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Recent technological advances in unmanned observational platforms, including remotely 

operated vehicles (ROVs) and small unmanned aerial systems (sUAS), have made them highly 

effective tools for research and monitoring within marine and coastal environments. One of the 

primary types of data collected by these systems is video imagery, which is often captured at an 

angle oblique to the Earth’s surface, rather than normal to it (e.g., downward looking). This 

thesis presents a newly developed suite of tools designed to digitally map oblique imagery data 

collected with ROV and sUAS in coastal and marine environments and quantitatively evaluates 

the accuracy of the resultant maps. Results indicate that maps generated from oblique imagery 

collected with unmanned vehicles have highly variable accuracy relative to maps generated with 

imagery data collected with conventional mapping platforms. These results suggest that resultant 

maps have the potential to match or even surpass the accuracy of maps generated with imagery 

data collected with conventional mapping platforms but realizing that potential is largely 

dependent upon careful survey design.  
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CHAPTER I 

INTRODUCTION  

Marine and coastal environments provide important habitat, ecosystem services, and 

natural resources. Additionally, they are the location of substantial natural hazards, including 

tropical cyclones, coastal erosion, and tsunami (Wright et al., 2019). Given their relevance to a 

broad range of natural processes and societal concerns, scientists, environmental managers, and 

policymakers have focused a great deal of attention on understanding, predicting, and monitoring 

coastal and marine environmental dynamics (Taddia et al. 2020). The success of these efforts is 

largely dependent upon the ability of investigators to accurately survey and map features of 

interest in coastal and marine environments that are often rapidly changing (Patel et al. 2021). 

This in turn is dependent upon access to efficient and economical mapping platforms that can 

survey these environments with high temporal and spatial resolution and be deployed rapidly in 

response to events such as storm landfall.  

Conventionally, subaerial portions of coastal and marine environments have been 

mapped with mosaiced still imagery collected with satellite or manned aircraft remote sensing 

platforms (Klemas, 2011) and submarine portions have been mapped with sonar acoustic 

reflectivity imagery collected from manned ships or boats (Lurton, 2010; Mayer, 2006).  These 

approaches have been highly effective at generating accurate maps of coastal and marine 

environments but have associated limitations that have constrained their utility for many research 

and management applications. Most notably, these conventional mapping data collection 
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approaches are expensive, can be limited in their spatial resolution due to distance of the 

platform from the surveyed surface, and are highly constrained in their temporal resolution. For 

example, the temporal sampling frequency of satellite remote sensing for a specific location is 

generally fixed by the satellite orbital path (Prost, 2013), precluding higher frequency surveys or 

precisely timed surveys relative to an event like a landfalling tropical cyclone. Additionally, the 

utility of satellite and aerial platforms is often limited by the presence of clouds between the 

platform and the surveyed surface (Ju & Roy, 2008), which are particularly common in 

association with atmospheric events, like storms, that are most likely to rapidly modify coastal 

and marine environments.   

The recent rapid development of aerial and marine unmanned vehicle technology has 

resulted in the broader availability of observational platforms that have the capacity to 

effectively map coastal and marine environments while overcoming some of the limitations of 

conventional mapping platforms. Both underwater remotely operated vehicles (ROV) and small 

unmanned aircraft systems (sUAS) provide professional and amateur users with the ability to 

collect large quantities of spatially referenced imagery data that has not previously been widely 

available. Notably, these unmanned systems are now routinely deployed with cameras that can 

collect video data at ultra-high resolutions (e.g., 4 k), which surpasses the spatial resolution of 

other tools commonly used for subaerial and submarine environmental imaging such as satellite 

remote sensing, traditional aerial photography, side scan sonar, and multibeam sonar. The costs 

of sUAS platform acquisition and operation are multiple orders of magnitude less than satellite 

or manned aircraft mapping platforms. Additionally, sUAS platforms can be rapidly deployed in 

a specific location in response to an environmental event of interest and the frequency of repeat 

surveys is essentially unlimited. Moreover, sUAS can operate below the cloud ceiling, yielding 
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more continuous and therefore useful mapping imagery.  ROV platforms allow for seafloor 

mapping with orders of magnitude higher resolution relative to sonar imagery collected form a 

manned boat or ship.  Additionally, ROV platforms allow focused optical image mapping, which 

yield substantially greater detail and insight into environmental conditions than acoustic image 

mapping from manned vessels.  

Although ROV and sUAS platforms offer advantages relative to conventional mapping 

platforms, they also have some associated potential limitations that must be addressed and 

quantified. A substantial challenge to effectively mapping an area with ROV and sUAS imagery 

is that the platforms often require their primary camera to collect video imagery, with an 

outward-looking high-oblique camera angle (near horizontal), for effective vehicle piloting, 

navigation, and real-time environmental assessment. This is in contrast to most aerial and 

satellite mapping remote sensing platforms in which still imagery is collected with a vertical or 

near vertical (low-oblique) camera angle in order to minimize geometric image distortion (Prost, 

2013). This is also in contrast to seafloor mapping in which acoustic reflectivity data is collected 

at a wide range of angles to the imaging instrument (sonar transducer) but the nature of the 

acoustic data precludes the image distortion associated with high-oblique optical camera angles. 

Notably, only limited research has focused on collection and processing of optical imagery data 

collected with sUAS and ROVs for mapping purposes (e.g. Dunford et al., 2009; Hugenholtz , 

2012; Hugenholtz et al., 2013; Lalibertre et al., 2009; Yahyanejad et al., 2011; Zhou, 2009) and 

standardized collection procedures as well as processing workflows are not yet well established 

for these data, as they are for data collected with conventional mapping platforms.  

The fundamental goal of mapping operations with an sUAS and ROVs is accurate 

orthorectification - positioning the near horizontal, high-oblique imagery on the Earth’s surface 
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in a uniform geospatial context that accounts for geometric image distortion to the greatest 

degree possible. Achieving suitable accuracy in the orthorectification of imagery collected with 

sUAS and ROVs is a critical first step in quantitatively analyzing and understanding spatial 

relationships among the imaged features in the collected data. Given the unique advantages and 

challenges associated with ROV and sUAS collected high-oblique video imagery, relative to 

traditional remote sensing still imagery collected near vertically, it is necessary to quantitively 

evaluate the spatial accuracy of maps generated with ROV and sUAS image data as well as their 

comparability to maps generated with traditional remote sensing platforms. Accordingly, the 

goal of this thesis is to evaluate the capacity of ROV and sUAS platforms to accurately map 

coastal and marine environments with oblique video imagery. This goal will be achieved 

through the execution of the following four objectives: 

1) Develop an automated data processing framework for the generation of 

georeferenced maps from ROV video imagery and its derivative data. 

2) Quantitatively evaluate the spatial agreement between produced ROV maps and 

those produced with conventional sonar image mapping approaches and 

platforms.  

3) Develop an automated data processing framework for the generation of 

georeferenced maps from sUAS video imagery. 

4) Quantitatively evaluate the spatial accuracy of resulting sUAS maps and 

determine their comparability to that of maps produced with conventional 

remote sensing platforms. 
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  This thesis presents and evaluates the efficacy a newly developed automated framework 

for digital geospatial mapping of oblique video imagery and associated derivative environmental 

data, collected with unmanned vehicles in coastal and marine environments. The utility of 

resultant maps generated from ROV data was determined by assessing the degree to which ROV 

mapped seafloor substrate classification polygons were spatially coincident with seafloor 

substrate as indicated by independent sonar acoustic backscatter maps of the seafloor. It was not 

possible to evaluate the absolute spatial accuracy of resultant ROV maps because it is not 

feasible to collect the equivalent of GPS “ground truth” points on the seafloor. The spatial 

accuracy of resultant maps generated from sUAS collected data was evaluated through 

determination of the horizontal Root Mean Square Error (RMSE) of the mapped position of 

imaged features relative to their “ground truth” position as measured by a survey grade GPS. The 

comparability of resultant maps generated from sUAS collected data with maps generated by 

conventional remote sensing platforms was evaluated by comparing the determined horizontal 

accuracy of the sUAS and conventional remote sensing maps as well as the RMSE of the 

mapped position of imaged features on sUAS maps relative to matching features on conventional 

remote sensing maps. Quantifying the spatial accuracy of resultant sUAS and the agreement of 

resultant ROV and sUAS maps with maps generated by conventional mapping methods, 

collectively demonstrates the capacity of ROV and sUAS platforms to accurately map coastal 

and marine environments with oblique video imagery. 

 Results indicate that oblique imagery collected with unmanned vehicles in coastal and 

marine environments potentially can be used to map features in these environments with a spatial 

accuracy comparable to, or in some cases better than that of conventional mapping approaches. 

However, in some cases resultant accuracies are substantially poorer than those of conventional 
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mapping approaches. The comparability of accuracy or lack thereof appears to be largely 

dependent upon survey design. These results indicate that users potentially can realize the 

substantial advantages of ROV and sUAS platforms with respect to cost, resolution, sampling 

frequency, deployment speed, and survey altitude (below cloud ceiling) while achieving results 

with spatial accuracies comparable to conventional platforms, that lack these advantages.  

Additionally, this thesis demonstrates that accurate maps can be generated from ROV and sUAS 

data that was not originally collected for the purpose of generating maps. This indicates that the 

large volume of previously collected ROV and sUAS video data available in archives may be 

used for generating accurate maps of environments even when that was not a consideration of the 

original survey design. This also suggests that this approach may be a useful way for 

investigators to rapidly visualize the information contained in video data records when the time 

required for full video review is prohibitive.   

Collectively, the results of this research yield methods that advance the capacity of the 

scientific community and the general public to efficiently create accurate maps of marine and 

coastal environments using data collected with unmanned vehicles. This will enable members of 

the scientific community to rapidly assess the value of existing publicly available video data to 

their research objectives, improving data accessibility and use. Additionally, it will enable 

professional and amateur sUAS pilots that have access to large quantities of oblique aerial 

imagery to generate georeferenced aerial images with greater resolution, efficiency, and 

frequency while doing so at a lower cost than satellite and traditional aerial remote sensing 

imagery. This outcome will support efforts to monitor long-term coastal environment evolution 

as well as rapid and targeted assessment of coastal change and impacts after natural hazards such 

as hurricane landfall. 
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CHAPTER II 

BACKGROUND 

2.1 Remotely Operated Vehicles 

ROVs are unmanned submersibles equipped with camera systems and environmental 

sensors that allow research to be conducted in underwater environments. These unmanned 

robotic submersibles are connected to a support vessel by a cable tether. Operators onboard the 

support vessel pilot the ROV and control its data collection systems, which include cameras and 

environmental sensors. (Macreadie et al. 2018). ROVs are used for challenging underwater tasks 

such as infrastructure construction, and maintenance operations in offshore industries, including 

renewable energy and petroleum extraction industries, as well as oceanographic research, marine 

archeology, and naval defense operations worldwide (Castro et al. 2019). ROVs regularly deliver 

high-resolution video imagery of the seafloor and water column, supporting industrial 

applications and enabling exploratory scientific research in one of the most underexplored 

environments on Earth (Marsh et al, 2013).   

As noted, ROVs are connected to a surface ship by a reinforced cable tether, which 

allows operators on the ship to control the vehicle as it maneuvers underwater and transmits 

operational and sensor data to the surface in real-time. These data include vehicle information 

like position (geographic coordinates), depth, altitude, attitude, and diagnostic observations, as 

well as measurements of environmental conditions such as water temperature, salinity, pH, and 

dissolved O2 (Castro et al. 2019). The most important data transmitted from the ROV is the live 



 

8 

video feed because it is critical to effective vehicle operation as well as the research or industrial 

goals of the ROV dive. Because the live video feed is the principal means by which the 

operator’s pilot and navigate the ROV over seafloor terrain and around obstacles, the primary 

high-resolution ROV camera angle must be near horizontal, resulting in oblique imagery of the 

seafloor. This necessarily makes utilization of the resulting video observations to map seafloor 

features more challenging, particularly in cases where geospatial analysis of imaged seafloor 

features is an important component of research.  

 The ROV data used in this thesis were collected with the ROV Deep Discoverer (Figure 

2.1), which is operated by the National Oceanic Atmospheric Administration (NOAA) Office of 

Ocean Exploration (OE) and deployed from NOAA research vessel Okeanos Explorer (Figure 

2.2). Deep Discoverer can dive up to depths of 6,000 meters, allowing oceanographers and 

marine scientists the opportunity to access approximately 96% of the global ocean floor and 

overlying water column.  Deep Discoverer has two manipulator arms and can collect in-situ 

biological and geological seafloor samples during the duration of a dive and numerous 

environmental sensors designed to characterize the surrounding marine environment. The Deep 

Discoverer is equipped with extensive LED lighting and a high-resolution (2,200,000 pixels) 

forward-looking video camera system for recording seafloor and water column observations 

(NOAA OER).  
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Figure 2.1 ROV Deep Discoverer (NOAA OE) 

 

Figure 2.2 NOAA Ship Okeanos Explorer (NOAA OE) 

NOAA ship Okeanos Explorer is currently the only United States federal research vessel 

designed and committed solely for deep ocean exploration and research [National Oceanic and 

Atmospheric Administration – Office of Ocean Exploration and Research, 2015].   
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2.2 Small Unmanned Aerial Systems 

Small unmanned aerial Systems (sUAS) are low-cost, efficient, user-friendly light-weight 

aircraft that are used for the collection of high-resolution aerial video and imagery data suitable 

for precision geospatial mapping, and high-resolution image analyses (Nagarajan et al. 2019). 

The initial development and deployment of sUAS were largely driven by governmental funding 

focused on surveillance and defense applications (Allen and Walsh, 2008). However, as sUAS 

systems have become more user-friendly and affordable in recent years their adoption by the 

scientific research and environmental management communities as well as by armature 

hobbyists has become widespread (Laliberte and Rango, 2008; Rodin, 2019).  Through the use of 

sUAS, scientific studies requiring aerial imagery, that at one point were impossible, are now 

being routinely performed because sUAS can be used to collect observations where factors such 

as the cost, resolution, and operational inflexibility of standard remote sensing techniques (e.g., 

satellites, traditional aerial photo surveys with manned aircraft) are prohibitive (Whitehead et al. 

2021).  

The design of sUAS is divided into two categories. Rotary wing drones are constructed 

with blades that rotate around several rotors, like a helicopter. Fixed-wing drones are designed 

like traditional aircraft with fixed wings that lift the aircraft off the ground as forwarding 

airspeed increases (Kandrot and Holloway, 2020). One of the most widely used sUAS in the 

rotary wing class is the Da-Jiang Innovations (DJI) Phantom series, which includes the Phantom 

4 Pro (Taddia et al. 2020), which is used for data collection in this thesis (Figure 2.3). Regardless 

of design class, sUAS are generally equipped with advanced cameras that enable imaging of the 

Earth surface across a wide range of bands of the electromagnetic spectrum, but most commonly, 

the visible light spectrum.  
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The sensor payloads packages carried on sUAS can include active (e.g., LiDAR, InSAR, 

SRT, Radar, and PSInSAR) and/or passive (i.e., hyperspectral Imaging, multispectral imaging, 

aerial Photography, FLIR, long-wave infrared, and near-infrared surveys) remote sensing 

instruments. (Malthus and Mumby, 2010; Patel et al., 2021; McBribe and Byrnes, 1997; 2020; 

Yu and Action, 2004; Lin et al., 2019). The primary payload from most sUAS is a camera that 

records reflectance over bands of the electromagnetic spectrum. Most commonly these cameras 

record video of the visible light spectrum since this real-time data is most useful for pilots flying 

the sUAS. The sUAS video data used for this thesis were captured with an RBG camera system, 

which measures the reflectance of light in the visible portion of the electromagnetic spectrum 

(wavelengths between 0.4 and 0.75) (Kandrot and Holloway, 2020). An RGB camera system 

produces a “true color image” which is composed of individual pixels each containing 

reflectance information for the elements observed within the image (Kandrot and Holloway, 

2020).  

For situations requiring aerial imagery of an area of interest, sUAS offers many 

advantages over traditional imaging platforms such as satellites and manned aircraft (Sturdivant 

et al, 2017). Because they can fly at much lower altitudes, sUAS can provide high-resolution 

imagery of a study area with a less extensive coverage area (Morgan and Hodgson, 2020). Flight 

at lower altitudes also allows sUAS to operate below the cloud ceiling resulting in less obscured 

land surface imagery that is available from satellite platforms when clouds are present. 

Additionally, sUAS surveys can be flown at a lower cost than comparable manned aircraft 

surveys and can be conducted more frequently given the much lower threshold for mission 

planning and execution. Finally, sUAS are widely available and thus surveys can be conducted 
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when satellites are not in a position to image an area of interest and when manned aircraft, or 

required pilots, are unavailable (Kandrot and Holloway, 2020).   

A fundamental challenge of creating maps with sUAS video imagery data is the fact that 

much of it is collected with cameras oriented obliquely to the Earth’s surface, often with a near 

horizontal camera angle. An outward-looking oblique camera angle is often necessary for 

effective vehicle piloting and navigation but presents numerous challenges related to the use of 

the resulting imagery data. The most notable video data processing challenge created by the 

configuration of the sUAS camera when capturing oblique images is accurately plotting the 

location of the imaged portion of the Earth’s surface in a geospatial context.  

 

 

Figure 2.3 DJI Phantom 4 (https://www.dji.com/phantom-4-pro) 

The DJI Phantom 4 is paired with a 1-inch 20-megapixel sensor with the capability of producing 

4k/60fps video data and burst mode still imagery at 14 fps. The addition of a titanium alloy and 

magnesium alloy construction housing increases the durability of the sUAS airframe and 

diminishes weight, making the construction and design of the Phantom 4 Pro comparable in 

weight to the Phantom 4. (https://www.dji.com/phantom-4-pro)

https://www.dji.com/phantom-4-pro
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2.3 Oblique Imagery & Orthorectification 

 Aerial photography for mapping purposes has traditionally been collected with cameras 

positioned in a straight downward orientation normal (0°) to the land/water surface, or as close to 

this normal as allowed by platform motion (Nesbit and Hugenholtz, 2019) (Figure 2.4). Given 

this geometry, the process of “stitching” the individual images together to create mosaic images 

of the Earth’s surface has been relatively straightforward. Conventional oblique imagery is 

photography or videography that is collected at an angle relative to the surface of the Earth, 

which is typically between 40° and 50° (Nesbit and Hugengoltz, 2019). Due to the unique tilt of 

oblique imagery both image scale and pixel coverage on the ground can vary tremendously 

(Höhle, 2008). This complexity of image scale and pixel coverage variability results in geometric 

distortion of the image and is exacerbated as camera angles increase towards horizontal 

(Wiedemann and More, 2012). One of the primary challenges of mapping with oblique imagery 

is orthorectification, is the process of precisely determining the geographical position of each 

pixel in an image based on the Cartesian (latitude, longitude, altitude) position and orientation of 

the camera at the point in time the image was collected. The orthorectification process also 

includes the correction of geometric distortion in images such as height distortion and tilt 

displacement which commonly result from the movement of the vehicle that is being used to 

collect the aerial imagery data (Zhou et al. 2005). Indeed, a fundamental challenge to using ROV 

and sUAS imagery data to create mosaic maps of the Earth’s surface is the fact that much of it is 

collected with cameras oriented obliquely (> 0°) to the Earth’s surface (Figure 2.4) and often 

near horizontal. This is the case because an outward-looking oblique camera angle is often 

necessary for the effective piloting and navigation of unmanned vehicles. 
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Figure 2.4 Vertical and Oblique Imagery 

Images that are taken by the camera pointing perpendicular to the ground are vertical. Images 

that are taken when the camera axis is not pointing perpendicular to the ground are oblique 

(PIX4D Documentation) (https://support.pix4d.com/hc/en-us/articles/202559859-Vertical-vs-

oblique-imagery). 

Automated orthorectification of vertical and near vertical aerial and seafloor imagery to 

produce georeferenced mosaics is common and numerous image acquisition techniques, 

processing approaches, software, and aerial imaging matching tools (i.e., Agisoft Metashape, 

Pix4d) have been created for this purpose (Figure 2.5). However, the orthorectification of more 

oblique imagery can result in greater geometric image distortion and reduce the accuracy of 

resulting maps, sometimes requiring manual intervention to assure proper georeferencing and 

consistent mosaicking of adjacent images (Wiedemann & Moré. 2012). To effectively 

orthorectify high-resolution aerial imagery collected at an oblique angle, a variety of processing 

and geometric correction steps must be followed. These main processing steps include alignment 

with the use of aerial triangulation (AT), the creation of a Digital Elevation Model (DEM), and 

the final creation of a digital orthomosaic image. Automated processing and mapping of oblique 

https://support.pix4d.com/hc/en-us/articles/202559859-Vertical-vs-oblique-imagery
https://support.pix4d.com/hc/en-us/articles/202559859-Vertical-vs-oblique-imagery
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aerial images has recently become a popular topic in the GIS and remote sensing research 

community (Verykokou and Ioannidis, 2018). Datasets containing oblique images have been 

studied in a variety of ways to evaluate whether an automated process for georeferencing and 

mapping those data is possible and to quantify the accuracy of the results (Nesbit and 

Hugenholtz, 2019; Zhou and Liu, 2015; Verykokou and Ioannidis, 2018; Petrie, 2009; 

Wiedemann and More, 2012). Although some demonstrated successes in this field of study have 

been published, the creation of orthomosaic images from oblique imagery using an automated 

digital photogrammetric workflow remains a challenge (Aicardi et al, 2016; Zhou and Liu 2015; 

Ludwig et al, 2020).  

 

Figure 2.5 Comparison of Orthorectification Software 

The above Figure shows the number of times specific aerial triangulation and orthorectification 

software packages were used in a research article that studied georeferencing procedures for 

oblique imagery (Verykokou and Ioannidis. 2018). 
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Advances in image processing techniques implemented in recently developed software 

(e.g., PIX4Dmapper and Agisoft Metashape) have improved the design and application of the 

complex geometric corrections necessary to accurately georeferenced oblique imagery, 

optimizing resulting orthomosaic image maps. Figure 2.5 indicates that both 

Pix4Dmapper/Pix4UAV and Agisoft Photoscan were frequently used for research involving the 

orthorectification of oblique imagery. Elkhrachy (2021) evaluated the capacity of Agisoft 

Metashape and Pix4dmapper software to accurately generate orthorectified oblique images and 

found that Pix4dmapper generated more systematic errors and outliers than the Agisoft 

Metashape software. These results indicate that Agisoft Metashape software has a superior 

capacity to produce accurate orthorectified oblique images with the data used by Elkhrachy 

(2021)  . Accordingly, this thesis will use, in part, the processing approaches developed in 

Agisoft Metashape software in the image processing workflows presented in the Methods 

section.  

2.4 Remotely Operated Vehicle Video Annotation and Viewshed Mapping 

 Viewshed mapping is an approach to georeferencing the position of environmental 

features observed in oblique ROV video imagery (Ruby, 2017) that is fundamental to the 

analysis and results presented in this thesis. Additionally, it is a precursor to orthorectification of 

oblique ROV video imagery as presented in this thesis. Viewshed mapping was initially 

developed through NOAA funding as a means of improving the usability of the vast repository 

of ROV video data held by the NOAA National Centers for Environmental Information. It 

specifically addresses one of the primary challenges associated with ROV video data usability, 

which is finding a way to quickly and accurately convey to potential users, such as 

oceanographic researchers, what was observed in ROV dive video (Ruby, 2017). This is 
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imperative since watching hours of ROV video to determine its usefulness for a particular 

research application is not practical (Ruby, 2017). 

An initial approach to solving the problem of ROV video data usability is video 

annotation in which disciplinary experts (e.g., marine biologists and geological oceanographers) 

record observed features in the ROV video (e.g., marine organisms and seafloor substrate) in 

real-time or after data collection. These expert annotations are associated with the time they were 

recorded and thus serve as a searchable index of observed features in ROV videos that can direct 

users to a specific time in the video when the listed feature was observed (Ruby 2017). NOAA 

was an early implementer of expert ROV video annotation and has been responsible for 

numerous developments in the application of the approach. In the early 2000s, NOAA initiated a 

program of deep-water expeditions aboard the ship Okeanos Explorer to explore a wide range of 

benthic environments using deep sea video collected with a high-resolution underwater camera 

that was mounted on the ROV Deep Discoverer (Medley, 2018). NOAA scientists and 

participating researchers aboard the Okeanos Explorer, as well as researchers on shore 

participating remotely via satellite telepresence, observed the video collected during each ROV 

dive and provided expert annotation of observed geological and biological features (Ruby, 2017). 

The observed annotations were classified using the widely adopted Coastal and Marine 

Ecological Classification Standard (CMECS) and logged using Seatube V2 software. 

CMECS is a classification system that was published by the Federal Geographic Data 

Committee in 2012 (Federal Geographic Data Committee, 2012; U.S. Geological Survey, 2012). 

CMECS is a catalog of environmental and ecological terms that provides a standardized scheme 

for the classification of coastal and marine observations. (NOAA Integrated Ocean & Coastal 

Mapping, 2022). This thesis specifically focuses on substrate annotations, which use the Coastal 
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Marine Ecological Classification Standard (CMECS) to classify the substrate material that is 

observed along the seafloor in the ROV video data for each dive.  

Ocean Networks Canada (ONC) created the web-based Seatube V2 interface to provide 

the public with the ability to view both underwater ROV dive videos and associated time-

stamped and georeferenced CMECS annotations that were made during the ROV dives. This 

video portal is an advanced tool constructed to provide external scientists and outside citizens 

with a platform for querying, discovering, and analyzing video data that was collected aboard the 

Okeanos Explorer and other ROV platforms. Seatube V2 allows users to download ROV video 

files as well as coincident dive annotation files and ROV navigation files in .csv format. The 

ROV navigation files contain attributes such as ROV position (coordinates, depth, and altitude) 

and ROV attitude (heading, pitch, and roll) sampled with a frequency of 1 Hz or greater. 

Although the annotation methods described above significantly improved the usability of 

ROV video data, they could not visually display the location of the annotated features and the 

spatial relationship between them. To address this shortcoming, Ruby (2017) developed two 

different types of geospatial analysis methods to map data collected during these dives, a 

buffered representation, and a viewshed wedge. The buffered approach specifically maps the 

annotated CMECS class to a circle around the ROV position at the point in time when the 

annotation was made. The radius of the circle approximates the maximum viewable range of the 

ROV camera. This approach effectively represents an area on the seafloor that encompasses all 

theoretically possible locations for the annotated feature class. To refine this Ruby (2017) 

developed a “viewshed” approach, which reduces the circle of the buffer to a wedge-shaped 

polygon, approximating the footprint of the ROV camera field of view, oriented in the direction 

the camera is pointing (Ruby, 2017). In this thesis, the viewshed mapping methods developed by 
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Ruby (2017) are expanded, refined and automated, making the approach fully open source, and 

compatible with the current annotation software that is being used by NOAA OE for ROV dives 

(i.e., Seatube V2 and Seascribe).  

The viewshed approach introduced by Ruby (2017), and further developed in this thesis, 

is based on estimating the seafloor area that lies within the field of view of an ROV video frame 

recorded at the point in time an annotation is made. The natural extension of such an approach is 

to project (orthorectify) the actual video frame image on the seafloor rather than using a wedge-

shaped polygon representing the extent of seafloor coverage for the frame).  The ability to 

accurately estimate the area of a benthic surface encompassed in an ROV video frame has 

previously been a challenge in seafloor surveys (Dias et al, 2015). Initial efforts to do this were 

presented by Lundsten (2010), who used still image frames from a video collected using a 

forward-facing camera on an ROV to visually analyze physical changes to whale fall carcasses 

over time. This thesis advances this approach, applying orthorectification techniques developed 

for highly oblique sUAS video data to ROV video data to yield viable seafloor orthomosaic 

image maps from ROV video data.  
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CHAPTER III 

METHODS 

3.1 ROV Data Processing Framework 

The first objective of this thesis is the development of an automated data processing 

framework for the generation of georeferenced maps from ROV video imagery and its derivative 

data. Specifically, a suite of integrated data processing and GIS workflows were created as a 

methodological tool to digitally map the spatial distribution of seafloor substrate classes 

observed in oblique video imagery collected during ROV dives to enable a quantitative 

geospatial analysis of those data. Although this thesis focuses on seafloor substrate and an 

example case, it should be noted that the presented methodology could be used to map the spatial 

location of any CMECS annotation class recorded during a ROV dive, not just substrate.   

All ROV data used in this thesis were acquired during deep water seafloor exploration 

dives conducted between 2018 and 2019 by the ROV Deep Discoverer aboard NOAA research 

vessel Okeanos Explorer. These dives occurred during cruises EX1803 (the Gulf of Mexico in 

April-May of 2018), EX1806 (Atlantic Ocean in June-July of 2018), and EX1903L2 (the 

Atlantic Ocean in June of 2019) (Figure 3.1). The ROV dives typically lasted between 4 and 7 

hours with a majority of the dive spent exploring the seafloor with the ROV camera. Expert 

substrate annotations and video data from each dive were downloaded from Ocean Networks 

Canada’s (ONC) open-source software web interface. Each annotation log contains dive 

annotation navigation parameters (latitude, longitude, and heading) and ecological annotations 
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(substrate, oxygen, sea water temperature, and salinity). All ROV data files were downloaded 

from NOAA OER Digital Atlas. These data files contain navigational information of the ROV 

(altitude, latitude, and longitude) sampled at a frequency of 1Hz.  

 

Figure 3.1 NOAA ROV Okeanos Explorer Study Sites 

EX1803 – Gulf of Mexico, EX1806 – Atlantic Ocean, and EX1903L2 – Atlantic Ocean ROV 

dive sites (National Oceanic and Atmospheric Administration –Office of Ocean Exploration and 

Research). 

 

3.1.1 Extraction of Annotation & Navigation Data  

For each of the three Okeanos Explorer expeditions, a series of individual dives were 

conducted. A total of 51 dive annotation files were downloaded from Seatube.  

• EX1803 – 15  dives 

• EX1806 – 17 dives  

• EX1903L2 – 19 dives 
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With the use of ONC’s Seatube V2, annotations recorded during each dive were 

downloaded in .csv format. A variety of metadata and data are viewable in each annotation .csv 

file (i.e., dive id, dive name, cruise name, start date, end date, annotation id, substrate, depth, 

heading, latitude and longitude, oxygen, sea water temperature, and salinity) along with the 

contact information for the researcher who created the annotation during the ROV dive. For the 

automated mapping of each dive, the latitude, longitude, and heading were required to accurately 

indicate the position of the ROV when each dive annotation was recorded during a dive. These 

data were integrated with a separate file containing ROV vehicle navigation and attitude data 

sampled at 1 Hz to improve the accuracy of the ROV path and represent the full extent of the 

ROV dive beyond just the points where annotations were made.  

3.1.2 Revision of Substrate Annotation to Fine Resolution CMECS Classes 

 The expert seafloor substrate annotations for Deep Discoverer ROV dives conducted on 

Okeanos Explorer expeditions in 2019 (EX 1903L2) were directly entered into Seatube by 

participating scientists using CMECS-compliant terminology (Figure 3.4) and were processed at 

fine resolutions, thus allowing habitat heterogeneity and complexities that are experienced at 

finer scales to be classified (Kingon, 2018). However, for dives conducted in 2018 (EX 1803 and 

1806), the annotations were not entered using a formal classification system. For example – if a 

substrate annotation recorded within a dive annotation file for EX 1806 was annotated as 

“Primary Unconsolidated Secondary Unconsolidated” a simple spelling error or misuse of space 

within the substrate annotation would not correctly classify the particular substrate that was 

being viewed at that location during the dive. This is visible throughout a variety of different 

dive annotation files collected from EX 1803 and EX 1806. This means substrate annotation 

terminology recorded in Seatube can be inconsistent and repetitive and it is necessary to 
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standardize the annotations by converting them into CMECS-compliant format. Accordingly, a 

Python script was created to convert and assign seafloor substrate annotations recorded in an ad 

hoc legacy format into a new format compliant with the current CMECS standard. Thus, creating 

a more efficient and accurate classification schema and process for the annotated substrate 

categories found in the dive annotation records.  The substrate annotations are based on four 

different categories referring to the primary (>50%) and secondary substrates: Hard/Hard, 

Hard/Soft, Soft/Hard, and Soft/Soft (Bassett et al. 2017) (Figure 3.4). The described Python 

script converts those annotations into CMECS-compliant substrate units following the scheme 

seen below in Figure 3.4. The full Python code for this revision process is presented in Appendix 

A and the full standard operating procedure document describing its application is presented in 

Appendix B.  

 

Figure 3.2 CMECS compliant substrate scheme (Basset et al, 2017) 

 

3.1.3 Generation of ROV Viewshed Maps 

The first step in the workflow for creating substrate maps of each ROV dive was the 

extraction of ROV navigational data that is stored in both the 1Hz datasets that were previously 

downloaded from the NOAA OER Digital Atlas, along with annotation data downloaded from 
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Seatube V2. The full Python code for this revision process is presented in Appendix A and the 

full standard operating procedure document describing its application is presented in Appendix 

B. Once extracted from the 1Hz dataset, the coordinates of the ROV for each second of a given 

dive were connected to create a line representing the complete dive path of the vehicle.  The full 

Python code for this revision process is presented in Appendix A and the full standard operating 

procedure document describing its application is presented in Appendix B. 

 The next step in the workflow for creating substrate maps of each ROV dive is the 

creation of viewshed polygons.  Viewshed polygons are georeferenced wedge-shaped polygons 

that approximate the area of seafloor imaged in each frame of the ROV video data. The wedges 

have an angle and a radius based on the view angle and focal length of the ROV camera on Deep 

Discoverer, approximations to the mean range of the images based on light attenuation in the 

observed environments, and an assumption of a flat seafloor (Figure 3.3). This viewshed 

application restricts the mapped area to a wedge-shaped polygon that expands 5 meters in the 

direction of the ROV’s heading showing the area that was most likely viewed by the Deep 

Discoverer’s main, forward-facing camera (Ruby, 2017) (Figure 3.3). See Ruby (2017) for a 

detailed review of the considerations used to determine representative viewshed geometry for the 

primary camera on the Deep Discoverer.  

Once the location of each substrate annotation along the ROV dive path was created with 

the “create points layer from table” function, the “wedge buffer” function was used to create a 

set of viewshed polygons that represent the seafloor area observed by scientists, when they made 

the substrate annotations (Figure 3.4). Next, adjacent viewshed polygons with matching substrate 

classes are merged and plotted with uniform color to represent the seafloor spatial extent of each 

identified CMECS substrate class. An example map is presented in Figure 3.5. Maps produced 
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for every ROV dive included in this thesis are in Appendix C. The complete workflow created to 

produce ROV viewshed maps is presented in Figure 3.6. 

 

Figure 3.3 Deep Discoverer Viewshed Concept 

The above image of the ROV Deep Discoverer shows a conceptual rendering of a dive track 

(red) and seafloor viewshed wedge polygon (white) approximating the area of the seafloor 

viewed in one frame of the ROV video. 

 

Figure 3.4 Viewshed Mapping Approach 

The above map illustrates an example of mapped ROV video frame “viewsheds” along the path 

of EX 1903 L2 Dive 05. Collectively, the gray area represents the seafloor area imaged during 

the dive. 

44°

ROV Heading

5 m

ROV Dive Path
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Figure 3.5 Example of the final ROV substrate map of EX 1903 L2 Dive 09 
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Figure 3.6 General Automated ROV Viewshed Mapping Workflow  

 

3.2 Evaluation of ROV Viewshed Maps 

The second objective of this thesis is to quantitatively evaluate the spatial agreement 

between produced ROV maps and those produced with conventional sonar image mapping 

approaches and platforms. The efficacy of the presented ROV digital mapping approach was 

evaluated by comparing resultant substrate viewshed maps to coincident seafloor backscatter 

data.  This approach was selected because it was not possible to evaluate the absolute spatial 

accuracy of resultant ROV maps due to the infeasibility of collecting the equivalent of GPS 

ground truth points on the seafloor at the location of the ROV dive. Specifically, the degree to 

which ROV mapped seafloor substrate classification polygons were spatially coincident with 
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seafloor substrate classes, as indicated by independent sonar acoustic backscatter maps of the 

seafloor, was assessed. To do this, 10 of the 51 ROV final substrate maps were chosen based on 

the variety of substrate type that was identified and classified along the seafloor during each 

dive. These 10 dives were then overlayed onto acoustic backscatter intensity data of the same 

dive site, collected with a multibeam sonar on the ship Okeanos Explorer.  

Acoustic backscatter intensity is a measurement of the amount of acoustic energy 

reflected by the seafloor. For a multibeam sonar system, the amount of energy in the projected 

seismic pulse (amplitude of generated sound wave) is known, as is the amount of energy in the 

returning pulse (amplitude of reflected sound wave) after it has been reflected by the seafloor. 

The ratio of these values reflects the degree to which the seafloor “scatters” acoustic energy. This 

is a function of seafloor hardness (substrate composition e.g. rock, sand, mud) as well as seafloor 

roughness (substrate mean grain size and surface texture). Accordingly, mapped seafloor 

backscatter intensity is a common method used to classifying the general properties and spatial 

distribution of seafloor substrate (i.e., rock, sand, mud, coral, seagrass) (Lurton, 2010; United 

States Geological Survey, 2014). In general, harder substrates like a rock will reflect more 

acoustic energy (sound) and thus have a relatively higher backscatter intensity than softer 

substrates like mud. Although there is a certain amount of uncertainty inherent in relating the 

acoustic reflectivity of the seafloor to a specific substrate class, seafloor backscatter intensity 

measured with a ship-based multibeam sonar represents the best way of making such 

observations without physical sampling and is the widely accepted conventional approach for 

mapping seafloor substrate type (Lurton, 2010). Thus, it is the most appropriate independent data 

for comparison to the viewshed substrate maps generated from integrated ROV video and 

annotation data. To evaluate the agreement between the viewshed mapped CMECS substrate 
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class and measured seafloor backscatter intensity, a subset of backscatter values from within 

each viewshed substrate polygon was created. The frequency distribution of these backscatter 

values was then plotted for each coincident CMECS substrate class polygon on a boxplot. The 

resulting boxplots were evaluated to determine if the observed backscatter intensity properties 

(e.g. mean) are consistent with the assigned CMECS classification in terms of relative 

magnitude. For example, the mean backscatter intensity of a hard and rough substrate like rock 

will be greater than a soft smooth substrate like fine sediment (Lurton, 2010). If such a 

relationship is demonstrated in the boxplot, this suggests that the assigned CMECS class is at 

least relatively consistent the observed seafloor properties.  

3.3 sUAS Data Processing Framework 

 The third objective of this thesis is the development of an automated data processing 

framework for the generation of georeferenced maps from sUAS video imagery. Given the 

approach to mapping ROV data presented above, the same or a similar mapping approach was 

applied to video data collected from other unmanned vehicle platforms, particularly sUAS. A 

key challenge to this approach was the fact that a standardized expert annotation process does 

not exist for sUAS video data as it does for ROV Deep Discoverer data. Therefore, I investigated 

the potential for directly mapping (orthorectified) oblique sUAS video frames rather than their 

representative viewsheds.   

Two separate datasets were used for the sUAS portion of this thesis to evaluate the 

potential that sUAS have for the orthorectification of oblique imagery, and how this type of 

photogrammetric mapping approach can potentially be applied to both recreational and 

professional sUAS operations. All sUAS data in this thesis were collected using a DJI Phantom 4 

Pro drone. Data collection occurred in two different locations, North Farm at Mississippi State 
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University (Figure 3.7), and the Mississippi Gulf Coast (Figure 3.8). A series of flights were 

conducted in both study areas; however, two broadly representative flights for each study area 

were selected for video frame extraction and orthorectification. These flights were conducted 

without the use of grid flight patterns which are commonly employed in surveys conducted with 

UAS for commercial and research applications. Data analyzed from these sUAS flights were 

limited to an RGB camera sensor attached to the sUAS to test the accuracy of oblique mapping 

when true color RGB images are orthorectified. All flight navigation parameters (latitude, 

longitude, GPS time, altitude, fly time, roll, pitch, and yaw) are downloaded from the sUAS and 

converted via a web interface (Phantom Help) for the generation of flight logs in .csv format.  
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Figure 3.7 Mississippi State University North Farm Study Site with flight track lines.  
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Figure 3.8 Mississippi Gulf Coast Study Site (Waveland, MS) 

Both SUAS flights studied in the Mississippi Gulf Coast Study Site were extracted from the 

flight track lines portrayed in the above map (Figure 3.15).  

3.3.1 Video Frame extraction & timestamp scripts 

Several different timestamp scripts were written in Python to effectively extract 

keyframes and timestamps from the sUAS and ROV video files. However, the creation of three 

separate video frame extraction and timestamp scripts was necessary for effective data 

preparation due to certain varying limitations found within all three unmanned vehicle navigation 

logs. Although all the Python scripts are designed to effectively produce the same output, each 

one of them contains different parameters and functions to work around these different 

limitations that were prevalent in the three navigation logs. Before executing the extraction and 

timestamp commands used in each Python script, FFmpeg, a command line tool used for the 
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extraction of both audio and video formats was used to extract the still frames from each video 

file.  

Three Python scripts were created to process and condition the raw sUAS (and in one 

case ROV) vehicle data in a manner necessary to allow orthorectification of the oblique video 

imagery data. The goal for each of the three scripts is to effectively synchronize latitude, 

longitude, altitude, and depth with the video frames that are extracted from each of the video 

datasets that are collected with unmanned vehicle systems.  

Initially, the sUAS position and attitude data associated with each video frame had to be 

determined. This was accomplished by querying the vehicle position and attitude data file for the 

specific point in time each video frame was recorded. The first initial section of code used 

FFmpeg to effectively extract key frames from the DJI MOV file. Once this was complete the 

Python script then generated timestamps from the DJI MOV file using FFprobe. FFprobe can 

extract information from a MOV file and transform it into a human, machine-readable format. 

The Python code then moves on to the task of finding the start of the video file. FFprobe is used 

again to perform this task. The Python code was then designed to open the flight log .CSV file to 

effectively synchronize (i.e., gpsTime, latIndex, lonIndex, altIndex, flyTime, rollIndex, 

pitchIndex, and yawIndex).  

The second Python script was created to effectively produce the same results as the 

original keyframe and timestamp script described previously. Similarly, the sUAS position and 

attitude navigational data associated with each video frame had to be known. This again was 

accomplished by querying the vehicle position and attitude data file for the specific point in time 

each video frame was recorded. An example of this Python script is viewable in Appendix E at 

the end of the document.    
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The third and final frame extraction and timestamp script was specifically created for the 

extraction of frames recorded during the ROV Deepwater dive videos that were previously 

downloaded from Seatube V2. The general idea and script construction of the ROV frame 

extraction and timestamp script are similar to that of the previous two. As described previously, 

this extraction is done with the FFmpeg function. The user can manually set the number of 

frames that are extracted per second. When the script successfully extracted one frame every two 

seconds, a list of all the extracted frames was generated.  

3.3.2 Agisoft Metashape Orthorectification 

Orthorectification methods and workflows used to effectively orthorectify and 

georeference each of the extracted video frames that were collected with the use of the ROV and 

sUAS platforms were performed in Agisoft Metashape. Agisoft Metashape is a software program 

that executes photogrammetric modeling and processing of high-resolution digital imagery. This 

advanced software has the ability to produce high-resolution products that can thus be used in a 

variety of geospatial analyses. Several photogrammetry processing steps were performed on both 

the sUAS and ROV Datasets within Agisoft Metashape to effectively produce accurate 

orthomosaic images of the study areas. The first and initial step that was required to begin the 

orthorectification process for both the ROV and sUAS datasets was alignment. The alignment 

process in Agisoft Metashape involves aerial triangulation (AT) and bundle block adjustment 

(BBA). During this stage, feature points found within the extracted timestamped images that 

were generated in the previous video frame and time stamp extraction Python script are 

identified. When these feature points are identified within each of the images, they are then 

matched across the images into a series of tie points. Another major data manipulation process 
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executed in this stage was defining the position of the camera for each image and automatically 

adjusting the camera orientation calibration parameters (i.e., internal (IO) and external (EO)).  

Once the first data processing step was complete, both the sUAS and ROV datasets were 

then visualized in the form of a sparse point cloud and a series of camera positions. Although the 

generation of the sparse point cloud is not necessary for the specific processing workflow 

described here, it can be used for to rapidly generate sparse point cloud-based surface 

reconstructions, which may be useful for an initial evaluation of collected data quality. 

Moreover, it can be used for further analyses in other exterior programs. For example, a sparse 

point cloud model can be used in a 3D editor software program as a reference model for further 

generation of a depth map. 

The second data processing step that was carried out on both the sUAS and ROV datasets 

was the generation of a dense point cloud layer and a Digital Elevation Model (DEM) through 

Structure from Motion (SfM) range imaging techniques. These dense point cloud layers were 

constructed based solely on the estimated camera positions and still images that were collected 

by the sUAS and ROV platforms. For both the sUAS and ROV datasets, the DEMs for all four of 

the final orthomosaic images were constructed based on the resulting dense point cloud layer 

data. When a DEM is constructed from a dense point cloud layer a variety of terrain ground 

features and surface objects can be visible (i.e., light poles, piers, houses, trees, and seawalls) 

thus creating both digital surface models (DSM), and digital terrain models (DTM). A variety of 

these features are visible in the final orthomosaic images presented in the Results section of this 

thesis.  

The third and final data processing step that was carried out was the production of the 

final orthomosaic image. The final orthomosaic images that were produced for both the sUAS 
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and ROV datasets were generated by accurately projecting the extracted timestamp video frames 

by their EO and IO camera orientation data onto the surface of the DEM that was previously 

generated by the dense point cloud layer. The collective ROV video data processing workflow is 

presented in Figure 3.9. 

 

Figure 3.9 General sUAS Workflow  

 

3.3.3 Evaluation of Spatial Accuracy 

The fourth objective of this thesis was to quantitatively evaluate the spatial accuracy of 

resulting sUAS maps and determine their comparability to that of maps produced with 

conventional remote sensing platforms. The accuracy of generated sUAS maps was determined 
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through analysis of the Root Mean Square Error (RMSE) of the horizontal position of features in 

the resultant maps relative to their ground-truth position as determined by direct GPS 

measurement and conventional remote sensing imagery. Two different techniques were used to 

analyze the RMSE between the oblique images that were collected using the sUAS at the 

Mississippi State University North Farm study site.  

The first approach evaluated the RMSE of generated sUAS maps relative to GPS 

measured ground control points. For each of the two flights that were conducted at North Farm, a 

set of ground control points (GCP’s) were collected using a Trimble Geo7x GPS unit. For sUAS 

North Farm flight one (Figure 4.9) 39 ground control points were collected. For the second 

sUAS North Farm flight (Figure 4.11) 44 GCP’s were collected. An analysis was then conducted 

to quantify the RMSE between the sUAS map created from the orthorectified oblique images and 

the ground control points that were collected at North Farm using the Trimble Geo7x. The goal 

of this analysis was to determine the spatial accuracy of the generated sUAS images.  

The second approach evaluated the RMSE of generated oblique imagery sUAS maps 

relative to a three-centimeter resolution aerial image of the study are collected with a more 

conventional nadiral oriented camera (2021 MSU OrthoImagery Project, Mississippi State 

University; J. Cartwright Per. Comm.) This was done by creating a series of points in ESRI’s 

ArcMap software for the sUAS and conventional aerial imagery that mark matching conspicuous 

features identified in both. An RSME value was determined by measuring the spatial offset of 

matching features between the maps. This assessment evaluates the degree of agreement between 

the sUAS oblique imagery derived maps and conventional nadiral aerial image of the study area.  

For sUAS North Farm Flight one and sUAS North Farm Flight two (Figure 4.14 and Figure 

4.15) 34 ground features were identified within both the three-centimeter resolution map and the 
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orthorectified sUAS maps. The goal of this analysis was to determine the comparability of 

generated sUAS maps with maps generated with conventional (nadiral aerial imagry) remote 

sensing platforms.  

The analysis that was conducted on the Mississippi Gulf Coast study site (Figure 4.16 

and Figure 4.17) was done by comparing the RMSE between ground features found within both 

the sUAS orthorectified images and a 0.5 meter Google Earth satellite image of the study area 

produced by Esri. A total of 15 ground features were identified and compared for both 

Mississippi Gulf Coast sUAS orthorectified maps. The goal of this analysis was to determine the 

comparability of generated sUAS maps with maps generated with conventional remote sensing 

platforms specifically in a coastal environment.  
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CHAPTER IV 

RESULTS 

4.1 Automated ROV Substrate Maps 

 The ROV automated mapping methods that were presented in the preceding chapter were 

applied to a total of 51 mappable ROV dives. Each of the resulting final ROV substrate maps 

effectively displays the ROV dive path and CMECS classified seafloor substrate features that are 

observed in the video data that was acquired during ROV dives performed by the ROV Deep 

Discoverer aboard the Okeanos Explorer. Each map contains cartographic features to accurately 

represent the study area surveyed by the ROV Deep Discoverer (i.e., Title, Legend, Scale bar, 

north arrow, Date, Max Depth, and Bottom time). All final ROV substrate maps that were 

created from the automated mapping process are presented in Appendix C. Standard operation 

procedure (SOP) documentation was created for the entire automated ROV automated mapping 

process. A total of five detailed SOPs and three main Python automated mapping scripts were 

created to effectively execute automate mapping workflow.  

• SOP #1 – This SOP describes how to download the ROV video annotation and vehicle 

data from Seatube. These data are necessary to generate substrate maps for an ROV dive. 

• SOP #2 – The second SOP describes how to download the 1Hz ROV vehicle data from 

NOAA’s OER Digital Atlas. Like the ROV annotation data, ROV navigation data 

recorded with a frequency of 1 Hz are necessary to generate substrate maps for an ROV 

dive.  
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• SOP #3- The third SOP describes the process of executing the first Python script used in 

the automated mapping workflow. The Python script CMECS classification script.py 

converts seafloor substrate annotations recorded in legacy format into a new format 

compliant with the current CMECS standard.  

• SOP #4 – The fourth SOP describes the second Python script that is executed in the 

automated mapping workflow. The Mapping Script.py is used to generate digital 

shapefiles of the ROV dive path (line feature) as well as the classified seafloor viewsheds 

(polygon features).  

• SOP #5 – The final SOP documented describes the use of the third and final Python script 

Map production script.py, which is executed to create the final ROV substrate map in 

.pdf format.  

All SOP documents that were created from the automated mapping process are presented 

in Appendix B of this document. 
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Figure 4.1 Seafloor substrate map generated from observations recorded during EX 1903 L2 

Dive 09 

The above Figure portrays an example ROV seafloor substrate map representing substrate 

features that were observed during EX 1903 L2 Dive 09 by the ROV Deep Discoverer. Each 

map contains (a title, scalebar, legend, north arrow, date, max depth, and bottom time).  

 

4.2 ROV Substrate Map Evaluation 

For the included backscatter maps such as the one depicted in Figure 4.2, brighter tones 

indicate a stronger backscatter intensity, suggesting the presence of hard geologic features like an 

exposed rock within the dive site or study area. Conversely, darker tones indicate weaker 

backscatter intensity, suggesting the presence of softer seafloor features such as sand and mud. 

Maps of seafloor substrate as determined from ROV video data are plotted over backscatter data 
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collect by conventional ship-based sonar to facilitate comparison between both. Maps of this 

nature for the remaining nine ROV dives are presented in Appendix D. 

 

Figure 4.2 Backscatter Comparison of EX 1806 Dive 13 

The above map shows seafloor substrate classification for EX 1806 Dive 13 overlayed onto 

acoustic backscatter data collected aboard the Okeanos Explorer in 2018. As described in the 

previous section darker tones within backscatter data indicate weaker intensity, thus indicating a 

high volume and presence of soft seafloor sediment. In the image above the CMECS 

classification “Fine:Fine” matches dark backscatter intensity features, thus indicating that the 

presence of soft fine material is valid and frequent throughout EX 1806 Dive 13.  

 

To evaluate the agreement between the viewshed mapped substrate and backscatter 

mapped substrate, a subset of backscatter values from within each viewshed substrate polygon 
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was created. The frequency distribution of these backscatter values was then plotted for each 

coincident CMECS substrate class polygon on a boxplot. These boxplots demonstrate the degree 

of agreement between the distribution of backscatter intensity and derived substrate polygons, 

allowing for evaluation of the spatial agreement between produced ROV maps and those 

produced with conventional sonar image mapping approaches and platforms. Ideally, harder 

(high reflectivity) substrate, such as rock, will have a higher median backscatter value than softer 

(lower reflectivity) substrate such as fine sediment (Lurton, 2010). An example boxplot of 

backscatter intensity distribution binned by determined CMECS substrate class from ROV dive 

13 on expedition EX 1806 (Figure 4.2) is shown in Figure 4.3. Boxplots of this nature for the 

remaining nine dives are presented in Appendix D.  

 

Figure 4.3 Example Boxplot of EX 1806 Dive 13 Backscatter Distribution 

The above boxplot indicates the frequency distribution of backscatter intensity values spatially 

coincident with the labeled CMECS classes for EX 1806 Dive 13.  
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4.3 sUAS Orthorectification 

The sUAS video frame and timestamp extraction Python scripts, and Agisoft Metashape 

Orthorectification practices described within the previous methods section were applied to four 

sUAS flights that surveyed two different study sites (i.e., Mississippi State University North 

Farm, and Mississippi Gulf Coast). Two flights for each of the study sites were selected to test 

the potential efficacy of orthorectified oblique video images that were generated from the inflight 

videos. Neither single-grid nor double-grid flight patterns were followed while collecting the 

aerial videography. A variety of free roam, and open flight patterns were flown without the use 

of ground control points to gain a better understanding of how the presented image mapping 

approach would handle the variety of geometric distortions found within standard oblique sUAS 

aerial imagery. All mapped flights are presented in Figures 4.9, 4.11, and 4.13 – 4.17. 

4.4 sUAS Map Evaluation 

The efficacy of the presented sUAS digital mapping approach was determined by 

evaluating the spatial accuracy of resulting sUAS maps as well as their comparability to maps 

produced with conventional remote sensing platforms. After video data from each sUAS flight 

was orthorectified, the resulting orthomosaic aerial maps were then loaded into ESRI ArcMap 

and overlayed on a conventional aerial image of the flight area. For the North Farm survey the 

aerial base map used to overlay the sUAS orthomosaic is a high resolution (3 cm resolution) 

aerial image collected by the Northern Gulf Institute (NGI) at Mississippi State University. For 

the Gulf Coast survey the satellite base map used to overlay the sUAS orthomosaic is a 0.5 meter 

Google Earth satellite image. To evaluate the accuracy of sUAS mosaic map, distance between 

visible discrete features in the image and  matching GPS measured ground control points was 

determined as a measure of spatial error (Figures 4.9 and 4.11). Then these measures of error for 
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individual points were used to calculate the RMSE (Figure 4.4), which is a measure of the total 

spatial error between the maps. If there is strong agreement between the generated sUAS image 

and ground control points or aerial image, the associated RMSE values will be small. 

Conversely, if there is poor agreement between the generated sUAS image and ground control 

points or the aerial image, the associated RMSE values will be large.  

 

Figure 4.4 Root Mean Square Error (RMSE) equation (ESRI, 2022) 

RMSE measures errors between the destination control points and the transformed locations of 

the source control points. This transformation is obtained using least squares, therefore more 

links can be specified than necessary. However, for an accurate RMSE calculation the 

specification of links is three to calculate an RMSE result. The more links that are provided, the 

more accurate the final RMSE value will be (ESRI, 2022). 

Given the geometry of sUAS near horizontal video imagery, it seemed likely that imaged 

features farther away from the sUAS camera would be subject to greater geometric distortion and 

thus poorer spatial accuracy. To assess this, the relationship between calculated error for each 

ground control point and distance of that point from the sUAS trackline was plotted to 

investigate if there was any systematic increase in map error associated with increasing distance 

from the sUAS (Figures 4.10, 4.12). The resulting plots do not indicate a systematic increase in 

RMSE with distance of observation away from the sUAS camera.  
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Similarly, the relationship between error of the GPS ground control points collected in 

the field and the high-resolution aerial image are visible in Figure 4.13. Analysis of RMSE 

between both sUAS orthorectified North Farm maps and the high-resolution aerial image are 

portrayed in Figure 4.14 (Flight 01), and Figure 4.15 (Flight 02). The orthorectified maps of the 

Mississippi Gulf Coast flights one and two are compared to the satellite image that was used to 

analyze RMSE, in Figure 4.16 (Flight 01), and Figure 4.17 (Flight 02).  

 

Figure 4.5 Orthorectification of North Farm sUAS Flight 01 

The above map shows the orthomosaic aerial image that was orthorectified using the Agisoft 

Metashape Software. The orthomosaic image is outlined in red and is overlayed onto a satellite 

image base map of the Mississippi State University North Farm study site.  
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Figure 4.6 Orthorectification of North Farm sUAS Flight 02 

The above map shows flight 02 which was flown at the Mississippi State University North Farm 

study site. Like the previous map showing flight 01, the orthomosaic image produced in Agisoft 

Metashape is outlined in red and is overlayed onto a satellite image base map of the Mississippi 

State University North Farm study site. 
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Figure 4.7 Orthorectification of Mississippi Gulf Coast sUAS flight 01 

The above figure accurately displayed the orthomosaic of the Mississippi Gulf Coast sUAS flight 

01 that was conducted in Waveland, MS. The orthomosaic of the flight area is outlined in red 

and was generated using Agisoft Metashape. The orthorectified image is overlayed onto a base 

map of the Mississippi Gulf Coast study site. 
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Figure 4.8 Orthorectification of Mississippi Gulf Coast sUAS Flight 02 

The above map portrays the orthomosaic of the Mississippi Gulf Coast Flight 02 that was 

conducted in Waveland, MS. The orthorectified aerial image is overlayed onto a satellite image 

base map of the Mississippi Gulf Coast study site. 
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Table 4.1 Comparison of RMSE Values for each sUAS Orthorectified Orthomosaic 

RMSE 

Analysis 

Flight Number  Ground 

Control Points 

(GCP’s) 

RMSE Value  

Mississippi 

State North 

Farm GCP 

RMSE  

Flight 01  39 Points  6.61 meters  

Mississippi 

State North 

Farm GCP 

RMSE 

Flight 02 44 Points  0.84 meters 

Mississippi 

State North 

Farm GCP and 

3cm High 

Resolution 

Aerial Image 

N/A 

 

78 points 2.16 meters 

Mississippi 

State North 

Farm 3 (cm) 

aerial image 

RMSE 

Flight 01 45 points  5.21 meters  

Mississippi 

State North 

Farm 3 (cm) 

aerial image 

RMSE 

Flight 02 33 points 1.28 meters  

Mississippi 

Gulf Coast  

Flight 01 15 points 1.68 meters  

Mississippi 

Gulf Coast 

Flight 02 15 points  16.24 meters  

 

The above table shows RMSE values that were calculated using aerial triangulation and 

georeferencing techniques performed in Agisoft Metashape and ArcMap. 
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Figure 4.9 Orthorectification of North Farm Flight 01 Error Map  

The map shown in the above figure represents the amount of error measured in meters that was 

calculated by comparing the ground features identified in the sUAS orthorectified map of North 

Farm Flight one and ground control points in the North Farm Study Area.  
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Figure 4.10 North Farm sUAS Flight 01 Error Graph 

The above scatter plot shows the distribution of the ground features observed in flight one based 

on the error measured in meters and their distance to the closest point on the sUAS Flight Path.  
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Figure 4.11 Orthorectification of North Farm Flight 02 Error Map  

The map shown in the above figure represents the amount of error measured in meters that was 

calculated by comparing the ground features identified in the sUAS orthorectified map of North 

Farm Flight two and ground control points in the North Farm Study Area. 
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Figure 4.12 North Farm sUAS Flight 02 Error Graph 

The above scatter plot shows the distribution of the ground features observed in flight two based 

on the error measured in meters and their distance to the closest point on the sUAS Flight Path. 
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Figure 4.13 Error Between GPS Ground Control Points and 3cm Aerial Image 

The map shown in the above figure represents the amount of error measured in meters that was 

calculated by comparing GCP’s collected in the field and the high resolution 3cm aerial image of 

the North Farm Study Area. 
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Figure 4.14 Error Between North Farm sUAS Flight 01 and 3cm Aerial Image 

The map shown in the above figure represents the amount of error measured in meters that was 

calculated by comparing the sUAS orthorectified map image of flight 01 and the high resolution 

aerial image.  
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Figure 4.15 Error Between sUAS North Farm Flight 02 and 3cm Aerial Image 

The map shown in the above figure represents the amount of error measured in meters that was 

calculated by comparing the sUAS orthorectified map image of flight 02 and the high resolution 

aerial image. 
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Figure 4.16 Error Between sUAS Coast Flight 01 and Satellite Image  

The map shown in the above figure represents the amount of error between sUAS Mississippi 

Gulf Coast flight 01 orthorectified map and the satellite image. The flight path for this sUAS 

flight is visible in Figure 3.8. 
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Figure 4.17 Error Between sUAS Coast Flight 02 and Satellite Image 

The map shown in the above figure represents the amount of error between sUAS Mississippi 

Gulf Coast flight 02 orthorectified map and the satellite image. The flight path for this sUAS 

flight is visible in Figure 3.8. 

 

4.5 ROV Orthorectification 

Once both the Mississippi State University North farm and Mississippi Gulf Coast sUAS 

datasets were accurately orthorectified, the same Agisoft Metashape methodology was applied to 

the ROV Deep Discoverer video data to investigate the possibility of potentially orthorectified 

ROV oblique imagery and videography that is collected along the seafloor. The ROV video 
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frame extraction and timestamp script that was previously introduced in the methods section was 

applied to two ROV dive video datasets downloaded from Seatube V2 (i.e., EX 1903 L2 Dive 06, 

and EX 1903 L2 Dive 8). 

The orthorectification of the extracted timestamped video frames from the ROV video 

data was executed in Agisoft Metashape where a final orthomosaic image of the seafloor was 

produced. However, due to the lack of an existing seafloor map that contains visible seafloor 

geologic features, it is not possible to use RMSE techniques to evaluate the accuracy of resultant 

maps. Specifically, low resolution and zoom distortion limitations were prevalent within the 

ROV video datasets. Visual comparisons for seafloor substrate of the ROV orthomosaic image 

are obtainable through identifying and comparing similar substrate benthic features found 

throughout both the Final ROV substrate Maps found in Appendix C and the Acoustic 

Backscatter Comparison Maps found in Appendix D.  
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Figure 4.18 Orthorectified ROV Orthomosaic Comparison to Observed Substrate EX 1903 L2 

Dive 06 

The above map depicts both observed substrates throughout EX 1903 L2 Dive 06 and the 

orthomosaic image of EX 1903 L2 Dive 06 that was produced in Agisoft Metashape. 
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Figure 4.19 Orthorectified ROV Orthomosaic Comparison to Observed Substrate EX 1903 L2 

Dive 08 

As shown in the above figure shows both the Observed Substrate Map for EX 1903 L2 Dive 08 

and the ROV orthomosaic image for EX 1903 L2 Dive 08 that was produced in Agisoft 

Metashape. 
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CHAPTER V 

DISCUSSION  

5.1 ROV Automated Mapping Implementation 

Implementation of the newly developed open source ROV video data processing tools 

and GIS workflows presented in this thesis resulted in the efficient generation of digital maps 

that represent the spatial distribution of seafloor substrate classes observed in oblique video 

imagery collected on ROV dives in a manner suitable for quantitative geospatial analysis 

(Appendix C). The efficacy of the presented digital mapping approach was evaluated by 

comparing resultant substrate maps to coincident seafloor backscatter data, which is the closest 

dataset to a “ground truth” available for the study area and a widely accepted conventional 

approach for mapping seafloor substrate type (Lurton, 2010). Thus, it is the most appropriate 

independent data for comparison to the viewshed substrate maps generated from integrated ROV 

video and annotation data. Figure 4.1 is an example of the substrate map resulting from this 

thesis overlain on backscatter data. Notably the mapped substrate classes Fine:Fine are generally 

spatially coincident with areas of low backscatter (darker tone) intensity, which is consistent with 

mud substrate, and the mapped substrate classes Fine:Rock and Rock:Fine are generally spatially 

coincident with areas of high backscatter intensity (lighter tone), which is consistent with rock 

substrate (Lurton, 2010). Visual interpretation of these results suggests that the substrate maps 

produced through the methods presented in this thesis are consistent with coincident independent 

measurements of substrate made with multibeam sonar. However, more detailed quantitative 
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assessment was undertaken to evaluate this conclusion. Figure 4.3 and Appendix D contain 

boxplots that indicates the frequency distribution of backscatter intensity values spatially 

coincident with the labeled CMECS polygons. Figure 4.3 demonstrates an expected relationship 

based on sonar theory (Lurton 201) in which the median backscatter intensity value is lowest for 

the softest and smoothest substrate (Fine:Fine),  progressively increases for substrate classes that 

are progressively harder and rougher (Fine:Rock, Rock: Fine), and is greatest for the hardest and 

roughest substrate class (Rock:Rock).  Of the 10 ROV dives with assigned CMECS substrate 

classes that were compared to acoustic backscatter intensity, six of exhibited agreement between 

substrate class and relative backscatter intensity (e.g., EX 1803 Dive 15 (Figure D.12), EX 1806 

Dive 04 (Figure D.13), EX 1806 Dive 08 (Figure D.14), EX 1806 Dive 13 (Figure D.51), EX 

1903 L2 Dive 09 (Figure D.18).. For the remaining four ROV dive datasets (e.g., EX 1923 L2 

Dive 05 (Figure D.16), EX 1923 L2 Dive 06 (Figure D.17), EX 1803 Dive 08 (Figure D.11), and 

EX 1903 L2 Dive 19 (Figure D.19), the substrate comparison of the ROV substrate viewshed 

map and the acoustic backscatter data was not as consistent. This lack of agreement is likely due 

to survey environmental conditions that violated assumptions inherent in the use of acoustic 

backscatter as ground truth for substrate maps, including assumptions of a flat seafloor and 

uniform viewshed size (Malik, 2019).  

One of the most important ways the presented results enable ocean research and 

management is by allowing scientists, managers, and other users to rapidly understand the 

information contained in ROV video data. For individuals not directly involved in the scientific 

study and the collection of the video data, the amount of time and effort that is required to review 

and understand what tens to hundreds of hours of video is analyzing to determine its potential 

value to their study and application is prohibitive. NOAA National Centers for Environmental 
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Information (NCEI) host the largest database of ROV video data in the world. The useability of 

those data could be substantially enhanced if interested scientists and others could review maps, 

such as the ones developed for this thesis, that show the presence or absence of biological, 

chemical, physical, and geological features of interest in the video data.  Additionally, beyond 

simply understanding the presence or absence of features of interest, scientists can use the maps 

of ROV video data to understand the spatial association of those features across each dive site. 

This can yield immediate insight into processes and relationships that would not necessarily be 

evident from watching the dive videos alone.  

The automated ROV video data processing tools and GIS workflows presented in this 

thesis are not exclusively limited to the mapping of seafloor substrate. Seatube annotation files 

contain expert observations of biological organisms, and other geological properties of the 

seafloor observed on ROV dives. Any annotation class of interest can be plotted on maps with 

the same viewshed framework presented in this thesis for substrate annotations. Additionally, 

this approach could be expanded to map any recorded feature of interest on an ROV dive.  

5.2 Suggested ROV Viewshed Mapping Improvements 

Based upon the final map products presented in this thesis, there are several 

improvements that could strengthen the viewshed approach to automated mapping of ROV video 

observations. First, a designated Python script designed to extract both the ROV annotation 

dataset from the Seatube web interface and the 1Hz ROV dataset from NOAA OER digital atlas 

web interface in an automated fashion would increase the utility and efficiency of the ROV 

automated mapping script. Directly accessing the required ROV navigation and video annotation 

data from their hosting websites would eliminate the current requirement to manually download 

each dataset from online sources, increasing the efficiency of the ROV automated mapping 
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approach. However, directly accessing the data from the hosting website comes with a variety of 

disadvantages too. For example, if a Python script was constructed to extract both the 1Hz ROV 

dataset and the ROV annotation dataset from the original website sources (i.e., Seatube and OER 

Digital Atlas) it would only be functional as long as the source code for the respective websites 

were not updated. Any future updates to those websites could render the Python data extraction 

code nonfunctional and therefore the code base would have to be tested and updated often to 

ensure continuous functionality and forward compatibility.  

As noted, viewsheds are an approximation of the area of the seafloor encompassed in a 

single ROV video frame image. The dimensions and angle of the viewsheds used herein were 

assigned constant values that are representative of the visible range of the ROV camera over flat 

seafloor terrain when the camera is not zoomed or tilted. In the case where the ROV camera 

zoom is increased, the viewshed will be smaller. Likewise, when the camera is tilted up the 

viewshed range will be longer and when it is tilted down the viewshed range will be shorter. 

Additionally, in the case of non-flat seafloor terrain, the shape of the viewshed will vary based 

on the morphology of the seafloor in the viewshed. In the future, the viewshed approach could be 

improved by dynamically altering the shape, size, and range of each viewshed based on real-time 

values for camera tilt and zoom as well as seafloor morphology. Because camera tilt and zoom 

values are transmitted digital signals, recording them as part of the ROV operation data should 

be an easy task. Integrating seafloor morphology will be more challenging; however, the 

Okeanos Explorer maps the bathymetry of each dive site with a multibeam sonar, as standard 

practice, which yields a three-dimensional digital elevation model of the seafloor. Accordingly, 

calculating the shape of the viewshed based upon seafloor morphology is possible but may 
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require significant data sourcing and complex geometric projection, which may prove to be 

prohibitive in terms of processing time and computational workload.    

5.3 ROV Orthorectification of Oblique Imagery 

This thesis represents the first time ROV video data has been orthorectified to produce an 

orthomosaic image of seafloor environments. This approach was tested on sample dives (EX 

1903 L2 Dive 06, and EX 1903 L2 Dive 08) to evaluate the potential for the production of an 

accurate orthorectified mosaic image of seafloor habitat. For both dives it was presumed that 

certain limitations (i.e., zoom, video resolution, and camera orientation) found within the ROV 

video data would create a high degree of geometric distortion within the final seafloor 

orthomoasic, thus limiting its usefulness. Much of this anticipated distortion was corrected 

through manual adjustments to be made for the sample orthomosaic, as presented in the methods 

section. The presence of three-dimensional seafloor objects and organisms (i.e., coral, sea 

sponges, squid, and fish) when matched with the highly variable zoom of the ROV camera lenses 

produced highly distorted areas within the final orthomosaic of the seafloor. This distortion 

relates to ROV camera zoom mentioned previously and the way in which it reduces the size of 

the video frame viewshed. As the ROV camera records video throughout the dive, a variety of 

seafloor features are zoomed into view by the ROVs forward camera, if the focal length of the 

ROVs camera was specified each time it zooms a seafloor feature into view, there would be less 

distortion evident in the final seafloor mosaic. Alternatively, video frames collected during 

periods when the camera was zoomed in could be removed from the image dataset used to create 

the orthostatic image. Despite distortion associated with zoom, the generated seafloor 

orthomosaics for EX 1903 L2 Dive 06 and EX 1903 L2 Dive 08 presented in Figures 4.18 and 

4.19 demonstrate the potential utility of this approach for benthic research. Indeed, the resulting 
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orthomosaic images could serve many of the same purposes the substrate viewshed maps serve, 

such as geospatially representing the location and spatial variability of seafloor features observed 

in ROV dives. Further, the application of computer vision techniques to orthomosaic images 

could identify imaged features like biological organisms without the need for expert annotation. 

Such efforts are beyond the scope of this thesis, but the results of this thesis demonstrate the 

initial feasibility and potential of such approaches.  

Although Agisoft Metashape generally applies photogrammetric processing techniques to 

digital images collected with a nadir-viewing (downward) camera acquired above the surface, a 

variety of different ROV navigational and camera parameters (i.e., high-resolution video data, 

fixed zoom, and camera orientation) could potentially be adjusted to obtain a correct 

geometrically oriented orthomosaic of the seafloor. For example, if a double grid transect was 

conducted by the Deep Discoverer to survey a dive site video conducted with both a forward-

facing camera (oblique) or a nadir-viewing camera (downward) the resulting orthomosaics 

would be far more accurate and clear. 
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Figure 5.1 ROV Image of seafloor EX 1903 L2 Dive 06 

The above image shows an image of the seafloor captured by the forward-facing camera of the 

Deep Discoverer.  
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Figure 5.2 ROV orthorectified orthomosaic image of the seafloor from EX 1903 L2 Dive 06 

The above figure is an orthomosaic image section of EX 1903 L2 Dive 06. Some minor 

distortion within the image is visible, this is due to the forward-facing camera on the Deep 

Discoverer zooming in on seafloor features found within the video.  

The results of this thesis demonstrate that seafloor features observed within the ROV 

video (Figure 5.1) are visually identifiable in an orthomosaic of the full dive (Figure 5.2) such as 

the presence of soft sediment. However, some seafloor features such as Lophelia coral 

identifiable in Figure 5.1 are not as clear within the seafloor orthomosaic in Figure 5.2. Both 

images can be compared to two different ROV seafloor map products. The acoustic backscatter 

intensity map For EX 1903 L2 Dive 06 found in Appendix D and the ROV substrate viewshed 

map found in Appendix C can be examined for further comparison of the observed benthic 

features.    
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Figure 5.3 ROV image of benthic features throughout EX 1903 L2 Dive 08 

The above image emphasizes the observed seafloor rock features that were examined throughout 

EX 1903 L2 Dive 8.  
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Figure 5.4 Orthomosaic image section of EX 1903 L2 Dive 08. 

For example, in Figure 5.3 a large quantity of coarse rock features is visible on the seafloor. In 

the above orthorectified orthomosaic image an abundance of coarse rock features is visible.  

 

Figures 5.3 and 5.4 again demonstrate that the seafloor features observed within the ROV 

video (Figure 5.3) are visually identifiable in an orthomosaic of the full dive (Figure 5.4), in this 

case, coarse rock. Both images are also consistent with the ROV substrate map for EX 1903 L2 

Dive 08 (Figure C.29) found in Appendix C, which indicates an abundance of the CMECS class 

Coarse:Rock. As noted previously, orthomosaics produced from ROV video data can observe 

both biotic and abiotic features found within benthic habitats. In the figures below the ability to 

observe marine organisms with orthomosaics that are found within benthic habitats is 

demonstrated.  
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Figure 5.5 ROV image of marine organisms during EX 1903 L2 Dive 16 

The image above shows a benthic environment that is inhabited by a variety of marine organisms 

(e.g., crabs).  
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Figure 5.6 Orthomosaic image section of EX 1903 L2 Dive 16 

Visible biotic and abiotic marine features (e.g., crabs) are visible throughout the above-

orthorectified image of EX 1903 L2 Dive 16.  

Similar to the previous images found in the above figures, both images in Figure 5.5 and 

5.6 can be visually compared to the ROV substrate maps found in Appendix C and the Acoustic 

backscatter comparison maps found in Appendix D. When compared, both orthomosaic images 

represent the distribution of seafloor substrate by correctly classifying the substrate type and size 

that was observed during the ROV dive.  

5.4 sUAS Orthorectification Implementation 

A desirable RMSE value for aerial photography and videography collected with a sUAS 

is a final RMSE value of up to 1 pixel; however, larger distortions and thus higher RSME values 

are produced when more conventional “low-cost” cameras are used for aerial imagery collection. 

Therefore, an RMSE value of 1.5 to 2 pixels is generally viewed as acceptable for the aerial 

triangulation of sUAS nadiral collected imagery (Calvario et al, 2017). 
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Although substantial previous research focused on the orthorectification of sUAS 

imagery has been conducted, a small number of these studies consider near-horizontal oblique 

imagery collected by sUAS and the potential of using it to create accurate maps. The objective of 

the sUAS orthorectification portion of this thesis was to use a suite of tools and GIS workflows 

designed to digitally map oblique video imagery (Orthomosaic) collected on sUAS flights in 

order to enable a quantitative geospatial analysis of those data. The efficacy of this approach was 

evaluated by assessing quantitative spatial agreement between identifiable features (i.e., pier, 

culvert, light pole, house) in orthorectified images and coincident ground control points or 

surface satellite imagery. Four sUAS flights were selected for orthorectification and 

georeferencing and therefore were the only sUAS images available for RMSE calculation.  

Creating orthomosaic images from oblique sUAS imagery offers some specific 

advantages over traditional surveys conducted with cameras in a nadiral (downward) orientation.  

For example, imagery collected with a sUAS flown at a low altitude with an oblique viewing 

camera orientation can effectively capture a variety of ground (surface) features that are not 

visible through the orthorectification of nadiral imagery (Hodgson and Morgon, 2020). This 

allows researchers to survey and monitor coastal and marine environments with an accuracy not 

previously possible (Hodgson and Morgon, 2020). With the potential to orthorectify a variety of 

camera orientation angles, the capability to create a more in-depth and accurate visual 

orthomosaic of the study area is achievable. The resulting orthomosaic images of the Mississippi 

State North Farm Study area seen in Figure 4.9, Figure 4.11, Figure 4.13, Figure 4.14, and Figure 

4.15 depict the potential that oblique sUAS image orthorectification to effectively access and 

survey an agricultural study site. Figure 4.16, and 4.17 of the results section represent the final 

orthomosaic images and spatial analysis of the Mississippi Gulf Coast study site. The results 
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indicate that recreational and conventional data collection methods allow geospatial analyses to 

be conducted in a marine and coastal environment with the use of oblique imagery.  

5.5 Suggested sUAS Orthorectification Mapping Improvements 

A variety of potential improvements to the presented methods for orthorectified sUAS 

imagery were revealed through the research presented here. Foremost, the sUAS flights used for 

this thesis were all conducted in “free flight” mode in which the pilot did not follow a specific 

flight path pattern such as a grid. In many ways, this is advantageous because it demonstrates 

that the presented approach is valid for existing sUAS data from flights in which a flight path 

pattern was not used. This is particularly true because amateur operators are likely to fly in such 

a mode and this thesis makes clear the resulting data can still be plotted in an orthomosaic using 

the approaches presented herein. However, published results indicate that the quality of resulting 

orthomosaics can be optimized by flying the sUAS survey in a grid flight pattern (Taddia et al, 

2020). This method is demonstrated in a variety of published studies and would potentially yield 

more accurate results in future studies (Nesbit and Hugenholtz, 2018; Taddia et al, 2020). In 

Figure 4.9, the first sUAS Mississippi State North Farm flight is shown. This flight was flown in 

a “Down and Back” flight pattern. The final georeferenced orthomosaic of this flight had the 

highest RMSE value of 6.61 when the field collected GCP’s were used to quantify the error. As 

seen in Figure 4.11, flight 02 was flown in an “s” shaped pattern with crossing lines oriented at 

90° approximating a grid, resulting in a final orthomosaic image with the lowest of RMSE value 

(0.84 meters) of all sUAS flights. The three-centimeter aerial imagery of North Farm at 

Mississippi State and the collected GCP’s were used to conduct the RMSE portrayed in Figure 

4.13. The results indicated that the 3-cm aerial image created using conventional mapping 

techniques yielded an RMSE value of 2.16 meters. This result indicates that the sUAS 
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orthomosaic map collected on North Farm flight 1 has a lower accuracy (RMSE = 6.61m) than a 

map generated with data collected with a conventional aerial remote sensing platform (RMSE = 

2.16m). Conversely, the sUAS orthomosaic map collected on North Farm flight 2 has a higher 

accuracy (RMSE = 0.84m) than a map generated with data collected with a conventional aerial 

remote sensing platform (RMSE = 2.16m). North Farm sUAS flight 01 yielded the highest 

RMSE value at 5.21 meters when referenced to the 3cm aerial image. (Figure 4.14), whereas 

flight 02 (Figure 4.15) had an RMSE value of 1.28 when compared to the 3cm aerial image of 

Mississippi State North Farm. Moreover, the results indicate that a double or single-grid flight 

pattern may be a more desirable method rather than conducting a straight uniform flight pattern 

when using oblique imagery for mapping, which is consistent with published guidelines (Taddia 

et al, 2020). Figure 4.11 and Figure 4.15 both represent flight 02 of the Mississippi State North 

Farm study site, yielding the lowest RMSE values calculated throughout this research (0.84 and 

1.28 meters). Figures 4.16 and 4.17 of the results section are RMSE maps created by comparing 

ground features between both sUAS coast flights, and the satellite image used to generate the 

amount of error between them. Flight 01 (Figure 4.16) yielded a RMSE of 1.68 meters. Flight 02 

(Figure 4.17) had a RMSE of 16.24 meters. Both sUAS coast flights were conducted in a “free 

roam” flight pattern and did not follow a grid flight path.  

5.6 sUAS Applications of Orthorectified Oblique Imagery 

5.6.1 Coastal Mapping  

Geospatially representing sUAS orthomosaic images collected in a marine and coastal 

environment that are recorded using aerial videography techniques is possible throughout the 

workflows and methods found within this thesis. The ability to accurately visualize 

environmental parameters that are recorded during an sUAS flight over a coastal environment 
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and analyze them in a geospatial context allows researchers to gain a deeper understanding of 

what is being visually observed within the sUAS video dataset, and how these recorded 

environmental observations can be applied to their specific scientific field or research study. The 

ability to conduct sUAS flights with a DJI Phantom 4 multispectral camera system and an 

infrared camera will allow land/water delineation analysis to be conducted in future studies. 

Land/ water delineation will allow coastal researchers to accurately monitor the rate of coastal 

erosion, as well as the ability to conduct analyses pertaining to coastal vegetation, hydrology, 

and geology. Digital Shoreline Analysis System (DSAS) will further enable the ability of a 

shoreline to be mapped and monitored within successive coastal orthomosaic images. In future 

applications, coastal land/water delineation could be used to effectively optimize DSAS and the 

rate of change that is prevalent throughout historical shoreline locations (Woods Hole Coastal 

and Marine Science Center, 2018). Note that accurate assessment of shorelie change requires 

repeatable acuacies on the order of centimeters. This level of accuracy was not achieved in the 

examples if this thesis. However, it may be achievable with carful data collection, a systematic 

gridded survey pater, and the use of ground control points a static benchmarks for alignment of 

repeat survey orthomosaic maps.  When paired with advanced photogrammetric software such as 

Agisoft Metashape the orthorectification of oblique images collected in a coastal environment 

has the potential to benefit a variety of research institutions and federally funded organizations 

with the ability to perform coastal mapping analyses at a viewing angle that is not generally 

mapped. By incorporating conventional sUAS technology that is available to the public, amateur 

mapping analyses will provide end users the ability to effectively produce high-resolution 

orthomosaic images, thus providing the citizen science community with a valuable tool for 

coastal mapping. 
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5.6.2 Marine Spatial Planning 

The process and ideology of marine spatial planning focuses on a wide range of 

environmental studies and organizations from all over the world. Coastal and marine habitats 

found all over the world are declining at an alarming rate and the ability to monitor these 

declinations has been insufficient (Foley et al, 2010). Recent geospatial technology has been 

observed for its potential to use complex spatial mosaics as a form to monitor coastal resources 

(Collie et al, 2012). Maps that are produced from flying sUAS over areas that are suffering from 

shoreline change can give us a look at what needs to be done to prevent further erosion, and 

degradation as well as the devastation caused by strong hurricanes and tropical depressions. 

When conducting research regarding shoreline change along Jupiter inlet located on the east 

coast of Florida, Nagarajan states in his findings how information that is acquired when 

conducting these sUAS flights, eventually will allow government agencies and academic 

institutions the ability to conduct major research projects regarding the protection coastal areas 

by developing and enforcing new policies and guidelines (Tsokos et al. 2018, as cited in 

Nagarajan et al. 2019), this is a prime example of how this monitoring process can be used for 

multiple different studies and applications. The public must understand the changes that coastal 

areas are experiencing. A set of methods such as those found in this thesis has the potential to 

equip these marine spatial planning organizations with a unique and effective tool that can 

effectively geospatially analyze and monitor how human activities are currently affecting the use 

of marine and coastal space. Thus, meeting the demand for a cost-effective spatial planning tool 

with the ability to monitor the environment and help deliver accurate spatial analyses on both a 

scientific and social spectrum. 
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5.6.3 Storm Damage Assessment 

 In the past storm damage assessment within a coastal environment has been performed 

through manned aircraft flights which at times can be high-priced and inefficient. Coastal areas, 

as well as the water bodies that surround them, are highly dynamic. Over the past several years 

marine and coastal areas have suffered significant and, in some cases catastrophic erosion due to 

rising sea levels and significant storm events (Padua et al. 2017). Human-caused changes such as 

urban development and population concentrations along coasts are both major causes of 

shoreline erosion found all over the world (Nagarajan et al. 2019). Natural Hazards such as 

hurricanes and strong extratropical storms can be more occurring and devastating to coastal areas 

than any other environment. When a major hurricane or tropical system approaches land, an 

immense amount of damage can occur to coastal communities. This is due to the violent 

characteristics that occur within the hurricane phenomenon (i.e., storm surge, inland flooding, 

heavy rains, and high winds). Abnormal tides increase storm surge depths as coastal estuaries 

flood into communities found along the coast. Heavy rains cause immense amounts of flooding 

in low-lying areas, as devastating hurricane-force winds batter the internal urban structure of 

Marine and coastal environments. Of these exposed coastal areas, the Northern Gulf of Mexico is 

particularly threatened by major hurricanes. Coastal areas found all over the world have a long 

extensive history as being a major economic driving factor, these areas are not only responsible 

for generating seafood, trade, and tourism, but they are also home to some of the richest 

environmental coastal zones on the planet on both an economic and environmental aspects 

(Clark, 2016). Not only are coastal areas rich in ecological habitats (i.e., intertidal areas, 

wetlands, salt marshes, barrier islands, and coral reefs) they also provide bordering coastal 

communities with access to immense amounts of coastal resources and goods and services (i.e., 
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food, fossil fuels, transport and recreation, and trading). Upon analyzing both the visual and 

statistical accuracy of the final orthomosaic results of the Mississippi Gulf Coast sUAS study 

site, the methods found herein have the potential to perform accurate, repeatable, and detailed 

storm damage assessments rapidly immediately following storm events. Due to sUAS being 

affordable in terms of operating cost, these unmanned platforms enable the possibility of 

recurrent surveys to be conducted in coastal and marine environments to monitor annual coastal 

changes as well as the assessment of individual storm impacts within a specific geographic 

location (Clark, 2016). By visually examining the Mississippi Gulf Coast Final orthomosaic 

maps for flight 01 (Figure 4.4) and flight 02 (Figure 4.5) found in the previous results section 

and comparing the RMSE values for both images found in Table 4.2 the potential for an accurate 

storm assessment is promising. Other methods such as DSAS and land/water delineation analysis 

would also be effective in monitoring individual storm assessments with the use of historic 

shoreline change. Thus, allowing small communities and organizations found within them to 

accurately access the severity of storm damage using a cost-effective approach. 
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CHAPTER VI 

CONCLUSION 

The goal of this thesis is to evaluate the capacity of sUAS and ROV platforms to 

accurately map coastal and marine environments with oblique video imagery. The presented 

results demonstrate that the developed tools can be successfully used to map seafloor substrate 

observations derived from ROV video data and to create orthomosaic maps derived from both 

sUAS and ROV oblique imagery. Additionally, the efficacy of the presented digital mapping 

approaches was evaluated through the comparison of resultant substrate maps to coincident 

seafloor backscatter data, and by assessing quantitative agreement between orthorectified images 

and ground control points as well as coincident surface aerial imagery. That evaluation largely 

supported the validity of the maps resulting from the application of the developed tools 

demonstrating that sUAS and ROV can map environments with accuracy comparable to 

conventional mapping platforms if surveys are designed and conducted to minimize error with 

components like grided survey patters (e.g. North Farm Flight 2 RMSE = 0.84m) and the use of 

a robust number of ground control points. Notably, sUAS and ROV can achieve this comparable 

level of accuracy while presenting a number of advantages relative to conventional mapping 

platforms in terms of cost, survey frequency, survey timing, and map resolution.  

The presented tools and automated GIS processing framework as well as the resulting 

map products hold the potential to further geospatial analysis of marine and coastal environments 

by improving the usability of archived data and increasing the efficiency, affordability, 
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resolution, and frequency of mapping with unmanned vehicles. Although published literature 

exists regarding the potential of aerial imagery orthorectification for unmanned vehicles, it is 

primarily focused on images collected normally to the Earth’s surface. The presented research 

falls within a small percentage of studies that have analyzed the potential that oblique video 

imagery has to be orthorectified using both ROV and sUAS unmanned platforms. Implementing 

and optimizing this type of photogrammetric processing schema will provide both the geospatial 

and environmental geoscience research community with a tool capable of fully automating the 

mapping process of unmanned vehicle platforms and yielding maps with accuracies comparable 

to conventional mapping platforms and approaches.  

Finally, standard operating procedures (SOPs) for the ROV data processing and map 

generation have been created and are housed with the associated processing codebase through  

GitHUB  (https://github.com/askarke/ROV_Video_Mapping_CMECS) in order to further enable 

the adoption and application of the methods and results presented herein. It is expected that these 

SOPs and code can be immediately applicable to data collected with the NOAA’s ROV Deep 

Discoverer and archived within NOAA NCEI as well as archived sUAS video data.  

6.1 ROV Automated Mapping 

The findings within this thesis demonstrate the effectiveness of the presented automated 

mapping system in accurately representing deep-sea benthic habitats in a geospatial context. 

Specifically, all 51 deep water dives were successfully automatically mapped and represented in 

a geospatial and cartographic format. The ability to accurately geospatially represent deep-sea 

benthic habitats and environmental annotations found within them enhances the ROV data and 

provides scientists within the oceanographic community with an effective geospatial 

visualization tool, thus allowing the ROV video and the recorded annotations to be rapidly 

https://github.com/askarke/ROV_Video_Mapping_CMECS
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mapped – lessening the demand to analyze tens to hundreds of hours of ROV video data (Ruby, 

2017). The final map product generated by the ROV automated mapping program uses organized 

cartographic features to accurately convey geospatial relationships found within a variety of 

substrate observations while facilitating ocean science and the ability to conduct oceanographic 

research among a variety of platforms and users. 

6.2 ROV oblique Image Orthorectification 

The concept of potentially being able to accurately orthorectify oblique images collected 

from the ROV Deep Discoverers forward-facing camera was anticipated based on the sUAS 

orthorectification methods and results found in this thesis. After examining the navigation 

parameters found in the ROV 1Hz dataset it was suspected that the same task that Agisoft 

Metashape was performing on the sUAS data could also be performed on the ROV data, given 

that each dataset for the unmanned platforms contains similar vehicle navigational and attitude 

parameters. Although the resulting orthomosaic images of the seafloor yielded areas of distortion 

due to zoom and camera tilt orientation the resulting mosaics demonstrate substantial potential 

for this approach to enable detailed spatial analysis for seafloor imagery. Suggested 

improvements include collecting the data in a nadiral (downward) viewing direction and 

surveying the seafloor in a double or single-grid transect should be analyzed in future studies. 

The ROV video frame extraction and timestamp script created in this thesis can be applied to any 

video data collected from an ROV. For example, if the ROV Deep Discoverer was to perform a 

series of dives following a single or double grid dive path along the seafloor using its downward 

facing (nadiral) camera the video data collected could then be interpolated into the ROV video 

frame extraction and timestamp script to produce an accurately oriented orthomosaic of the 

seafloor. Nevertheless, limitation and distortion factors found within oblique imagery must be 
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absent or manipulated with a nadiral dataset to obtain the best initial orthorectified output. 

However, the findings in this thesis present the potential and ability to successfully create 

orthorectified images of the seafloor that were extracted from ROV oblique videography. Thus, 

allowing other ROV mapping applications such as the viewshed approach to be effectively tested 

for accuracy, and the validation of bathymetric models to be obtained.    

6.3 sUAS Oblique Image Orthorectification 

The sUAS results in this thesis demonstrate the ability to accurately orthorectify oblique 

imagery collected using an sUAS. Given that each of the four selected sUAS flights yielded 

accurate orthomosaics, as indicated by comparison with satellite imagery and resonable RMSE 

values, the mapping of oblique aerial imagery has shown its potential as a useful geospatial tool. 

The sUAS oblique orthorectification approach can be improved by capturing still oblique images 

that are collected while the sUAS follows a grid flight pattern (Taddia et al, 2020). However, the 

results of this thesis demonstrate that the creation of useful orthomosaic maps is achievable even 

under nonideal sampling situations such as free flight vehicle paths that are not in gridded 

patterns. Future studies related to sUAS oblique aerial image orthorectification accuracy 

assessment and validation could approach the following potential improvements for more 

accurate orthomosaics: 

• Perform survey flights in a single or double grid flight transect- This can 

effectively be conducted during the collection of data when in the field. Varying 

grid flight patterns would be flown over the study site to collect aerial imagery of 

the study site on a larger scale (Taddia et al, 2020).  

• Incorporate ground control points- Although this is not completely necessary 

since a high-resolution camera has the ability to record accurate ground features 
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that can be used for GCPs, it should be tested in future research to compare the 

RMSE values of the images processed without uniform GCPs.  

• Extract exact camera orientation parameters from the sUAS for accurate 

orthorectification in Agisoft Metashape- Consistent camera orientation parameters 

extracted from the sUAS for all survey areas would produce better initial 

georeferenced orthomosaic images in Agisoft Metashape and would not require as 

much post processing georeferencing to be done in ArcMap.  

6.4 Future Work 

The resulting methodology will yield user-friendly open-source digital tools that will 

ultimately enhance the ability of scientists, environmental managers, and the public to generate 

maps, conduct geospatial analysis, and derive quantitative results from oblique imagery collected 

with unmanned vehicles. As mentioned previously, limitations found within both the ROV and 

sUAS datasets will additionally require revision to make the methods found within this thesis 

completely operational. The variety and functionality of these unmanned platforms can 

effectively produce geospatial analyses in marine and coastal environments at an efficient cost 

and time frame. However, a future and more valid verification method would be possible if the 

final ROV orthomosaic images were oriented correctly and could thus serve as a basemap for the 

ROV substrate map and the cartographic features that represent the observed seafloor substrate.  

For the future implementation of orthorectified sUAS aerial imagery for the classification of land 

water delineation, a multispectral camera is suggested to obtain NIR imagery for the 

classification of a land and water boundary. Moreover, future applications that both ROV and 

sUAS mapping programs will only become more prevalent in the future as geospatial technology 

increases. A variety of scientific studies and analyses that could potentially benefit from 
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automated and oblique mapping programs have been prevalent throughout this study. Through 

future research and data collection, both benthic habitats and shallow coastal environments could 

greatly benefit from the use of ROV and sUAS technologies.
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APPENDIX A 

ROV AUTOMATED MAPPING PYTHON SCRIPTS 
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Figure A.1 CMECS classification script.py 

The CMECS classification script.py converts seafloor substrate annotations into a new format 

that is compliant with the current CMECS standard. 
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Figure A.1 CMECS classification script.py continued 
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Figure A.2 Mapping Script.py 

The Mapping Script.py generates digital shapefiles of the ROV dive path (line feature) and 

classified seafloor viewsheds (polygon features). 
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Figure A.2 Mapping Script.py continued  
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Figure A.3 Map production script.py 

The Map production script.py produces a final ROV substrate map in .pdf format 
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Figure A.3 Map production script.py continued  
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Figure A.3 Map production script.py continued 
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APPENDIX B 

ROV AUTOMATED MAPPING STANDARD OPERATING PROCEDURES 
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Figure B.1 ROV Automated Mapping SOP #1 

This SOP describes how to download the ROV video annotation and vehicle data from SeaTube. 

These data are necessary to generate substrate maps for an ROV dive. 
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Figure B.1 SOP #1 Continued 
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Figure B.2 ROV Automated Mapping SOP #2 

This SOP describes how to download 1Hz ROV vehicle data from NOAA’s OER Digital Atlas. 

ROV navigation data recorded with frequency of 1 Hz are necessary to generate substrate maps 

for an ROV dive. 
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Figure B.2 SOP #2 Continued  
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Figure B.2 SOP #2 Continued 
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Figure B.2 SOP #2 Continued 
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Figure B.3 ROV Automated Mapping SOP #3 

This SOP describes the Python script CMECS classification script.py that converts seafloor 

substrate annotations recorded in a legacy format into a new format compliant with the current 

CMECS standard. 
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Figure B.3 SOP #3 Continued 
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Figure B.3 SOP #3 Continued 
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Figure B.3 SOP #3 Continued 



 

114 

 

Figure B.4 ROV Automated Mapping SOP #4 

This SOP describes the process of using the automated Python script Mapping Script.py to 

generate digital shapefiles of the ROV dive path (line feature) and imaged as well as classified 

seafloor viewsheds (polygon features). 
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Figure B.4 SOP #4 Continued 
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Figure B.4 SOP #4 Continued 
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Figure B.4 SOP #4 Continued 
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Figure B.4 SOP #4 Continued 
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Figure B.4 SOP #4 Continued 
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Figure B.4 SOP #4 Continued 
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Figure B.4 SOP #4 Continued 
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Figure B.4 SOP #4 Continued 
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Figure B.4 SOP #4 Continued 
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Figure B.5 ROV Automated Mapping SOP #5 

This SOP describes the process of creating a .pdf format output map with Map production 

script.py 
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Figure B.5 SOP #5 Continued 
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Figure B.5 SOP #5 Continued 
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Figure B.5 SOP #5 Continued 
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Figure B.5 SOP #5 Continued 
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Figure B.5 SOP #5 Continued 
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APPENDIX C 

FINAL ROV SUBSTRATE MAPS  
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Figure C.1 Classification of substrate EX 1803 Dive 03 
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Figure C.2 Classification of substrate EX 1803 Dive 04 
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Figure C.3 Classification of substrate EX 1803 Dive 05 
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Figure C.4 Classification of substrate EX 1803 Dive 07 
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Figure C.5 Classification of substrate EX 1803 Dive 08 
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Figure C.6 Classification of substrate EX 1803 Dive 09 
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Figure C.7 Classification of substrate EX 1803 Dive 10 
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Figure C.8 Classification of substrate EX 1803 Dive 11 
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Figure C.9 Classification of substrate EX 1803 Dive 12 
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Figure C.10 Classification of substrate EX 1803 Dive 14 
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Figure C.11 Classification of substrate EX 1803 Dive 15 
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Figure C.12 Classification of substrate EX 1806 Dive 02 
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Figure C.13 Classification of substrate EX 1806 Dive 03 
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Figure C.14 Classification of substrate EX 1806 Dive 04 
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Figure C.15 Classification of substrate EX 1806 Dive 05 
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Figure C.16 Classification of substrate EX 1806 Dive 06 

 



 

147 

 

Figure C.17 Classification of substrate EX 1806 Dive 08 
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Figure C.18 Classification of substrate EX 1806 Dive 10 
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Figure C.19 Classification of substrate EX 1806 Dive 11 
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Figure C.20 Classification of substrate EX 1806 Dive 12 
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Figure C.21 Classification of substrate EX 1806 Dive 13 
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Figure C.22 Classification of substrate EX 1806 Dive 14 
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Figure C.23 Classification of substrate EX 1806 Dive 16 
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Figure C.24 Classification of substrate EX 1806 Dive 17 
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Figure C.25 Classification of substrate EX 1903 L2 Dive 01 
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Figure C.26 Classification of substrate EX 1903 L2 Dive 02 
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Figure C.27 Classification of substrate EX 1903 L2 Dive 05 
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Figure C.28 Classification of substrate EX 1903 L2 Dive 06 
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Figure C.29 Classification of substrate EX 1903 L2 Dive 08 
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Figure C.30 Classification of substrate EX 1903 L2 Dive 09 
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Figure C.31 Classification of substrate EX 1903 L2 Dive 10 
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Figure C.32 Classification of substrate EX 1903 L2 Dive 11 
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Figure C.33 Classification of substrate EX 1903 L2 Dive 16 
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Figure C.34 Classification of substrate type throughout EX 1903 L2 Dive 19 
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APPENDIX D 

BACKSCATTER COMAPARISON OF ROV SUBSTRATE MAPS & DISTRIBUTION 

BOXPLOTS
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Figure D.1 Backscatter Comparison of EX 1803 Dive 08 
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Figure D.2 Backscatter Comparison of EX 1803 Dive 15 
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Figure D.3 Backscatter Comparison of EX 1806 Dive 04 
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Figure D.4 Backscatter Comparison of EX 1806 Dive 08 
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Figure D.5 Backscatter Comparison of EX 1806 Dive 13 
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Figure D.6 Backscatter Comparison of EX 1903 L2 Dive 05 
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Figure D.7 Backscatter Comparison of EX 1903 L2 Dive 06 
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Figure D.8 Backscatter Comparison of EX 1903 L2 Dive 09 
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Figure D.9 Backscatter Comparison of EX 1903 L2 Dive 10 
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Figure D.10 Backscatter Comparison of EX 1903 L2 Dive 19 
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Figure D.11 EX 1803 Dive 08 Backscatter Distribution Boxplot  
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Figure D.12 EX 1803 Dive 15 Backscatter Distribution Boxplot  
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Figure D.13 EX 1806 Dive 04 Backscatter Distribution Boxplot 
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Figure D.14 EX 1806 Dive 08 Backscatter Distribution Boxplot 
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Figure D.15 EX 1806 Dive 13 Backscatter Distribution Boxplot  
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Figure D.16 EX 1903 Leg 2 Dive 05 Backscatter Distribution Boxplot  
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Figure D.17 EX 1903 Leg 2 Dive 06 Backscatter Distribution Boxplot  
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Figure D.18 EX 1903 Leg 2 Dive 09 Backscatter Distribution Boxplot  
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Figure D.19 EX 1903 Leg 2 Dive 19 Backscatter Distribution Boxplot  
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APPENDIX E 

ROV AND sUAS FRAME EXTRACTION AND TIMESTAMP SCRIPTS 
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Figure E.1 ROV Frame Extraction and Timestamp Script 
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Figure E.1 ROV Frame Extraction and Timestamp Script Continued 
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Figure E.1 ROV Frame Extraction and Timestamp Script Continued  
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Figure E.1 ROV Frame Extraction and Timestamp Script Continued 
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Figure E.2 North Farm sUAS Frame Extraction and Timestamp Script 
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Figure E.2 North Farm sUAS Frame Extraction and Timestamp Script Continued  
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Figure E.2 North Farm sUAS Frame Extraction and Timestamp Script Continued  
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Figure E.3 Mississippi Gulf Coast sUAS Frame Extraction and Timestamp Script 
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Figure E.3 Mississippi Gulf Coast sUAS Frame Extraction and Timestamp Script Continued  
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Figure E.3 Mississippi Gulf Coast sUAS Frame Extraction and Timestamp Script Continued 
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