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This work presents implementation of a hybridized discontinuous Galerkin (DG) method for

robust simulation of the hypersonic aerothermoelastic multiphysics system. Simulation of hy-

personic vehicles requires accurate resolution of complex multiphysics interactions including the

effects of high-speed turbulent flow, extreme heating, and vehicle deformation due to consider-

able pressure loads and thermal stresses. However, the state-of-the-art procedures for hypersonic

aerothermoelasticity are comprised of low-fidelity approaches and partitioned coupling schemes.

These approaches preclude robust design and analysis of hypersonic vehicles for a number of rea-

sons. First, low-fidelity approaches limit their application to simple geometries and lack the ability

to capture small scale flow features (e.g. turbulence, shocks, and boundary layers) which greatly

degrades modeling robustness and solution accuracy. Second, partitioned coupling approaches

can introduce considerable temporal and spatial inaccuracies which are not trivially remedied.

In light of these barriers, we propose development of a monolithically-coupled hybridized DG

approach to enable robust design and analysis of hypersonic vehicles with arbitrary geometries.



Monolithic coupling methods implement a coupled multiphysics system as a single, or monolithic,

equation system to be resolved by a single simulation approach. Further, monolithic approaches

are free from the physical inaccuracies and instabilities imposed by partitioned approaches and

enable time-accurate evolution of the coupled physics system. In this work, a DG method is con-

sidered due to its ability to accurately resolve second-order partial differential equations (PDEs)

of all classes. We note that the hypersonic aerothermoelastic system is composed of PDEs of

all three classes. Hybridized DG methods are specifically considered due to their exceptional

computational efficiency compared to traditional DG methods. It is expected that our monolithic

hybridized DG implementation of the hypersonic aerothermoelastic system will 1) provide the

physical accuracy necessary to capture complex physical features, 2) be free from any spatial and

temporal inaccuracies or instabilities inherent to partitioned coupling procedures, 3) represent a

transition to high-fidelity simulation methods for hypersonic aerothermoelasticity, and 4) enable

efficient analysis of hypersonic aerothermoelastic effects on arbitrary geometries.
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CHAPTER I

INTRODUCTION

There has recently been renewed interest in the design and analysis of vehicles which operate

in the hypersonic, i.e. Mach 5 and beyond, flow regime. Hypersonic flight vehicles include

hypersonic weapons systems, next-generation hypersonic boost and glide vehicles, and reentry

aircraft. Still, greater knowledge of the hypersonic regime is needed to facilitate the design of next-

generation hypersonic vehicles. Unfortunately, the lack of experimental data and considerable

cost of hypersonic flight experiments has slowed the development of next-generation hypersonic

vehicles. Modeling and simulation is positioned to fill existing knowledge gaps in the hypersonic

regime and enable accurate and robust design and analysis of hypersonic vehicles.

The hypersonic regime is inherently a multiphysics regime dominated by the aerothermoelastic

effects of fluid dynamics, structural mechanics, and heat transfer [85, 88] and is characterized by

extreme heating and considerable fluid pressures which in turn produce large strains and stresses

in a hypersonic vehicle. It is well known that these phenomena can have devastating effects on the

vehicle and lead to onset flutter for even nominal temperatures [118, 33]. Further, deformation of

the vehicle augments the surrounding flow which can in turn cause significant changes in flight

performance. It is necessary to employ a simulation method that is able to accurately capture these

complex multiphysics interactions observed in hypersonic aerothermoelasticity.
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While simulation of the individual physics in aerothermoelastic problems have been well

explored using a variety of methods, coupling of the hypersonic aerothermoelastic interactions

requires special attention. By “coupling,” we denote the modeling of the interactions of the

constituent physics which compose a multiphysics system. To this end, there exist two major

approaches, namely partitioned and monolithic approaches [70]. Partitioned approaches model

interactions through transfer of data resolved by single-physics solvers across physical boundaries.

Partitioned approaches enjoy wide use in many physical simulation domains due largely to their

relative ease of implementation [44]. However, certain partitioned methods suffer temporal insta-

bilities due to the inherent leading and lagging of the constituent physics [54, 120] as well as spatial

difficulties incurred by interpolation schemes between the non-conforming meshes [43] employed

by the individual solvers. Monolithic approaches remedy the problems observed in partitioned

approaches by instead solving a single equation system comprised of all physical equations on a

single mesh. Due to this, monolithic methods can exhibit time-accurate results and incur no spatial

interpolation errors. These qualities facilitate more rigorous analysis of discretizations of the phys-

ical equations. Still, the software implementation of monolithic methods is often more difficult

than that of partitioned methods as development of a dedicated simulation software implementing

the monolithic equation system and solver is often necessary.

Currently, hypersonic aerothermoelasticity simulation is widely pursued with low-fidelity or

model reduction approaches on simple geometries [31, 85, 66] or at supersonic Mach numbers

using a partitioned coupling scheme [118]. However, these methods are unable to facilitate accurate

design and analysis of hypersonic vehicles for various reasons. First, low-fidelity methods preclude

effective design and analysis of hypersonic vehicles due to physical inaccuracies stemming from
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assumptions which are valid for only a few test geometries. Low-fidelity methods are also unable

to generalize to arbitrary vehicle geometries and flow domains. Second, partitioned methods can

introduce temporal and spatial inaccuracies in the multiphysics simulation. Spatial errors due to

interpolation pose considerable challenges in ensuring physical requirements (e.g. conservation)

are preserved. Attempts to remedy the temporal inaccuracies associated with partitioned methods

can require rigorous tuning of inter-physics transfer schedules or implementation of fixed-point

iterations with slow rates of convergence.

To address the problems associated with low-fidelity and partitioned approaches, we propose

coupling the hypersonic aerothermoelastic equations using a monolithically-coupled hybridized

discontinuous Galerkin (DG) [109, 111] method. The major effort of this work is the development

of a hybridized DG code which implements the proposed monolithic hypersonic aerothermoe-

lasticity system. DG methods are classes of finite element methods (FEM) which require the

approximate solution space to be only piecewise continuous. Due to this property, DG methods

are able to effectively resolve all three classes of second-order partial differential equations (PDEs)

encountered in continuum physics. We note that each PDE class is represented in the hypersonic

aerothermoelastic system. Further, a hybridized DG method is employed due to its ability to

greatly reduce the number of globally coupled degrees of freedom compared to traditional DG

methods [23]. This fact extends the reach of DG methods to large-scale problems commonly

encountered in physical problems of interest [93] as hybridized DG methods are competitive with

traditionally employed continuous Galerkin (CG) and finite volume methods (FVM) in terms of

computational expense. Indeed, hybridized DG methods have already demonstrated success for

multiphysics systems. Sheldon et. al [109] simulated monolithic fluid-structure interaction (FSI)
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of incompressible flows with hyper-elastic materials. Their results were shown to be in excellent

agreement with the FSI benchmark due to Turek and Hron [119]. Finally, simulation of the hy-

personic aerothermoelastic system using a monolithic hybridized DG method is expected to 1)

provide the physical accuracy necessary to capture all complex physical features, 2) be free from

any spatial and temporal inaccuracies or instabilities inherent to the partitioned coupling procedure,

3) represent a transition to high-fidelity simulation methods for hypersonic aerothermoelasticity,

and 4) enable efficient analysis of hypersonic aerothermoelastic effects on arbitrary geometries.

This dissertation is laid out as follows: Chapter II begins this work with a review of the physical

considerations and modeling strategies for the hypersonic regime, an overview of commonly

applied multiphysics coupling schemes, and a more detailed explanation of DG methods with

special attention placed on the formulation of hybridized DG methods. Chapter III discusses the

modeling approach and corresponding hybridized DG equation system employed for hypersonic

aerothermoelasticity. Chapter IV provides description of the algorithms used to solve the monolithic

hybridized DG system. Numerical experiments and their results are presented in Chapter V. We

conclude with closing remarks in Chapter VI.
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CHAPTER II

BACKGROUND

2.1 Hypersonics
2.1.1 Hypersonic regime

Hypersonic flows are typically defined as flows with a Mach number greater than 5. Hypersonic

flows inherit much of the qualitative behavior of supersonic flows, generally defined as flows in

the Mach 1-5 regime, including compressible flow effects, shock formation and interaction, and

turbulence. In addition to these qualities, the hypersonic regime introduces the effects of extreme

heating due to considerable convection near the surface hypersonic vehicle [85, 65, 41]. This heating

results in the generation of large heat fluxes on the vehicle surface and the accumulation of large

stresses in the flight vehicle via heat conduction[88]. Hypersonic vehicles must be engineered to

be resilient to extreme temperatures and appreciable fluid pressures which cause structural bending

and onset flutter [118, 64, 6]. It is common for hypersonic vehicles to be equipped with a thermal

protection system on the vehicle surface to allow for controlled material degradation due to heating.

At large hypersonic Mach numbers, the near-body heating is sufficient to cause the dissociation

and ionization of the fluid molecules and, accordingly, the formation of a plasma layer near the

vehicle.

As in lower speed flight regimes, a continuum assumption of all flow variables remains valid

for much of the hypersonic regime. Due to this, the Navier-Stokes equations are employed as
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the governing fluid equations in the hypersonic regime. We note, however, that the continuum

assumption begins to fail for higher speed hypersonic flows due to a sharp increase in the mean free

path of the fluid particles leading to a significant decrease in fluid density. Physical descriptions of

these low-density flows must make use of the kinetic theory of particles. In this work, we restrict

attention to the regime of hypersonic flows where the continuum assumption is valid.

Due to the devastating effects hypersonic heat loads are able to impose on the structure of a

vehicle [38, 84], hypersonic aerothermoelasticity analyses may consider all forms of heat transfer,

i.e. conduction, convection, and radiation, to ensure their accuracy, with the majority of the

aerothermal heating occurring on the nose and leading edges of the vehicle [127]. Conduction and

convection are governed by Fourier’s law of conduction and Newton’s law of cooling, respectively.

Radiative heat transfer can be significant in the hypersonic regime and depends strongly on the

material properties of the vehicle surface. We note that radiation evolves proportional to the quartic

power of flow and surface temperatures. Similar to the Navier-Stokes equations, the governing

equations for each form of heat transfer rely heavily on the continuum assumption of the fluid and

solid.

Structural deformation and bending of a vehicle due to large fluid pressure and internal thermal

strains and stresses is a hallmark of the hypersonic regime. The evolution of the structural

displacements are governed by the typical elastodynamic equations. The elastodynamic equations

are a differential statement of Newton’s second law of motion written in terms of the temporal

evolution of body stress due to strains and external loads. The stress in the body is related to

solid displacement via the internal strain which is itself proportional to the spatial gradient of the

solid displacements. Still, the relationship between stress and strain is material dependent. For
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small applied loads, this relationship is often taken to be linear, causing the material to be assumed

elastic. However, for stress-strain relationships depending on the displacements, nonlinearities in

the governing equations are introduced and plastic deformation is permissible.

Physics-based high-fidelity modeling of the hypersonic regime is necessary to better understand

the complex interactions of hypersonic aerothermoelasticity and to facilitate effective and reliable

design and analysis of hypersonic vehicles. It is necessary to model the flow regime, structural

deformation, and heat transfer in a coupled simulation. Unlike lower speed flight regimes, the

hypersonic regime is plagued by a considerable lack of experimental flight data. High-fidelity

modeling is positioned to fill in the knowledge gaps for the hypersonic regime. Still, high-fidelity

is not free of challenges. We now review some modeling concerns for the hypersonic regime.

2.1.2 Hypersonic modeling challenges

Modeling of high-speed flows has been well-explored in the literature. However, modeling of

the aerothermoelastic effects which dominate the hypersonic regime has historically received little

attention [85]. Aerothermoelasticity modeling is comprised of unique challenges which can limit

physical accuracy and computational efficiency of existing modeling approaches.

In many practical supersonic and lower Mach number hypersonic flow modeling applications,

an ideal gas assumption is employed as the equation of state to relate fluid pressure, density, and

temperature and ultimately close the Navier-Stokes equations. However, extreme heating in the

hypersonic regime may necessitate the use of real gas models to better capture the temperature

dependence in the equation of state. There exist many real gas models developed under assumptions

of the gas under consideration, complicating the choice of a real gas model. Further, modeling
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real gas effects in hypersonic flows is not a straightforward endeavor and may require special

consideration of flight conditions and fluid properties.

The hypersonic regime is comprised of considerable shock layers, shock interactions, and

turbulence. Modeling of these phenomena requires special attention on grid-based methods.

Shocks are near-discontinuous changes in flow properties on the order of nanometers, often several

orders of magnitude smaller than the physical cell size. Models for shock capturing and turbulence

must be introduced to resolve their effects. Many methods have been introduced to increase shock

resolution on grids, including near-shock grid refinement and shock-capturing methods commonly

based on the addition of artificial diffusion to the viscous stress term in the Navier-Stokes equations.

It is necessary to model the effects of turbulence at the point of laminar-turbulence transition.

Turbulence evolves across many turbulent length scales, the smallest of which are often not

resolvable on even well-refined grids. Similar to shock capturing methods, turbulence has also

been investigated at considerable length from which three main approaches for turbulent flow

simulation have arisen, listed in order of increasing physical fidelity and computational cost:

Reynolds-Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) and Direct Numerical

Simulation (DNS). While DNS simulates turbulence using high-order numerical methods on very

fine grids, RANS and LES impose models to resolve fine turbulent flow features with comparatively

less computational expense.

The modeling of real gas effects, shocks, and turbulence can add additional nonlinearities to

the augmented Navier-Stokes equations causing accurate and stable modeling of these effects to be

greatly complicated. In addition to these difficulties, the hypersonic speeds of the fluid can greatly

reduce the time step needed for stable time evolution in unsteady solutions, potentially causing a
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hypersonic flow simulation to require a large number of solver iterations across prohibitively-many

time steps.

The extreme heating prevalent in the hypersonic regime necessitates the modeling of heat

transfer of all kinds including conduction, convection, and radiation. Each form of heat transfer

introduces unique complexities. Conduction modeling requires knowledge of temperature-varying

material properties often determined by experiment. Convection modeling requires determination

of a convection coefficient which may depend nonlinearly on flow properties. Radiation modeling

may require the computation of viewfactors between grid cells. Further, radiation modeling

introduces nonlinearities proportional to the quartic power of temperature.

The Navier-Stokes equations are notorious for their varied behavior in different areas of the

fluid domain. For example, near-body flow demonstrates strongly elliptic behavior due to the

dominance of the viscous stress term compared to the convective term. Far-field flow is strongly

hyperbolic as viscous effects are minimal and the nonlinear convective term dominates. The Peclet

number Pe is a non-dimensional number defined as the ratio of the convection transport rate to the

diffusive transport rate and may be used as an indicator of the dominating flow effects and thus the

dynamical behavior of the Navier-Stokes equations. Resolution of flows across a wide range of Pe

numbers is a necessary capability of a high-fidelity aerodynamics model.

The nonlinear nature of the three physical systems causes individual physical simulation to

be a considerable challenge in itself. Coupling of the equations to produce a unified, physically

accurate system adds further complexity. To this end, we continue with a review of multiphysics

coupling methods.
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2.2 Multiphysics coupling

The hypersonic aerothermoelasticity system is inherently a multiphysics system. In this section

we present an overview of multiphysics coupling approaches providing motivation and drawbacks

for each approach. Throughout this section, we make use of fluid-structure interaction (FSI) as

an example problem and provide some discussion about the application of the various multi-

physics coupling techniques to the FSI problem. We use FSI coupling approaches as examples

due the availability of FSI studies in the literature and due to the similarities between FSI and

aerothermoelasticity for which fewer studies exist.

FSI approaches are concerned with the simulation of the coupled interactions of a malleable

structure subject to the effects of dynamic fluid. In FSI approaches, it is assumed that the structure

is not rigid and will deform under the pressure loads acting on the structure’s surface. However,

deformation of the fluid domain must be modeled in an appropriate way since the deformation of

the solid displaces the nearby fluid. It will later be discussed that the method of fluid and structural

deformation may depend on the employed coupling approach.

Throughout this section we use the notation 𝒖 𝑓 and 𝒖𝑠 to refer to the fluid and structural

solution, respectively. We denote the fluid-structure coupling interface as Γ. Certain coupling

methods will make use of a third solution defined on Γ which we denote by 𝒖Γ. We use 𝒓 𝑓 , 𝒓𝑠,

and 𝒓Γ to refer to the discrete residuals of appropriate governing equations defined on the fluid,

solid, and coupling interface, respectively. Finally, despite the following schemes being presented

in the context of FSI, generalization to other multiphysics systems or multiphysics systems which

consider three or more physics is straightforward.
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Choosing an appropriate coupling approach frequently requires consideration of problem-

dependent information and the time budget allotted for development of the coupling scheme.

Analysis of the Jacobian of the residual for a multiphysics problem can provide insight to determine

the coupling scheme which best fits the goals of the practitioner. We illustrate this Jacobian for the

FSI system as follows:

𝑱 =


𝑱 𝑓 , 𝑓 𝑱 𝑓 ,𝑠

𝑱𝑠, 𝑓 𝑱𝑠,𝑠

 (2.1)

In general, the entries of the Jacobian of a multiphysics problem are given by 𝐽𝑖 𝑗 = 𝜕𝒓𝑖
𝜕𝒖 𝑗

. We note

that the diagonal elements of the Jacobian are the sensitivities of the individual physics with respect

to their physical variables. The off-diagonal terms correspond to the inter-physics couplings. It

is apparent that if the off-diagonal terms of (2.1) are of negligible magnitude compared to the

diagonal terms, the coupling is weak. Multiphysics systems which possess weakly-coupled physics

may be able to disregard the coupling of such physics entirely to realize a time savings with nominal

loss in accuracy.

For multiphysics problems similar to FSI which perform coupling through the transfer of

physical data on the coupling boundary, a secondary formulation is possible. It is possible to

decompose the multiphysics problem into subproblems on the respective domains plus a new

problem defined on the multiphysics boundary. In this case, the multiphysics Jacobian is an

“arrow-like” matrix. In the case of FSI, this Jacobian is given by
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𝑱 =



𝑱 𝑓 , 𝑓 0 𝑱 𝑓 ,Γ

0 𝑱𝑠,𝑠 𝑱𝑠,Γ

𝑱Γ, 𝑓 𝑱Γ,𝑠 𝑱Γ,Γ


(2.2)

As mentioned in Chapter I, multiphysics coupling schemes can be broadly categorized as

partitioned or monolithic schemes. We also make a distinction between two classifications of

partitioned coupling schemes: staggered and fixed point coupling schemes, sometimes referred to

as loosely and tightly coupled partitioned schemes in the literature. A major distinction between

partitioned and monolithic schemes can be seen using the multiphysics Jacobians. Typically,

partitioned schemes model or omit the effects of the coupling Jacobians, while monolithic methods

frequently compute the full Jacobians.

Still, much research has been performed using both approaches from both classes. For example,

partitioned [42, 14, 35, 44, 45, 73, 121] and monolithic [109, 111, 108, 63, 35, 5] approaches have

been extensively explored to model FSI. To motivate the use of a monolithic coupling approach in

this work, we briefly provide some overview of partitioned and monolithic coupling approaches,

placing special consideration on the application of such methods for FSI coupling.

2.2.1 Partitioned approaches

Partitioned coupling approaches involve the coupling of various single-physics solvers through

transfer of solution data across shared physical boundaries. Partitioned approaches are especially

common in the multiphysics literature compared to monolithic methods due to their ability to

employ existing single-physics simulation codes which can be specifically tailored to resolve

complex effects in the single-physics system. Due to this, in a partitioned method, it is only
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necessary to derive and implement the coupling procedure. Coupling is performed by the transfer

of physical data on the coupling interface. Data transferred from one domain is used to enforce

boundary conditions on the other.

A difficulty encountered in partitioned coupling approaches is the need to develop accurate

interpolation methods for physical data transferred along a coupling interface since the locations

where the solutions are computed may not conform between the meshes on the coupling interface.

Erroneous interpolation schemes along non-conforming meshes may lead to computation of un-

physical solutions [43]. This problem is of special importance when the underlying physics relies

on the transferred data being conserved, e.g. the transfer of heat flux between two heated domains.

Interpolation schemes may not be able to ensure conservation of such data and may cause spurious

creation and deletion of transferred data. Methods to combat these issues for FSI problems are

presented in [43], though the methods can not guarantee conservation. Beyond this difficulty, it is

readily observed that ensuring the stability of a partitioned scheme is also itself a challenge [45].

2.2.1.1 Staggered approach

In a staggered coupling approach, the transient simulation of a multiphysics system is performed

by sequentially computing the solutions to the single-physics problems in a prescribed schedule.

Within a time step the execution of a single-physics solver may employ boundary conditions on the

coupling interface computed by a previous single-physics solver within the current or previous time

step. An area of research for staggered schemes is the development of effective staggered transfer

schedules and determination of the necessary data to transfer on the coupling interface. In the case

that the evolution of one physical domain occurs on a smaller time scale than another domain, a
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characteristic transfer time may also be chosen such that the more quickly evolving physical system

may be evolved for many time steps before transferring boundary data to the slower physical system.

Thus, many possible transfer schedules for a multiphysics problem employing a staggered coupling

method may exist. The interested reader may refer to [45] for description of the various operations

which define staggered approaches.

For the case of the FSI system, a seemingly valid transfer schedule at a time step 𝑛 may be the

following:

1. Evolve the fluid state from 𝑢𝑛
𝑓

to 𝑢𝑛+1
𝑓

2. Transfer the fluid pressures on the coupling interface to the structure to be imposed as
boundary conditions

3. Evolve the structure state from 𝑢𝑛𝑠 to 𝑢𝑛+1
𝑠

4. Transfer the structure’s displacement and velocity on the coupling interface to the fluid

5. Update the fluid mesh according to the structure’s displacement

6. Impose the structure’s velocity as the fluid’s velocity on the coupling interface

However, in the case of an incompressible fluid, staggered schemes for FSI are unstable [54] and

require additional stabilization methods, e.g. an under-resolution method [86]. Indeed, staggered

approaches for general problems can be exhibit considerable instabilities [45]. It is observed that

the instability of a staggered FSI approach grows quickly for large fluid-structure mass ratios [54].

Compressible flows, however, require a different stability analysis. It was shown in [120] that the

stability of FSI approaches using compressible flows scale is a function of the time step.

While the staggered approach has the attractive property of being perhaps the simplest par-

titioned coupling approach, it suffers from certain drawbacks. First, a staggered approach may

introduce numerical instabilities and physical inconsistencies [45]. Second, it is not apparent if in

14



general a staggered approach associates with a convergence property for the coupled solution on

physical boundaries [45]. Since the single-physics solvers are executed sequentially, the staggered

approach gives rise to “leading” and “lagging” physics systems, as opposed to all participating

physics evolving simultaneously in time. As demonstrated in Figure 2.1, a leading physics system

will transfer physical variables computed at a future time point to a coupled solver at a previous

time point. Besides this approach potentially introducing temporal inaccuracies, it is unclear if

this approach will converge to a physically valid state for a chosen time step. Indeed, choice of an

appropriate time step may require additional analyses which consider the strength of the coupling

determined by the Jacobian of the multiphysics system. Finally, it is worth noting that methods for

combatting the temporal inaccuracies imposed by partitioned methods have been investigated [44].

Methods which adapt the time step of the fluid and structural solvers have also received attention

[83, 39].

𝑢𝑛
𝑓

𝑢𝑛𝑠

𝑢𝑛+1
𝑓

𝑢𝑛+1
𝑠

𝑢𝑛+2
𝑓

𝑢𝑛+2
𝑠

Figure 2.1: Two iterations of a staggered coupling approach for a FSI system. The (leading) fluid
system is advanced from state 𝑢𝑛

𝑓
to state 𝑢𝑛+1

𝑓
. The updated fluid state is then transferred to the

(lagging) structural physics system where it is used in the update from state 𝑢𝑛𝑠 to 𝑢𝑛+1
𝑠 . Finally, the

updated structural state is transferred to the fluid system for computation of the future fluid state
𝑢𝑛+2
𝑓

.
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2.2.1.2 Fixed point approach

Perhaps a more mathematically rigorous approach to implement a partitioned coupling approach

is through a fixed point partitioned approach. Fixed point partitioned approaches solve for the

boundary state 𝒖Γ at each time step by using an iterative fixed point procedure. Given an initial

guess 𝒖0
Γ

to the coupling interface state at a given time step, fixed point approaches consider an

iterative mapping for 𝒖Γ given by

𝒖𝑛+1
Γ = Φ

(
𝒖𝑛𝑓 , 𝒖

𝑛
𝑠 , 𝒖

𝑛
Γ

)
(2.3)

were Φ is the fixed point mapping to be chosen which enforces coupling conditions on the coupling

interface. Of course, the convergence of the coupling interface state 𝒖Γ requires that the mapping

Φ be a contraction mapping which may be difficult to formulate for general problems. Convergence

of (2.3) may not even be achievable for certain choices of Φ. Still, even with a well-posed fixed

point scheme for a multiphysics problem, convergence to a solution within a reasonable tolerance

may require prohibitively many iterations and impose a large computational burden. Indeed, many

fixed point approaches require the evaluation of the subdomain solutions at every iteration. This

problem is complicated further by the frequent unavailability of the Jacobian information expressed

in (2.1) which could be used to expedite the convergence of (2.3) and (2.4). Due to this, the number

of iterations required to achieve convergence can grow prohibitively large and computationally

expensive since each iteration requires a simulation of all participating single-physics solvers.

To alleviate the computational cost of fixed point methods, it is common to employ under-

relaxation techniques for one or all physical disciplines whic expedite the fixed point procedure

[86, 108, 61, 73, 9]. The under-relaxed form of (2.3) is given by
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𝒖𝑛+1
Γ = 𝜔Φ

(
𝒖𝑛𝑓 , 𝒖

𝑛
𝑠 , 𝒖

𝑛
Γ

)
+ (1 − 𝜔) 𝒖𝑛Γ (2.4)

where 𝜔 is an appropriately chosen relaxation parameter. Approaches to determine 𝜔 for a fixed

point FSI approach was pursued in [73]. The investigated methods included steepest descent and

Aitkens Δ2 method [2].

Determining an appropriate fixed point mapping Φ for a multiphysics problem is the main

effort for the fixed point approach. To this end, it is common to employ domain decomposition

(DD) techniques [117, 61, 89, 9] to derive an effective fixed point scheme since the extension of

DD methods to multiphysics problems is natural. DD methods traditionally decompose a single-

physics problem defined on a single domain into subproblems defined on either overlapping or

non-overlapping subdomains plus a new problem defined on the interfaces of the subdomains. It

is straightforward to apply DD methods to multiphysics problems by taking the subdomains in

a DD formulation to be the physical subdomains on which a single-physics problem is solved.

This approach results in the subdomain interfaces becoming multiphysics coupling interfaces.

The resulting equations on the interfaces of the subdomains define the coupling conditions for a

multiphysics problem. Many DD methods require iteration of the resulting coupled problem to

ensure convergence.

FSI methods frequently employ a DD-inspired Dirichlet-Neumann coupling on the multiphysics

boundary [108]. In this coupling approach, the solid and fluid velocities are imposed to be equal

(the Dirichlet condition) and the tractions along the outward-pointing interface normals are required

to balance (the Neumann condition). It is apparent that the displacement of the structure should

displace the nearby fluid which may require re-meshing the fluid domain each iteration.
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Partitioned coupling of the FSI problem can lead to unexpected physical effects. An example of

this is the added mass effect where fluid mass is spuriously created or dissipated in incompressible

flows [54, 120]. The impact of the added mass effect is related to the ratio of fluid and structural

mass. Compressible flows also exhibit an added mass effect. However, it was found that the impact

of the effect was related to the magnitude of the time step for transient flows [120].

2.2.1.3 Partitioned conclusion

Finally, partitioned methods are desirable due to their ability to employ existing single-physics

simulation codes leading to their relative ease of implementation compared to monolithic methods.

Staggered methods are perhaps the most computationally inexpensive partitioned approach. How-

ever, it is unclear if in general a staggered method is stable or accurate. Fixed point methods, on

the other hand, are generally equipped with a notion of convergence, but can require an excessive

number of iterations to arrive at a physical solution each time step. Still, common to both methods

is the difficulty of developing accurate interpolation schemes between non-conforming meshes.

This problem is especially significant for multiphysics problems which must maintain conservation

of physical data transferred across the coupling boundary. Finally, for certain multiphysics systems

employing a partitioned method, a fixed point approach may be preferred to a staggered approach

since fixed point methods are equipped a with notion of convergence, e.g. by measure of the 𝐿2

error



𝒖𝑛Γ −Φ

(
𝒖𝑛
𝑓
, 𝒖𝑛𝑠 , 𝒖

𝑛
Γ

)


.
2.2.2 Monolithic approach

Monolithic coupling approaches perform multiphysics coupling by formulating the multiphysics

system as a single equation system to be solved on a single mesh. In the monolithic approach, all
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coupling is preformed in the continuous domain, prior to spatial and temporal discretization. Due to

this, monolithic methods are free from much of the error generated by partitioned methods. Unlike

a staggered partitioned approach, monolithic methods impose no inaccuracies in time evolution.

No fixed point iterative scheme defined on the coupling interface is needed to ensure coupling

convergence. Monolithic approaches often evolve on a single computational grid, eliminating the

need for devising complex inter-mesh interpolation schemes.

A major drawback of monolithic methods noted in the literature is their lack of modularity

to employ arbitrary single-physics solvers for solution of the multiphysics system [85, 44]. How-

ever, multiphysics coupling performed within a single simulation code has certain performance

advantages. For example, monolithic methods perform all inter-physics data transfer in memory,

while partitioned methods may require file-based data transfers. Due to the memory efficiency,

monolithic methods are expected to better equip multiphysics systems for exascale computing [70].

Many monolithic approaches of FSI have been developed [109, 111, 63, 35, 5, 57]. Besides

having to develop appropriate fluid and structure solvers, an additional difficulty for monolithic FSI

approaches is accurately formulating the deformation of the fluid domain. While partitioned solvers

may simply re-mesh the fluid domain each coupling iteration, monolithic approaches resolve all

physics on a single mesh. Due to this, an additional deformation field is included in the fluid

equations to compute the deformation of the fluid domain.

A difficulty with this approach, however, is that the fluid and structure equations evolve in

differing reference frames. To remedy this problem, an Arbitrary Lagrange-Euler (ALE) approach

[37] is often employed to unify the fluid and structure equations into a common reference frame.

ALE approaches have found many applications including monolithic coupling of FSI [109, 35,
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5, 57, 55], adaptive mesh refinement and optimization [4], and mesh motion under prescribed

transformations [93].

In addition to the burden of developing a new simulation code for a monolithic multiphysics

system, additional difficulties arise in determining appropriate methods to solve the monolithic

system. In particular, a difficulty for monolithic solvers is the devising of appropriate precondi-

tioners which generally must be formulated specifically for the multiphysics problem [70]. Studies

for monolithic FSI preconditioners approaches have been investigated [82, 57].

With respect to FSI, A universal benchmark for incompressible, laminar FSI problems was

introduced by Turek and Hron [119]. The authors also presented a monolithic FSI coupling

approach with attention placed on biomechanics applications [63]. This work formulated the

FSI system using a finite element method using an ALE formulation to make the fluid and solid

reference frames consistent. The resulting nonlinear system was solved using a damped Newton’s

method with a line search to accelerate convergence. A multigrid solver was used to solve the

resulting Newton system. While the authors note the accuracy and robustness of the scheme, they

stress the need for efficient and parallel solvers to expedite its solution.

An overview of partitioned and monolithic FSI approaches can be found in [108]. A com-

parison the performance of a partitioned FSI solver and a monolithic FSI solver was performed

in [35]. The authors found that, while the partitioned method did sometimes outperform the

monolithic method, certain partitioned test cases did not converge. Recently, a mixed partitioned-

monolithichic coupling approach for low Mach thermal FSI approaches was pursued in [60] where

two monolithically coupled systems were coupled with a partitioned approach. The method was

found to be robust for the considered experiments. Finally, a monolithic coupling approach was
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employed to implement a solver for a capsule/parchute system [16]. Notable in this work is the

development of a coupling graph which details the coupling and dependencies between the various

physics models for computation of the physical variables and their adjoint variables.

2.3 Hypersonic aerothermoelasticity modeling

Hypersonic aerothermoelasticity modeling has witnessed a resurgence in the recent literature,

with a major focus being the coupling procedures for the three physical disciplines. Partitioned

staggered coupling methods are the prevailing hypersonic aerothermoelasticity approaches, with

many authors replacing certain physical equations with low-fidelity physics-based models, empir-

ical models, or reduced order models to achieve a cost savings.

A review of research for hypersonic aerothermoelasticity is presented in [85]. Therein the au-

thors note three potential avenues for simulation of hypersonic aerothermoelasticity: low-fidelity

approaches, high-fidelity modeling, and reduced-order modeling using surrogate modeling tech-

niques. They note the need for staggered approaches to perform two-phase aeroelastic-aerothermal

coupling as opposed an to independent three coupling of fluid, thermal, and solid dynamics. It

was found that an aeroelastic-aerothermal coupling better resolved the aerodynamic heating and

solid temperature and displacement response for flows over a skin panel. Still, the authors note

the need for advancement of high-fidelity simulation methods to better understand the physical

characteristics of the hypersonic regime.

Follow-up work to [85] is presented in [31] where a staggered partitioned approach for hy-

personic aerothermoelasticity across a flat plate is employed for two-way aeroelastic-areothermal

coupling. In this lower-fidelity approach, approximations for the aerodynamic heating are obtained
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using Eckert’s reference enthalpy method which provides a low-fidelity model of the thermal

boundary layer heating and is used to determine an approximate aerodynamic heat flux. This

enthalpy method was determined from incompressible flow data and augmented to compensate

for compressible flow effects. The aeroelastic model employed a finite element formulation of

the equations of motion. The aeroelastic solution was represented a a combination of assumed

sinusoidal modes plus a quadratic polynomial. The final coupled system was solved on coarse

grids using an explicit time integrator.

The fluid, structural, and thermal dynamics in hypersonic flow evolve at disparate time scales,

potentially varying by several orders of magnitude. The differences in these time scales necessitate

the use of long-time simulations to accurately capture the multiphysics effects for a hypersonic

vehicle [65]. Due to this, much of the present research focuses attention on computationally

efficient methods to greatly the reduce simulation time. These methods often achieve reduced

computational time at the sacrifice of accuracy. It is common in the literature to replace high-

fidelity simulation method with low-order approximations and empirical relationships derived from

flow states of questionable applicability to the hypersonic regime.

Various empirical models are employed to efficiently obtain reasonable physical heat flux and

pressure distributions on a vehicle surface. Among the commonly applied empirical pressure

models are Newtonian Impact Theory, Classical Piston Theory, and Local Piston Theory. Culler

et. al [32] employed Eckert’s reference enthalpy method to predict surface heating on a hypersonic

panel. We note, however, the application of the presented empirical models depends heavily on

the geometry, often finding the most accurate application on flat plates and panels. Still some work

has been performed using high-fidelity discretizations for each of the physics [126, 89].
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Reduced order models (ROMs) with a variety of formulations have become a mainstay of

the hypersonic aerothermoelasticity literature [66, 40, 41, 30, 71] in attempt to greater alleviate

the computational burden in simulation. ROMs are a class of surrogate models which are often

constructed using data generated from a full order model. With respect to hypersonic aerother-

moelasticity, ROMs are commonly employed for the fluid simulation portion and are frequently

constructed using proper orthogonal decomposition. A machine learning approach is presented in

[122] to expedite aerothermal heating prediction. An intrusive Least-Squares Petrov-Galerkin [15]

has also been pursued for high-fidelity hypersonic model reduction [11].

Partitioned coupling methods are near universally applied for the resolution of multiphysics

hypersonic flows. Much of the literature cites the robustness of partitioned methods for interchange

of the constitutive single-physics solvers as a major motivation for their use. Some work employing

DD techniques has been employed [9, 89]. To the author’s knowledge, only a single monolithic

method has appeared in the literature. However, only hypersonic aeroelasticity was studied in this

monolithic approach [71].

Few studies investigate the effects of the hypersonic aerothermoelastic system on a full vehicle.

Instead, hypersonic panels [64, 31, 116] and control surfaces [104] are the prevailing domain finding

application. The investigation of hypersonic panels can greatly ease investigation for a variety of

reasons including 1) the availability of structural modes for determining structural deformation

and time scales (some studies derive a structural solution entirely from these modes), 2) simplified

conduction modeling (e.g. only modeling through-thickness conduction), 3) simplification of

fluid-solid interface modeling via application of empirical models for surface heating and pressure
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distributions, and 4) reduced complexity in constructing accurate ROMs due to the simplicity of

the geometry.

Work has been done to integrate hypersonic aerothermoelasticity into design of experiments

frameworks. These applications include design optimization [113], trajectory optimization [29],

uncertainty propagation [76, 75], and the devising of control laws [123, 79]. Work for the

formulation of similarity scaling laws for experimental validation using, e.g., wind tunnels has

been pursued [64, 13]. The convergence of aerothermoelasticity methods has also been analyzed

using both finite element and finite volume discretizations for the fluid equations [89].

A partitioned approach for effective simulation of aerothermoelasticity in the supersonic and

hypersonic regime is presented by Tran et al. [118]. The presented work builds on previous work

performed in [77] in which a three-field formulation for aeroelasticity simulation was developed.

The fields of consideration were the fluid, structure, and fluid mesh motion fields. This work extends

this previous work to include thermal contributions as a fourth field, motivated by observed onset

flutter induced by aerothermal heating in a wing subject to Ma 2, 500𝑜𝐹 flow.

This work formulates the fluid momentum using an ALE formulation to allow the fluid domain

to experience deformation due to the displacement of the structure. As is typical in the literature

[109, 111, 77], the mesh motion is described via a linear elastostatic equation. The stiffness of

the mesh is purely fictitious, but is able to vary with time. The structural equation is a nonlinear

elastodynamic equation. This equation is coupled to the thermal unknowns through addition of a

𝑪 (𝑇𝑆 − 𝑇ref) term where 𝑪 is the thermal coupling matrix and𝑇𝑆 and𝑇ref are the structural and zero

thermal stress temperatures, respectively. Transient conduction is the only heat transfer mechanism

considered. At the fluid-structure interface, the boundary displacement and velocities are required

24



to match the structural displacement and velocities. Similar conditions for the fluid and structural

temperature, heat flux, and stresses are applied. All equations are non-dimensionalized.

This work formulates the coupling of the FSTI using a partitioned staggered method. Initial

conditions for fluid, structural, mesh, and thermal equations are applied. The coupling procedure

is outlined as 1) the fluid solution is advanced 2) aerodynamic forces and heat fluxes are transferred

to the structure 3) the structural temperature is advanced using the received heat fluxes 4) the

temperature field is transferred to the structure 5) the structural displacement is computed using

the fluid and thermal forces and 6) the fluid mesh is updated using the structural displacements.

The fluid equation is solved with a finite volume method where, notably, the diffusive fluxes are

approximated using a weak formulation. The heat and structural equations employ a finite element

scheme. Finally, the mesh motion uses a torsional spring formulation due to [42].

Still, the problem of inter-mesh data transfer remains. For non-conforming meshes, conserva-

tion of transferred data appears to be enforced weakly. The method is tested on a section of F-16

wing and a flat plate. In both cases, the free stream flow is set to be Ma 2. Thus, no hypersonic

flows are considered. Still, in the case of the flat plate, flutter is observed due largely to the

contribution of aerothermal heating. However, the accuracy of the method is questionable in some

regions. For example, in the simulation of the F-16 wing, the authors note, “skin temperature can

be over-predicted if the heat transfer model accounts for the structure only”.

2.4 Hypersonic aerothermoelasticity proposed approach

Implementation of the hypersonic aerothermoelasticity system using a monolithic simulation

method represents a significant departure from the prevailing modeling techniques in the presented

25



literature in terms of computational accuracy and expense. A monolithic coupling approach is

expected to be more accurate than the commonly applied staggered methods. Further, simulation of

physics is performed using a high-fidelity approach. However, to simulate monolithic hypersonic

aerothermoelasticity, it is necessary to consider a discretization approach that is able to resolve the

underlying physical equations. It is for this reason we consider DG methods.

2.4.1 Discontinuous Galerkin

DG methods are classes of high-order finite element methods which do not enforce continuity

of the solution on element interfaces. Instead, DG methods enforce continuity of the solution

within each element and model flux transfer on the element interfaces. A consequence of this is

that DG methods frequently possess significantly more unknowns than traditional finite element

methods due to solution nodes on the element interfaces being doubly defined. DG methods have

also referred to as high-order methods since the order of the finite element solution spaces can be

arbitrarily large and can be adapted during a simulation [58, 59].

DG methods were first devised by Reed and Hill for simulation of neutron transport [102] and

have since been applied to many problems of interest. DG methods extend the application of finite

element methods beyond what traditional continuous finite element methods typically allow while

maintaining the capability of continuous finite element methods to accurately simulate elliptic

problems [112]. Of particular interest, DG methods have been successfully applied to hyperbolic

and fluid flow problems of various kinds [7, 62, 107] including entropy-stable [17, 18, 20] and

entropy-bounded [80] solutions, a feat not typically shared by traditional continuous finite element

methods.
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2.4.2 Hybridized discontinuous Galerkin

DG methods notoriously require the solution for significantly more degrees of freedom com-

pared to continuous finite element and FVM formulations, limiting their application to problems

of academic interest. Hybridized DG methods were introduced in 2009 by Cockburn in [26] and

explored further in [23] for the solution of elliptic PDEs. The methods were found to greatly

reduce the number of globally coupled degrees of freedom and reduce the computational cost

while maintaining high order accuracy. This computational cost savings offered by hybridized DG

methods has attracted considerable research since their inception.

Hybridized DG methods reduce the computational cost compared to traditional DG methods by

considering additional unknowns defined on element interfaces called trace variables along with

additional equations which control the flux on the interfaces. Figure 2.2 illustrates the configuration

of the degrees of freedom in the hybridized DG method. Due to the discontinuous nature of the

element unknowns, a global system can be formulated in terms of only the trace unknowns through

employment of static condensation. This global system is found to be a greatly reduced system

of equations while maintaining the sparsity of the original system. Due to this, the hybridized

DG method makes DG methods considerably more competitive with traditional mesh-based PDE

solution techniques.

A second attractive property of hybridized DG methods is that they possess a superconvergence

property which causes that the convergence of a hybridized DG method to increase by an order.

Superconvergence is achieved via a problem dependent post-processing which is performed on

individual elements and can be executed in parallel. However, it is necessary to derive such a
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𝒖1 𝒖2

𝒖̂1,2

Figure 2.2: Illustration of element and trace degrees of freedom in the hybridized DG method.
Due to the discontinuous nature of DG methods, neighboring degrees of freedom 𝒖1 and 𝒖2 are
independent. The hybridized DG method introduces trace variables 𝒖̂ defined on the common
element interface (e.g. 𝒖̂1,2) which connect the solutions using flux-like terms and approximate
Riemann solvers.

post-processing technique for individual PDEs. Such techniques have been derived for various

problems of interest [94, 95, 96, 24, 74].

Much research has been done to apply the hybridized DG method to many physical problems

of interest which evolve on complex domains. In particular, hybridized DG methods have been

extended to perform simulations for problems with feature overset meshes [68], mesh transforma-

tions [100, 97], adaptive meshing [125, 105, 81], non-conforming meshes [114, 98], and domain

decomposition approaches [78, 106, 92, 49].

As mentioned, like continuous finite methods, hybridized DG methods maintain the ability

to effectively resolve elliptic problems. The seminal works on hybridized DG methods focused

on resolving second-order elliptic problems [26, 25]. Further has been performed to model

structural deformation including hybridized DG methods linear [47, 24, 96] and nonlinear elasticity

[47, 28, 115].
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A distinguishing factor between continuous and discontinuous finite elements is the ability of

the latter to compute high order solutions for hyperbolic [27] and advection-dominated problems.

In particular, hybridized DG methods have demonstrated success in resolving the shallow water

equations [8, 67], the incompressible [97, 59] and compressible [124, 90, 81, 51] Navier-Stokes

equations. Magnetohydrodynamics problems consider an electromagnetic fluid and have also

received treatment [92, 22]. Important to the present study is the simulation of hypersonic flows

with a hybridized DG method [81].

Of particular interest in computational fluid dynamics is the resolution of shocks and the

accurate simulation of turbulence. Shock-capturing methods have been developed for DG methods,

predominantly by employing artificial viscosity approaches [53, 21, 101]. The simulation of

turbulence with hybridized DG methods have been developed for both RANS [125] and LES [49]

formulations. Many additional studies have also been performed to determine more advanced

methods to model turbulence with application to hybridized DG methods [52, 48, 50, 91]. It has

been shown that an implicit LES approach using a high order hybridized DG predicted turbulent

transition over an airfoil with an order of magnitude fewer globally coupled degrees of freedom

than a second-order FVM approach [49].

Hybridized DG method to simulate monolithic multiphysics systems. We note the seminal work

performed by Sheldon et al. [109] to construct a monolithic FSI system using the hybridized DG

method on a single mesh. In this approach, every element of the mesh was labeled as either a fluid

element or a solid element. This labelling determined the physical equation system applied in the

element. The work employed the incompressible Navier-Stokes equations for the fluid simulation

and the elastodynamics equations with a hyperelastic stress tensor. The global degrees of freedom
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for this work were later decreased by about 50% in a later study [111] through elimination of the

globally coupled solid displacement degrees of freedom and by decreasing the polynomial order

of the fictitious fluid mesh equations. Negligible degradation of solution accuracy was observed.

We now provide a demonstration of the ability of hybridized DG methods to greatly reduce

the globally-coupled degrees of freedom compared to other DG methods, making hybridized DG

competitive with continuous finite element and FVM methods. A more formal mathematical

description of hybridized DG methods is presented in Ch. III. We consider the discrete residual

𝑹 (𝒖, 𝒖̂) =

[
𝒓 (𝒖, 𝒖̂) 𝒓 (𝒖, 𝒖̂)

]𝑇
of the weak form of a PDE discretized via a hybridized DG

method where 𝒓 (𝒖, 𝒖̂) and 𝒓 (𝒖, 𝒖̂) represent the discrete residuals defined on the element and

trace unknowns, respectively. We seek the solution 𝒖∗, 𝒖̂∗ defined on the element and element

trace, respectively, such that 𝑹 (𝒖∗, 𝒖̂∗) vanishes. To this end, we apply Newton’s method which

results in the following linear system:


∇𝒖 𝒓 ∇𝒖̂ 𝒓

∇𝒖 𝒓 ∇𝒖̂ 𝒓



𝛿𝒖

𝛿𝒖̂

 = −


𝒓

𝒓

 (2.5)

To simplify the notation used in the following chapters, the linear system in (2.5) is typically

written as


𝑨 𝑩

𝑪 𝑫



𝛿𝒖

𝛿𝒖̂

 =

𝒇

𝒈

 (2.6)

Hybridized DG methods greatly reduce the Newton system in (2.6) by eliminating 𝛿𝒖 via static

condensation. After employing static condensation, we can consider the following reduced global

system written in terms of only the increments to trace unknowns 𝒖̂ with
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𝑲𝛿𝒖̂ = 𝒉

𝑲 = 𝑫 − 𝑪𝑨−1𝑪 𝒉 = 𝒈 − 𝑪𝑨−1 𝒇

(2.7)

We note that this reduced global system is sparse. After solving for 𝒖̂, the element increments

𝒖 are computed in an element-local procedure. Thus, the hybridized DG method exchanges the

solution of a large linear system (2.6) for the solution of a considerably smaller linear system (2.7)

and independent element-local updates which are trivially parallelized.
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CHAPTER III

APPROACH

In this chapter we present the coupling approach for the hypersonic aerothermoelasticity system.

The presented approach considers the coupled contributions and interactions of hypersonic flow,

nonlinear structural deformations, and heat conduction. To this end, three separate PDEs are

presented and their interactions on the fluid-solid interface are described. The constitutive PDEs

are also non-dimensionalized through appropriate choice of physics-based scaling factors. Non-

dimensionalization is often necessary for physics simulation codes due to the wide range of

magnitudes of physical variables computed in a simulation which may lead to solver instability

in approximate numbering systems like floating point. We note that non-dimensionalization also

results in a characteristic non-dimensional time for each PDE, providing insight on the relative

time scales encountered in the evolution of the individual and coupled physical systems.

3.1 Balance equation

To facilitate simplified analysis and ease of implementation of the coupled multiphysics system,

the PDEs defined on the fluid and solid domains are presented in a common form, namely as a set

of balance equations given by

𝜕𝒖

𝜕𝑡
+ ∇ · 𝑭 (𝒖) + ∇ · 𝑮 (𝒖,∇𝒖) = 𝒇 (3.1)

32



where 𝒖 is the vector of state variables, ∇ is the usual spatial gradient operator, 𝑭 and 𝑮 are

(potentially nonlinear) convective and diffusive flux functions, and 𝒇 is a source term. We note

that only the diffusive flux is a function of the spatial gradient of the state variables. We refer to

(3.1) as the strong form of the balance equation.

3.1.1 Hybridized DG discretization

Determining a function 𝒖 satisfying (3.1) is greatly complicated by the strong continuity

requirements imposed by the differential operators. Further, the solution 𝒖 is in general required

to exist in an infinite-dimensional function space. These constraints preclude determination of a

solution to the strong form. For this reason, we consider computing an approximate solution of the

strong form using a hybridized DG finite element discretization. The finite element solution will

be shown to reside in a finite-dimensional subset of the infinite-dimensional continuous solution

space with weakened continuity requirements. This weak solution is said to satisfy a weak form of

(3.1) realized by the hybridized DG method which will be presented shortly. We must first provide

technical description of the necessary ingredients to derive the weak form, including the spatial

domain and finite element function spaces.

3.1.1.1 Finite element triangulation

We consider a continuous 𝑑-dimensional domain Ω ⊂ R𝑑 with boundary 𝜕Ω. Finite element

methods operate on a triangulation Tℎ of Ω consisting of non-overlapping subdomains 𝐾 referred to

here as elements. Further, we denote the set of element boundaries of Tℎ by 𝜕Tℎ = {𝜕𝐾 : 𝐾 ∈ Tℎ}.

We denote by 𝒏 the outward pointing unit normal vector to an element boundary 𝜕𝐾 . We make a
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distinction between interior element boundaries and element boundaries contained in 𝜕Ω, as these

boundaries will receive different treatment as will be seen in subsequent sections.

3.1.1.2 Finite element spaces

We consider the polynomial space P𝑘 (𝑆) consisting of the polynomials of degree of at most 𝑘

defined on an arbitrary domain 𝑆. The finite element spaces considered are then given by

W𝑘
ℎ = {𝑟 ∈ 𝐿2 (Tℎ) : 𝑟 |𝐾 ∈ P𝑘 (𝐾) ,∀𝐾 ∈ Tℎ}

V
𝑘
ℎ = {𝒓 ∈

(
𝐿2 (Tℎ)

)𝑚
: 𝒓 |𝐾 ∈

(
P𝑘 (𝐾)

)𝑚
,∀𝐾 ∈ Tℎ}

Q
𝑘
ℎ = {𝑹 ∈

(
𝐿2 (Tℎ)

)𝑚×𝑑
: 𝑹 |𝐾 ∈

(
P𝑘 (𝐾)

)𝑚×𝑑
,∀𝐾 ∈ Tℎ}

where we have used lowercase, bold lowercase, and bold uppercase letters to represent scalar-,

vector-, and matrix-valued functions, respectively. Hybridized DG methods also consider solution

variables defined on the edges of the triangulation referred to as hybrid or trace variables. For this

reason, we also define the finite element space M
𝑘
ℎ given by

M
𝑘
ℎ = {𝝁 ∈

(
𝐿2 (𝜕Tℎ)

)𝑚
: 𝝁 |𝐾 ∈

(
P𝑘 (𝐾)

)𝑚
,∀𝜕𝐾 ∈ Tℎ}

Choice of a basis for a finite element space permits computation of arbitrary functions in

the finite element space. For example, for an 𝑛-dimensional space 𝑽ℎ spanned by a basis 𝝓𝑖 for

𝑖 ∈ [1, 𝑛], a function 𝒖ℎ ∈ 𝑽ℎ is computed via

𝒖ℎ (𝒙) =
𝑛∑︁
𝑖=1

𝑢𝑖𝝓𝑖 (𝒙) (3.2)
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3.1.1.3 Inner products

Finite element spaces are also inner product spaces. DG methods consider finite element spaces

which are continuous within an element 𝐾 but discontinuous on the element boundary 𝜕K. For this

reason, the inner products defined on the DG finite element spaces are given by

(𝑎, 𝑏)Tℎ =
∑︁
𝐾∈Tℎ

(𝑎, 𝑏)𝐾 (𝒂, 𝒃)Tℎ =
∑︁
𝐾∈Tℎ

(𝒂, 𝒃)𝐾 (𝑨, 𝑩)Tℎ =
∑︁
𝐾∈Tℎ

(𝑨, 𝑩)𝐾

⟨𝑎, 𝑏⟩𝜕Tℎ =
∑︁

𝜕𝐾∈𝜕Tℎ
⟨𝑎, 𝑏⟩𝜕𝐾 ⟨𝒂, 𝒃⟩𝜕Tℎ =

∑︁
𝜕𝐾∈𝜕Tℎ

⟨𝒂, 𝒃⟩𝜕𝐾 ⟨𝑨, 𝑩⟩𝜕Tℎ =
∑︁

𝜕𝐾∈𝜕Tℎ
⟨𝑨, 𝑩⟩𝜕𝐾

where we have used the notation (·, ·)𝐾 and ⟨·, ·⟩𝜕𝐾 to denote the usual 𝐿2 inner products defined

on the element and element boundary respectively. These 𝐿2 inner products are given by

(𝑎, 𝑏)𝐾 =

∫
𝐾

𝑎𝑏 (𝒂, 𝒃)𝐾 =

∫
𝐾

𝒂 · 𝒃 (𝑨, 𝑩)𝐾 =

∫
𝐾

𝑨 : 𝑩

⟨𝑎, 𝑏⟩𝜕𝐾 =

∫
𝜕𝐾

𝑎𝑏 ⟨𝒂, 𝒃⟩𝜕𝐾 =

∫
𝜕𝐾

𝒂 · 𝒃 ⟨𝑨, 𝑩⟩𝜕𝐾 =

∫
𝜕𝐾

𝑨 : 𝑩

with 𝑨 : 𝑩 = tr
(
𝑨𝑇𝑩

)
denoting the tensor product of 𝑨 and 𝑩.

3.1.1.4 Discretization

We now discuss the hybridized DG discretization of the model problem (3.1). We begin by

restating (3.1) as a first order system resulting in

𝒒 = ∇𝒖 (3.3a)

𝜕𝒖

𝜕𝑡
+ ∇ · (𝑭 (𝒖) + 𝑮 (𝒖, 𝒒)) = 𝒇 (3.3b)
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where we have introduced the variable 𝒒 and grouped the flux terms. We refer to (3.3) as

the first order strong form of the balance equation. We seek to determine a finite-dimensional

approximation of (3.3) by forming the corresponding weak form. The weak form is realized by

multiplying each equation by a test function and integrating. The discrete problem reads, find

(𝒖ℎ, 𝒒ℎ, 𝒖̂ℎ) ∈ Vℎ × Qℎ × Mℎ such that

(𝒒ℎ, 𝒓)Tℎ + (𝒖ℎ,∇ · 𝒓)Tℎ − ⟨𝒖̂ℎ, 𝒓 · 𝒏⟩𝜕Tℎ = 0 (3.4a)(
𝜕𝒖ℎ
𝜕𝑡

, 𝒘

)
Tℎ
− (𝑭 (𝒖ℎ) + 𝑮 (𝒖ℎ, 𝒒ℎ) ,∇𝒘)Tℎ +

〈
𝒇̂ℎ (𝒖̂ℎ, 𝒖ℎ, 𝒒ℎ) , 𝒘

〉
𝜕Tℎ

= 0 (3.4b)〈
𝒇̂ℎ (𝒖̂ℎ, 𝒖ℎ, 𝒒ℎ) , 𝝁

〉
𝜕Tℎ\𝜕Ω

+
〈
𝒃̂ℎ (𝒖̂ℎ, 𝒖, 𝒒ℎ) , 𝝁

〉
𝜕Ω

= 0 (3.4c)

for all (𝒓, 𝒘, 𝝁) ∈ Vℎ × Qℎ × Mℎ where 𝒇̂ℎ is the numerical flux function which remains to be

defined and 𝒃̂ℎ are the boundary conditions. We note that the partial derivatives in (3.3) are shifted

to the test functions by partial integration.

3.1.1.5 Numerical flux

The numerical flux imposes single-valuedness of the trace variable 𝒖̂. Indeed, the numerical

flux function results in the hybridized DG scheme being a conservative scheme. In this work, the

numerical flux in hybridized DG methods takes the form

𝒇̂ℎ (𝒖̂ℎ, 𝒖ℎ, 𝒒ℎ) = (𝑭 (𝒖̂ℎ) + 𝑮 (𝒖̂ℎ, 𝒒ℎ)) · 𝒏 + 𝝈 (𝒖̂ℎ, 𝒖ℎ, 𝒒ℎ, 𝒏) (𝒖ℎ − 𝒖̂ℎ) (3.5)

where 𝝈 is the so-called stabilization matrix introduced by the hybridized DG method and is often

determined using knowledge of the simulated physics. The choice of the stabilization matrix can
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have considerable effect on the accuracy and stability of a hybridized DG scheme. We refer the

interested reader to Cockburn’s description of hybridized DG methods [23] for greater discussion

on the derivation and role of the stabilization matrix.

3.1.1.6 Boundary conditions

Boundary conditions in the hybridized DG method are weakly satisfied resulting in the inclusion

of boundary trace variables in the nonlinear solution procedure. Hybridized DG methods have been

formulated to satisfy Dirichlet and Neumann boundary conditions [26, 93]. In this work, we only

consider Dirichlet conditions and omit description of Neumann boundary condition enforcement.

The introduction of the trace variables allow hybridized DG methods to consider state-based

boundary conditions [46], a feature not shared by conventional DG methods. A state-based

boundary condition is defined as

𝒃̂ℎ (𝒖̂, 𝒖, 𝒒) = 𝒖̂ − 𝒖𝑏 (3.6)

for a target state 𝒖𝑏.

In the sections that follow, we introduce the governing equations for each physical domain

and demonstrate how they fit in the model form (3.1) through judicious choice of convective

flux, diffusive flux, and source terms. Each section concludes with discussion concerning the

determination of appropriate stabilization functions employed by the numerical flux. Finally,

we present the coupling scheme employed to generate the monolithic aerothermoelastic equation

system. We omit the fluid and solid subscripts 𝑓 and 𝑠 on variables and material properties to
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simplify notation in the following sections. These subscripts are included for clarity in the coupling

discussion.

3.2 Fluid domain

As discussed in Chapter II, hypersonic flows exhibit complex flow phenomena including

shock formation, thick boundary layers, and significant fluid compression. Hypersonic flows of

especially high Mach number can result in extremely low density flows which require consideration

of individual particles. In this thesis, we restrict attention to lower speed hypersonic flows (i.e.

around Mach 5) such that the continuum assumption remains valid. In this regime, the Navier-

Stokes equations find extensive use and are well-suited for determining the evolution of fluid

momentum in a compressible fluid. The Navier-Stokes equations are also equipped with equations

describing the conservation of mass and energy.

3.2.1 Continuous equations

The temporal and spatial state of the fluid is expressed via the volumetric transport of fluid

mass, momentum, and energy described by a state vector 𝒖 =

[
𝜌 𝜌𝑣𝑖 𝜌𝐸

]𝑇
with 𝑚 𝑓 = 𝑑 + 2

components. We write the Navier-Stokes system in the balance form given by (3.1) with the
(
𝑚 𝑓 , 𝑑

)
fluxes given by

38



𝑭 =



𝜌𝑣𝑖

𝜌𝑣𝑖𝑣 𝑗 + 𝛿𝑖 𝑗 𝑝

𝑣𝑖 (𝜌𝐸 + 𝑝)


(3.7a)

𝑮 =



0

𝜏𝑖 𝑗

𝑣 𝑗𝜏𝑖 𝑗 + 𝜅 𝜕𝑇𝜕𝑥𝑖


(3.7b)

where 𝑑 is the spatial dimension, 𝑝 is the pressure, 𝜏 is the stress rate tensor, 𝜅 is the thermal

conductivity of the fluid, and 𝑖, 𝑗 ∈ [1, 𝑑]. We consider a stress rate tensor of the form

𝜏 = 𝜇

[(
𝜕𝑣𝑖

𝜕𝑥 𝑗
+
𝜕𝑣 𝑗

𝜕𝑥𝑖

)
+ 2

3
𝜕𝑣𝑘

𝜕𝑢𝑘

]
(3.8)

where 𝜇 is the dynamic viscosity and we have used Einstein notation to indicate summation. The

pressure is determined by an equation of state and remains to be specified. The ideal gas law

provides an accurate model of pressure for a wide range of flow conditions. Still, real gas laws

are sometimes considered for hypersonic flows. In this work, we consider lower speed hypersonic

flows such that the ideal gas law is assumed to remain valid. The fluid pressure and temperature

are thusly given by

𝑝 = (𝛾 − 1)
(
𝜌𝐸 − 1

2
𝜌𝑣2

𝑘

)
(3.9a)

𝑇 =
𝑝

(𝛾 − 1) 𝜌𝐶𝑣
(3.9b)
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where 𝜸 is the specific heat ratio and 𝐶𝑣 is the specific heat of the fluid at constant volume.

For flows with nominal temperature variation, fluid properties including the specific heat ratio,

thermal conductivity, and dynamic viscosity are considered to be constant. However, due to the

considerable thermal variations in hypersonic flows, it can be necessary to consider thermally-

dependent values of fluid properties. A source term 𝒇 can also be provided, though, in this work,

no source term is considered.

3.2.2 Non-dimensionalization

In particular, we consider the following non-dimensionalization

𝑥̃𝑖 =
𝑥𝑖

𝐿̄
𝜌̃ =

𝜌

𝜌̄
𝑣̃𝑖 =

𝑣𝑖

𝑣̄
𝑡̃ =

𝑡

𝑡
(3.10a)

𝑝 =
𝑝

𝜌̄𝑢̄2 𝜌𝐸 =
𝜌𝐸

𝜌̄𝑢̄2 𝑇 =
𝐶𝑣𝑇

𝑣̄2 (3.10b)

𝜇 =
𝜇

𝜇̄
𝛾̃ =

𝛾

𝛾̄
𝐶𝑣 =

𝐶𝑣

𝐶𝑣
𝜅̃ =

𝜅

𝜅
(3.10c)

where □̃ represents a non-dimensional value and □̄ is the dimensional scaling value. The first row

of non-dimensional variables (3.10a) considers the primitive flow variables and time scaling. The

second row (3.10b) considers flow variables whose scaling is determined from the primitive flow

variables. The third row (3.10c) considers material properties. In this work we take 𝜌̄ = 𝜌∞ and

𝑣̄ = 𝑣∞ where □∞ denotes the freestream value. The characteristic length 𝐿̄ is problem dependent

and is usually determined from the flow geometry. The characteristic time is taken to be 𝑡 = 𝑣̄

𝐿̄
and

is used to also define the time scale of the fluid problem. Finally, the scaling parameters for each
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of the temperature-varying material properties are taken to be their respective values at freestream

conditions.

Substituting these values into the dimensional Navier-Stokes fluxes (3.7) yields the non-

dimensional fluxes given by

𝑭 =



𝜌̃𝑣𝑖

𝜌̃𝑣𝑖 𝑣̃ 𝑗 + 𝛿𝑖 𝑗 𝑝

𝑣̃𝑖

(
𝜌𝐸 + 𝑝

)


(3.11a)

𝑮 =



0

𝜏̃𝑖 𝑗

𝑣̃ 𝑗 𝜏̃𝑖 𝑗 + 𝛾

RePr
𝜕𝑇
𝜕𝑥̃𝑖


(3.11b)

𝜏̃𝑖 𝑗 =
1

Re

[(
𝜕𝑣̃𝑖

𝜕𝑥̃ 𝑗
+
𝜕𝑣̃ 𝑗

𝜕𝑥̃𝑖

)
+ 2

3
𝜕𝑣̃𝑘

𝜕𝑢̃𝑘

]
(3.11c)

where Re =
𝜌̄𝑣̄ 𝐿̄

𝜇̄
is the Reynolds number and Pr = 𝛾̄𝐶𝑣 𝜇̄

𝜅
is the Prandtl number evaluated at 𝑇 .

3.2.3 HDG stabilization

The stabilization matrix in the hybridized DG Navier-Stokes equations defines an implicit

Riemann solver [50]. In this work we consider Lax-Friedrichs scheme [93, 49] given by

𝝈 = 𝜆𝑚𝑎𝑥 (𝑨 (𝒖̂) · 𝒏) 𝑰 (3.12)

where 𝑨 is the convective flux Jacobian with entries 𝑨 (𝒖)𝑖 𝑗 =
(𝑭(𝒖)·𝒏)𝑖

𝒖 𝑗
.
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3.3 Solid domain
3.3.1 Continuous equations

For the solid domain, we firstly assume the application of a material capable of withstanding the

pressure loads applied by the hypersonic flow such that yielding does not occur and secondly that

structural displacements due to the pressure loading are sufficiently small so that infinitesimal strain

theory can be accurately applied. Under these assumptions, we apply the linear elastodynamics

equation for computation of the structural deformation. The elastodynamics equation is given by

𝜌
𝜕2𝒖

𝜕𝑡2
= ∇ · 𝝈 + 𝜌𝒃 (3.13)

where 𝜌 is the solid material density, 𝒖 is the solid displacement, 𝝈 is internal stress tensor, and

𝒃 is an acceleration due to an external loading. In order to represent (3.13) in the form (3.1), first

consider a rendering of (3.13) via the introduction of a solid velocity 𝒗. With the inclusion of 𝒗,

(3.13) can be written as

𝜕𝒖

𝜕𝑡
= 𝒗 (3.14a)

𝜌
𝜕𝒗

𝜕𝑡
= ∇ · 𝝈 + 𝜌𝒃 (3.14b)

Determination of the internal stress tensor 𝝈 requires consideration of the deformation regime

and the microstructure of the material and is an ongoing area of research. However, under the

assumption of elastic deformation, the stress tensor 𝝈 is well-defined and is frequently assumed to

vary linearly with the material strain 𝝐 via the relation 𝝈 = 𝑪
...𝝐 where 𝑪 is the Hooke tensor whose

entries include the influence of the considered material. We consider this formulation of the stress

tensor in this work. Finally, we write the strain as a function of the displacement gradients via
42



𝝐 =
1
2

(
∇𝒖 + (∇𝒖)𝑇

)
(3.15)

We note that (3.15) reveals the dependence of the internal solid stress on the solid displacements,

fully determining (3.13). For an isotropic material, the Hooke tensor is symmetric and the stress

tensor can be simplified considerably, resulting in

𝝈 = 2𝜇𝝐 + 𝜆𝑰 (∇ · 𝒖)

= 𝜇

(
∇𝒖 + (∇𝒖)𝑇

)
+ 𝜆𝑰 (∇ · 𝒖)

(3.16)

where 𝜆 and 𝜇 are Lamé’s first and second parameters, respectively. Finally, (3.14) can be written

in the model form (3.1) via

𝑭 =


0

0

 (3.17a)

𝑮 =


0

1
𝜌
𝝈

 (3.17b)

𝒇 =


𝒗

𝒃

 (3.17c)

3.3.2 Non-dimensionalization

The elastodynamics system is non-dimensionalized by
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𝑥̃𝑖 =
𝑥𝑖

𝐿̄
𝑢̃𝑖 =

𝑢𝑖

𝜖 𝐿̄
𝑣̃𝑖 =

𝑣𝑖𝑡

𝑢̄
𝑡̃ =

𝑡

𝑡
(3.18a)

𝜖̃ =
𝜖

𝜖
𝜎̃ =

𝜎

𝜖𝐸̄
(3.18b)

𝜆 =
𝜆

𝜆̄
𝜇 =

𝜇

𝜇̄
(3.18c)

where 𝐸̄ is Young’s modulus for the material given by 𝐸̄ =
𝜇̄(3𝜆̄+2𝜇̄)
𝜆̄+𝜇̄ . The non-dimensional time is

given by 𝑡 = 𝐿̄
√︃

𝜌

𝐸̄
. Non-dimensionalization of (3.14) yields

𝜕𝒖̃

𝜕𝑡̃
= 𝒗̃ (3.19a)

𝜕 𝒗̃

𝜕𝑡̃
= ∇̃ · 𝝈̃ + 𝑡

2 𝒃̃

𝑢̄
(3.19b)

Equation (3.14) can now be expressed as a balance equation with variables

𝒖𝑠 =


𝑢𝑖

𝑣𝑖

 (3.20)

𝑭 =


0

0

 (3.21a)

𝑮 =


0

𝝈̃

 (3.21b)

𝒇̃ =


𝒗̃

𝑡2

𝑢̄
𝒃̃

 (3.21c)
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3.3.3 HDG Stabilization

Stabilization of the first order solid equations requires choice of stabilization factors for bot the

displacement and velocity relationships with appropriate units. Elliptic problems are seemingly

less sensitive to the stabilization and can permit a wide range of stabilization factors. Further, we

are considering non-dimensional values. For these reasons, we simply take the stabilization factor

for both equations to be unity which has performed well in practice.

3.4 Thermal domain

In this work, we consider heat conduction through the solid. Many hypersonic aerothermoe-

lasticity models focus on surface heating prediction and fail to model heat transfer within the body.

However, the solid temperature distribution can have considerable effect on the material strength.

Indeed, the rigidity of the considered solid materials decreases considerably over the temperature

ranges common for hypersonic flows.

3.4.1 Continuous equations

With these concerns, we model heat transfer in the solid using Fourier’s law of thermal

conduction, expressed as a PDE via

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= ∇ · (𝜅∇𝑇) (3.22)

where 𝑇 is the solid temperature, 𝜌 is the density of the solid, 𝑐𝑝 is the thermally-varying specific

heat capacity at constant pressure, and 𝜅 is the thermally-varying thermal conductivity. (3.22)

nearly fits the form of (3.1) with no convective flux and the diffusive flux 𝐺 = 𝜅∇𝑇 . However, the

temporal term has a leading coefficient 𝜌𝑐𝑝 which will be removed in non-dimensionalization.
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3.4.2 Non-dimensionalization

We consider a straightforward non-dimensionalization of (3.22) given by

𝑥̃𝑖 =
𝑥𝑖

𝐿̄
𝑇 =

𝑇

𝑇
𝑡̃ =

𝑡

𝑡
(3.23a)

𝑐𝑝 =
𝑐𝑝

𝑐𝑝
𝜅̃ =

𝜅

𝜅
(3.23b)

where 𝐿̄ is a characteristic thermal length scale, 𝑇 is taken to be the initial temperature of solid, 𝑐𝑝

and 𝜅 are the specific heat and thermal conductivity evaluated at 𝑇 . Finally, the non-dimensional

time is determined by the non-dimensional Fourier number Fo = 𝜅𝑡

𝜌𝑐𝑝 𝐿̄
2 , resulting in 𝑡 = Fo𝐿̄2𝜌𝑐𝑝

𝜅
.

The non-dimensionalized heat equation is given by

𝜕𝑇

𝜕𝑡̃
= ∇̃ ·

(
𝜅̃∇̃𝑇

)
(3.24)

It is easy to see that (3.24) satisfies the model form with diffusive flux 𝐺 = 𝜅̃∇̃𝑇 .

3.4.3 HDG stabilization

We employ the same approach for stabilization of the thermal equation system as we do for the

structural equation system and simply take the stabilization factor to be unity.

3.5 Coupling

In the previous sections we presented the individual equation systems which are employed

for the simulation of hypersonic aerothermoelasticity. In this section, we focus on the monolithic

approach used to coupled them. We take a similar approach as the previous sections and present the
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coupling formulation in a continuous solution domain. We conclude with the section by detailing

how the continuous coupling formulation is integrated within the hybridized DG model problem.

The solid-thermal coupling is the most readily achieved coupling. The addition of a thermal

strain term to (3.15) is all that is requires. The thermal strain is given by

𝜖𝑠,thermal = 𝛼𝑠
(
𝑇𝑠 − 𝑇𝑠,0

)
(3.25)

where 𝛼𝑠 is referred to as the thermal expansion coefficient and𝑇𝑠,0 is a reference temperature taken

to be temperature of the undeformed structure. The total strain is simply the sum of the internal

and thermal strain.

𝜖𝑠,total = 𝜖𝑠,internal + 𝜖𝑠,thermal (3.26)

3.5.1 Arbitrary Lagrange-Euler

Coupling of the three physical systems requires that all three equation systems are evolved in

a common reference frame. We note that the Navier-Stokes equation system evolves in a Eulerian

reference frame. In this reference frame, measurements of physical values are taken at static points

which are not moved for the entirety of the simulation. In contrast, the elasticity and heat equations

evolve in a Lagrangian reference frame. A Lagrangian reference frame considers physical values

along points which are deformed throughout a simulation. To ensure a common reference is

employed between all three physical systems, we employ the Arbitrary Lagrange-Euler (ALE)

technique.
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ALE methods reframe PDEs defined on either Lagrangian or Eulerian reference frames into

a common reference frame by a transformation of the PDEs. ALE methods have become a tool

of choice for monolithic fluid-structural interaction simulation [109, 111, 119], though they also

enable accurate simulation in many other physical domains, including the resolution of traveling

discontinuities, e.g. blast waves.

In this work, we transform the Navier-Stokes equations to a Lagrangian frame and employ

the elasticity and heat equations as previously presented. The necessary ingredients for the ALE

transformation of the Navier-Stokes equations is a mapping of the fluid domain from its initial

reference configuration to a deformed configuration as the simulation time advances. To this end,

we include an elastostatics PDE for the computation of fluid mesh displacements given by

∇ ·
[
𝜇 𝑓

(
∇𝒅 𝑓 +

(
∇𝒅 𝑓

)𝑇 ) + 𝜆 𝑓 𝑰 (∇ · 𝒅 𝑓
) ]

= 0 (3.27)

where 𝒅 𝑓 are the fluid mesh displacements. We note that (3.27) are simply the elastodynamics

equations (3.13) lacking the temporal term on the left-hand side and with a zero source time.

Employing (3.27) for fluid mesh deformation, has the attractive property that the nodes are diffused

throughout the domain due to the elliptic nature of the PDE. In contrast to the elastodynamics

equations applied on the solid domain, the fluid mesh Lamé parameters in (3.27) can be freely

chosen by the analyst due to the physically fictitious nature of the fluid mesh deformation.

We follow the descriptions of the ALE transformation given in [100, 93]. We first introduce the

following notation: values defined on the reference domain are represented with uppercase letters

values defined on the deformed domain are denoted with lowercase letters. A spatial coordinate 𝒙

at a time 𝑡 can be written in terms of its corresponding reference coordinate 𝑿 by
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𝒙 (𝑿, 𝑡) = 𝑿 + 𝒖 (𝑡) (3.28)

It useful to consider the deformation gradient 𝑷 given by

𝑷 = ∇𝑿𝒙

= 𝑰 + ∇𝑿𝒖

(3.29)

We denote the determinant of the deformation gradient by 𝐽 = det 𝑷. We follow the approaches

of [100] to transform the model problem (3.4) with the ALE method resulting in

𝒒 = ∇𝒖 (3.30a)

𝜕𝒖

𝜕𝑡
+ ∇ ·

[
𝐽𝑷−1 (𝑭 (𝒖) + 𝑮 (𝒖, 𝒒)) − 𝒖𝐽𝑷−1𝒗

]
= 𝒇 (3.30b)

where 𝒗 is the mesh velocity which in this work is computed using a first order approximation from

the mesh displacements. In general, the transformation 𝐽𝑷−1 is used to map from the Eulerian

frame to the Lagrangian frame.

3.5.2 Continuous equations

All multiphysics interactions occur on the fluid-solid interface. In this work, we enforce a

two-way coupling scheme on the fluid-solid interface, such that both the fluid and solid domains

impact each other. It is common in partitioned (FSI) coupling schemes to include one-way coupling

schemes to simplify the physical scheme or reduce the implementation burden.
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All coupling conditions are enforced on the Lagrangian frame after mapping of the fluid

variables the ALE mapping. In particular, we require the following conditions on the fluid-solid

interface

𝒅 𝑓 = 𝒅𝑠

𝒗 𝑓 = 𝒗𝑠

𝑇 𝑓 = 𝑇𝑠

𝝈 𝑓 · 𝒏 = 𝝈𝑠 · 𝒏

𝒒 𝑓 · 𝒏 = 𝒒𝑠 · 𝒏

(3.31)

With the exception of the displacement coupling, the physics on the fluid domain and the solid

domain are two-way coupled, meaning that these conditions are applied from both the perspectives

of the fluid and the solid domains. The displacements are only one-way coupled, i.e. only from

the fluid perspective. This is due to the fluid mesh lacking any physical basis, so the fluid mesh

displacements do not inform the solid displacements. Instead, the solid displacements uniquely

determine the fluid mesh displacements.

The second condition enforces continuity of the fluid velocity and the solid velocity, resulting

in satisfaction of a no-slip condition. The third condition enforces continuity of the temperature

field. The fourth condition imposes coupling of the fluid and solid traction and can be viewed

as either a momentum flux condition or a forcing condition. Finally, the fifth condition enforces

continuity of the heat fluxes and can be viewed as a thermal energy flux condition.

We make a distinction between the first three conditions in (3.31), which we refer to as

state-based conditions, and the final two conditions which we refer to as flux-based conditions.
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State-based conditions are enforced by the addition of an interface term requiring equality in the

balance variables between the fluid and solid domains. Since the two domains are composed of

differing state variables, analogues of the state variables for the opposite physics must be made.

More concretely, we have from the perspective of the fluid domain



𝜌̂ 𝑓

𝜌𝑢 𝑓 ,𝑖

𝜌𝐸 𝑓

𝑑 𝑓


=



𝜌 𝑓

𝜌 𝑓 𝑢𝑠,𝑖

𝜌𝐸 𝑓

𝑑𝑠


(3.32)

and from the perspective of the solid domain



𝑑𝑠,𝑖

𝑢̂𝑠,𝑖

𝑇𝑠


=



𝑑𝑠,𝑖

𝜌𝑢 𝑓 ,𝑖

𝜌 𝑓

𝑇 𝑓


(3.33)

We make note of the extrapolation of solid displacement in (3.33) instead of coupling the

fluid mesh displacements. It is necessary to express the state-based conditions in non-dimensional

variables, resulting in
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

˜̂𝜌 𝑓˜̂𝜌𝑢 𝑓 ,𝑖˜̂
𝜌𝐸 𝑓˜̂
𝑑 𝑓


=



𝜌̃ 𝑓

𝜌̃ 𝑓 𝑢̃𝑠,𝑖
𝑢̄𝑠
𝑢̄ 𝑓

𝜌𝐸 𝑓

𝑑𝑠
𝑑𝑠
𝑑 𝑓


(3.34)



˜̂
𝑑𝑠,𝑖˜̂𝑢 𝑓 ,𝑖˜̂
𝑇 𝑠


=



𝑑𝑠,𝑖

𝜌𝑢 𝑓 ,𝑖

𝜌̃ 𝑓

𝑢̄ 𝑓

𝑢̄𝑠

𝑇 𝑓
𝑇 𝑓

𝑇𝑠


(3.35)

for the fluid and solid variables, respectively. The flux-based conditions receive a treatment similar

to the state-based conditions. The key difference is that the flux conditions must match flux

descriptions for the fluid and solid domains. For example, the fluid flux condition on the interface

is given by



0

𝝈 𝑓 · 𝒏

𝒒 𝑓 · 𝒏

0


=



0

𝝈𝑠 · 𝒏

𝒒𝑠 · 𝒏

0


(3.36)

while the solid flux condition on the interface is given by



0

𝝈𝑠 · 𝒏

𝒒𝑠 · 𝒏


=



0

𝝈 𝑓 · 𝒏

𝒒 𝑓 · 𝒏


(3.37)

We non-dimensionalize the flux conditions with the following scaling values
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𝑞 𝑓 =
𝜅 𝑓𝑇 𝑓

𝐿̄ 𝑓
𝑞𝑠 =

𝜅𝑠𝑇𝑠

𝐿̄𝑠
(3.38)

𝜎̄ 𝑓 =
𝜇̄ 𝑓 𝑢̄ 𝑓

𝐿̄ 𝑓
𝜎̄𝑠 = 𝜖𝑠𝐸̄𝑠 (3.39)

which yields the non-dimensional flux conditions



0

𝝈̃ 𝑓 · 𝒏

𝒒̃ 𝑓 · 𝒏

0


=



0

𝝈̃𝑠 · 𝒏 𝜎̄𝑠𝜎̄ 𝑓

𝒒̃𝑠 · 𝒏 𝑞𝑠𝑞 𝑓

0


(3.40)



0

𝝈̃𝑠 · 𝒏

𝒒̃𝑠 · 𝒏


=



0

𝝈̃ 𝑓 · 𝒏
𝜎̄ 𝑓

𝜎̄𝑠

𝒒̃ 𝑓 · 𝒏
𝑞 𝑓

𝑞𝑠


(3.41)

on the fluid and solid interfaces respectively.

3.5.3 Common time and length scales

Despite the fluid, solid, and thermal equations each requiring a distinct characteristic length,

we consider a single length scale 𝐿̄ and set 𝐿̄ = 𝐿̄ 𝑓 = 𝐿̄𝑠 = 𝐿̄𝑡 to ensure consistency of the spatial

differential operator ∇̃. In practice, the characteristic length is related to some length scale of the

solid geometry.

Since we consider a monolithic system where fluid, solid, and thermal equations are composed

into a single model equation, it is necessary to reconcile the non-dimensional time variables 𝑡̃ for
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application of a time integrator. As in the determination of the length scale, a single time scale 𝑡∗

must be chosen and scale each balance equation. In this work, we take 𝑡∗ to be the fluid time scale

𝑡 𝑓 since the fluid time scale is expected to be the smallest time scale. Scaling of a balance equation

with a constitutive time scale 𝑡 only requires multiplication of each term by the non-dimensional

factor 𝑡
𝑡∗ .

3.5.4 Hybridized DG discretization

Finally, coupling of fluid and solid domains is performed by the addition of interface terms

to the trace equations in the fluid and solid balance equations. The coupling conditions act as

constraints on the solution defined on the fluid-solid interface from the fluid and solid perspectives,

Γ 𝑓 and Γ𝑠. The fluid and solid coupling conditions are given by

〈
𝑭 𝑓

(
𝒖 𝑓 , 𝒒 𝑓

)
· 𝒏 + 𝜎 𝑓

(
𝒖 𝑓 − 𝒖̂ 𝑓

)
, 𝜇 𝑓

〉
Γ 𝑓

+
〈
𝑻 𝑓 𝑭𝑠 (𝒖𝑠, 𝒒𝑠) · 𝒏 + 𝜎 𝑓

(
𝑷 𝑓 𝒖𝑠 − 𝒖̂ 𝑓

)
, 𝜇 𝑓

〉
Γ𝑠

= 0

(3.42a)

⟨𝑭𝑠 (𝒖𝑠, 𝒒𝑠) · 𝒏 + 𝜎𝑠 (𝒖𝑠 − 𝒖̂𝑠) , 𝜇𝑠⟩Γ𝑠 +
〈
𝑻𝑠𝑭 𝑓

(
𝒖 𝑓 , 𝒒 𝑓

)
· 𝒏 + 𝜎𝑠

(
𝑷𝑠𝒖 𝑓 − 𝒖̂𝑠

)
, 𝜇𝑠

〉
Γ 𝑓

= 0 (3.42b)

where 𝑻𝑑 and 𝑷𝑑 project the flux and state, respectively, to domain 𝑑 and 𝑭 𝑓 and 𝑭𝑠 are the fluid

and solid flux constraints, respectively.
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CHAPTER IV

IMPLEMENTATION

In this chapter, we present the implementation of the hybridized DG discretization hypersonic

aerothermoelasticity system presented in Chapter III. As mentioned in Chapter I, the major effort

of this work was the development of a hybridized DG framework for monolithic multiphysics

simulation using the Rust [1] programming language. Discussion of the nonlinear solver, linear

solver, and temporal discretization employed in this code is provided in this chapter. Considerations

to enable simulation of arbitrary multiphysics equation systems are also presented. Special attention

is given to the efficient resolution of hybridized DG equation systems. While this chapter does

include certain detail about the developed hybridized DG solver, discussion of code structure is

largely omitted.

4.1 Nonlinear solver

Finite element theory relies heavily on the linearity of the considered strong form. However,

many PDE systems are nonlinear with respect to their solution. Formation of the weak form for

a nonlinear strong form has not yet resulted in a finite element system. Instead, it is necessary to

determine a linearization of the nonlinear weak form.
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4.1.1 Static condensation

As discussed in Chapter II, a major benefit of hybridized DG methods is that they employ static

condensation to exchange computational effort solving a globally-coupled system of equations

written in terms of element unknowns for a significantly smaller globally-coupled system of

equations written in terms of interface unknowns and an additional element-local procedure to

compute the element unknowns. Since the computational complexity of iterative and direct linear

solvers is almost never linear with respect to the unknowns, decreasing the number of globally

coupled unknowns can greatly decrease the computational effort in solving the nonlinear equation

system. The additional problem of determining the element unknowns can be performed in parallel

and thus contributes an often negligible amount of computation expense.

In the present implementation, we take advantage of opportunities for parallelism. A significant

portion of the computational expense of many implicit solvers is the formation of a linearization of

the underlying nonlinear problem. Hybridized DG methods require the use of a Newton method to

achieve the promised computational efficiency and thus require the assembly of a Newton system.

As noted in Chapter II, hybridized DG methods consider a split residual problem where a residual

is computed both for the element and trace unknowns, respectively. We recall the Newton system

generated by a hybridized DG method given in (2.6).


𝑨 𝑩

𝑪 𝑫



𝛿𝒖

𝛿𝒖̂

 =

𝒇

𝒈

 (4.1)

In practice, formation of the global matrices 𝑨, 𝑩, 𝑪, and 𝑫 is not necessary. Instead, the linear

system in (4.1) can be computed on each individual element. Static condensation of the element-
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local Newton system is then performed to produce an element-local reduced Newton system as

given by (2.7).

We note that for especially low polynomial orders, computation of the matrix 𝑨−1 on individual

elements may be tractable by analytic matrix inverse formulae or via a computational matrix inverse

method. However, an increase in the polynomial order causes the dimension of the element-local

𝑨 to increase significantly and the use of traditional matrix inverse algorithms may result in undue

computational expense. In the present implementation, the element-local matrix 𝑲 is computed by

instead solving the linear system 𝑨𝑿 = 𝑩 for the matrix 𝑿 and then computing 𝑲 = 𝑫 − 𝑪𝑿. It

is assumed that this intermediate linear system is small enough to be efficiently solved by a direct

solver for typically considered polynomial orders. Computation of 𝑲 is efficiently performed using

the BLAS [10] gemm routine. A similar approach is applied for the computation of the element-local

𝒉.

4.1.2 Parallelization

It is apparent that an element’s residual and Jacobian can be computed independently of those

of every other element. Under this consideration, we compute these systems across the threads

available on the present system. To this end, we employ the use of the Rust library rayon [36] to

enable efficient thread-based parallelization for the computation of the element Newton systems

via a non-invasive API requiring surprisingly minimal code changes. To enable thread-based

parallelization, rayon employs a work-stealing thread balancing strategy. At the start of the

program rayon creates a thread pool. When thread parallel work needs to be performed, rayon

distributes the work across the threads available in the thread pool for processing. If a participating
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thread exhausts its assigned work, it reaches into the yet un-processed work queue of another thread

and steals a task for processing. The provided work-stealing strategy is an effective load balancing

heuristic for a large amount of computational work that seeks to decrease the length of the critical

path and ensure that each processor operates at peak utilization.

After an element Newton system is computed on a thread, it must be assembled into the global

Newton system (2.7) The global Newton system is a data structure shared by all threads participating

in computation of the element Newton systems. Due to this, accessing the global Newton system

from the individual threads requires access of a shared synchronization primitive (e.g. a mutex) to

prevent data races by ensuring exclusive mutable access to the global Newton system by a single

thread at any instance in the program’s execution.

Early implementations of the present hybridized DG framework performed computation of

the element Newton systems and assembly into the global system in a single pass. However, this

approach was found to greatly reduce parallel efficiency as many threads would finish computation

of the element Newton system in a similar amount of time and then have to wait idly to access

the global Newton system. Since computation of an element Newton system is a much more

computationally-demanding task, this approach effectively reduced the amount of parallel workers

to be one.

One approach to prevent this problem would be to separate the computation of the element

Newton systems and global assembly into two passes. In this approach, the participating threads

would compute the element Newton systems and efficiently store them in a single buffer. The

element Newton systems could then be assembled into the global Newton system serially. We

pursue an approach similar to this. However, the assembly into the global Newton system is
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performed in parallel. To achieve parallelism, rayon was used to distribute element Newton

systems and form various thread-local global assemblies. These global assemblies are combined

in parallel to produce a single global assembly. This approach ensures all cores remain busy

with necessary work and idling due to contention among threads trying to access a single global

assembly is prevented.

4.1.3 Automatic differentiation

Simulation codes often require the computation of the Jacobian of the (often nonlinear) resid-

ual. However, the Jacobian is often error-prone to implement in software or difficult to derive

analytically. For these reasons, several approaches are employed by simulation codes to prevent

explicit implementation of the Jacobian altogether, including Jacobian-free Newton Krylov (JFNK)

[19, 12, 72] and automatic differentiation approaches. JFNK approaches take advantage of the fact

that the Jacobian in a Newton-Krylov method (i.e. a Newton system solved with a Krylov subspace

method) is needed only to compute Krylov vectors via Jacobian-vector products. JFNK approaches

compute these products through a finite difference approximation expressed in terms of the residual

only. Despite the ability of the JFNK approaches to eliminate computation of the Jacobian, JFNK

methods are a class of quasi-Newton methods and accordingly forego the well-known quadratic

convergence of the Newton method.

In this work we instead consider an automatic differentiation (AD) approach for computation of

the global Jacobian. AD methods have found considerable use in many domains including machine

learning [99], AD approaches algorithmically compute derivatives of functions by making heavy

use of the chain rule. AD methods do not rely on approximation, e.g by finite difference, but
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instead compute exact derivatives of desired functions. Two modes of AD methods exist: forward-

mode and reverse-mode. The major difference between the two modes of AD is their efficiency

in computing large amounts of derivatives of a single function. Typically, forward-mode AD

approaches perform well when the number of outputs of the differentiated function is significantly

fewer than the number of inputs. Oppositely, reverse-mode AD approaches perform well when the

differentiated function possesses significantly more outputs than inputs.

Due to the recognition that the number of unknowns is significantly fewer than the number

of derivatives necessary to compute, in this work we pursue a reverse-mode AD approach for

the computation of the element-local Jacobians. Indeed, if an element possesses 𝑁 unknowns,

computation of the Jacobian requires O
(
𝑁2) unknowns. Reverse-mode AD works by storing a

computation graph of elementary mathematical expressions which can be readily differentiated.

The vertices of the computation graph are mathematical expressions, while the edges are the

arguments of the expressions which may themselves also be expressions. Computation of the

partial derivative of an expression with respect to another expression 𝑥 is performed by traversing

the graph and computing the partial derivative of the traversed nodes with respect to 𝑥. The final

partial derivative is assembled through consideration of the partial derivatives of its neighbors via

the chain rule.

It was found that forming the Jacobian using expressions written in terms of the element

and trace unknowns produced correct Jacobians but also incurred a large computational expense.

While it was expected that computation of the Jacobian would represent a significant portion of the

execution cost of a simulation, it was found that the Jacobian computation represented the greatest

computational expense. This was due in large part to the expression tree being exceptionally large.
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Computation of each entry in the Jacobian required a unique graph traversal, the computational

cost of which is sensitive to memory access and allocation patterns in the graph data structure.

One remedy to this issue was to greatly reduce the size of the expression graph by computing

some portions of the Jacobian analytically. We note that the entries of the element Jacobian can be

expressed as

𝑱𝑖 𝑗 =
𝜕𝒓𝑖
𝜕𝒖 𝑗

=
𝜕𝒓𝑖
𝜕𝒖ℎ

𝜕𝒖ℎ
𝜕𝒖 𝑗

(4.2)

where we recall that 𝒖𝑖 is the 𝑖𝑡ℎ degree of a freedom for a physical variable 𝒖ℎ ∈ 𝑉ℎ which is given

by 𝒖ℎ (𝒙) =
∑
𝑖 𝑢𝑖𝝓𝑖 (𝒙). In the present implementation, only the 𝜕𝒓𝑖

𝜕𝒖ℎ
terms are computed using

reverse-mode AD and the 𝜕𝒖ℎ

𝜕𝒖 𝑗
terms are computed analytically.

We conclude this section by stressing the importance of an efficient implementation of the AD

data structures. Traversal of the expression graph often requires random access of a large number

of graph nodes. If element-local Jacobians are computed on various threads, the combined size of

the element-local AD graphs may exceed the available cache memory and require storage in RAM.

In this case, the program may become memory bound due to the relatively large cost of frequent

random access of expression nodes in RAM. This problem was remedied in part by caching the

result of an expression and its adjoint derivatives. Finally, to prevent the large cost of memory

allocation, the backing store for the expression graph is allocated once and reused throughout the

execution of the program.
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4.2 Linear solver

In this work, we employ the iterative General Minimized Residual (GMRES) [103] solver for the

solution of the global trace system. GMRES is a member of the so-called Krylov subspace solution

methods for which it can be shown that the error in the solution depends heavily on the condition

number of the matrix. For this reason, it is necessary to precondition the linear system to obtain a

solution in a reasonable amount of computation time. Since preconditioners are often determined

by taking into account the underlying physics, determination of preconditioners for monolithic

multiphysics systems [82] can be difficult. We have found that the incomplete LU decomposition

[87] performs well on isolated fluid and elasticity problems and is a decent preconditioner for the

hypersonic aerothermoelasticity system and is employed in this work.

4.3 Multiphysics considerations

The presented HDG implementation was designed with special consideration of monolithic

multiphysics equation systems. The necessary ingredients to this end are as follows 1) decom-

position of the finite element triangulation into physical subdomains, 2) application of a distinct

equation system to each physical subdomain, and 3) addition of interface coupling conditions on

multiphysics boundaries. We shall provide greater description of these ingredients in the following

subsections.

4.3.1 Physical domain

Multiphysics systems consider physical domains where distinct physical laws are supposed

to govern. Typically, partitioned approaches allow various domains to be defined within the

simulation codes which perform a single-physics simulation. However, monolithic approaches
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consider a single equation system defined on a single triangulation, requiring the prescription of

subdomains for the constituent physics to be evolved. In the current approach, these physical

domains are prescribed by the imported mesh file. Each physical domain in the mesh file must be

provided with a name that identifies the domain. During the mesh import process, domain names

are mapped to unique numeric identifiers.

4.3.2 Equation systems

Unique equation systems can be applied on the various domains. In the present implementation,

equation systems are recognized to simply be a set of equations and equations are recognized to be

a set of terms. Each term in a finite element method is an inner product. Inner products require

one of only a few operations on test functions, e.g. gradient evaluation or divergence evaluation.

Further, the inner products defined on elements and interfaces differ only in their domains.

A hybridized DG method requires equations for both the element and trace unknowns. Ap-

plication of element equations is straightforward since no coupling between neighboring element

equations arises due to the discontinuous nature of the element solutions. However, interface con-

ditions require special care. In particular, three interface conditions must be handled: conditions

on boundary interfaces, conditions on interfaces dividing elements with the same the element

equations, and conditions on interfaces dividing elements with different element equations. Ap-

plication of boundary conditions can be considered as a boundary element neighboring a ghost

element which possesses the desired boundary state. Application of the equations defined on inter-

faces with the same element equations is straightforward: the same interface condition is applied

on the interface from the perspective of both elements. However, conditions defined on interfaces
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dividing elements with different element equations are harder to implement. In the present im-

plementation, we assume that all interface conditions can be expressed as a combination of state

equivalence condition or a flux balance condition. This formulation corresponds to a combination

of Dirichlet and Neumann conditions being applied on these interfaces as seen in (3.42).

4.4 Temporal

Under the consideration of time-varying solutions, the hybridized DG method gives rise to a

differential-algebraic (DAE) system of index 1. Indeed, the semi-discretized model problem (3.4)

yields an ODE for 𝒖 and constraints for the gradient of the state vector 𝒒 and the approximation

of the trace of the state vector 𝒖̂. Conventional time integration methods can be applied for the

evolution of (3.4b) subject to the constraints (3.4a) and (3.4c). Explicit time integration methods

for DG methods have the benefit that each element can be evolved independently of every other

element due to the discontinuous nature of the solution space. However, explicit methods often

require restrictive time steps for many problems of considerable size and forego the computational

savings enjoyed by implicit methods due to elimination of element variables from the global

problem.

We consider (3.4) in the more concise DAE form

𝑴
𝜕𝒖

𝜕𝑡
= 𝒇 (𝒖ℎ, 𝒒ℎ, 𝒖̂ℎ)

s.t. 𝒈 (𝒖ℎ, 𝒒ℎ, 𝒖̂ℎ) = 0
(4.3)

where 𝑴 is the so-called finite element mass matrix with entries 𝑴𝑖 𝑗 =
(
𝝓𝑖, 𝝓 𝑗

)
𝐾

for 𝝓𝑖, 𝝓 𝑗 ∈ 𝑽ℎ,

𝒖 are the coefficients which determine 𝒖ℎ ∈ 𝑽ℎ, 𝒇 encodes the dynamics in (3.4b), and 𝒈 encodes
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the constraints imposed by (3.4a) and (3.4c). We note that 𝑴 reduces to the identity matrix in the

case that 𝒖ℎ is spanned by an orthonormal polynomial basis.

4.4.1 Time integrators

Implicit time integrations methods commonly applied to hybridized DG systems include back-

ward difference formulae (BDF) [34, 56] and diagonally-implicit Runge Kutta (DIRK) methods

[3]. BDF methods of order 𝑛 approximate the temporal term of (4.3) with a Lagrange polynomial

determined from the solution of the previous 𝑛 time steps. For an early time step with index 𝑖 < 𝑛,

a BDF method of order 𝑖 is employed. In particular, BDF methods discretize the time derivative

𝜕𝒖
𝜕𝑡

≈ ∑𝑛
𝑖 𝑐𝑖𝑢𝑖 where the coefficients 𝑐𝑖 are determined to ensure desirable qualities for the temporal

discretization, e.g. stability. The order of accuracy of BDF methods have been shown to increase

with order of the BDF method for BDF orders less than 6. However, only BDF methods of up

to order 3 have been to shown to be A-stable. The BDF1 method results in the Backward Euler

method which, in addition to being A-stable, is also L-stable.

DIRK methods are Runge Kutta (RK) methods whose 𝐴 matrix in the Butcher tableau is a

lower-diagonal matrix with non-zero entries in the diagonal. Though not discussed in much detail

in this work, DIRK methods can be algorithmically viewed as repeated application of a BDF

method within a single time step. The introduction of non-zero diagonal entries transition an

explicit RK method to an implicit RK method. RK methods operate in stages within a single time

step and require the solution of the ODE at each stage. For implicit methods, RK methods may

introduce considerable computational expense due to a 𝑞-stage RK method requiring the inversion

of 𝑞 linear systems at each time step. For linear systems resulting form the application of a Newton
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method, it has been shown that computation of each time step may be expedited by lagging the

Jacobian matrix for several Newton iterations or even time steps [46]. Quasi-Newton methods

may also provide computational savings, though they lose the quadratic convergence which make

Newton methods attractive. For transient simulation of a hybridized DG DAE system employing

a DIRK method, computation of the constraint variables for the final DIRK stage may be ignored

to achieve a computational savings or computed if the constraint variables are needed for another

purpose, e.g. visualization [93, 46].

4.4.2 Pseudo-Transient Continuation

The disparate time scales of the hypersonic aerothermoelasticity equations warrant long-time

integration for the accurate capture of all constituent physics. The evolution of a hypersonic fluid

on a fine grid may require time steps on the order of microseconds, while the conduction of the

heat through solid may require time steps on the order of milliseconds or even seconds. Still,

temporal evolution of the hypersonic aerothermoelasticity system is bounded by the smallest time

step which, in practice, is often the fluid time step. Simulations spanning even a few seconds can

require a number of time steps on the order of 1𝑒6, rendering repeated time accurate simulation

computationally intractable.

It is in light of this difficulty that we instead shift attention to steady-state simulation of

the monolithic hypersonic aerothermoelasticity system. Still, steady-state simulation for large

nonlinear systems of equations such as the hypersonic aerothermoelasticity system may not be as

simple as disregarding the temporal term. Eliminating the temporal term from the equation system

may cause considerable difficulty in resolving complex features not present in the initial guess to
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the steady state solution for iterative nonlinear solvers, frequently leading to divergence. Among

such complex features for hypersonic aerothermoelasticity are the emergence of shocks of various

kinds and shapes, thick boundary layers, and complex surface heat flux distributions.

Despite the computational cost of transient simulation compared to steady-state simulation, it

is apparent that time integration methods contribute considerable regularization to linearizations

of the nonlinear systems of equations realized under temporal discretization. For example, dis-

cretization of the temporal term can work to increase the diagonal dominance of the Jacobian of the

nonlinear residual when Newton’s method is applied to linearize the nonlinear algebraic system,

greatly easing the solution of the Newton system.

One approach for reaching a steady-state simulation for nonlinear differential equations is

Pseudo-Transient Continuation (PTC) [69]. PTC considers the model steady state problem

𝒇 (𝒖) = 0 (4.4)

where 𝒇 encodes, e.g., the dynamics of a semi-discretized PDE with solution 𝒖. The PTC algorithm

adds a fictitious temporal term with a pseudo time variable 𝜏 resulting in the model initial value

problem

𝜕𝒖

𝜕𝜏
= 𝒇 (𝒖) (4.5)

The PTC algorithm computes the steady-state solution 𝒖 by solving (4.5) via the iteration
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(
1
Δ𝜏𝑛

𝑰 + 𝑱 (𝒖𝑛)
)
𝛿𝒖𝑛 = 𝒇 (𝒖𝑛) (4.6a)

𝒖𝑛+1 = 𝒖𝑛 + 𝛿𝒖𝑛 (4.6b)

where 𝑛 denotes the iteration index, Δ𝜏𝑛 is the 𝑛𝑡ℎ time step, 𝑱 is the Jacobian of 𝒇 , and 𝛿𝒖𝑛 is

the solution increment to be computed by solving (4.6a). The PTC algorithm can be derived by

employing Backward Euler time integration to (4.5) and solving the resulting algebraic system with

a single-iteration Newton method. The initial guess 𝒖0 is specified by the analyst. It is desired,

though not always necessary in practice, that 𝒖0 satisfy boundary conditions encoded in 𝒇 . The

aim of PTC is to take the time step Δ𝜏𝑛 to be small in early iterations and gradually increase it

throughout the execution of the algorithm. We note that in the limit of Δ𝜏𝑛 → ∞, the diagonal

addition 1
Δ𝜏𝑛

𝑰 vanishes and (4.6) becomes a typical Newton solve for the steady-state problem (4.4).

It remains to specify the methods of incrementing the time between iterations. Various heuristics

have been proposed to this end. In this work, we consider the switched evolution relaxation [69]

approach given by

Δ𝜏𝑛 = Δ𝜏0
∥ 𝒇 (𝒖0)∥
∥ 𝒇 (𝒖𝑛)∥

(4.7)

It is apparent (4.7) is equivalent to

Δ𝜏𝑛 = Δ𝜏𝑛−1
∥ 𝒇 (𝒖𝑛−1)∥
∥ 𝒇 (𝒖𝑛)∥

(4.8)

We make a final addition to limit the size of the time step by finally considering
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Δ𝜏∗𝑛 = min (Δ𝜏𝑛,Δ𝜏𝑚𝑎𝑥) (4.9)

where, for stability purposes, we have specified a maximum time step which should not be exceeded

by the SER method. Finally, in this work, we couple the PTC algorithm with polynomial cycling,

where the order of the polynomial finite element solution space is increased between subsequent

runs. In this approach, the steady-state solution is first computed using a zeroth order polynomial

space. The computed solution is then used as the initial guess to the steady-state solution of a first

order polynomial space. Polynomial cycling allows convergence of large physical features using

lower-order polynomial spaces. Fine physical phenomena can then be resolved as the polynomial

order is increased.
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CHAPTER V

RESULTS

5.1 Methodology

Due to the complex nature of hypersonic aerothermoelasticity simulation, a small number

of physical and numerical experiments have been conducted, providing limited opportunities

for verification and validation of the presented monolithic approach. As described in previous

chapters, many of the numerical experiments presented in the literature either rely heavily on

results generated on simple, flat geometries to limit the number of important structural modes

or employ either reduced-order models or simple empirical relationships for the computation of

pressure loads and heat distributions.

It is under these concerns that we present a numerical experiment that, to the knowledge of the

author, have not been performed in the relevant literature. Verification of the monolithic approach

is instead demonstrated via verification of the constituent physics models using the method of

manufactured solutions. Grid convergence studies of the constituent physics are also presented.

Verification of the single-physics modeling methods in multiphysics systems have been performed

in other multiphysics coupling studies [110, 126].

The method of manufactured solutions (MMS) is a simulation code verification technique where

a manufactured solution to a simulated PDE is inserted into the PDE. In general, the manufactured

solution will not satisfy the PDE and will result in the production of a source term. This source
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term can then be added to the code and the simulation is executed. The computed result for a

correctly implemented code will be the manufactured solution. Boundary and initial conditions

in MMS are simply the manufactured solution evaluated at the domain boundaries and the initial

time, respectively.

5.2 Verification

MMS simulations for fluid, solid, and thermal simulations are performed on a square structured

domain with a side length of 3𝜋m. We focus on verifying the results of the individual solvers instead

of the coupled equation system due to the considerable difficulty in determining an appropriate

source term. Several MMS simulations are performed on successively refined grids to facilitate

mesh convergence studies. Each grid is a structured grid of triangular elements. The number of

elements is quadrupled between each grid by doubling the number element in 𝑥 and 𝑦 directions.

Transient simulations are employed for all three verification test cases using a BDF(1) time

integrator which was found to provide more accurate results than higher order BDF methods.

Polynomials of order 3 are employed for all MMS verification cases. The hybridized DG method

realizes a cost savings by performing static condensation on the Newton system computed after

spatio-temporal discretization of the considered PDE producing a reduced linear system. In all

MMS verification cases, this reduced linear system is solved using a GMRES solver coupled with

an ILU preconditioner with two levels of fill-in. The Krylov vectors computed by the GMRES

method are discarded and restarted every 50 iterations. The Newton method is determined to have

converged within a time step if the 𝐿2 norm of the full nonlinear residual is found to be less than a
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tolerance of 1e-12 or if 25 Newton iterations have elapsed. Finally, all variables in the verification

study are taken to be non-dimensional.

Table 5.1: Degrees of freedom for each MMS mesh. The number of degrees of freedom must be
multiplied by the number of components solved for by each of the physical equations to get an
accurate degree of freedom count in each simulation. These values are 4, 4, and 1 for the fluid,
solid, thermal equation systems, respectively.

Mesh Element unknowns Trace unknowns
4 320 44
8 1,280 832
16 5,120 20480
32 20,480 12,544
64 81,920 49,664

5.2.1 Fluid

A MMS verification test was performed on the compressible Navier-Stokes equations dis-

cretized with a hybridized DG method as demonstrated in Ch. III. The configuration for the

simulation is presented in Table 5.2.

The manufactured solution for the compressible Navier-Stokes equations written in terms of

primary variables is given in (5.1). The same manufactured solution is rewritten in terms of the

conservation variables in (5.2). In the results that follow, we take𝑇0 to be unity. The exact solutions

for the velocity components 𝑣𝑖 at time 0.5 s are presented in Figure 5.1.
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Table 5.2: Configuration for the compressible Navier-Stokes MMS verification study.
Title Symbol Value

Domain height 𝐻 3𝜋 m
Domain width 𝐿 3𝜋 m

Polynomial order 𝑘 3
Density 𝜌 1 kg m−3

Pressure 𝑝 1 Pa
Length scale 𝐿̄ 1 m
Mach number Ma 1

Reynolds number Re 1.10e5
Specific heat ratio 𝛾 1.2

Specific heat 𝑐𝑣 5 J kg−1 K−1

Dynamic viscosity 𝜇 0.7 Pa s
Prandtl number Pr 0.7

Time step Δ𝑡 9.13e-3 s

𝜌 = 1

𝑣1 = sin 𝑥 sin 𝑡

𝑣2 = cos 𝑦 sin 𝑡

𝑇 = sin 𝑡 + 𝑇0

(5.1)



𝜌

𝜌𝑣1

𝜌𝑣2

𝜌𝐸


=



1

sin 𝑥 sin 𝑡

cos 𝑦 sin 𝑡

1
2 sin2 𝑡

(
sin2 𝑥 + cos2 𝑦

)
+ sin 𝑡 + 𝑇0


(5.2)

Inserting (5.2) into the non-dimensional compressible Navier-Stokes system yields the following

source term.
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Figure 5.1: Manufactured solutions for the fluid velocity components 𝑣1 and 𝑣2, respectively,
evaluated at 𝑡 = 0.5s.

𝑺 =



sin 𝑡 (cos 𝑥 − sin 𝑦)

sin 𝑥
(
2 sin2 𝑡 cos 𝑥 − sin2 𝑡 sin 𝑦 + cos 𝑡

)
+ 1

Re
8
3 sin 𝑡 sin 𝑥

cos 𝑦
(
sin2 𝑡 cos 𝑥 − 2 sin2 𝑡 sin 𝑦 + cos 𝑡

)
+ 1

Re
8
3 sin 𝑡 cos 𝑦

𝜌𝐸𝑠


(5.3)

where 𝜌𝐸𝑠 is given by

𝜌𝐸𝑠 = 𝛾

(
𝑇0 sin 𝑡 + sin2 𝑡

)
(cos 𝑥 − sin 𝑦)

+ 1
2

sin3 𝑡
(
− sin2 𝑥 sin 𝑦 + 2 sin2 𝑥 cos 𝑥 − 2 sin 𝑦 cos2 𝑦 + cos 𝑥 cos2 𝑦

)
+ sin 𝑡

(
sin2 𝑥 cos 𝑡 + cos 𝑡 cos2 𝑦

)
+ 1

Re
4
3

sin2 𝑡
(
2 sin2 𝑥 − 2 sin2 𝑦 + sin 𝑦 cos 𝑥 − 2 cos2 𝑥 + 2 cos2 𝑦

)
+ cos 𝑡

We note the considerable nonlinearity in the resulting source term. Indeed, retrieving the

manufactured solution presented a challenge for the implementation. It is expected that this is due
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to inaccuracies in the integration rules used to form the Newton system and time integrator. It

was found that decreasing the time step yielded more accurate solutions, but greatly increased the

computational burden. The time step was taken to be Δ𝑡 = 9.13𝑒−3 s which provided a good trade

off between accuracy and expense.

The solutions computed by the hybridized DG implementation are presented in Figure 5.2 and

Figure 5.3. Mesh convergence is presented in Figure 5.4. It is found that refining the meshes

results in a monotonic decrease in the error of all primary variables.
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Figure 5.2: Solutions computed on the considered meshes for the 𝑣1 fluid velocity component evaluated at time 𝑡 = 0.5s.
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Figure 5.3: Solutions computed on the considered meshes for the 𝑣2 fluid velocity component evaluated at time 𝑡 = 0.5s.
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Figure 5.4: Convergence of the 𝐿2 error between the manufactured and computed compressible
Navier-Stokes solutions for the considered meshes computed at time 𝑡 = 0.5s.

5.3 Linear elasticity

We consider a MMS verification for the linear elasticity equations. The configuration for the

MMS simulation is given in Table 5.3.

Table 5.3: Configuration for the linear elasticity MMS verification study.
Title Symbol Value

Domain height 𝐻 3𝜋 m
Domain width 𝐿 3𝜋 m

Polynomial order 𝑘 3
Density 𝜌 1 kg m−3

Lamé’s first parameter 𝜆 0.4 Pa
Lamé’s second parameter 𝜇 0.4 Pa

Time step Δ𝑡 0.1 s

78



The manufactured solution for the solid displacement field is given by

𝑢1 = sin 𝑥 cos 𝑦
(
1 − 𝑒−𝑡

)
𝑢2 = sin 𝑦 cos 𝑥

(
1 − 𝑒−𝑡

) (5.4)

The manufactured solution is presented in Figure 5.5. We recall that the linear elasticity system

is expressed as a first order in time system of equations. Therefore, the source term for the linear

elasticity equations is applied to the velocity equation and not the displacement equation. Plugging

in the manufactured solution into linear elasticity equations yield the following source term given

in (5.5).
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Figure 5.5: Manufactured solutions for the solid displacement components 𝑢1 and 𝑢2, respectively,
evaluated at 𝑡 = 20s.

𝑣1 = −1
𝛽

(
(2𝜆 + 4𝜇)

(
1 − 𝑒𝑡

)
− 1

)
𝑒−𝑡 sin 𝑥 cos 𝑦

𝑣2 = −1
𝛽

(
(2𝜆 + 4𝜇)

(
1 − 𝑒𝑡

)
− 1

)
𝑒−𝑡 sin 𝑦 cos 𝑥

(5.5)

Finally, the computed solutions for the solid displacement components are presented in Figure

5.6 and Figure 5.7, respectively. The convergence of the computed solution is presented in Figure
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5.8. It is found the refining the meshes results in monotonic decrease of the solid displacement

error.
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Figure 5.6: Solutions computed on the considered meshes for the 𝑢1 solid displacement component evaluated at time 𝑡 = 20s.
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Figure 5.7: Solutions computed on the considered meshes for the 𝑢2 solid displacement component evaluated at time 𝑡 = 20s.
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Figure 5.8: Convergence of the 𝐿2 error between the manufactured and computed linear elasticity
solutions for the considered meshes computed at time 𝑡 = 2.0s.

5.4 Thermal

Finally, we present a MMS verification of the heat equation. The configuration for the MMS

simulation is presented in 5.4.

Table 5.4: Configuration for the heat equation MMS verification study.
Title Symbol Value

Domain height 𝐻 3𝜋 m
Domain width 𝐿 3𝜋 m

Polynomial order 𝑘 3
Density 𝜌 1 kg m−3

Length scale 𝐿̄ 1 m
Time step Δ𝑡 1 s
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The manufactured solution for the heat equation is given in (5.6). The manufactured solution

is presented in Figure 5.9.

𝑇 = sin 𝑥 cos 𝑦 sin 𝑡 (5.6)
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Figure 5.9: Manufactured solution for the temperature 𝑇 evaluated at 𝑡 = 1.6s.

Inserting the manufactured solution into the heat equation produces the source term given in

(5.7).

(2𝜅 sin 𝑡 + cos 𝑡) sin 𝑥 cos 𝑦 (5.7)

The computed temperature field is presented in Figure 5.10. The convergence of the computed

solution is presented in Figure 5.11. It is found the refining the meshes results in monotonic

decrease of the error. Indeed, all single-physics problems were well resolved by the present

hybridized DG solver. For this reason, the implementation is considered to be verified.
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Figure 5.10: Solutions computed on the considered meshes for the temperature 𝑇 evaluated at time 𝑡 = 1.6s.
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Figure 5.11: Convergence of the average 𝐿2 error between the manufactured and computed heat
equation solutions for the considered meshes computed at time 𝑡 = 1.6s.

5.5 Hypersonic aerothermoelasticity on a cylinder

We consider simulation of hypersonic flow around a half cylinder. The blunt geometry poses

a challenge to compressible flow solvers due to the formation of a bow shock in hypersonic flows,

resulting in a complex velocity distribution downstream the shock. Flow near the cylinder slows

to subsonic velocities and accelerates to supersonic velocities on the sides of the cylinder. Further,

compression of the fluid on the surface of the cylinder causes a large increase in pressure and

temperature. We note that while hypersonic flow around a half cylinder has been considered in
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the literature [21], to the author’s knowledge no aerothermoelasticity studies for this geometry has

been performed.

5.5.1 Problem description

The half cylinder geometry is presented in Figure 5.13. The radius of the cylinder is 0.2 m. The

maximum height and width of the domain are 8 radii and 3 radii, respectively. Note that a single

mesh is employed to capture the fluid, thermal, and solid evolution. The domain was decomposed

into a fluid domain Ω 𝑓 and solid domain Ω𝑠 via a mesh consisting of 9,558 elements. The

hypersonic aerothermoelasticity system is solved on this mesh using polynomial elements of order

0, resulting in 81,693 globally coupled unknowns. The mesh employed in this study is presented

in Figure 5.12. Thermal evolution is performed within both domains. Thermal conduction and

convection are performed by the energy equation in the compressible Navier-Stokes equations in

the fluid domain, while thermal conduction is modeled by the heat equation in the solid domain.

The temperature distribution within the solids adds additional deformation to the solid through an

added thermal strain term.

PTC is employed to compute the steady-state hypersonic aerothermoelasticity solution. The

initial condition for the fluid domain is set to the freestream condition. Zero displacements are

initially prescribed for the fluid and solid domains. The solid is initially taken to be 1, 000 K. A

reference temperature of 300 K in the solid is prescribed for the generation of thermal strains. We

note that since the PTC algorithm advances pseudo time, the initial condition does not have to be

physical solution; it needs only to be “sufficiently close” to the steady-state solution. The fluid

domain is modeled using the properties of air at an altitude of approximately 50km. The initial
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Figure 5.12: Geometry for the cylinder. The radius of the cylinder is 0.2 m.

Figure 5.13: Mesh employed for the simulation of the cylinder.

condition and flow configuration for the fluid domain are presented in Table 5.5. The solid domain

is modeled as an Inconel alloy. The configuration for the solid domain is given in Table 5.6.
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A freestream boundary condition is prescribed on the inlet. The bottom flow outlet boundary

simply extrapolates the flow state. The bottom solid boundary condition is set to a no-displacement

condition. The velocity coupling condition on the fluid-structure boundary enforces a no-slip

condition. The fluid displacements on the fluid-structure boundary are extrapolated from the

displacements computed by the elastodynamics equations.

The compressible Navier-Stokes equations and the constraints imposed by the fluid on the

coupling interface are written in terms of the ALE transformation. Displacement degrees of

freedom are added to the fluid equation system and solved for using the elastostatics equation. The

fluid mesh velocity is approximated using a first-order finite different scheme computed using the

fluid displacements at the current and previous time steps. For the fluid mesh deformation, the

non-dimensional Lamé parameters are both set to 0.1 which distributed the stress throughout the

domain without resulting in the domain being overly elastic.

Table 5.5: Configuration of the fluid domain. Values with an ∞ superscript denote freestream
values which are used as an initial condition for the PTC procedure.

Title Symbol Value
Density 𝜌∞

𝑓
0.4 kg m−3

Pressure 𝑝∞
𝑓

2.5 kPa
Mach number Ma∞ 5

Velocity 𝑣∞
𝑓

1479.0 m s−1

Length scale 𝐿̄ 0.2 m
Reynolds number Re∞ 6.5e5

Temperature 𝑇∞
𝑓

217.7 K
Specific heat 𝐶𝑣 717.6 J kg−1 K−1

Specific heat ratio 𝛾 1.4
Dynamic viscosity 𝜇 1.8e-5 Pa s

Prandtl number Pr 0.71
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Table 5.6: Configuration for the solid domain. A value of 1,000 K was chosen for the initial
temperature of the solid for the PTC procedure.

Title Symbol Value
Density 𝜌𝑠 8.2e3 kg m−3

Lamé’s first parameter 𝜆𝑠 10.8 GPa
Lamé’s second parameter 𝜇𝑠 7.8 GPa

Length scale 𝐿̄ 0.2 m
Temperature 𝑇𝑠 1e3 K

Reference temperature 𝑇0,𝑠 3e2 K
Thermal conductivity 𝜅 11.6 W m−1 K−1

Specific heat 𝐶𝑝 450 J kg−1 K−1

Fourier number Fo 1

5.5.2 Solution procedure

The monolithic equation system is solved with a GMRES method. The Krylov vectors are

restarted every 50 GMRES iterations. The GMRES algorithm is considered converged if the

relative error in the linear residual is less than 1𝑒 − 8, the absolute error is less than 1𝑒 − 12, or

if 350 GMRES iterations have elapsed. An ILU(2) preconditioner was employed with reasonable

success. The initial time step was taken to be 1𝑒 − 3 pseudo time units. The PTC method is

considered to have converged if 500 units of pseudo time have elapsed. It was enforced that a

pseudo time step of 100 pseudo time units could not be exceeded. The steady-state solution for

fluid-only variables are presented in Figure 5.14 and the solution for variables shared by the fluid

and solid domain are presented in Figure 5.15. Finally, values for pressure, temperature, and

density at the stagnation point of the cylinder’s surface are presented in Table 5.7

Certain complications with this simulation did arise. It was found that the PTC method is

sensitive to the choice of the initial time step. A time step that was too large was unable to resolve

the physics correctly, while a time step that was too small prevented satisfaction of the multiphysics
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Figure 5.14: Steady-state solution for fluid-only variables on a cylinder subject to Mach 5 flow. The
solution for Mach number (top left), non-dimensional pressure (top right) and non-dimensional
density (bottom) are presented.

Figure 5.15: Steady-state solution for variables shared by the fluid and solid domain on a cylinder
subject to Mach 5 flow. The solution for temperature (K) (left) and displacement (m) (right) are
presented.

constraints within a “reasonable enough” time frame and lead to divergence. The solver at times

struggled satisfy to the constraints on the coupling interface. The flux-based constraints were

scaled to cause the solver to satisfy the flux-based constraints in early PTC iterations. The state-
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Table 5.7: Values of density, pressure, and temperature at the stagnation point of the cylinder’s
surface.

Title Non-dimensional value Dimensional value
Pressure 0.887 7.761e4 Pa

Temperature 0.271 8.260e2 K
Density 8.32 3.328e-1 kg m−3

based constraints posed less of a problem and were easily satisfied throughout the PTC iterations.

Further, like with many mesh-based methods, a certain level of grid-dependent effects appear in

the flow field, i.e. some solution asymmetry on the left and right sides of the domain appears due

to the orientation of the triangular elements.

The constituent physics in hypersonic aerothermoelasticity evolve in vastly different time scales

and pose a considerable challenge for the resolution of transient simulation for both monolithic and

partitioned coupling approaches. It was found that the considerable difference in these time scales

also posed a problem for steady state simulations achieved with PTC. Indeed, employing pseudo

time integration via PTC was able to resolve the smallest time scale (i.e. the fluid time scale) well,

but evolution of the remaining physics with larger time scales was delayed. For example, it was

originally assumed that the solid was initially at the same temperature as the freestream fluid. In

the early stages of the PTC algorithm, the thermal coupling condition would cause the fluid near the

solid to remain at the freestream temperature, despite the surrounding flow correctly heating up.

The conduction time scale in the solid was too slow to cause any notable change in temperature in

the solid, resulting in the solid acting as cool Dirichlet condition for the fluid. To remedy this issue,

it was necessary to artificially decrease the thermal time scale greatly by multiplying the thermal

time scale by a sufficiently small value. We justify this decrease by noting that the steady state

condition for the solid geometry considered is simply the solid heated to the final fluid temperature.
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Finally, the presented approach successfully converged all physical variables defined on the

fluid and solid domains and on the fluid-solid interface. Small displacements are expected for

this test case due the solid domain being completely dense with material, lacking any holes.

Despite the displacements being small for this test case, the effect of the coupling influenced the

near-body solution. In particular, conduction in the cylinder greatly effected the temperature and,

correspondingly, the energy distribution in the fluid near the surface. More pliable structures

subject to greater temperatures and pressures are expected result in greater deformation. Despite

the lack of a shock capturing scheme, the method was able to reasonably capture the bow shock.

5.6 Hypersonic aerothermoelasticity on a hollow cylinder

While the previous numerical experiment demonstrated the monolithic multiphysics coupling

results on a geometry of interest, little deformation was actually observed. This is due largely to

the cylinder being densely packed with material which prevented any significant displacement of

the solid. To further demonstrate the capabilities of the presented method, the test case is repeated

using a hollow cylinder.

5.6.1 Problem description

The same cylinder mesh is employed in this test with the exception that the cylinder most of

the material inside the cylinder is removed. Indeed, the material within an inner cylinder with a

radius taken to be 95% of the original cylinder’s radius is removed. After the removal of the inner

material, what remains is a thin circular arc structure. The mesh for this test case is presented in

Figure 5.16. The configuration of the hollow cylinder test case is given Table 5.8 and 5.9. The fluid

configuration seeks to model the fluid as air at sea level. Notably, the Mach number is taken to be
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7 and the Lamé parameters are reduced. The same boundary conditions and linear solver settings

as employed for the previous cylinder case are employed for the hollow cylinder with the exception

that a displacement extrapolation condition is applied on the lower boundary of the hollow cylinder.

Figure 5.16: Mesh employed for the simulation of the hollow cylinder

The hollow cylinder was able to deform significantly more than the dense cylinder due to lack

of inner material. The test case was performed in a higher Mach flow which causes a significant

increase in fluid and solid temperature. Since the flow models air at sea level, the static pressure is

found to be significantly greater. The combined effects of the fluid pressure and solid temperatures

produce a large displacement within the structure. Decreasing the Lamé parameters is also found to

greatly increase the deformation of the solid. A significant increase in temperature is also observed

compared to the dense cylinder case, due largely to the elevated Mach number.
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Table 5.8: Configuration of the fluid domain for the hollow cylinder case. Values with an ∞
superscript denote freestream values which are used as an initial condition for the PTC procedure.

Title Symbol Value
Density 𝜌∞

𝑓
1.225 kg m−3

Pressure 𝑝∞
𝑓

101.325 kPa
Mach number Ma∞ 7

Velocity 𝑣∞
𝑓

2382.0 m s−1

Length scale 𝐿̄ 0.2 m
Reynolds number Re∞ 3.2e7

Temperature 𝑇∞
𝑓

288.1 K
Specific heat 𝐶𝑣 717.6 J kg−1 K−1

Specific heat ratio 𝛾 1.4
Dynamic viscosity 𝜇 1.8e-5 Pa s

Prandtl number Pr 0.71

Table 5.9: Configuration for the solid domain for the hollow cylinder case. A value of 3,000 K
was chosen for the initial temperature of the solid for the PTC procedure.

Title Symbol Value
Density 𝜌𝑠 4e3 kg m−3

Lamé’s first parameter 𝜆𝑠 576.9 MPa
Lamé’s second parameter 𝜇𝑠 384.6 MPa

Length scale 𝐿̄ 0.2 m
Temperature 𝑇𝑠 3e3 K

Reference temperature 𝑇0,𝑠 3e2 K
Thermal conductivity 𝜅 11.6 W m−1 K−1

Specific heat 𝐶𝑝 450 J kg−1 K−1

Fourier number Fo 1

Despite the increase in complexity of the hollow cylinder test case, all physical equations were

found to converge to the desired tolerance. However, certain concerns of validation of this solution

remain. In the lack of availability of necessary truth data, it is impossible to validate the computed

results. Still, both the dense and hollow cylinder results provide strong evidence that hybridized

DG is well-suited to solve the hypersonic aerothermoelasticity system.
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Figure 5.17: Steady-state solution for temperature (K) (left column) and displacement (m) (right column) variables for with
displacements scaled by 10 (top row) and undeformed (bottom row). The discontinuous nature of the solution spaces are seen in the
deformed visualizations.
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CHAPTER VI

CONCLUSION

In this work we presented a monolithic coupling approach for the hypersonic aerothermoelas-

ticity system. A hybridized DG code was developed for the simulation of arbitrary PDEs. The

compressible Navier-Stokes, linear elasticity, and heat equation were implemented and coupled

through constraints enforced on the interface. Non-dimensionalization of each physical system

and the coupling constraints were implemented to ensure robustness of the implementation. The

individual solvers were verified by the method of manufactured solutions and monotonic decreases

in solution error were observed under mesh refinement. Coupled hypersonic aerothermoelasticity

simulation was successfully performed on a cylinder and convergence of all physical variables

was observed. It was found that hybridized DG methods are equipped to simulate multiphysics

problems which transfer data across a coupling interface.

Monolithic mulitphysics simulation using a hybridized DG method had been previously per-

formed in a single study in [109] and later improved in [111] for simulation of low Mach FSI.

While the present study takes inspiration from this previous work, this present study extends the

multiphysics hypersonic and hybridized DG literature in several developments, namely 1) devising

and implementation of three-field multiphysics coupling procedure, 2) resolution of coupled high

speed flows domains which give rise to complex flow phenomena including flow compression and
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shock formation, and 3) presentation of a general framework for monolithic multiphysics coupling

for hybridized DG methods.

Several accomplishments with respect to the hypersonic aerothermoelasticity research are

worth mentioning. First, the present study represents a novel approach for the accurate simulation

of hypersonic aerothermoelasticity. The prevailing literature considers transient simulation of

the hypersonic aerothermoelasticity system using empirical models and ROMs using staggered

coupling approaches. This work improves on the current state-of-the-art by employing a high-

fidelity simulation approaches for the constituent physics to ensure single-physics accuracy and

a monolithic coupling scheme to prevent any spatio-temporal inaccuracies associated with the

coupling scheme. While a steady state approach was pursued in this work, transient approaches

can also be pursued with the presented approach.

Still, there remains many avenues for future work for multiphysics simulation of hypersonic

aerothermoelasticity. With regards to the present implementation, it is necessary to consider

three-dimensional flows to simulate the aerothermoelastic effects on more complex geometries.

Implementation of other element geometries, e.g. quadrilaterals, are expected to further reduce the

computational cost of the present solver since they typically require fewer unknowns and increase

the accuracy for some simulations by removing a certain level of grid dependence. For the sake

of simplicity, the present implementation does not consider thermally-varying material properties.

Modeling material property degradation is a simple addition that is expected to result increased

accuracy of the implementation. Extending the implementation to run on distributed architectures

would enable simulations on more complex geometries. Finally, it was found that enforcing the

interface constraints in the Newton solver was not always straightforward in practice. It may be
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necessary in future work to reframe the current approach as a constrained optimization problem to

be solved nonlinear optimization solver to more robustly ensure constraint satisfaction.
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