Areas of PVA at 

500 mb suggest that DPVA is also occurring, meaning positive vorticity increasing from the 

surface to the upper levels is being advected causing the troposphere to become more 

dynamically unstable. PVA values are seen for both FAs and COFs for maximum daily vorticity 

advection and mean daily vorticity advection (Figures 4.9 and 4.10, respectfully). Oppositely, 

negative vorticity advection (NVA) values are seen for minimum daily vorticity advection 

(Figure 4.8) for both FAs and COFs, meaning convergence is occurring in the upper troposphere 

contributing to sinking air. Thus, precipitation and severe weather will be less likely to occur. It 

can be inferred that differential negative vorticity advection (DNVA) is also occurring, meaning 

negative vorticity increasing from the surface to the upper levels is being advected causing the 

troposphere to become more stable. NVA normally occurs upstream of an area of maximum 

vorticity. Figure 4.8 shows NVA values are smaller for FAs than for COFs. This could signify 

the potential for a ridge building in robustly in FAs than COFs. 

As shown by the quasigeostrophic omega equation (Equation 4.2): 

[∇𝑝
2 +

𝑓𝑜
2

𝜎

𝜕2

𝜕𝑝2
]𝜔 =  −

𝑓𝑜
𝜎

𝜕

𝜕𝑝
[−�⃑� 𝑔 ∙ ∇𝑝(𝜁𝑔 + 𝑓)] −

𝑅

𝜎𝑝
∇𝑝

2[−�⃑� 𝑔 ∙ ∇𝑝𝑇] (4.2) 

 

both DPVA and WAA can provide uplift when working in tandem. In this study, temperature 

advection has a lower HSS value than DPVA, so it provides the most significant distinction 

between cases. Therefore, it is possible it could have been the main cyclogenetic factor in these 

cases compared to DPVA (Table 4.1). This is consistent with the findings in Mercer and Bates 

(2014). 
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Figure 4.8 Confidence intervals on the means of the minimum daily vorticity advection of 

FAs and COFs (α = 0.05). 
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Figure 4.9 Confidence intervals on the means of the maximum daily vorticity advection of 

FAs and COFs (α = 0.05). 
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Figure 4.10 Confidence intervals on the means of the mean daily vorticity advection of FAs 

and COFs (α = 0.05). 

 

Performance of the SVM vs. the Logistic Regression 

There are some possible reasons as to why the performance of the logistic regression and 

the SVM are not significantly different. Logistic regression and SVMs are similar. Logistic 

regression aims at maximizing the probability of the data. The farther the data lies from the 

hyperplane on the proper side, the better the logistic regression performs. An SVM attempts to 

find the hyperplane that maximizes the distance of the support vectors, and this optimization 

theoretically minimizes classification error in the given statistical space. The linear kernel was 

the optimal configuration of the SVM, and logistic regression performs well when the data is 
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linearly separable. This reinforces why the results are similar. The risk of overfitting is also less 

in SVM, while logistic regression is vulnerable to overfitting. This is particularly true in cases 

with many predictors, such as with this study. While a stepwise feature selection methodology 

was utilized to lessen the number of predictors to those that are most optimal, it is possible that 

the number was still too much and therefore caused some overfitting to occur leading to a 

slightly better performance by the logistic regression. 

Testing of the 2020 Data 

After the optimization and training phases were completed, both the SVM and logistic 

classifiers were tested on the 2020 outbreak case set (Table 4.2). Compared to both model 

performances in the optimization and training phase with the 2010-2019 data, the testing of 

model performance on the 2020 case data yielded HSS values which increased by approximately 

0.249 between the logistic regression models and 0.279 between the SVM models. Again, there 

is no notable benefit in the SVM compared to the logistic regression as the results from testing 

were identical for both models. 

Table 4.2 Contingency statistics of the 2020 data using best configuration of the logistic 

regression and SVM models. 

Logistic Regression & SVM 

HSS 0. 602 

BIAS 0.875 

POD 0.750 

FAR 0. 143 

 

Both the logistic regression and the SVM models misclassified the same cases. Of the 15 

case dates in the 2020 testing data, six of the seven COFs and six of the eight FAs were classified 

correctly by both the logistic regression and the SVM models. Two cases were predicted to be 
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COFs but were actually FAs (December 24, 2020, December 31, 2020), and one case was 

forecasted as a FA but was actually a COF (April 13, 2020; Table 4.3). 

Table 4.3 Contingency table of the 2020 testing data. 

 

Forecast 

Obs 

Yes (1, FA) No (0, COF) 

Yes (1, FA) 

No (0, COF) 

6 1 

2 6 

 

The April 13, 2020 case had a minimum temperature advection value that fell within the 

confidence interval of FAs for that variable (Table 4.4). The minimum vorticity advection value 

was also within the confidence interval for FAs for that variable. The values of the other eight 

variables did not fall within their respective confidence intervals for either FAs or COFs but 

were on the lower end nearer to the FA range. This may be why the logistic regression and the 

SVM misclassified this case as a FA. The Day One Convective Outlook at 1200 UTC on this day 

stated that warm, moist air from the Gulf of Mexico strengthened an already extensive air mass 

at the surface with warm, high dew point air over the southeast United States. However, robust 

heating was likely hindered by prevalent cloudiness ahead of severe thunderstorms that were 

occurring that morning. Nevertheless, forecasters correctly predicted narrow areas of moderate 

instability that were conducive for tornadic storms in addition to favorable kinematic conditions. 

For the December 24, 2020 case, the minimum temperature advection value falls within 

the confidence intervals of that variable for FAs while minimum vorticity advection is close to 

the confidence intervals of COFs (Table 4.4). The values of the other eight variables did not fall 

within their respective confidence intervals for either FAs or COFs. According to the Day One 

Convective Outlook at 1200 UTC for this case, forecasters mentioned the existence of mid-level 

height falls. Positive vorticity advection (PVA) is accompanied by height falls as it promotes 
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upper-level divergence and rising air. The convective outlook also stated that pre-frontal WAA 

and the advancement of the warm sector would allow for reasonable destabilization that could 

sustain strong updrafts in advance of the cold front. Forecast soundings also depicted MUCAPE 

values greater than 1000 J/kg. It is likely that forecasters as well as the logistic and SVM models 

found sufficient amounts of each of the previously mentioned variables to constitute COF 

conditions. Four tornadoes did occur within the 10% tornado probability region in this case, 

which is less than the established global mean of six. These correlated with the tornado threat 

that was noted to occur in the convective outlook with embedded circulations along the frontal 

squall line. It is likely that while the variables existed for tornadoes to occur, the squall line 

passed quickly leading to conditions that were not robust enough to warrant a COF outcome; 

therefore, the case was misclassified as a COF. 

As for December 31, 2020, minimum temperature advection, minimum vorticity 

advection, and mean vorticity advection values fall within the confidence intervals for COFs of 

the respective variables (Table 4.4). The values of the other seven variables did not fall within 

their respective confidence intervals for either FAs or COFs. When referencing the 1200 UTC 

Day One Convective Outlook on this case day, forecasters highlighted that extensive clouds and 

feeble lapse rates were only conducive to a moderate thermodynamic environment for severe 

storms. However, they did mention showers and thunderstorms were expected to be more 

prevalent throughout the day and develop northward due to warm air advection. A majority of 

the outlook discussed favorable kinematic variables, such as storm relative helicity and effective 

bulk shear. Their analysis concluded that most of the storms that could develop would likely be 

slightly elevated (which are associated with large hail and strong, damaging winds) but that the 

overall environment would support a tornado threat if decent updrafts could occur in the 
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boundary layer. It is likely that while the previously mentioned variables fell within COF 

constraints, conditions in the boundary layer were not conducive to support sufficient updrafts to 

form an outbreak of tornadoes. Therefore, the case was misclassified by both models as a COF. 

Table 4.4 Values of the optimal predictors for the misclassified cases. 

Variable Spatial 

Component 

April 13, 2020 

(misclassified 

as FA) 

December 24, 

2020 

(misclassified as 

outbreak) 

December 31, 

2020 

(misclassified as 

outbreak) 

Min Daily 

Temperature 

Advection (850 mb) 

(K s-1) 

Max  3.840e-04  3.813e-04  7.586e-04 

Mean Daily Surface 

CIN (J kg-1) 

Mean -24.816 -4.628 -16.208 

Min Daily Vorticity 

Advection (500 mb) 

(s-2) 

Mean -1.364e-08 -4.157e-09 -5.759e-09 

Max Daily Vorticity 

Advection (500 mb) 

(s-2) 

Max 2.595e-06 9.596e-07 2.131e-06 

Min Daily Surface 

MUCAPE (J kg-1) 

Mean 6.238 0.455 3.860 

Mean Daily Vorticity 

Advection (500 mb) 

(s-2) 

Max 1.149e-11 3.588e-09 2.237e-09 

Mean Daily SCP Mean 1.266 1.543 1.791 

Min Daily Surface 

CIN (J kg-1) 

Max 0.000 0.000 0.000 

Mean Daily Surface 

MUCAPE (J kg-1) 

Mean 356.561 222.396 358.927 

Min Daily Surface 

MUCIN (J kg-1) 

Max 0.000 0.000 0.000 

 

An example of a FA case that the models correctly classified is March 19, 2020. Eight 

tornadoes occurred on this date. However, only two tornadoes occurred within the 10% tornado 

probability percentage region, hence the FA categorization. Minimum daily temperature 
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advection and minimum and maximum daily vorticity advection values were within the range of 

confidence intervals for FAs (Table 4.5). The SPC’s 1200 UTC Day One Convective Outlook 

stated that significant convection was already occurring in the southern Plains which was 

southwest of the region of interest. This activity was forecasted to propagate into eastern 

Oklahoma and western Missouri by sunrise and into the Ohio Valley later that day. There was 

uncertainty stated regarding the extent of the severe potential and how severe this activity would 

be. However, forecasters were confident that strong shear and adequate moisture/buoyancy 

would lead to damaging winds and some tornado threat by that afternoon as the strongest areas 

of forcing moved into the region of interest. Lapse rates were forecasted to not be steep, but 

strong shear and higher precipitable water content were thought to be ample enough for 

damaging winds and a tornado threat through a linear storm mode with embedded supercells. It 

is probable that the deeply buoyant profiles that forecasters anticipated were inhibited by the 

milder lapse rates aloft, causing a lower probability of tornadic storms. 
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Table 4.5 Values of the optimal predictors for 19 March 2020. 

Variable Spatial 

Component 

Value 

Min Daily 

Temperature 

Advection (850 mb) 

(K s-1) 

Max  4.212e-04 

Mean Daily Surface 

CIN (J kg-1) 

Mean -15.796 

Min Daily Vorticity 

Advection (500 mb) 

(s-2) 

Mean -1.004e-08 

Max Daily Vorticity 

Advection (500 mb) 

(s-2) 

Max 1.595e-06 

Min Daily Surface 

MUCAPE (J kg-1) 

Mean 1.799 

Mean Daily Vorticity 

Advection (500 mb) 

(s-2) 

Max 3.856e-09 

Mean Daily SCP Mean 1.531 

Min Daily Surface 

CIN (J kg-1) 

Max 0.000 

Mean Daily Surface 

MUCAPE (J kg-1) 

Mean 524.690 

Min Daily Surface 

MUCIN (J kg-1) 

Max 0.000 
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CHAPTER V 

SUMMARY & CONCLUSIONS 

Machine learning techniques were utilized to predict the probability that an SPC tornado 

outbreak forecast would result in an FA. Based on a global mean of 5.630 tornadoes per outbreak 

spanning 2010 – 2020, an overall mean of six was chosen to discern between COF and FA 

outbreak forecasts. This definition was applied to develop the COF and FA databases of cases 

using historical convective outlooks from the SPC that included a 10% tornado probability 

region. WRF model simulations were then completed for a set of 202 outbreaks (93 FAs and 109 

COFs) to illustrate the meteorological environment producing each outbreak. Thermodynamic 

and kinematic variables from the WRF simulations were then used to train both a logistic 

regression model and an SVM model that forecast the probability of a FA. 

Apart from two predictors, all the predictors were thermodynamic. Past research (Grams 

et al. 2012) of tornadic events and nontornadic hail events and wind events indicated the 

importance of kinematic variables (i.e., low-level and mid-level winds) to discriminate between 

these types of severe events. The stronger the low-level and mid-level winds, the occurrence of 

significant tornadic events was deemed more likely than significant nontornadic hail and 

nontornadic wind events. Wind shear aids in tilting the storm, allowing the updraft to be 

sustained for longer. This allows for the development of a mesocyclone. While moderate to large 

amounts of shear are needed in storms that produce hail, even greater wind shear can enhance 

rotation within the thunderstorm updraft, which can lead to tornado development. Wind shear for 
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nontornadic wind events is similar to nontornadic hail events. The stronger the low-level and 

mid-level winds, the likelihood for significant tornadic events increases versus significant 

nontornadic wind events. Thermodynamic variables were not of great importance in 

distinguishing between storm types in the Grams et al. (2012) study as kinematic variables were, 

as similar, large amounts of instability (i.e. CAPE) are needed for each storm type. These results 

correspond to Shafer et al. 2010 where kinematic variables (i.e., storm-relative helicity (SRH)) 

provided greater discrimination between tornado outbreaks and primarily nontornadic outbreaks.  

These results show the importance of thermodynamic parameters when comparing a 

significant tornado event and a FA environment where significant tornadic storms did not occur 

where they were forecasted. Of those predictors that are thermodynamic, MUCAPE, surface 

CIN, and MUCIN remain largely unexplored in past research related to differentiating between 

storm or outbreak type. Expanding research on these three variables and how they impact 

outbreak environments and, therefore, outbreak type, would allow for the creation of machine 

learning models that more accurately represent the impact of thermodynamic variables and result 

in improved model performance. 

The optimal configuration of the SVM and the logistic regression model were tested on 

case data from 2020. The initial optimization and training of the model yielded that the logistic 

regression performed slightly better than the SVM, though for the testing of the 2020 outbreak 

sets both methods performed identically. This study sought to verify whether an SVM could 

properly distinguish between COF and FA forecasts. An improved ability to identify false alarm 

outbreak environments did result from the work completed in this study as HSS values were 

greater than 0.   
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These conclusions are contingent upon the limitations associated with this study. The 

biggest drawback was the exclusion of hit and FA cases in April 2011. This period had date and 

time discrepancies in the data that compiled from the NCEP GFS Ensemble Forecast System 

archive yet was likely the most outbreak-active month of the study period. The exclusion of these 

cases may have played a small role on hindering model performance. The April 2011 “Super 

Outbreak” was the largest, costliest, and one of the deadliest tornado outbreaks ever recorded 

since formal record keeping began in 1950 (NWS 2011), and its inclusion would have been 

useful in this study (though it was well forecast and would have qualified as a COF).  

Another limitation to this study was the use of a cumulus parameter in the WRF 

simulations. The use of 12-km grid spacing rather than the WRF-NSSL 4-km grid spacing 

inhibits the cumulus scheme as it cannot resolve CAPE at larger resolutions. Instability and 

convection are meteorological processes that are too small and complex to model at larger grid 

sizes, however smaller grid sizes can explicitly represent convective clouds, although they need 

to parameterize cloud microphysics which occur at a smaller scale. So, the WRF simulations that 

aided in building both the logistic regression model the SVM cannot fully simulate instability. 

Additionally, had there been more time to complete this study, the use of a 30-year 

training period would have been ideal. The World Meteorological Organization recommends that 

each member country recompute their 30-year climate normals every 10 years (Arguez and Vose 

2011), the most recent series of decadal normals being from 1991-2020. Adding more well-fit 

data to the analysis could assist in producing better accuracy and, therefore, a more trusted 

product. The use of other machine learning methodologies, such as Bayesian neural networks 

and random forests, would be ideal in this situation, as they can efficiently handle large amounts 

of data. They would also be helpful in training and testing the period of this current study.  
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Furthermore, it would be ideal to include a seasonality parameter when further 

developing the model. As previously mentioned, Mercer and Bates (2014) observed seasonal 

pattens of FAs in their study, where nearly all occurred in the summer and fall. Most tornadoes 

and tornado outbreaks happen throughout the spring, and this finding demonstrates that those 

that do not occur during the “regular season” have higher forecast uncertainty. This implies 

seasonality may be useful parameter to include when predicting FA forecasts. In the period of 

this study, most of the FAs occurred during the summer and fall months, which is in agreement 

with the results from Mercer and Bates (2014) (Figure 5.1). As previously explained, seasonal 

differences in CAPE may play a role, as values of CAPE are generally higher during the warm 

season and lower during the cool season. For that reason, events in the fall may require more 

synoptic-scale vertical forcing to initiate convection. Furthermore, favorable wind shear for 

supercell development and tornadoes is more common during the spring and fall than the 

summer. Lastly, LCL height depends on the season. Higher LCLs are typical with many 

primarily nontornadic outbreaks during the summer. It is likely that forecasting and 

interpretation of these variables led to higher instances of FAs during the summer and fall. 
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Figure 5.1 Percent of cases that were FAs from 2010-2020 by season. 

 

There is still work to be done, but the work in this study is laying the groundwork for 

machine learning models to become more integral in tornado outbreak forecasting. Overall, 

models show promise in detecting FAs within outbreak forecasts, but more work is needed to 

ensure these benefits have operational value. A critical challenge encountered in this study is 

how little difference there was between the performance of the SVM model and the logistic 

regression. Future work will require updating the features for the SVM specifically (e.g., a new 

feature set for SVM versus the logistic features). Once more adjustments, enhancements and 

testing are done on the model to heighten its overall efficacy, the results could be shared with the 

SPC and National Weather Service weather forecasting offices to assist in their forecasting 

procedures. The final configuration will hopefully yield an algorithm that can be used to inform 

future tornado outbreak forecasts and lessen the burden of current challenges related to FAs. 
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