
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

1-1-2021

EFFICIENT COMPUTER SEARCH FOR MULTIPLE RECURSIVE EFFICIENT COMPUTER SEARCH FOR MULTIPLE RECURSIVE

GENERATORS GENERATORS

Kenneth Bobvah Pasiah

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Pasiah, Kenneth Bobvah, "EFFICIENT COMPUTER SEARCH FOR MULTIPLE RECURSIVE GENERATORS"
(2021). Electronic Theses and Dissertations. 2942.
https://digitalcommons.memphis.edu/etd/2942

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2942?utm_source=digitalcommons.memphis.edu%2Fetd%2F2942&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

EFFICIENT COMPUTER SEARCH FOR SUPER-ORDER MULTIPLE RECURSIVE
GENERATORS

by

Kenneth Bobvah Pasiah

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Mathematical Sciences

The University of Memphis

May 2021

Copyright © 2021 Kenneth Bobvah Pasiah

All rights reserved

ii

DEDICATION

I will like to dedicate this work to my late parents, Daniel Pasiah and Beatrice Liba, who passed

away on September 23, 1998 and April 6, 2010, respectively.

iii

ACKNOWLEDGMENTS

I wish to thank God Almighty for granting me good health and the necessary resources through

out this program.

I am particularly grateful to my advisors Dr. Lih-Yuan Deng and Dr. Dale Bowman, for their

constant support, patience with me, and guidance through out this study. They took the pains to

reply to my numerous emails and concerns, and above all, provided me with the necessary

resources that have enabled me to successfully accomplished this project. I cannot thank them

enough. To my committee members, Dr. Su Chen and Dr. Ching-Chi Yang, I wish to thank both

of them, for their time and valuable inputs. I will like to thank Mr. Eric Spangler for the tutorial

sessions he had with me on how to use the High Performance Computing (HPC), especially at the

beginning of this project.

I am very grateful to my wife, Mireille Marbu, my sons Kenneth Junior and Precious Nuvaha, and

my little daughter Victory Dassi, who kept asking me whether I have gotten a job in the library,

where I usually spent most of my time. My constant absence from the house was to get this job

done. I am equally grateful to the following family members and friends here in the USA, for

their encouragement, moral, and financial support: Anthony Pasiah, Florence Pasiah, Dr. Emilia

Pasiah, and Engelbert Nwana. My numerous friends, love ones, former students, former

colleagues, and the rest of the family members in Cameroon who kept encouraging me daily

through phone calls, emails, and text messages are not forgotten.

iv

ABSTRACT

Kenneth Bobvah Pasiah, Ph.D. The University of Memphis, May 2021. Efficient Computer

Search for Super-order Multiple Recursive Generators. Major Professors:Dr. Lih-Yuan Deng and

Dr. Dale Bowman.

Pseudo-random numbers (PRNs) are the basis for almost any statistical simulation and this

depends largely on the quality of the pseudo-random number generator(PRNG) used. In this study,

we used some results from number theory to propose an efficient method to accelerate the

computer search of super-order maximum period multiple recursive generators (MRGs). We

conduct efficient computer searches and successfully found prime modulus p, and the associated

order k, (k = 40751; k = 50551, k = 50873) such that R(k, p) is a prime. Using these values

of k′s, together with the generalized Mersenne prime algorithm, we found and listed many

efficient, portable, and super-order MRGs with period lengths of approximately 10380278.1,

10471730.6, and 10474729.3. In other words, using the generalized Mersenne prime algorithm, we

extended some known results of some efficient, portable and maximum period MRGs. In

particular, the DX/DL/DS/DT large order generators are extended to super-order generators.

For r ≤ k, super-order generators in MRG(k,p) are quite close to an ”ideal” generator. For

r > k, the r-dimensional points lie on a relatively small family of equidistant parallel hyperplanes

in a high dimensional space. The ”goodness” of these generators depend largely on the distance

between these hyperplanes. For LCGs, MRGs, and other generators with lattice structures, the

spectral test, which is a theoretical test that gives some measure of uniformity greater than the

order k of the MRG, is the most perfect figure of merit. A drawback of the spectral test is its

computational complexity. We used a simple and intuitive method that employs the LLL

algorithm, to calculate the spectral test. Using this method, we extended the search for ”better”

DX-k-s-t farther than the known value of k = 25013. In particular, we searched and listed

”better” super-order DX-k-s-t generators for k = 40751, k = 50551, and k = 50873.

Finally, we examined, another special class of MRGs with many nonzero terms known as the

v

DW-k generator. The DW-k generator’s iteration can be implemented efficiently and in parallel,

using a k-th order matrix congruential generator (MCG) sharing the same characteristic

polynomial. We extended some known results, by searching for super-order DW-k generators

using our super large k values that we obtained in this study. Using extensive computer searches,

we found and listed some super-order, maximum period DW(k; A, B, C, p = 231 − v)

generators.

iv

Contents

List of Tables vii

1 Introduction 1

2 Literature Review 5
2.1 Some Developments in PRNGs 5
2.2 Some special classes of multiple recursive generators 9
2.3 K-distribution property and Spectral Test 14
2.4 Relationships between Multiple Recursive Generators (MRGs) and Matrix Con-

gruential Generators(MCGs) 17
2.5 Summary 20

3 Search for Super-order Multiple Recursive Generators 21
3.1 Methods Used in Searching for Super-order Multiple Recursive Generators 21
3.2 Super-order Multiple Recursive Generators 25
3.3 Super-order DX generators 27
3.4 DL/DS/DT Generators 31
3.5 Empirical Evaluation 33
3.6 Summary 40

4 Search for ”Better” Super-order Multiple Recursive Generators using Spectral Test 42
4.1 Introduction 42
4.2 Evaluating the Spectral Test for MRGs 43
4.3 Using the LLL Algorithm to Compute the Spectral Test for r > k 51
4.4 List of ”better” DX-k-s-t generators. 55
4.5 Summary 59

5 Extension of a Special Class of Large order Multiple Recursive Generators (MRGs)
with Many Nonzero Terms to Super-order Generators. 61
5.1 Introduction 61
5.2 DW-k generator 62
5.3 Implementation of DW-k generators using MCG 63
5.4 Search for Super-order DW-k generators 65
5.5 Evaluation 67
5.6 Summary 70

6 Conclusion 71

v

Bibliography 73

vi

List of Tables

1 List of k, v, and p = 231 − v, for which (pk − 1)/(p− 1) is a prime(GMP) 24

2 List of 40 DX − 40751 − s − 1 generators, for v = 890301, p = 231 − v =
2146593347,
B < 230. 28

3 List of 40 DX − 50873 − s − 1, generators for, v = 1359861, p = 231 − v =
2146123787, B < 230. 29

4 List of DX − k − s − 1 generators with B < 2d(d = 20 for s = 1, 2 and d = 19
for s = 3, 4) and B < 230. 30

5 List of k, p with B < 230 and B < 2d(d = 19, 20) for DL/DS/DT generators. 31

6 Results of Small Crush tests on DX-40751-s-1 with five starting seeds. 35

7 Results of Crush tests on DX-40751-s-1 with five starting seeds. 36

8 Results of Small Crush tests on DX-50873-s-1 with five starting seeds. 36

9 Results of Crush tests on DX-50873-s-1 with five starting seeds. 37

10 Results of Crush tests on DX-k-s-1 with five starting seeds. 39

11 Results of Crush tests on DL-k/DS-k/DT-k generators with five starting seeds. 40

12 Consistency property of DX-k-s-t generators with 80,000 tries. 57

13 List of ”better” super-order DX-k-s-t generators with B < 219, B < 220, and
B < 230 and their spectral distance dk+1(k)(×105). 60

14 List of A for 22 DW(k;A,B,C = 2e : p = 231 − v); k=40751, 50551, 50873 and
e=5, 6, 7, 8, 9. 67

15 Results of Crush tests on DW-k generators with five starting seeds. 69

vii

Chapter 1

Introduction

Pseudo-random numbers(PRNs) are the basis for almost any statistical simulation. These

PRNs are generated using pseudo-random number generator (PRNG) or algorithmic random num-

ber generator (ARNG), which is a deterministic algorithm, thus not truly random. Pseudo-random

number generators (PRNGs) play a very important part in many areas of scientific research, such

as, Markov Chain Monte Carlo (MCMC) simulation, computer modeling, and secure communica-

tion. The validity of these studies depends on how good these pseudo-random numbers (PRNs)

are. The goal of PRNGs in many computer applications is to produce a sequence of variates that

is very hard to distinguish from a sequence of truly random numbers. Therefore, it is extremely

important to design a good pseudo-random number generator(PRNG) with some desirable proper-

ties, such as: long period length, uniformity and equi-distribution in higher dimensions, efficiency,

portability and good empirical performance.

Maximum period MRGs of order k have become popular PRNGs in many areas of scientific re-

search because of its great properties of long period length, uniformity and equi-distribution over

spaces up to k dimensions, efficiency, portability, and excellent empirical performances. As the

order of k gets larger and larger, these nice properties get more intense. Nevertheless, finding max-

imum period MRGs also gets more difficult.

It is well known from the literature that checking whether an MRG has maximum period is equiva-

lent to checking whether its characteristic polynomial (2.4) is a k-degree primitive polynomial over

Zp. Alanen and D. E. Knuth, 1964 and D. Knuth, 1998, proposed three necessary and sufficient

1

conditions for a polynomial in (2.4) to be primitive. One of the major drawback of this algorithm

is the difficulty of factorizing a huge number R(k, p) = (pk − 1)/(p− 1), when k and p are large.

There are two common ways of bypassing this difficulty, either for a given p, one can find k such

that R(k, p) is relatively easy to factorize or for a known prime k, one can find a prime p such that

R(k, p) is a prime [Generalized Merssene Prime (GMP)]. Details of the first approach can be seen

in Deng and H. Q. Xu, 2005 and Deng, J.-J. H. Shiau, and Lu, 2012a.

In this study, we will focus on the second approach. That is, for a prime k, we find p for which

R(k, p) = (pk − 1)/(p− 1) is a prime (GMP). For a 32-bit RNG, for a prime k, we find v such that

p = 231− v and R(k, p) are primes. With this approach, we used some results from number theory

to accelerate the computer searches and we find some numbers, k′s, for which R(k, p) is a prime.

In Chapter 2, we look at some concepts in the development of PRNGs from existing literature.

In Section 2.1, we review Multiple Recursive Generators (MRGs) which are natural extensions of

LCGs. In Section 2.3, we discuss the equi-distribution property and the spectral test, which is

a theoretical test that provides some measures of uniformity of MRGs above the dimension k. In

Section 2.4, we look at the relationships between the MRGs and Matrix Congruential Generators

(MCGs). We used these relationships for the efficient and parallel implementations of some MRGs

that we will extend in our study. In a nutshell, in Chapter 2, we review some important literary

concepts that will enable us to search for some efficient and portable super-order MRGs in this

study.

In Chapter 3, we discuss methods used in searching for algorithms for super-order max-

imum period MRGs. The key issue is to develop a method that can find a k-th degree primitive

polynomial efficiently by using our approach, as stated above. We emphasized again that, Alanen

and D. E. Knuth, 1964 and D. Knuth, 1998, provided three sets of necessary and sufficient con-

ditions for f(x) as defined in (2.4) to be a primitive polynomial. This algorithm has two major

shortcomings. The first is that there is no early exit strategy for non-primitive polynomials when

2

checking the conditions, thus, a great amount of computing time would be wasted. The second

shortcoming that slows down their algorithm in finding a large order MRG, involved factoring a

huge number like (pk − 1)/(p − 1). This can be bypassed by solving an ”easier” problem of

primality, see L’Ecuyer, Blouin, and Couture, 1993. Deng, 2004, proposed an efficient search al-

gorithm with a built-in early exit strategy that can bypass these shortcomings. Primality testing

also becomes a drawback if the degree of k gets too large.

Using approaches similar to those proposed in Deng, J.-J. H. Shiau, and Lu, 2012b, we adopted an

alternative approach in this study; quickly rule out, for each prime order k considered, the prime

modulus p for which R(k, p) = (pk − 1)/(p − 1) has ”small” (say, less than 1012) prime factors.

Legendre’s theorem, which is a particular result from number theory, is used to accelerate the com-

puter searches.

We successfully found prime modulus p, and the associated order k, (k = 40751, k = 50551, k =

50873) such that R(k, p) is a prime, after an efficient computer searched. Of course this is a great

improvement from the known existing maximum k value of 25013 as reported in Deng, J.-J. H.

Shiau, and Lu, 2012b. With these values of k′s, we searched for super-order MRGs using the Gen-

eralized Mersenne prime Algorithm (algorithm GMP) proposed by Deng, 2004. It should be noted

that not all MRGs are efficient in generating random numbers or having good empirical/theoretical

performances. Therefore, in using the algorithm GMP to search for good maximum period MRGs, it

is important that we restrict the search within some special classes of MRGs. It is in this regard that

we considered extending the DX/DL/DS/DT generators and the DW-k generators in this study.

With these efficient computer searches using the algorithm GMP, we identified, and listed many

efficient and portable MRGs of super-orders, 40751, 50551, and 50873 which respectively have

equi-distribution property up to 40751, 50551, and 50873 dimensions and period lengths of ap-

proximately 10380278.1, 10471730.6, and 10474729.3.

In Chapter 4, we look at some traditional ways of computing the spectral test. This concept is

clearly illustrated in Section 4.2 with a simple LCG[B,23] generator. Generally, the spectral

3

distance is calculated by solving some minimization problems. However, solving such a problem

becomes increasingly difficult as the dimension, k, of the generator, increases. We discuss a new

and simple method proposed by Winter, 2014, using the LLL algorithm in Section 4.3. In Section

4.4, we searched and listed ”better” super-order DX-k-s-t generators for k = 40751, k = 50551

and k = 50873.

In Chapter 5, we examined yet, another special class of MRGs with many nonzero terms, known

as the DW-k generator as proposed by Winter, 2014. Using the relationships between MRGs and

MCGs, and our k values that we obtained in Chapter 3, and after a profound computer searched,

we extended the DW-k generators to super-order generators with efficient and parallel implemen-

tations.

A summary of the major findings of this study is reported in Chapter 6.

4

Chapter 2

Literature Review

2.1 Some Developments in PRNGs

The goal of PRNGs in many computer applications is to produce a sequence of variates that

is very hard to distinguish from a sequence of truly random numbers. Therefore it is desirable for

an ideal PRNG to satisfy some desirable properties, such as: long period length, high-dimensional

equi-distribution, efficiency, portability, nice empirical performance. A PRNG has a ”k-distribution

property” or ”equi-distribution property over k-dimensions” if every r-tuple (1 ≤ r ≤ k) of

numbers appears exactly the same number of times, except for the all-zero tuple that appears one

time less, Lidl and Niederreiter, 1994, Theorem 7.43.

Notation

In this study, we defined p as a large prime number and Zp ≡ {0, 1, 2, · · · , p − 1} is the

finite field of p elements under the usual operations of addition and multiplication with modulus p.

Zr
p and Zk

p, denotes the set of r-dimensional and k-dimensional vectors, respectively, with elements

in Zp.

Rr denotes the set of r-dimensional vectors with elements in R.

Zk×k
p , denotes the set of k × k matrices, with elements in Zp.

MRG(k,p) denotes the set of maximum period k-th order MRG with prime modulus p.

The function φ(x) denotes the Euler’s totient function (Euler’s phi function) which gives the num-

ber of integers between 1 and x that are relatively prime (coprime) to x.

5

Where need be, we may restate some of these notations for emphasis.

Linear congruential Generators(LCGs)

An LCG proposed by D. H. Lehmer, 1951, is a simple recursive relation defined as follows:

Xi = (BXi−1 + A)mod p, i ≥ 0 (2.1)

Xi, A,B, p are positive integers and the seedX−1 6= 0 is chosen from Zp. IfA 6= 0, it is possible to

achieve the full period p. Nevertheless, according to MARSAGLIA, 1972, the ”effective period”

cannot be greater than the period of the corresponding LCG with A = 0 as

Xi = (BXi−1) mod p, i ≥ 0 (2.2)

whereX−1 6= 0. When p is a prime number andB is a primitive element (primitive root) modulo p,

the LCG in equation (2.2) has period p− 1. B is a primitive root modulo p, if for any prime factor

q of (p − 1), B(p−1)/q 6= 1 mod p. The total number of primitive roots is φ(p − 1), where φ(x)

is the Euler’s totient function counting the number of integers between 1 and x that are relatively

prime to x.

LCGs are popular for their simplicity, efficiency, and well-known theoretical properties. Never-

theless, they have short periods, lack equi-distribution in dimensions higher than 1, and have ques-

tionable empirical performances and all LCGs have failed badly some stringent empirical tests in

L’Ecuyer and Simard, 2007.

6

Multiple Recursive Generators (MRGs)

Due to these shortcomings of LCGs, it is natural to find better classes of PRNGs. One

of such better classes is the MRG. MRGs are natural extensions of LCGs, where the next value is

computed iteratively from the previous k values. An MRG is defined recursively as

Xi = (α1Xi−1 + α2Xi−2 + · · ·+ αkXi−k)mod p, i ≥ k (2.3)

for any initial seeds (X0, X1, · · · , Xk−1) 6= (0, 0, · · · , 0), where the modulus p is a large prime

number and the multipliers α1, α2, · · · , αk are integers between 0 and p−1, inclusively. The seeds

can be chosen arbitrarily and k is a positive integer known as the order of the MRG. The maximum

period of MRG is pk−1. This can be achieved by choosing the coefficients α1, α2, · · · , αk such that

the polynomial

f(x) = xk − α1x
k−1 − · · · − αk (2.4)

is a primitive polynomial, see, for example Deng, J.-J. H. Shiau, and Lu, 2012b.

Xi can be converted into a real value between 0 and 1 by using either Ui = Xi/p or as recom-

mended in Deng and H. Xu, 2003, Ui = (Xi + 0.5)/p

Checking whether an MRG has maximum period is equivalent to checking whether its char-

acteristic polynomial (2.4) is a k-degree primitive polynomial over Zp. As mentioned in Chapter

1, Alanen and D. E. Knuth, 1964 and D. Knuth, 1998 proposed three necessary and sufficient

conditions for a polynomial in (2.4) to be primitive. Their algorithm, as stated below, check the 3

conditions in order.

7

Algorithm AK

1. (−1)k−1αk must be primitive root mod p.

2. xR = (−1)k−1αk mod (f(x), p), where R = (pk−1)
(p−1)

3. For each prime factor q of R, the degree of x
R
q mod (f(x), p) is positive.

If all the three conditions are met, then f(x) is a primitive polynomial.

However, when k and p are large, it is difficult to factorize R(k, p) = (pk − 1)/(p − 1) which is

one of the conditions. Besides, there is no early exit strategy for a failed search for a non primitive

polynomial. Deng, 2004, called this number R(k, p) = (pk − 1)/(p− 1), a Generalized Mersenne

Prime(GMP) and proposed an efficient algorithm(algorithm GMP) that bypasses the difficulty of

factorizing the large number R(k, p) = (pk − 1)/(p − 1) and provides an early exit strategy for a

failed search to achieve better efficiency. It should be noted that the idea of bypassing factoring a

large number was first suggested by L’Ecuyer, Blouin, and Couture, 1993.

As we mentioned earlier, an MRG with order k and period p is denoted as MRG(k,p).

MRGs have very desirable features, such as: huge period length, excellent empirical performance,

equi-distribution property up to k dimensions [see, Lidl and Niederreiter, 1994, Theorem 7.43, for

details]. There is strong statistical justification for MRGs as well. An MRG will become ”more

and more uniform” with larger number of nonzero terms in the summation, for details, see, for

example, Deng, 2016 and Deng and George, 1990.

When available, maximum period MRGs with large order k are preferred because as the order k

increases for a given prime modulus p, the large period and equi-distribution properties become

more advantageous, it has extremely long period length pk − 1 and, have excellent empirical per-

formances. Furthermore, D. Knuth, 1998, page 95, proposed that a generator with longer period

should be used because it would have better ”accuracy” in higher dimensions and commented

again in D. Knuth, 1998, page 30, that, ”all known evidence indicates that the result will be very

satisfactory source of random numbers” for the sequence generated by an MRG.

8

Nevertheless, as k or p increases, it is difficult to find parameters α1, α2, · · · αk for order k and

modulus p such that the MRG in (2.3) is of maximum period.

As we mentioned earlier in Chapter 1, not all MRGs are efficient in generating random numbers

or having good empirical/theoretical performances. Therefore, in using algorithm GMP to search

for good maximum-period MRGs, it is important that we restrict the search within some special

classes of MRGs. It is in this regard that we considered the DX/DL/DS/DT generators and the

DW-k generators in this study.

2.2 Some special classes of multiple recursive generators

Although MRGs have an increased maximum period of pk− 1, MRGs are less efficient than

LCGs because of the several multiplications that are involved. To improve the speed of generation,

Grube, 1973, L’Ecuyer and Blouin, 1988, and L’Ecuyer, Blouin, and Couture, 1993, suggested

using two non-zero terms αj and αk (1 ≤ j < k) of the MRG in (2.3) and provided portable

implementations of MRGs satisfying these conditions. Deng and Lin (2000) proposed to set as

many coefficients of αi in an MRG to be 0 and/or ±1 as possible. In particular, they proposed a fast

multiple recursive generator (FMRG) which is a special MRG with maximum period pk − 1 of the

form

Xi = (BXi−k ±Xi−1)mod p, i ≥ k (2.5)

which required only a single multiplication and are almost as efficient as LCGs.

DX generators

Based on this idea of FMRGs, Deng and H. Xu, 2003, proposed a system of special MRGs,

called DX-k generators, which are portable, efficient, and maximum period MRGs, where all

nonzero coefficients of the recurrence are equal and k is the order of recurrence. Deng, 2005

modified and extended the DX generators as follows:

9

1. DX-k-1-t[FMRG] (αt = 1, αk = B), 1 ≤ t < k,

Xi = (Xi−t +BXi−k)mod p, i ≥ k (2.6)

2. DX-k-2-t (αt = αk = B), 1 ≤ t < k,

Xi = B(Xi−t +Xi−k)mod p, i ≥ k (2.7)

3. DX-k-3-t (αt = αd k
2
e = αk = B), 1 ≤ t < dk

2
e,

Xi = B(Xi−t +Xi−d k
2
e +Xi−k)mod p, i ≥ k (2.8)

4. DX-k-4-t (αt = αd k
3
e = αd 2k

3
e = αk = B), 1 ≤ t < dk

3
e,

Xi = B(Xi−t +Xi−d k
3
e +Xi−d 2k

3
e +Xi−k)mod p, i ≥ k (2.9)

where dxe is the ceiling function of x, which is the least integer ≥ x. According to Deng and H.

Xu, 2003, these generators are referred to as DX-k-s-t. s is the number of nonzero coefficients

and their indices are about k/(s − 1) apart. The parameter t is introduced to slightly expand the

class of generators. It is the smallest index j for which αj = B. DX-k-s is the special case when

t = 1. The FMRG proposed by Deng and Lin, 2000 is another special case with s = 1 and t = 1.

PRNGs with very few nonzero coefficients has a disadvantage of ”bad initialization effect”, that is,

when the k-dimensional state vector is close to the zero vector, the subsequent members generated

may stay within a neighborhood of zero for many of them before they can break away from this near

zero state. This property is not desired in the sense of randomness. This ”bad initialization effect”

was first observed by Panneton, L’Ecuyer, and Matsumoto, 2006, for MT19937. MT19937

is a popular generator proposed by Matsumoto and Nishimura, 1998, it has a period length of

10

219937 − 1 ≈ 106001 and equi-distribution up to 623 dimensions. The DX generators belong to this

category of PRNGs since it has very few nonzero coefficients.

In the next subsection, we look at an extension of the DX generators to a general class of efficient

and portable MRGs with many nonzero terms. This class of MRGs can be designed to overcome

”bad initialization effect”, however, these MRGs tend to be inefficient. It is possible to find efficient

implementations for certain generators by rewriting equation (2.10) below, as a simple higher-order

recurrence equation, see, Deng and J.-J. H. Shiau, 2015 for details.

A general class of efficient generators

According to Deng and Bowman, 2017, to construct a general class of efficient generators,

consider a special class of MRGs that have at most two different nonzero coefficients, for example,

A and B. Let SA and SB be two index sets defined as SA = {j|αj = A} and SB = {j|αj = B},

such that SA∩SB = ∅.Deng, Li, J.-J. Shiau, and Tsai, 2008, proposed a general class of generators

of the form:

Xi = A
∑
j∈SA

Xi−j +B
∑
j∈SB

Xi−j mod p (2.10)

This class of generators is computationally efficient if we have only few elements in both SA and

SB. The DX generators defined earlier is a special case of the generator in equation (2.10)

1. DL Generators

Deng, Li, J.-J. Shiau, and Tsai, 2008, examined the structure of the generators of the form in

equation (2.10) with restrictions on the forms of SA and SB and proposed a class of DL generators

with SA = {1, 2, · · · , t− 1} and SB = {t, t+ 1, · · · , k} for 1 ≤ t < k. Then

Xi = A(Xi−1 +Xi−2 + · · ·+Xi−t+1) +B(Xi−t +Xi−t−1 + · · ·+Xi−k) mod p, i > k (2.11)

11

where t can be useful to expand the search space for maximal period DL generators.

Using higer-order recurrence, DL can be implemented efficiently as

Xi = Xi−1 + A(Xi−1 −Xi−t) +B(Xi−t −Xi−(k+1)) mod p i ≥ k + 1 (2.12)

where X0, X1, · · · , Xk−1 are the initial seeds and Xk are computed according to equation (2.11).

The efficiency and portability of the DL generators can be further improved by letting the coeffi-

cient of A = 0,−1, 1, or −B. This reduces one multiplication and several addition/subtraction

operations. When A = 0 we have the simple form:

Xi = B(Xi−t +Xi−t−1 + · · ·+Xi−k) mod p, i ≥ k, t ≥ 1. (2.13)

In this study, we consider the special case of A = 0 and t = 1, for simplicity. We refer to this as

DL-k generators and is implemented efficiently by:

Xi = Xi−1 +B(Xi−t −Xi−(k+1)) mod p i ≥ k + 1 (2.14)

For more about efficient implementation of DL generators, see Deng and J.-J. H. Shiau, 2015.

2. DS Generators

Deng, Li, J.-J. Shiau, and Tsai, 2008, proposed another set of generators that can be efficiently

implemented, known as DS generators. These generators also have many nonzero terms and are

defined as:

Xi = B

k∑
j=1

Xi−j − CXi−d mod p, i ≥ k. (2.15)

By introducing parameters B and C for the multipliers, and index d, the search parameter space

is expanded. DS generators can be efficiently implemented using the following (k + 1)-th order

12

recurrence equation:

Xi = Xi−1 +B(Xi−1 −Xi−k−1)− C(Xi−d −Xi−(d+1)) mod p i ≥ k + 1 (2.16)

where X0, X1, · · · , Xk−1 are the initial seeds and Xk are computed according to equation (2.15)

According to Deng, Li, J.-J. Shiau, and Tsai, 2008, the DS generators have several special cases

of interest. When C = 0, the DS generator is the same as the DL with A = 0 and t = 1. When

C = B, the DS generator has exactly one zero coefficient at the d-th term:

Xi = B
k∑

j=1,j 6=d

Xi−j mod p, (2.17)

which can be efficiently implemented as

Xi = Xi−1 +B(Xi−1 −Xi−d +Xi−(d+1) −Xi−k−1) mod p i ≥ k + 1 (2.18)

The parameter d can be chosen arbitrarily and for simplicity, the case d = dk/2e is referred to as

DS-k generators.

For more on the efficient implementation of DS generators, see Deng and J.-J. H. Shiau, 2015.

3. DT Generators

As discussed in Deng, J.-J. Shiau, and Tsai, 2009, another class of MRGs, called DT generators,

with many nonzero terms and unequal weights on each term is defined by

Xi = BkXi−1 +Bk−1Xi−2 + · · ·+BXi−k mod p, i ≥ k. (2.19)

DT generators can also be efficiently implemented by the following (k + 1)-th order recurrence

13

equation:

Xi = (B−1 +Bk)Xi−1 −Xi−k−1 mod p i ≥ k + 1 (2.20)

Where D ≡ (B−1 +Bk) mod p can be pre-computed.

Details on efficient implementations of DT generators can be seen in Deng and J.-J. H. Shiau, 2015.

2.3 K-distribution property and Spectral Test

As seen earlier, some desirable properties of good multiple recursive generators (MRGs) are

long period length, uniformity and equi-distribution in higher dimensions, efficiency, portability

and good empirical performance. A PRNG has a ”k-distribution property” or ”equi-distribution

property over k-dimensions” if every r-tuple (1 ≤ r ≤ k) of numbers appears exactly the same

number of times, except for the all-zero tuple that appears one time less. That is, for an MRG(k,p),

over its whole period, pk−1, every r-tuple (a1, a2, a3, · · · , ar) of integers in Zr
p appears exactly the

same number of times (pk−r), with the exception of the all-zero tuple (0, 0, 0, · · · , 0) that appears

one time less (pk−r − 1), Lidl and Niederreiter, 1994, Theorem 7.43. Thus for r ≤ k, generators

in MRG(k,p) are quite close to an ”ideal” generator; only the all-zero tuple is generated one time

less than the other r-tuples.

Nevertheless, for Ui = Xi/p with the index i running through the entire period (pk − 1) of the

maximum period (MRG) in (2.3), a key requirement for a good MRG is that the set of vectors of

successive output values Ti =
{
(Ui, Ui+1, · · · , Ui+r−1)|i ∈ pk − 1

}
from all possible initial states,

should cover the unit hypercube [0, 1)r very evenly. It should be noted that as proposed in Deng

and H. Xu, 2003, the output Ui is often slightly modified, say, Ui = (Xi+0.5)/p to avoid returning

zero. This has little impact on our work here, so we ignore it. The set of fixed non-negative integers,

I = {0, 1, 2, · · · , r − 1} could be thought of as the indices selected from the state to create all the

possible r-tuples over all steps i in the period of the MRG.

Geometrically speaking, these r-tuples can be thought of as r-dimensional points or vectors such

14

that

Ti =
{
(Xi/p,Xi+1/p, · · · , Xi+r−1/p)|i ∈ pk − 1

}
(2.21)

forms a lattice of points in an r-dimensional spaces, [0, 1)r.

Generally, for any finite set of integers I = {i1, i2, · · · , ir}, where 0 ≤ i1 < i2 < · · · < ir,

consider a multi-set Ωr(I) of all r-dimensional output vectors (Ui1 , Ui2 , · · · , Uir) obtained when

the initial state S0 = (X0, X1, · · · , Xk−1) of the MRG in (2.3) runs over all its pk possibilities:

Ωr(I) = {(Ui1 , Ui2 , · · · , Uir) ∈ [0, 1)r|S0 ∈ Zk
p} (2.22)

If S0 is picked at random uniformly from Zk
p, then (Ui1 , Ui2 , · · · , Uir) has the uniform distribution

Ωr(I) as in (2.22).

From the equi-distribution property over k-dimensions, for r ≤ k, whenever ir − i1 < k, or

equivalently (ir − i1 + 1) ≤ k, Ωr(I) as stated in (2.22), contains every vector (Zk
p/p), that is,

every r-dimensional vector whose coordinates are in {0, 1/p, · · · , p − 1/p} exactly pk−r times

each. Clearly, the output coordinates are all multiples of 1/p and this is the best uniformity we can

desire for.

For r > k, this ideal uniformity is not possible because pr > pk = |Ωr(I)|. That is, it is

not possible, because the number of possible r-tuples, pr, is larger than the period length of the

MRG. More intriguingly, when ir − i1 ≥ k, that is, (ir − i1 + 1) > k, this uniformity is no longer

guaranteed, even if r is small. In fact, like the well-known problem for the LCG in Marsaglia, 1968,

it is well known thatΩr(I) as in (2.22), is the intersection of a lattice in Rr with the unit hypercube

[0, 1)r, that is, these r-dimensional points lie on a relatively small family of equidistant parallel

hyperplanes in a high dimensional space; see, for example, L’Ecuyer, 1997 and D. E. Knuth, 2014.

This means that there are families of equidistant parallel hyperplanes in Rr such that each family

covers Ωr(I) as in (2.22).

Let dr(k) (since it is influence by the dimension r and order k) denote the maximum dis-

15

tance between adjacent hyperplanes, taken over all families of parallel hyperplanes that cover

Ωr(I) as in (2.22). If dr(k) is small, then the generator is consider ”good” because the ”gap”

between two adjacent hyperplanes in r-dimensional space is small. If the dimension r is much

larger than k, the maximum ”gap” dr(k) becomes so large that no MRG, of fixed order k, can be

considered ”good”. The evaluation of the performance of a given generator based on dr(k)′s is

often called the spectral test, for example, see D. E. Knuth, 2014. In fact, D. Knuth, 1998, notes

that ”Not only do all good generators pass this test, all generators now known to be bad fail it.

Thus, it is by far the most powerful test known, and it deserves particular attention”.

Since all maximum period MRGs have the ”perfect” lattice structure for dimensions up to

order k, the difference on the lattice structure among the generators of the same order k can only

lie in dimensions r ≥ k + 1. If dr(k) is used as a measure of efficiency(or figure of merits) to

compare generators, then the wish will be for this value to be as small as possible. According to

Deng, J.-J. H. Shiau, and Lu, 2012b, a well known lower bound for dr(k) is

d∗r(k) =


p−k/r

qr
, r > k

1/p, r ≤ k

where the constant qr depends only on r; for example, see D. E. Knuth, 2014, L’ecuyer, 1999 and

Kao and Tang, 1997. If the exact value of d∗r(k) is known, Fishman and Moore, 1986, proposed

to compare generators with different values of modulus by normalizing dr(k) with d∗r(k)
dr(k)

so that

the value is between 0 and 1, the larger the better. The unfortunate thing is that the value of qr is

known only for r ≤ 8, thus when r is large, there is no general formula for qr.

16

2.4 Relationships between Multiple Recursive Generators (MRGs) and Matrix

Congruential Generators(MCGs)

As discussed in Section 2.1, the MRG, as defined in equation (2.3), is the k-order extension

of the LCG as defined in equation (2.2). There is a simple relationship between an MRG’s compan-

ion matrix and its characteristic equation. For the MRG defined in equation (2.3), its corresponding

companion matrix is defined as

Mf =



0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0

...
...

...

0 0 0 · · · 1

αk αk−1 αk−2 · · · α1


(2.23)

Its characteristic polynomial is defined as

f(x) = det(xI−Mf)mod p. (2.24)

The matrix congruential generator (MCG), which is a natural k-th dimensional extension of the LCG

as defined in equation in (2.2), is defined as:

Xi = B Xi−1 mod p, i ≥ 0 (2.25)

where Xi is a k-dimensional vector in Zk
p, X−1 is a nonzero vector, and the matrix multiplier B is a

k × k matrix in Zk×k
p . Many authors, such as, Niederreiter, 1986, L’Ecuyer, 1990, Franklin, 1964

and Grothe, 1987, considered MCG in their work.

17

The characteristic polynomial of an MCG is defined as

fB(x) = det(xI− B)mod p. (2.26)

An integer matrix B ∈ Zk×k
p has order h if

h = min
j>0
{j : Bj mod p = I}

As a vector sequence (Xi, i ≥ 0), an MCG has the maximum period of pk − 1 if and only if the

matrix B has the order of pk − 1. Furthermore, it is well known that, the matrix B has the order

of pk − 1 if and only if its corresponding characteristic polynomial fB(x) as defined in equation

(2.26) is a primitive polynomial.

Particularly, for every generator in MRG(k, p) that has primitive polynomial, say, f(x),

the corresponding companion matrix Mf as defined in equation (2.23), has the order pk − 1.

With this in mind, Grothe, 1987, proposed a class of MCGs with B = TMfT−1, where T is an

invertible k × k matrix in Zk×k
p and Mf is the companion matrix to a generator in MRG(k, p).

Thus, the first relationship between MCGs and MRGs is that, MCGs can be constructed from the

companion matrix Mf of a generator in MRG(k, p). The MCG shares the same characteristic

polynomial as the generator in MRG(k, p) because fB(x) = det(xI − TMfT−1) = det(xI −

M
f
) = f(x) over Zp.

Basic concepts of MCGs

Let’s consider the sequence of k-dimensional vectors generated by an MCG, X1 ,X2, · · · .

As stated earlier, the maximum period of this MCG is pk − 1, as a result, this vector sequence will

repeat after the period pk−1 is reached. Thus, any nonzero k-dimensional vector in Zk
p will appear

only once. This uniformity property over the k-dimensional cube of Zk
p is a requirement for Xi/p

to resemble a k-dimensional random vector in [0, 1]k. In addition, any r-dimensional sub-vector

18

r < k from Xi, i = 1, 2, · · · will have the equi-distribution property over r-dimensional space.

This is similar to what we had for a maximum period MRG. That is, all r-dimensional nonzero sub-

vectors will occur pk−r times except for all the r-dimensional zero sub-vectors which will occur

one time less (pk−r − 1 times).

Grothe, 1987, first observed, using the Cayley-Hamilton Theorem that, when taken as a

k-dimensional vector sequence, (Xi, i ≥ 0), the MCG satisfies the same recursion as the generator

in MRG(k, p) whose companion matrix Mf was used to define the matrix multiplier B. That is,

the vector sequence, (Xi, i ≥ 0), satisfies the following recursion:

Xi = (α1Xi−1 + α2Xi−2 + · · ·+ αkXi−k)mod p, i ≥ k (2.27)

Thus, the k sequences taken from each of the k rows in equation (2.27) can be viewed as k copies

of the same MRG with different starting seeds. That is, as a vector sequence, a maximum period

MCG can be viewed as running k copies of the same generator in MRG(k, p) with different start-

ing seeds. We can view these as k output streams corresponding to the k-rows in the generating

equation (2.27). This is our second relationship between MRGs and MCGs.

Each stream is produce by the same MRG sequence using the same generating equation with dif-

ferent starting shifts. Due to the huge period length pk − 1, the random starting seeds can produce

a reasonably large shift among k different streams. This ”row-wise” output method is suitable for

parallel simulation by assigning a different stream for each central processing unit (CPU). Thus,

it is important to consider the problem of choosing the matrix multiplier B with the characteristic

polynomial f(x) so that the corresponding MCG is efficient to implement in either ”column-wise”

or ”row-wise” mode.

19

2.5 Summary

In this Chapter, we reviewed some existing literature that shall be useful in this study.

Specifically, some developments in PRNGs in Section 2.1 and some special classes of MRGs in

Section 2.2, which we shall use mainly in Chapter 3, the k-distribution property in Section 2.3,

which we will employ mostly in Chapter 4, and the relationships between MRGs and MCGs, dis-

cussed in Section 2.4, will be utilized in Chapter 5, for the efficient and parallel implementation of

the DW-k generators.

20

Chapter 3

Search for Super-order Multiple Recursive Generators

3.1 Methods Used in Searching for Super-order Multiple Recursive Generators

In Section 2.1, we stated algorithm AK as proposed by Alanen and D. E. Knuth, 1964.

One of the major shortcoming of this algorithm was the difficulty of factorizing R(k, p) = (pk −

1)/(p − 1). Certainly, this is the major difficulty in evaluation to carry out the test for primitivity

modulo p. To avoid this difficulty of factoring R(k, p) = (pk − 1)/(p − 1), one can search for p

with a fixed k such that R(k, p) is a prime number. Obviously, k has to be an odd prime number,

see Deng, J.-J. H. Shiau, and Lu, 2012b for details.

There are some studies in the field of number theory concerning primes of the form (ak−1)/(a−1),

in particular for ”small” values of a (from 2 up to 12). For example, when a = 2, it is a Mersenne

number, for example, see details in [Williams and Seah, 1979, Brillhart, D. Lehmer, Selfridge,

Tuckerman, and Wagstaff, 2002].

After finding prime modulus p for GMPs, Deng, 2004, proposed an efficient search algorithm

called algorithm GMP, which will exit early when f(x) in (2.4) is not a primitive polynomial. This

early exit strategy saves a huge amount of time, especially when k is large. According to Deng,

2004, algorithm GMP is 1000+ folds more efficient over the algorithm AK in D. Knuth, 1998.

Furthermore, Deng and Bowman, 2017, illustrated this with a concrete example.

21

Some notions about prime factors of R(k, p) = (pk − 1)/(p− 1)

As mentioned earlier, as k increases, the likelihood of finding p such that R(k, p) = (pk −

1)/(p− 1) is a prime by computer search decreases and the computing time for some probabilistic

primality testing procedures increases drastically, see, for example Deng, J.-J. H. Shiau, and Lu,

2012b. The major drawback with most of the probabilistic primality testing programs is that,

irrespective of whether the number under test is a prime or not, the amount of computing time is

about the same. Therefore, it is important to have an early exit strategy to quickly screen out some

p′s with a composite number R(k, p), which will help to accelerate the search, see Deng, J.-J. H.

Shiau, and Lu, 2012b, for details. With the help of some classical number theory results, such an

efficient screening procedure is developed.

Theorem 1 below gives a characterization of the prime factors of R(k, p). It is a special case of

Legendre’s [Andrien-Marie Legendre (1752 - 1833)] theorem for the prime factors of the form

ak ± bk, where a and b are integers with gcd(a, b) = 1 and k is any positive integer.

Theorem 1. [Theorem 2.4.3 in Williams, 1998, page 41]

Let k be a prime. For every prime factor q of (pk − 1)/(p− 1), q = 1 mod 2k.

Thus, it is easy to see that any prime factor, say, q, of (pk − 1)/(p − 1) should be of the

form 2kc + 1, for some integer c, because both q and k are odd primes. With this, we can rule out

any prime number such that q 6= 1 mod 2k to be a factor of (pk − 1)/(p− 1).

Deng, J.-J. H. Shiau, and Lu, 2012a, used this simple result to find complete factorization for

k = 7499 and k = 20897 with p = 231 − 1 and with this, they found several efficient and

portable MRGs of order k = 7499 and k = 20897. According to Deng, J.-J. H. Shiau, and Lu,

2012b, it remains an open question whether there is any k such that (pk − 1)/(p− 1) is a GMP, for

p = 231 − 1.

In this study, we are looking for prime modulus p such that (pk − 1)/(p − 1) is a prime, for

p = 231 − v, v a positive integer. With the help of Theorem 1, we can greatly accelerate this

22

computer search by ruling out all primes q 6= 1 mod 2k. To further quantify the savings, Deng,

J.-J. H. Shiau, and Lu, 2012b used another powerful theorem in number theory, to illustrate this

fact, for details on this, see Deng, J.-J. H. Shiau, and Lu, 2012b, Theorem 2.

Once a prime factor is found, the search program can go on to verify the next candidate p. Based

on the aforementioned observation, Deng, J.-J. H. Shiau, and Lu, 2012b, developed the following

screening strategies.

Strategies for Finding Generalized Mersenne Primes

According to Deng, J.-J. H. Shiau, and Lu, 2012b, the strategies that are used in finding

proper (k, p) pairs such that (pk − 1)/(p− 1) is a prime can be summarized as follows:

1. For a given prime order k, compute Qn, the product of all prime numbers q ≤ n of the form

2kc + 1, for some integer c, say, with n = 1012.

2. For a given prime p, check whether there is any common factor between Qn and (pk −

1)/(p− 1):

(a) If the primality test fails, move on to another p;

(b) Otherwise, record the prime modulus p as the result for the current k, and then go on

to repeat the whole procedure with the next prime order k.

With these strategies in mind, we used the primality tester software PFGW for the actual search

test. Given a range [x, y] for p and an order k, we used the strategies above to search for a prime p

within a set where (p− 1)/2 is also a prime, a strategy adopted in L’Ecuyer, Blouin, and Couture,

1993. For 32-bit PRNGs, we started from the upper limit x = 231 − 1 and moved downward until

the search was successful or the lower limit y was reached. Deng, 2008, found some p′s for which

R(k, p) is a GMP for k up to 10007 and Deng, J.-J. H. Shiau, and Lu, 2012b, found some p′s for

whichR(k, p) is a GMP for even larger values of k up to k = 25013. In this study, and for the 32-bit

23

PRNGs, with the skipping strategy described earlier, we were able to extend the search and find

GMPs super large values for some k′s (k = 40751, k = 50551, and k = 50873.) The results for

these k′s, together with their corresponding v and p values for which R(k, p) = (pk − 1)/(p− 1)

is a GMP are given in Table 1. Over 45 days of Central Processing Unit (CPU) time were spent[in

an Intel(R), Xeon(R) CPU E5-2680 computer with a processing speed of 2.50GHz] in searching

for the new p′s listed in Table 1.

Table 1. List of k, v, and p = 231 − v, for which (pk − 1)/(p− 1) is a prime(GMP)
k v p = 231 − v log10(p

k − 1)
40751 890301 2146593347 380278.1
50551 758421 2146725226 471730.6
50873 1359861 2146123787 474729.3

To address one of the major shortcomings of algorithm AK in Section 2.1 in finding MRGs,

which involved factoring a huge number like pk − 1, we must mention that L’Ecuyer, Blouin, and

Couture, 1993, proposed a method for bypassing this difficulty for k ≤ 7 and later L’Ecuyer, 1999,

extended the method for k ≤ 13 that focused on finding p such that

R(k, p) = (pk − 1)/(p− 1) (3.1)

is also a prime.

Note that Deng, 2004, called R(k, p) = (pk − 1)/(p − 1) a Generalized Mersenne Prime(GMP);

this is different from a Mersenne prime [named after the French Monk, Marin Mersenne (1588 -

1648)], which is a prime of the form 2k− 1. The popular Mersenne Twister (MT19937) generator

proposed by Matsumoto and Nishimura, 1998, is based on a particular Mersenne prime with k =

19937. Presently, there are only 51 known Mersenne primes. For details, see, the Great Internet

Mesrsenne Prime search (GIMPS) at https://www.mersenne.org/. Although GMPs are extensions

of Mersenne primes, the goal of GMPs is different as we have discussed above.

With this new pairs of (k, p) that we have found via GMPs, we will now use algorithm GMP

24

to search for efficient and portable maximum period MRGs, within the DX/DL/DS/DT classes in

the next section.

As Deng, 2008, argued, ”OnceR(k, p) is claimed as a probable prime, it is fairly safe to claim that

the primitive polynomial found subsequently by algorithm GMP, is indeed a primitive polynomial

and hence a maximum period MRG is found”.

3.2 Super-order Multiple Recursive Generators

Although MRGs have an increased maximum period of pk− 1, MRGs are less efficient than

LCG because of the several multiplications that are involved. To improve the speed of generation,

Grube, 1973, L’Ecuyer and Blouin, 1988, and L’Ecuyer, Blouin, and Couture, 1993, suggested

using two nonzero terms αj and αk (1 ≤ j < k) of the MRG in equation (2.3) and provided

portable implementations of MRGs satisfying these conditions. Deng and Lin, 2000 proposed to

set as many coefficients of αi in an MRG to be 0 and/or±1 as possible. In particular, they proposed

a fast multiple recursive generator (FMRG) which is a special MRG with maximum period, pk − 1.

What we can infer from this is that, not all MRGs are efficient in generating random numbers

or having good empirical/theoretical performances. Therefore, in using algorithm GMP to search

for good maximum period MRGs, it is important that we restrict the search within some special

classes of MRGs. It is in this regard that we considered extending the DX/DL/DS/DT MRGs in

this Chapter.

Finding Maximum Period MRGs

We used an efficient search algorithm known as algorithm GMP proposed by Deng, 2004, to

find maximal period MRGs of super-orders. As mentioned earlier, this algorithm provides an early

exit strategy to overcome a second bottleneck in the algorithm AK proposed by D. Knuth, 1998.

25

Algorithm GMP

Let p be a prime, R = (pk − 1)/(p− 1) and f(x) be as in equation (2.4)

1. (−1)k−1αk must be a primitive element modulo p.

2. Initially, let g(x) = x. For i = 1, 2, 3, · · · , bk
2
c, where bxc is the largest integer ≤ x, do:

(a) g(x) = g(x)pmod f(x);

(b) d(x) = gcd(f(x), g(x)− x);

(c) if d(x) 6= 1, then f(x) cannot be a primitive polynomial. Exit.

3. For each prime factor q of R, the degree of xR/q mod (f(x), p) is positive.

If all three steps have been passed with no early exit, then f(x) is a primitive polynomial. For

details see, Deng, 2005 and Deng and J.-J. H. Shiau, 2015.

The chance of finding one primitive polynomial is less than 1/k.Algorithm GMP can greatly

reduce the search time to a small fraction. In fact, as mentioned earlier in Section 3.1, this early

exit strategy saves a huge amount of time, especially when k is large. According to Deng, 2004,

algorithm GMP is 1000+ folds efficient over algorithm AK in D. Knuth, 1998. Furthermore, Deng

and Bowman, 2017, illustrated this early exit strategy with a concrete example. In this example, a

typical search result for an efficient MRG, called DX-k, with k = 3803, shows that the number of

iterations for the search is 2858. For the 2857 failed searches, 90% will exit at i ≤ 6 iterations.

Thus, algorithm GMP has two main advantages. The first advantage is that it avoids the factorization

(pk− 1) by searching for p such that R(k, p) = (pk− 1)/(p− 1) is a prime. It is a well known fact

that problem primality testing is much easier than factorization, see, for example, Agrawal, Kayal,

and Saxena, 2004. The second advantage is that it provides an early exit strategy for failed search,

which allows for a quick exit in most cases, except for a successful search.

Using algorithm GMP and the various values of k as given in Table 1, we found many primitive

polynomials of degrees up to 40751, 50551, 50873 corresponding to super-order MRGs of periods

26

up to approximately 10380278.1, 10471730.6, 10474729.3, respectively. More on these are discussed in

the following sections.

3.3 Super-order DX generators

According to L’Ecuyer, 1997, a necessary (but not sufficient) condition for a ”good” MRG

is that the sum of squares of coefficients,
∑k

i=1 α
2
i , should be large. Therefore MRGs with large∑k

i=1 α
2
i , should normally be preferable. For DX generators, this entails that s and B should be as

large as possible, while maintaining the efficiency and portability property.

For portability, Deng, 2005, discuss some common approaches that impose certain limits on the

size of B so that the exact results of the multiplication can be produced with all computing plat-

forms. In particular, Deng, 2005, proposed;

• B ≤ 230, for s ≤ 4, for a system-dependent 64−bit integer data type which is available in

many popular compilers in 32−bit computer systems.

• B ≤ 2d, where d = 20, when s = 1, 2; d = 19, when s = 3, 4, following Institute for

Electrical and Electronics Engineers (IEEE) double precision standard.

Details on these choices of B can be seen in Deng, 2005.

For DX − 40751 and DX − 50873 generators and B ≤ 230, we took intervals of approxi-

mately 108 and searched for maximum B in each interval. With these B values, we listed several

maximum period DX − k − s− 1 generators.

The average search time(in seconds) for eachDX−40751−s−1 generator, using algorithm

GMP is 34696. The summary results for the 40, DX − 40751− s− 1 generators that we found, are

given in Table 2.

Illustrative Example

We randomly selected DX − 40751− 4− 1 for illustration with B = 1075553705.

27

Table 2. List of 40 DX − 40751− s− 1 generators, for v = 890301, p = 231− v = 2146593347,
B < 230.

B ≤ s=1 s=2 s=3 s=4
108 99999187 99943616 99989294 99908826
2x108 199882798 199976817 199757194 199908630
3x108 299989859 299810510 299947826 299926324
4x108 399941527 399782020 399837375 399929553
5x108 499891165 499815925 499995545 499949260
6x108 599888895 599948335 599973994 599977028
7x108 699982493 699939982 699997061 699918402
8x108 799960812 799982007 799994827 799948997
9x108 899996464 899971880 899903209 899946239
1075741824 1075651623 1075529026 1075474258 1075553705

The primitive polynomial found after a search time of 37533 seconds, is:

f(x) = x40751− 1075553705 ∗x40750− 1075553705 ∗x27167− 1075553705 ∗x13583− 1075553705

The super-order maximum period DX − 40751− 4− 1 is:

Xi = 1075553705 (Xi−1+Xi−13584+Xi−27168+Xi−40751) mod 2146593347, i ≥ 40751 (3.2)

The average search time(in seconds) for each DX−50873−s−1 generator, using algorithm GMP

is 54508.6. The summary results for the 40, DX − 50873 − s − 1 generators that we found, are

given in Table 3.

28

Table 3. List of 40DX−50873− s−1, generators for, v = 1359861, p = 231−v = 2146123787,
B < 230.

B ≤ s=1 s=2 s=3 s=4
108 99759194 99896807 99752885 99972212
2x108 199989793 199987588 199977331 199975550
3x108 299854494 299931435 299925758 299691408
4x108 399881831 399949293 399823824 399652737
5x108 499941247 499896845 499909502 499968105
6x108 599893817 599945685 599946254 599981116
7x108 699842887 699790261 699953754 699890205
8x108 799948441 799905440 799816150 799855408
9x108 899602700 899949236 899870427 899987637
1075741824 1075644962 1075133221 1075699644 1075505328

Illustrative Example

Similarly, we used DX − 50873− 3− 1 for illustration with B = 1075699644.

The primitive polynomial found after a search time of 52789 seconds, is:

f(x) = x50873 − 1075699644 ∗ x50872 − 1075699644 ∗ x25436 − 1075699644

The super-order maximum period DX − 50873− 3− 1 is:

Xi = 1075699644 (Xi−1 +Xi−25437 +Xi−50873) mod 2146123787, i ≥ 50873 (3.3)

After generating several super-order DX − 50873− s− 1 generators, and considering the

fact that k = 50551 is closer to k = 50873 (both are in the 50, 000 range), we limited our search

for maximum period super-order DX − 50551− s− 1 to B < 230.

We also consider the case where B < 2d, d = 19, 20 as discussed in Deng, 2005, to generate

some super-order DX−40751− s−1, DX−50551− s−1, and DX−50873− s−1 generators

as well. The summary results of the generators we found are listed in Table 4.

29

Table 4. List of DX − k − s − 1 generators with B < 2d(d = 20 for s = 1, 2 and d = 19 for
s = 3, 4) and B < 230.

DX − k − s− 1 B < 219/B < 220 B < 230

DX − 50551− 1− 1 998201 1073390951
DX − 50551− 2− 1 1044469 1073724894
DX − 50551− 3− 1 515561 1073646955
DX − 50551− 4− 1 461111 1073646756
DX − 40751− 1− 1 949211
DX − 40751− 2− 1 973351
DX − 40751− 3− 1 433849
DX − 40751− 4− 1 509184
DX − 50873− 1− 1 1004567
DX − 50873− 2− 1 1016882
DX − 50873− 3− 1 470516
DX − 50873− 4− 1 370676

Illustrative Examples

We randomly selected some super-order maximum period generators from those listed in Table 4

for illustration.

1. We used DX − 50551− 2− 1 to illustrate an example with B = 1073724894.

The primitive polynomial found after a search time of 48118 seconds, is:

f(x) = x50551 − 1073724894 ∗ x50550 − 1073724894

The super-order maximum period DX − 50551− 2− 1 is:

Xi = 1073724894 (Xi−1 +Xi−50551) mod 216725226, i ≥ 50551 (3.4)

2. As another example, we took B < 220(B = 1004567) and DX − 50873 − 1 − 1 for

illustration.

30

The primitive polynomial found after a search time of 55091 seconds, is:

f(x) = x50873 − 1 ∗ x50872 − 1004567

The super-order maximum period DX − 50551− 2− 1 is:

Xi = 1Xi−1 + 1004567Xi−50873 mod 2146123787, i ≥ 50551 (3.5)

Using algorithm GMP, we have successfully found and listed several efficient and portable super-

order DX-k-s-1 generators. We now tend our attention to DL/DS/DT class of generators.

3.4 DL/DS/DT Generators

Using the sameB values that we used for the DX generators, as discussed in Section 3.3, we

found some super-order, maximum period, efficient and portable DL/DS/DT generators. These

found generators are listed in Table 5.

Table 5. List of k, p with B < 230 and B < 2d(d = 19, 20) for DL/DS/DT generators.

k p DL DS DT
B < 230 B < 220 B < 230 B < 219 B < 230 B < 220

40751 2146593347 1073688686 1031270 1073726060 1008189 1073568775 947002
50551 2146725226 1073693006 951636 1073589974 852713 1073716997 876442
50873 2146123787 1073626564 1049100 1073681776 841776 1073547854 998884

Illustrative Examples

We took k = 40751, k = 50551 and k = 50873 to illustrate the super-order DL, DS and DT

generators respectively, for B < 230.

31

1. DL− 40751 generator with B = 1073688686

The primitive polynomial found after a search time of 35142 seconds, is:

f(x) = x40751 − 1073688686 ∗ x40750 − 1073688686

The super-order maximum period DL− 40751 is:

Xi = 1073688686 (Xi−1 + ...+Xi−40751) mod 2146593347

which can be implemented efficiently as

Xi = Xi−1 + 1073688686 (Xi−1 −Xi−40752) mod 2146593347, i ≥ 40752 (3.6)

2. DS − 50551 generator with B = 1073589974

The primitive polynomial found after a search time of 56461 seconds, is:

f(x) = x50551 − 1073589974 ∗ x50550 − 0 ∗ x25275 − 1073589974 ∗ x25274 − 1073589974

The super-order maximum period DS − 50551 is:

Xi = 1073589974Xi−1+.....+0Xi−25276+1073589974Xi−25277+....+1073589974Xi−50551 mod 2146725226

which can be implemented efficiently as

Xi = Xi−1+1073589974 (Xi−1−Xi−25276+Xi−25277−Xi−50552) mod 2146725226, i ≥ 50552

(3.7)

32

3. DT − 50873 generator with B = 1073547854

The primitive polynomial found after a search time of 52690 seconds, is:

f(x) = x50873 − 1571578769 ∗ x50872 − 1387673364 ∗ x50871 − 1544646437 ∗ x50870

− 862963011 ∗ x50869 − 567428266 ∗ x50868 − 514856600 ∗ x50867 − 1830446773 ∗ x50866

− 131303340 ∗ x50865 − 1458765425 ∗ x50864 −− 340965073 ∗ x10 − 236641122 ∗ x9

− 1206613138 ∗ x8 − 1407971913 ∗ x7 − 49919788 ∗ x6 − 121166587 ∗ x5 − 1435531505 ∗ x4

− 1170757851 ∗ x3 − 516639799 ∗ x2 − 620521937 ∗ x1 − 1073547854

The super-order maximum period DT − 50873 generator is:

Xi = 1571578769Xi−1 + 1387673364Xi−2 + 1544646437Xi−3 + 862963011Xi−4 + 567428266

Xi−5 + 514856600Xi−6 + 1830446773Xi−7 + 131303340Xi−8 + 1458765425Xi−9 +

+ 340965073Xi−50863 + 236641122Xi−50864 + 1206613138Xi−50865 + 1407971913Xi−50866

+ 49919788Xi−50867 + 121166587Xi−50868 + 1435531505Xi−50869 + 1170757851Xi−50870

+ 516639799Xi−50871 + 620521937Xi−50872 + 1073547854Xi−50873 mod 2146123787

which can be implemented efficiently as

Xi = 1849091597Xi−1 −Xi−50874 mod 2146123787, i ≥ 50874 (3.8)

3.5 Empirical Evaluation

Once PRNGs have been designed and implemented, their empirical performance needs

to be evaluated. There are several well known empirical test packages for testing a PRNG.

Some of the best known are: DIEHARD proposed by Marsaglia, 1996, the test suite imple-

mented by the National Institute of Standards and Technology(NIST) of the USA, Rukhin, 2000,

and TestU01 test package which was developed by Professor L’Ecuyer with source code from

33

http://www.iro.umontreal.ca/ lecuyer/. See, L’Ecuyer and Simard, 2007. It is the most comprehen-

sive test package. The TestU01 test package has three predefined test modules:

• Small Crush: It has 10 tests and computes 15 test statistics and p-values.

• Crush: It has 96 tests and computes 144 test statistics and p-values.

• Big crush: It is the most comprehensive with 106 tests and computes 160 test statistics and

p-values.

We evaluated the generators listed in Tables 2-5 with the Small Crush and Crush batteries

in version 1.2.3 of TestU01 with five different starting seeds. Each seed vector consists of k initial

seeds generated by an LCG : Xi = BXi−1 mod p, where the multiplier B and the modulus p are

the same as that of the MRG under consideration. We use an LCG whose multiplier is the same as B

to generate the required k initial seeds. For details, see Deng, J.-J. H. Shiau, and Lu, 2012b. The

five different starting seeds used in this study are 1, 12, 123, 1234 and 12345 following the proposal

in Deng, J.-J. H. Shiau, and Lu, 2012b.

The size of a p-value represents the probability of observing a test statistic more extreme

than the one observed when the null hypothesis is true. The smaller the p-value is, the more

significant the test result gets, and this normally indicates the generator fails the particular test

more severely. One the other hand, when the p-value is too close to 1, it is considered as ”too

good to be truly random.” For details, see L’Ecuyer and Simard, 2007. According to L’Ecuyer and

Simard, 2007, to pass all the test, no p-value should be outside the range [10−10, 1− 10−10]. In the

empirical evaluation for this study, the number of tests with p-values less than α or greater than

1− α, for α = 10−3, 10−4 and 10−5 are tabulated for the DX, DL, DS and DT generators under

testing.

We evaluated the fortyDX−40751−s−1 and fortyDX−50873−s−1 (for s = 1, 2, 3, 4)

generators listed in Table 2 and Table 3 respectively. For the Small Crush battery of tests, we

obtained 750 (=10 x 15 x 5) p-values for each class of generators listed and a total of 3, 000(=750

34

x 4) p-values for all the forty DX − 40751 − s − 1 and forty DX − 50873 − s − 1 generators.

Similarly, for the Crush battery of tests, we obtained 7, 200 (=10 x 144 x 5) p-values for each class

of generators listed and a total of 28, 800(=7,200 x 4) p-values for all the fortyDX−40751−s−1

and forty DX − 50873− s− 1 generators.

For the forty DX − 40751− s− 1 generators listed in Table 2, the p-values for the Small

Crush battery of tests are tabulated in Table 6 and that of Crush in Table 7. As we can see from

the two Tables 6-7, none of these tests produces a p-value less than 10−5 or greater than 1− 10−5.

For the Small Crush tests in Table 6, the proportion of p-values below 10−3 is 0.00067 and that for

the Crush tests in Table 7 is 0.00069. Besides, none of these tests produces a p-value very close to

0 or 1 or better still, none of these p-values is outside the range [10−10, 1 − 10−10]. Thus, we can

conclude that each of the forty DX − 40751 − s − 1 generators listed in Table 2 passed both the

Small Crush and Crush batteries of tests in the TestU01 suite.

Table 6. Results of Small Crush tests on DX-40751-s-1 with five starting seeds.
PRNG p-value < 10−3 < 10−4 < 10−5 > 1− 10−3 > 1− 10−4 > 1− 10−5

DX-40751-s-1 (750 p-values each)
DX-40751-1-1 Count 1 0 0 1 1 0
Table2 Proportion 0.00133 0 0 0.00133 0.00133 0
DX-40751-2-1 Count 1 0 0 3 0 0
Table2 Proportion 0.00133 0 0 0.004 0 0
DX-40751-3-1 Count 0 0 0 1 1 0
Table2 Proportion 0 0 0 0.00133 0.00133 0
DX-40751-4-1 Count 0 0 0 0 1 0
Table2 Proportion 0 0 0 0 0.00133 0
DX-40751-s-1 (3,000 p-values in total)
DX-40751-s-1 Count 2 0 0 5 3 0
Table2 Proportion 0.00067 0 0 0.00167 0.00100 0

For the forty DX − 50873− s− 1 generators listed in Table 3, the p-values for the Small

Crush battery of tests are tabulated in Table 8 and that of Crush in Table 9. As we can see from

the two Tables 8-9, none of these tests produces a p-value less than 10−5 and only one p-value is

greater than 1− 10−5. For the Small Crush tests in Table 8, the proportion of p-values below 10−3

35

Table 7. Results of Crush tests on DX-40751-s-1 with five starting seeds.
PRNG p-value < 10−3 < 10−4 < 10−5 > 1− 10−3 > 1− 10−4 > 1− 10−5

DX-40751-s-1 (7200 p-values each)
DX-40751-1-1 Count 4 0 0 10 0 0
Table2 Proportion 0.00056 0 0 0.00139 0 0
DX-40751-2-1 Count 3 0 0 11 0 0
Table2 Proportion 0.00042 0 0 0.00153 0 0
DX-40751-3-1 Count 8 0 0 3 1 0
Table2 Proportion 0.00111 0 0 0.00042 0.00014 0
DX-40751-4-1 Count 5 0 0 5 3 0
Table2 Proportion 0.00069 0 0 0.00069 0.00042 0
DX-40751-s-1 (28,800 p-values in total)
DX-40751-s-1 Count 20 0 0 36 4 0
Table2 Proportion 0.00069 0 0 0.00125 0.00014 0

is 0.00100, and that for the Crush tests in Table 9 is 0.00125. Besides, none of these tests produces

a p-value very close to 0 or 1. Similarly, we can conclude that each of the fortyDX−50873−s−1

generators listed in Table 3 passed both the Small Crush and Crush batteries of tests in the TestU01

suite.

Table 8. Results of Small Crush tests on DX-50873-s-1 with five starting seeds.
PRNG p-value < 10−3 < 10−4 < 10−5 > 1− 10−3 > 1− 10−4 > 1− 10−5

DX-50873-s-1 (750 p-values each)
DX-50873-1-1 Count 1 0 0 1 0 0
Table3 Proportion 0.00133 0 0 0.00133 0 0
DX-50873-2-1 Count 0 0 0 0 0 0
Table3 Proportion 0 0 0 0 0 0
DX-50873-3-1 Count 2 0 0 2 0 0
Table3 Proportion 0.00267 0 0 0.00267 0 0
DX-50873-4-1 Count 0 0 0 1 0 0
Table3 Proportion 0 0 0 0.00133 0 0
DX-50873-s-1 (3,000 p-values in total)
DX-50873-s-1 Count 3 0 0 4 0 0
Table3 Proportion 0.00100 0 0 0.00133 0 0

36

Table 9. Results of Crush tests on DX-50873-s-1 with five starting seeds.
PRNG p-value < 10−3 < 10−4 < 10−5 > 1− 10−3 > 1− 10−4 > 1− 10−5

DX-50873-s-1 (7,200 p-values each)
DX-50873-1-1 Count 8 0 0 9 1 1
Table3 Proportion 0.00111 0 0 0.00125 0.00014 0.00014
DX-50873-2-1 Count 7 0 0 8 0 0
Table3 Proportion 0.00097 0 0 0.00111 0 0
DX-50873-3-1 Count 9 0 0 9 0 0
Table3 Proportion 0.00125 0 0 0.00125 0 0
DX-50873-4-1 Count 12 0 0 9 0 0
Table3 Proportion 0.00167 0 0 0.00125 0 0
DX-50873-s-1 (28,800 p-values in total)
DX-50873-s-1 Count 36 0 0 35 1 1
Table3 Proportion 0.00125 0 0 0.00122 0.00003 0.00003

We now evaluate the sixteen DX − k − s − 1 generators listed in Table 4. Unlike the

ones above, we have not reported the results of the Small Crush battery of tests because the results

are similar and the table is a bit larger. However, all the generators listed in Table 4 passed these

tests. For the Crush battery of tests, we obtained 1, 440 (=2 x 144 x 5) p-values for each class

of DX − 50551 − s − 1 generators listed and a total of 5, 760(=1,440 x 4) p-values for all the

eight DX − 50551 − s − 1 generators. For the DX − 40751 − s − 1 and DX − 50873 − s − 1

generators, we obtained 720 (=1 x 144 x 5) p-values for each class of generators listed and a total

of 2, 880(=720 x 4) p-values for all the generators listed.

For the sixteen DX − k − s − 1 generators listed in Table 4, the p-values for the Crush

battery of tests are tabulated in Table 10. As we can see from Table 10, none of these tests produces

a p-value less than 10−5 and only one p-value is greater than 1− 10−5. For the Crush tests in Table

10, the proportion of p-values below 10−3 is 0.00139 for the DX − 50551 − s − 1 generators,

0.00139 for the DX − 40751 − s − 1 generators, and 0.00208 for the DX − 50873 − s − 1

generators. Besides, none of these tests produces a p-value very close to 0 or 1. We can therefore

conclude that each of the sixteen DX − k − s − 1 generators listed in Table 4 passed the Crush

battery of tests in the TestU01 suite.

37

According to L’Ecuyer and Simard, 2007, DX generators are among very few generators

that can pass their stringent test suite. Their assertion is just inline with the results we have obtained

above.

Finally, we evaluated the eighteen DL/DS/DT generators listed in Table 5. We have not

reported the results of the Small Crush battery of tests but all the generators listed in Table 5 passed

these tests. For the Crush battery of tests, we obtained 1, 440 (=2 x 144 x 5) p-values for each class

of DL− k/DS − k/DT − k generators listed.

For the eighteen DL/DS/DT generators listed in Table 5, the p-values for the Crush battery of

tests are tabulated in Table 11. As we can see from this table, none of these tests produces a p-value

less than 10−5 or greater than 1 − 10−5. None of these tests produce a p-value very close to 0 or

1. We can therefore conclude that each of the eighteen DL/DS/DT generators listed in Table 5

passed the Crush battery of tests in the TestU01 suite.

38

Table 10. Results of Crush tests on DX-k-s-1 with five starting seeds.
PRNG p-value < 10−3 < 10−4 < 10−5 > 1− 10−3 > 1− 10−4 > 1− 10−5

DX-50551-s-1 (1,440 p-values each)
DX-50551-1-1 Count 4 0 0 1 0 1
Table4 Proportion 0.00278 0 0 0.00069 0 0.00069
DX-50551-2-1 Count 1 0 0 1 0 0
Table4 Proportion 0.00069 0 0 0.00069 0 0
DX-50551-3-1 Count 3 0 0 4 0 0
Table4 Proportion 0.00208 0 0 0.00278 0 0
DX-50551-4-1 Count 0 0 0 1 0 0
Table4 Proportion 0 0 0 0 0 0
DX-50551-s-1 (5,760 p-values in total)
DX-50551-s-1 Count 8 0 0 7 0 0
Table4 Proportion 0.00139 0 0 0.00122 0 0
DX-40751-s-1 (720 p-values each)
DX-40751-1-1 Count 0 0 0 2 0 0
Table4 Proportion 0 0 0 0.00278 0 0
DX-40751-2-1 Count 0 0 0 2 0 0
Table4 Proportion 0 0 0 0.00278 0 0
DX-40751-3-1 Count 0 0 0 1 0 0
Table4 Proportion 0 0 0 0.00139 0 0
DX-40751-4-1 Count 1 0 0 0 0 0
Table4 Proportion 0.00139 0 0 0 0 0
DX-40751-s-1 (2,880 p-values in total)
DX-40751-s-1 Count 1 0 0 5 0 0
Table4 Proportion 0.00035 0 0 0.00174 0 0
DX-50873-s-1 (720 p-values each)
DX-50873-1-1 Count 3 0 0 2 1 0
Table4 Proportion 0.00417 0 0 0.00278 0.00139 0
DX-50873-2-1 Count 1 0 0 0 0 0
Table4 Proportion 0.00139 0 0 0 0 0
DX-50873-3-1 Count 0 0 0 3 0 0
Table4 Proportion 0 0 0 0.00417 0 0
DX-50873-4-1 Count 2 0 0 0 0 0
Table4 Proportion 0.00278 0 0 0 0 0
DX-50873-s-1 (2,880 p-values in total)
DX-50873-s-1 Count 6 0 0 5 1 0
Table4 Proportion 0.00208 0 0 0.00174 0.00035 0

39

Table 11. Results of Crush tests on DL-k/DS-k/DT-k generators with five starting seeds.
PRNG p-value < 10−3 < 10−4 < 10−5 > 1− 10−3 > 1− 10−4 > 1− 10−5

DL-k (1,440 p-values each)
DL-40751 Count 0 0 0 2 0 0
Table5 Proportion 0 0 0 0.00139 0 0
DL-50551 Count 3 0 0 2 0 0
Table5 Proportion 0.00208 0 0 0.00139 0 0
DL-50873 Count 1 0 0 0 0 0
Table5 Proportion 0.00069 0 0 0 0 0
DS-k (1,440 p-values each)
DS-40751 Count 3 0 0 1 0 0
Table5 Proportion 0.00208 0 0 0.00069 0 0
DS-50551 Count 2 0 0 0 0 0
Table5 Proportion 0.00139 0 0 0 0 0
DS-50873 Count 0 0 0 1 1 0
Table5 Proportion 0 0 0 0.00069 0.00069 0
DT-k (1,440 p-values each)
DT-40751 Count 0 0 0 0 1 0
Table5 Proportion 0 0 0 0 0.00069 0
DT-50551 Count 3 0 0 3 0 0
Table5 Proportion 0.00208 0 0 0.00208 0 0
DT-50873 Count 1 0 0 1 0 0
Table5 Proportion 0.00069 0 0 0.00069 0 0

3.6 Summary

In this Chapter, we used some results from number theory as discussed in Deng, J.-J. H.

Shiau, and Lu, 2012b, to proposed an efficient method to accelerate the computer searches of

super-order maximum period multiple recursive generators (MRGs). After this extensive computer

searched, and for the 32-bit PRNGs, with the skipping strategy described earlier, we were able

to find some values of k and p for which R(k, p) is a prime (GMP). Specifically, we found some

super large values of k′s (k = 40751, k = 50551, and k = 50873). We used these values of k′s

and the efficient algorithm GMP as proposed by Deng, 2004, to extend some existing results for

some special classes of MRGs. These super-order MRGs, have orders 40751, 50551 and 50873 and,

approximate period lengths of 10380278.1, 10471730.6, and 10474729.3, respectively. In particular, after

40

extensive computer searches, we were able to identify 114 DX/DL/DS/DT generators that are

portable, efficient, have equi-distribution in super high dimensions, super long period lengths, and

superior empirical performances. The generators we listed here are far better than some popular

MRGs such as the MT19937. MT19937 is a popular generator proposed by Matsumoto and

Nishimura, 1998, it has a period length of 219937 − 1 ≈ 106001 and equi-distribution up to 623

dimensions. The property of equi-distribution in dimensions up to 40751, 50551, and 50873, can

be very good for super-scale simulation studies. All the 114 generators found in this study passed

the stringent Small Crush and Crush batteries of TestU01 suite.

41

Chapter 4

Search for ”Better” Super-order Multiple Recursive Generators using Spectral Test

4.1 Introduction

In Chapter 3, we searched and implemented super-order, maximum period multiple re-

cursive generators(MRGs), which have become popular in scientific research fields such as sim-

ulation and computer modeling. Among these super-order maximum period special generators

was the DX-k-s-t generators proposed by Deng and H. Xu, 2003 and Deng, 2005. These

DX-k-s-t generators are efficient, portable, have a long-period, and have the nice property of

equi-distribution in high dimension. These generators are also special because they have very few

nonzero terms. According to L’Ecuyer and Simard, 2014, the points produced by this generator

have a poor lattice structure, that is, they don’t perform very well on the spectral test, a theoretical

test that provides some measure of uniformity in dimensions farther than the DX-k-s-t genera-

tor’s order k.

The performance of DX-k-s-t generators on the spectral test could be improved by choosing

multipliers that yield a ”better” spectral test value. D. Knuth, 1998 notes that ”Not only do all

good generators pass this test, all generators now known to be bad fail it. Thus, it is by far the

most powerful test known, and it deserves particular attention”. A major drawback of the spectral

test is its computational complexity. Some traditional methods of computing this test have been

proposed in the literature, see for example, Kao and Tang, 1997, D. Knuth, 1998 . Most of these

proposed procedures are quite tedious and inefficient for large order (MRGs). Winter, 2014, pro-

pose a new method which is simple, intuitive, and efficient for some special classes of generators

42

with few nonzero terms such as the DX-k-s-t generators. In this Chapter, we use this method to

extend the search for ”better” DX-k-s-t generators beyond k = 25013.

In Section 4.2, we examined some of the intuitive and geometrical methods for computing

the spectral test, a figure of merit for evaluating MRGs as expalined in Section 2.3. There are many

traditional ways of calculating the spectral distance in the literature, for example, see Deng, J.-J. H.

Shiau, and Lu, 2012b, L’Ecuyer, 1997, and L’Ecuyer and Couture, 1997. In Section 4.3, we briefly

look at the new and simple way of computing spectral distance as proposed by Winter, 2014. In

Section 4.4, we use this method to extend the search for ”better” DX-k-s-t generators beyond

k = 25013 as proposed in Winter, 2014. We use the figure of merit of dk+1(k), the maximum

”gap” between adjacent hyperplanes in the (k + 1)-dimensional space to compare DX-k-s-t

super-order generators of order k. In particular, we found and listed ”better” DX-k-s-t super-

order generators for k = 40751, k = 50551, and k = 50873. It should be noted that these are the

k values that we searched and obtained in Chapter 3 of this study.

4.2 Evaluating the Spectral Test for MRGs

Definition:

For any integer x, we define (x)p by

(x)p =

(x mod p), if (x mod p) < p/2

(x mod p)− p, otherwise.

(x)p denotes the symmetric modulus operation with −p/2 < (x)p < p/2.

For an r-dimensional integer vector x = (x1, x2, · · · , xr),we define (x)p = ((x1)p, (x2)p, · · · , (xr)p)

and ‖x‖2 =
∑r

i=1 x
2
i .

Let

Ωk+1(I) = {[Xi/p,Xi+1/p, · · · , Xi+k/p], i = 0, 1, 2, · · · } (4.1)

43

Spectral Test for LCGs

For the LCG (or MRG with k = 1), Xi = BXi−1mod p, the maximum period is p− 1. Let

Ω2(I) = {[Xi−1/p,Xi/p], i = 1, 2, · · · , (p− 1)} (4.2)

be the set of all overlapping pairs (Xi−1/p,Xi/p), i = 1, 2, · · · , (p−1). The ordered pair Ω2(I) in

(4.2) can be covered by several parallel lines Bx− y = τ, τ = 0,±1,±2 · · · where x corresponds

to Xi−1/p and y corresponds to Xi/p. Therefore BXi−1 − Xi = τp. Its corresponding ”normal

vector” is V = [B,−1]. The distance or gap between the two adjacent parallel lines is d2 = 1
‖V‖

= 1√
1+B2 . The smaller the value of d2, the better the generator.

There are other ways to cover Ω2(I) in (4.2) by other sets of parallel lines. For an integer c, any

point in equation (4.2) will also satisfy the equation

cXi = (cB)pXi−1mod p (4.3)

The points in the lattice Ω2(I) in (4.2) can also be covered by several parallel lines of (cB)px −

cy = τ , with the corresponding ”normal vector” Nc = (cV)p = [(cB)p ,−c]. The distance or

gap between the two parallel lines is d2 = 1
‖Nc‖ = 1√

c2+(cB)2p
. We will restrict the range of c to

0 < c < p/2 because ‖(−cV)p‖ = ‖(cV)p‖, that is, because of the symmetric property. Each c in

this range, which need not be unique, will define family of parallel lines that cover all the points

in Ω2(I) as in (4.2). Our objective is to find the value of c such that ‖Nc‖ is the smallest among

all the families of parallel lines. The smallest ‖Nc‖ will give the largest distance or gap, and hence

the worst generator.

44

Illustrative Examples

For illustration, let’s consider the LCG[B,23]: Xi = BXi−1 mod 23 generators. The ten

primitive rootsmod 23,which guarantee a maximum period of 22, areB = (5, 7, 10, 11, 14, 15, 17, 19, 20, 21).

We shall use a starting seed of 4 and generate 22 numbers (22 is the maximum period) for each

LCG[B,23] generator in our illustration.

Figure 1. Lattice structure of ten maximum period LCG[B, 23] generators.

As we can see from Figure 1, the lattice structures for the ten maximum period LCG[B,23]

generators are not the same. This simply means that it does not just suffices for the primitive root

mod 23 to give a maximum period generator, we need to further evaluate the generators in order

to get a ”better” one.

45

Example 1: Intuitively comparing the lattice structures of LCG[5,23], LCG[20,23],

and LCG[21,23] generators, represented in Figure 2 by Figures a, b and c respectively.

Figure 2. Lattice structure of LCG[5, 23], LCG[20, 23] and LCG[21, 23] generators.

From these lattice structures, the LCG[5,23] generator, Figure a (top-left), is the best of

the three generators because it is more evenly distributed. Similarly, the LCG[21,23] generator,

figure c(top-right) is the worst of the three generators.

Example 2: Comparing the lattice structures of LCG[5,23] and LCG[14,23] genera-

tors, represented in Figure 3 by Figures a and d respectively by calculating their spectral distance.

Using specific pairs of parallel lines for the overlapping pairs in each generator, we can

clearly see that the generator in Figure d (top-right) is ”better”. However, we want to calculate

46

Figure 3. Lattice structure of LCG[5, 23] and LCG[14, 23] generators.

the actual spectral distance between these pairs of parallel lines in order to confirm this assertion.

For LCG[5,23] the ”normal vector” for the pairs of parallel lines is N = [5,−1]′. The spectral

distance

d2 =
1√

1 + 52
= 0.19612.

For LCG[14,23] the ”normal vector” for the pairs of parallel lines is N = [14,−1]′. The spectral

distance

d2 =
1√

1 + 142
= 0.071247.

From their spectral distance, the LCG[14,23] generator, indicated in Figure d (top-right), is

better than the LCG[5,23] generator, indicated in Figure a (top-left).

47

Example 3: Consider the families of parallel lines for cXi = (c14)23Xi−1mod 23 gener-

ators, for 0 < c < 23/2. Our objective is to find the value of c for which the distance or gap, d2

is the largest (Worst case of LCG[14,23]). The families of parallel lines are shown in Figure 4,

based on the calculation of the ”normal vectors” below.

N1 = (1V)23 = (−9,−1),N2 = (2V)23 = (5,−2),N3 = (3V)23 = (−4,−3)

N5 = (5V)23 = (1,−5),N7 = (7V)23 = (6,−7),N8 = (8V)23 = (−3,−8),

N9 = (9V)23 = (11,−9),N11 = (11V)23 = (−7,−11)

Figure 4. Families of parallel lines covering successive overlapping pairs from LCG[14,23]
generator.

48

The family corresponding to c = 2 is the same as that of c = 4, the family corresponding

to c = 3 is the same as that of c = 6 and the family corresponding to c = 5 is the same as that of

c = 10. Thus N4,N6 and N10 are omitted from these calculations and from Figure 4.

The family corresponding to c = 3 (Figure c of the top row of Figure 4) is the one with the

largest spectral distance of 0.2 between adjacent, parallel lines. As a result, it is also the family

with the shortest ”normal vector”, N3 = (3V)23 = (−4,−3), with a value of ‖N3‖ = 5. This

family will produce the ”worst” generator.

Spectral test for r=k+1

Points in Ωk+1(I) as in (4.1), form a (k + 1)-dimensional lattice over [0, 1)k+1, where all

these points can be covered by several parallel k-dimensional hyperplanes whose ”normal vector”

is

V = [αk, αk−1, · · · , α1,−1]′.

For any integer c, Ωk+1(I) as in (4.1), will also satisfy the equation

cXi = ((cα1)pXi−1 + · · ·+ (cαk)pXi−k) mod p, i ≥ k.

Consequently, several families of parallel k-dimensional hyperplanes, associated with a chosen c,

can cover all the points inΩk+1(I) as in (4.1), with ”normal vector” (cV)p. We can find the shortest

”normal vector” (cV)p, by evaluating

v2k+1(k) = min
c6=0
‖(cV)p‖2 = min

0<c<p/2

(
k∑

i=1

(cαi)
2
p + c2

)
(4.4)

49

The search space for c is limited to 0 < c < p/2 because of the symmetric property. After

computing v2k+1(k), the spectral distance for the (k+1)-dimension is given by

dk+1(k) =
1

v2k+1(k)
.

For any dimension r, a large vr(k) corresponds to a small dr(k), which means more uniform

coverage for the r-tuples. Thus for a given MRG of order k, our wish is for vr(k) to be as large as

possible. We simply call v2r(k) the spectral test value.

To evaluate spectral test value v2k+1(k) for an MRG of order k, we use the following algo-

rithm as stated in Winter, 2014, page 35

Algorithm 1:

1. Initially, set v2min = 1 +
∑k

i=1 α
2
i with c = 1

2. For c = 2, 3, · · · , do

(a) compute v2c = c2 +
∑k

i=1(cαi)
2
p

(b) if v2min > v2c , then reset v2min = v2c

(c) if v2min ≤ (c+ 1)2, then break; else continue with the next c;

3. Deliver v2k+1(k) = v2min

This algorithm is simple to implement when evaluating v2k+1(k) for an MRG(k,p). Nevertheless,

it is not easy to generalize for dimensions greater than k + 1.

Spectral test for r > k

In the previous subsection, we evaluated the spectral test value by finding the ”normal

vector” and setting up the minimization problem, which was simple enough to solve with a straight

forward algorithm. This method can be extended to evaluate spectral test in dimension r = k + d,

50

for some integer d. It should be noted here that d stands for some dimensions farther than k.

Unfortunately, we will need a more sophisticated algorithm to solve this minimization problem.

Initially, we will define d ”normal vectors” of dimension r:

V1 = [αk, αk−1, · · · , α1,−1, 0, 0, · · · , 0]′,

V2 = [0, αk, αk−1, · · · , α1,−1, 0, · · · , 0]′,
...

Vd = [0, 0, · · · , 0, αk, αk−1, · · · , α1,−1]′

where Vi+1 is merely a simple rotation of Vi for i = 1, 2, · · · , d − 1. We can then solve the

minimization problem below:

v2k+d(k) = min
(c1,c2,··· ,cd)6=(0,0,··· ,0)

(
‖

d∑
i=1

(ciVi)p‖2
)

(4.5)

The actual value of the minimization, v2r(k), depends on the choices of the multipliers α1, α2, · · · , αk

of the MRG in (2.3).

It is obvious that, v2k+1(k) ≥ v2k+2(k) ≥ · · · ≥ v2k+d(k). It becomes increasingly difficult to solve

this minimization problem when the order of the MRG, k, is larger or for large values of d. Search-

ing for the ”best” multipliers(α′is) such that v2r(k) is largest for given order k and modulus p is

even more difficult. Winter, 2014, page 38, proposed a new method of computing the spectral test

for r > k.

4.3 Using the LLL Algorithm to Compute the Spectral Test for r > k

The minimization problem of finding v2r(k) for some dimensions r = k+d is solve by using

the LLL algorithm for lattice basis reduction. This algorithm was proposed by A. K. Lenstra, H. W.

Lenstra, and Lovász, 1982. For the lattice reduction process, we start by creating a matrix whose

51

rows correspond to a lattice basis of ”normal vectors”, next, we find another vector whose basis

vectors are relatively short and nearly ”orthogonal”, see, for example Cohen, 1993. The vector

with the shortest squared length will give the spectral value v2r(k).

The LLL algorithm is an integer lattice version of Gram-Schmidt orthogonalization. fpLLL

is a software for a stand-alone implementation of this algorithm but there are several implemen-

tations available in many software packages such as MAPLE, Mathematical, NTL, Python and

SageMath. The algorithm proposed by Winter, 2014 is given below.

Algorithm 2: Algorithm for finding v2r=k+d(k)

1. (Create the initial d normal vectors.) Let V1 = [αk, αk−1, · · · , α1,−1, 0, 0, · · · , 0]′, where its

last d− 1 entries are all zero. Compute the remaining d− 1 normal vectors. Vi = Ri−1(V1),

for i = 2, 3, · · · , d, whereRi−1(V1) denotes i−1 simple rotations of V1 as earlier discussed.

2. (Creation of initial matrix.) Let M0 be an initial d×rmatrix whose d rows are V′1,V
′
2, · · · ,V′d.

3. (Remove the columns of zeros.) Remove any column of zeros from the initial matrix M0.

Call the new matrix M1 whose dimension will be d× r∗, where r∗ is the number of columns

left in the matrix. If there is no column of only zeros in M0, then r∗ = r and M1 = M0.

4. (Create final matrix for basis reduction.) Let M be an r∗ × r∗ matrix whose first (r∗ − d)

rows are pei(r∗), where p is the modulus, ei(r∗) is the i-th unit vector of dimension r∗, and i

corresponds to the row number i = 1, 2, · · · , (r∗ − d). Let the remaining d rows correspond

to the rows in M1.

5. (Basis reduction.) Apply the LLL algorithm (or some other basis reduction procedure) to

matrix M which yields a reduced matrix M∗ = LLL(M). The spectral test value v2r(k) is

squared length of the shortest row vector M∗.

52

Illustrative example for MRG

Consider evaluating the spectral test for five dimensions farther than k = 7 for the following

small order MRG.

Xi = α1Xi−1+α2Xi−2+α3Xi−3+α4Xi−4+α5Xi−5+α6Xi−6+α7Xi−7mod p, i ≥ 7. (4.6)

The first corresponding normal vector will be

V1 = [α7, α6, α5, α4, α3, α2, α1,−1, 0, 0, 0, 0]′ (4.7)

V2,V3,V4 and V5 can be easily found by rotating the elements in V1 once, twice, thrice and four

times, respectively. This will give

M0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α7 α6 α5 α4 α3 α2 α1 −1 0 0 0 0

0 α7 α6 α5 α4 α3 α2 α1 −1 0 0 0

0 0 α7 α6 α5 α4 α3 α2 α1 −1 0 0

0 0 0 α7 α6 α5 α4 α3 α2 α1 −1 0

0 0 0 0 α7 α6 α5 α4 α3 α2 α1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

53

There is no column of all zeros in M0 to remove, thus M1 =M0. The final matrix to be submitted

to LLL will be

M =

∣∣

p 0 0 0 0 0 0 0 0 0 0 0

0 p 0 0 0 0 0 0 0 0 0 0

0 0 p 0 0 0 0 0 0 0 0 0

0 0 0 p 0 0 0 0 0 0 0 0

0 0 0 0 p 0 0 0 0 0 0 0

0 0 0 0 0 p 0 0 0 0 0 0

0 0 0 0 0 0 p 0 0 0 0 0

α7 α6 α5 α4 α3 α2 α1 −1 0 0 0 0

0 α7 α6 α5 α4 α3 α2 α1 −1 0 0 0

0 0 α7 α6 α5 α4 α3 α2 α1 −1 0 0

0 0 0 α7 α6 α5 α4 α3 α2 α1 −1 0

0 0 0 0 α7 α6 α5 α4 α3 α2 α1 −1

∣∣
This example shows the simple nature of this algorithm proposed by Winter, 2014, page 38. For

super-order MRGs (with many nonzero terms), a large matrix of basis vectors will need to be

created. This algorithm can create this efficiently. Creating a large matrix with other existing

methods is very tedious.

D. E. Knuth, 1981; D. Knuth, 1998, Kao and Tang, 1997, L’Ecuyer, 1997 and L’Ecuyer

and Couture, 1997, are some authors who used similar methods for computing the spectral test.

For comparison of this method proposed by Winter, 2014 and other existing methods, see, Winter,

2014, page 41, for details.

54

4.4 List of ”better” DX-k-s-t generators.

In Section 2.2, we discussed the DX-k-s-t generators as proposed in Deng and Lin, 2000,

for DX-k-1-1 or FMRG and Deng and H. Xu, 2003, for the other DX-k-s-t for s = 2, 3, 4. As

discussed in Chapter 3, this class of generators are portable, efficient, and maximum period MRGs.

As discussed in Section 4.2, solving the minimization problem as seen in equation (4.5) becomes

increasing difficult when the order of k is large or for large values of d. Using Algorithm 2 in Sec-

tion 4.3 (as proposed by Winter, 2014, page 38), we shall compute spectral values for DX-k-s-1

generators. We shall use one example to illustrate this fact, with the understanding that, the rest

can be done similarly.

Illustrative example for DX-k-3-1

Consider a DX-k-3-1 with dimension r = k + 3 for some k. The normal vectors will be

V1 = [B, 0, 0, · · · , 0, B, 0, 0, · · · , 0, B,−1, 0, 0]′

V2 = [0, B, 0, 0, · · · , 0, B, 0, 0, · · · , 0, B,−1, 0]′

V3 = [0, 0, B, 0, 0, · · · , 0, B, 0, 0, · · · , 0, B,−1]′

These ”normal vectors” will form the rows of M0.

M0 =

∣∣∣∣∣∣∣∣∣∣
B 0 0 · · · 0 B 0 0 · · · 0 B −1 0 0

0 B 0 0 · · · 0 B 0 0 · · · 0 B −1 0

0 0 B 0 0 · · · 0 B 0 0 · · · 0 B −1

∣∣∣∣∣∣∣∣∣∣

55

There are many zeros between the B′s. Therefore, there will be many zero columns in M0 that we

can remove resulting in

M1 =

∣∣∣∣∣∣∣∣∣∣
B 0 0 B 0 0 B −1 0 0

0 B 0 0 B 0 0 B −1 0

0 0 B 0 0 B 0 0 B −1

∣∣∣∣∣∣∣∣∣∣
The number of columns have been drastically reduced from the initial matrix M0, especially if k is

very large like in our super-order DX-k-s-t generators. To compute the minimization problem

v2k+3(k) = min
(c1,c2,c3)6=(0,0,0)

‖(c1V1)p + (c2V2)p + (c3V3)p‖2 (4.8)

we simply apply the final input matrix M for LLL to obtain our desired result.

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p 0 0 0 0 0 0 0 0 0

0 p 0 0 0 0 0 0 0 0

0 0 p 0 0 0 0 0 0 0

0 0 0 p 0 0 0 0 0 0

0 0 0 0 p 0 0 0 0 0

0 0 0 0 0 p 0 0 0 0

0 0 0 0 0 0 p 0 0 0

B 0 0 B 0 0 B −1 0 0

0 B 0 0 B 0 0 B −1 0

0 0 B 0 0 B 0 0 B −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

56

DX-k-s-t generators and Consistency

As seen earlier in Section 4.2, v2k+1(k) ≥ v2k+2(k) ≥ · · · ≥ v2k+d(k). With the exception of

a few, most of the spectral values of DX-k-s-t generators with multiplier B and k not too small,

remains constant for large d,

v2k+1(k) = v2k+2(k) = · · · = v2k+d(k)

This property is known as the consistency of the spectral test values for DX-k-s-t generators,

for details, see Winter, 2014, page 27. According to Winter, 2014, there are (rare) exceptions to

this consistency property, and he buttressed this fact with some ”intuitive explanations”.

Winter, 2014 states that ”the consistency property is expected to hold for v2k+d(k) for sev-

eral dimensions beyond k until there is a change in relative relationship on the ”angles” (inner-

products) among theses vectors v1, v2, · · · , vd”.

To further consolidate this fact, we randomly tried 80, 000 B′s as possible multipliers for the

DX-k-s-t generators and got a similar result. That is, s = 1 and s = 4 had 100% of the con-

sistency property, s = 2 had 77.94% of the consistency property (62348 out of 80000 tries) and

s = 3 had 95.09% of the consistency property (76068 out of 80000 tries). This result is summarize

in Table 12 below.

Table 12. Consistency property of DX-k-s-t generators with 80,000 tries.
s 80,000 tries Percentage of consistency Percentage of nonconsistency
1 80,000 100 0
2 62,348 77.94 22.06
3 76,068 95.09 4.91
4 80,000 100 0

Since the MRGs with the consistency property will have exactly the same spectral value in

several dimensions farther than k, it will be easier to rank them for a given order k (and modulus

p). For MRGs in general, an MRG with the best spectral test value in dimension k + 1 can have a

57

worst spectral value in dimension k+2, for example, see, D. Knuth, 1998. However, this is not the

case for MRGs that have the consistency property. For MRGs having this property, the one with the

best spectral test value in dimension k + 1 will be the best for several dimensions farther than k.

As seen in Chapter 3, we found several super-order DX-40751-s-1, DX-50551-s-1,

and DX-50873-s-1 generators. We shall used the algorithm proposed by Winter, 2014, page 38

as stated Section 4.3 to search for ”better” super-order DX-k-s-1 generators for k = 40751, 50551, 50873,

with reasonably good spectral distances dk+1(k). We start by screening potential multipliers for

spectral distance dk+1(k) below a pre-specified bound (for example, 3.0e− 05 or 2.75e− 05) and

verify that the generator possessed the consistency property. When this is done, we proceed to

check whether the generator had the maximum period as we did in Chapter 3, using the methods

proposed by Deng, 2004, Deng, J.-J. H. Shiau, and Lu, 2012b, and Deng, J.-J. H. Shiau, and Lu,

2012a. Table 13 below list ”better” super-order DX-k-s-t generators. In this study, we multiply

the spectral distance by 105 for easy visualization.

Illustrative Example with super-order DX-50873-4-1 generator.

As an example, we used DX − 50873 − 4 − 1 for illustration with a ”better” B value of

1073544618 and a spectral distance of 1.58374.

The primitive polynomial found after a search time of 95701 seconds, is:

f(x) = x50873− 1073544618 ∗x50872− 1073544618 ∗x33915− 1073544618 ∗x16957− 1073544618

The super-order ”better” maximum period DX − 50873− 4− 1 generator is:

Xi = 1073544618(Xi−1+Xi−16958+Xi−33916+Xi−50873) mod 2146123787, i ≥ 50873 (4.9)

58

4.5 Summary

For an MRG(k,p) with maximum period, we consider an r-tuple Xi, Xi+1, · · · , Xi+r−1

with the index i running through the entire period (pk − 1). For r ≤ k, generators in MRG(k,p)

are quite close to an ”ideal” generator; only the all-zero tuple is generated one time less than the

other r-tuples, by the equi-distribution property. For r > k, the r-dimensional points lie on a rela-

tively small family of equidistant parallel hyperplanes in a high dimensional space. In this Chapter,

we calculated the spectral distance between these hyperplanes. For LCGs, MRGs and other gen-

erators with lattice structures, the spectral test is the most perfect figure of merit. D. Knuth, 1998,

notes that ”Not only do all good generators pass this test, all generators now known to be bad fail

it. Thus, it is by far the most powerful test known, and it deserves particular attention”. A draw-

back of the spectral test is its computational complexity. Using the LLL algorithm, Winter, 2014,

proposed a simple and intuitive method for calculating spectral distance. Using this method, we

extended the search for ”better” DX-k-s-t farther than k = 25013 as proposed in Winter, 2014.

In particular, we searched and listed ”better” super-order DX-k-s-t super-order generators for

k = 40751, k = 50551, and k = 50873.

59

Table 13. List of ”better” super-order DX-k-s-t generators with B < 219, B < 220, and B < 230

and their spectral distance dk+1(k)(×105).
Table 13a
List of ”better” DX-k-1-1 with B < 220 and B < 230 and their spectral distance dk+1(k)(×105)
k p B < 220 dk+1(k) B < 230 dk+1(k)
40751 2146593347 949211 1.76933 1073724261 1.92831
50551 2146725226 541542 1.88551 1073390951 1.76445
50873 2146123787 1004567 2.00597 1073624018 2.95118

Table 13b
List of ”better” DX-k-2-1 with B < 220 and B < 230 and their spectral distance dk+1(k)(×105)
k p B < 220 dk+1(k) B < 230 dk+1(k)
40751 2146593347 910659 2.46292 1073500698 2.15977
50551 2146725226 536124 2.17392 1073724894 2.4113
50873 2146123787 943659 2.36297 1073653794 2.50025

Table 13c
List of ”better” DX-k-3-1 with B < 219 and B < 230 and their spectral distance dk+1(k)(×105)
k p B < 219 dk+1(k) B < 230 dk+1(k)
40751 2146593347 433849 2.08802 1073679636 1.86653
50551 2146725226 515561 2.201 1073646955 2.13737
50873 2146123787 470516 1.71238 1073705303 1.91587

Table 13d
List of ”better” DX-k-4-1 with B < 219 and B < 230 and their spectral distance dk+1(k)(×105)
k p B < 219 dk+1(k) B < 230 dk+1(k)
40751 2146593347 495476 1.67846 1073695069 1.74335
50551 2146725226 461111 1.57481 1073646756 1.93132
50873 2146123787 289642 1.89455 1073544618 1.58374

60

Chapter 5

Extension of a Special Class of Large order Multiple Recursive Generators (MRGs) with

Many Nonzero Terms to Super-order Generators.

5.1 Introduction

In Section 2.2, we discussed some special classes of MRGs. Among these, were some

with many nonzero terms. In particular, we discussed the DL, DS, and DT generators, as special

classes of MRGs with many nonzero terms as proposed by Deng and his group of co-authors, for

details see, Deng, Li, J.-J. Shiau, and Tsai, 2008, Deng, J.-J. Shiau, and Tsai, 2009. These groups

of generators are efficient, portable, and maximum order MRGs and are implemented efficiently

using higher order recurrence with few nonzero terms.

In Chapter 3, using the values of k that we obtained from the primality testing of R(k, p) =

(pk − 1)/(p − 1), we extended these DL, DS, and DT generators to super-order generators in

super-high dimensions, by applying algorithm GMP, proposed by Deng, 2004. In this Chapter, we

will discuss and extend another special class of large order MRGs with many nonzero terms that

have an efficient and parallel implementation. This special class is known as the DW-k generator

and was proposed by Winter, 2014. It is another class of efficient, portable, and maximum period

MRG. This class of generators is defined in Section 5.2. Using the values of k = 40751, k = 50551,

and k = 50873, that we obtained in Chapter 3, we will search for new DW-k generators. Thus, our

results will extend the DW-k generators, farther than the order k = 25013, to super-order DW-k

generators.

61

5.2 DW-k generator

Definition 1. The DW-k generator is a large order MRG with many nonzero terms defined with the

following characteristic polynomial modulo p

f(x) = (x−B)(x− C)k−1 − ABxk−2mod p (5.1)

where A,B, and C are suitably chosen nonzero integers over Zp, such that f(x) is a k-th degree

primitive polynomial modulo p.

The expansion of this polynomial using the binomial theorem yields many nonzero multi-

pliers α1, α2, · · · , αk, each of which is a function of the order k and the parameters A,B, or C are

suitably chosen nonzero integers over Zp.

αi =



((k − 1)C +B) mod p, for i = 1(
AB −

(
k − 1

2

)
C2 − (k − 1)BC

)
mod p, for i = 2(

(−1)i−1
(
k − 1

i

)
Ci +

(
k − 1

i− 1

)
BCi−1

)
mod p, for i = 3, 4, · · · , k − 1

(−1)k−1BCk−1mod p for i = k

(5.2)

For details, see Winter, 2014.

When specifying the order k, parameters A,B,C, and prime modulus p, the DW-k generator is

denoted as DW(k; A, B, C; p), because the multipliers α1, α2, · · · , αk are fully specified by

the order k and the parameters A,B,C. Worthy of note is the fact that A,B,C are parameters of

the multipliers α1, α2, · · · , αk.

The characteristic polynomial in equation (5.1) has three special attributes. The first attribute is

that it yields many nonzero multipliers α1, α2, · · · , αk, for the MRG recursion stated in equation

(2.3). The next attribute is that there is an efficient matrix congruential generator (MCG) that shares

62

the same characteristic polynomial as the DW-k generator. This MCG is define in the next Section

and its efficient implementation is given. This MCG’s efficient implementation will be used for the

efficient and parallel implementation of the DW-k generators. The final attribute is that, only the

multiplier α2 in equation (5.2) is a function of A. To simplify the search method for super-order

maximum period DW-k generator, we will take advantage of this third attribute.

5.3 Implementation of DW-k generators using MCG

The MCG that shares the same characteristic polynomial as the DW-k generator, is defined

in this Section. Furthermore, we will use this MCG to implement the DW-k generator, efficiently

and in parallel.

Consider the matrix congruential generator with the following multiplier matrix

B =



B 0 0 · · · 0 A

B C 0 · · · 0 0

B C C · · · 0 0

...
...

...
...

B C C · · · C 0

B C C · · · C C


(5.3)

with recursion as defined as in equation (2.25). Its characteristic polynomial is fB(x) = det(xI −

B)mod p, as defined in equation (2.26).

Winter, 2014, proved that the MCG used with multiplier B in equation (5.3) has the same character-

istic polynomial fB(x) as the one that defines the DW-k generator in (5.1), for details, see, Winter,

2014, Lemma 2, Theorem 2.

Therefore, this MCG with matrix multiplier B shares the same characteristic polynomial f(x) =

(x−B)(x− C)k−1 − ABxk−2 as the DW-k generator.

We will make use of this fact to show that the DW-k generator can be implemented efficiently

63

and in parallel using this MCG. Using the multiplier matrix B, the iterative equation (2.25) can be

rewritten as follows:

Xi,1

Xi,2

Xi,3

Xi,4

...

Xi,k


=



BXi−1,1 + AXi−1,k

BXi−1,1 + CXi−1,2

BXi−1,1 + CXi−1,2 + CXi−1,3

BXi−1,1 + CXi−1,2 + CXi−1,3 + CXi−1,4

...

BXi−1,1 + CXi−1,2 + · · ·+ CXi−1,k


mod p, i ≥ 1 (5.4)

This can be implemented efficiently as



Xi,1

Xi,2

Xi,3

Xi,4

...

Xi,k


=



BXi−1,1 + AXi−1,k

BXi−1,1 + CXi−1,2

Xi,2 + CXi−1,3

Xi,3 + CXi−1,4

...

Xi,k + CXi−1,k


mod p, i ≥ 1 (5.5)

From equation (5.5), we can see that the generated outputXi,1 andXi,2 are exclusively gen-

erated from numbers in the previously generated output vector Xi−1 and Xi,j for j = 3, 4, · · · , k

is the sum of the previous number just generated in the current output vector Xi and a multiple

of a number in the previous output vector Xi−1. It is obvious that, the iteration in (5.5) does not

need as many multiplication and addition as those in (5.4). A direct implementation using (5.4)

would have been less efficient, because more multiplications and additions are involved. Thus, the

implementation using (5.5) is more efficient.

According to Winter, 2014, ”additional efficiency on some compilers might be gained if we let C

be a power of 2, that is, we can let C = 2e for some positive integer e.” In this case, empirical

64

evidence suggest that for 2e, e ≤ 4 should be avoided. For example, Deng, 2016, explained that,

””small” numbers tend to follow ”small” numbers which will create a bad run property.” This

simply means that, generally, C should not be too small for given A,B, and order k.

In Section 2.4, we discussed the relationships between MCGs and MRGs. Following this dis-

cussion, since the MCG defined by B in (5.3) and DW-k generator shares the same characteristic

polynomial, we can confirm that the generated vector sequence (Xi, i ≥ 0) from this MCG satisfies

the iteration for DW-k generator,

Xi = (α1Xi−1 + α2Xi−2 + · · ·+ αkXi−k)mod p, i ≥ k (5.6)

where the multipliers α1, α2, · · · , αk are as defined in (5.2). This means that each of the k se-

quences taken from each of the k rows in (5.6) can be viewed as k copies of the same DW-k

generator with different starting seeds. Thus, our recommendation is that k numbers should be

generated at a time from the efficient iteration in (5.5) and assign each number to one of the k

CPUs. Empirical performance suggests that the MCG defined by B in (5.3) has its own advantages

as a standalone generator where numbers can be generated one at a time.

Equipped with this background information, we will now focus our attention in finding the values

A,B, and C, such that f(x) as defined in (5.1), is a primitive polynomial over Zp. As mentioned

earlier, we will use a similar method to the one we used in Chapter 3.

5.4 Search for Super-order DW-k generators

In Chapter 3, we discussed that Alanen and D. E. Knuth, 1964 and D. Knuth, 1998, pro-

posed an algorithm with three sets of necessary and sufficient conditions for f(x) as defined in

(2.3) to be a primitive polynomial. One of the major shortcoming of their algorithm is finding the

complete factorization of R(k, p) = (pk − 1)/(p − 1), when k and/or p is large. To bypass this

shortcoming of factorizing a huge number like R(k, p) = (pk − 1)/(p− 1), there are two common

65

ways, either (i) for a given p one can find k such that R(k, p) is relatively easy to factorize, usually

because R(k, p) = n ×M , where M is a huge prime factor and n is a product of several ”small”

primes factors (say, 109) or (ii) for a known prime k, one can find a prime p such that R(k, p) is a

prime (GMP), for details, see, Deng and Bowman, 2017.

If we know the complete factorization of R(k, p) for a given order k and modulus p, we proceed to

search for multipliers α1, α2, · · · , αk such that the rest of the conditions of their algorithm are met.

We can simplify this procedure for the DW-k generator. As we mentioned earlier, in (5.2) only

the multiplier α2 is a function of order k and the parameters A,B, and C over Zp. The rest of

the multipliers in (5.2) are completely specified by the order k and the parameters B and C.

Thus, for a given order k and modulus p, once we know that αk = (−1)k−1BCk−1 is a primitive

root modulo p, we can fix multipliers α1, α3, α4, · · · , αk and search for α2 until the characteristic

polynomial of the DW-k generator is primitive. In other words; once we find B and C such that

αk = (−1)k−1BCk−1 is a primitive root modulo p, we can fix B and C and just search for A until

f(x) in (5.1) is a primitive polynomial, for details, see Winter, 2014.

Using the first way of factorizing R(k, p) as mentioned earlier, Deng and H. Q. Xu, 2005 and

Deng, J.-J. H. Shiau, and Lu, 2012a, found k-th degree primitive polynomial for several k (k =

47, k = 643, k = 1597, k = 7499, k = 20897) and modulus p = 231 − 1. Winter, 2014, used these

values of k, for p31−1 and 25 ≤ C ≤ 29, with four values of B, and search for A such that DW(k;

A, B, C; p) generator is of maximum period. He obtained 100 DW-k generators as listed in

Winter, 2014, Pages 80-82.

The second approached of bypassing the factorization of R(k, p) is what we adopted in this study.

That is, for a prime k, we find p for which R(k, p) = (pk − 1)/(p − 1) is a prime (GMP). For a

32-bit RNG, for a prime k, we find v such that p = 231 − v and R(k, p) are primes. In Chapter 3,

we used this method and found super large values of k′s (k = 40751, k = 50551, k = 50873) as

shown in Table 1.

Winter, 2014, found and listed DW-k generators for k up to 25013. Using a similar method to

66

the one we used in Chapter 3, we will use these super large values of k to extend the search for

DW-k generators to super-order generators. That is, for our super large order k, prime modulus

p = 231 − v, 25 ≤ C ≤ 29 (for additional efficiency), and 2 values of B, we search for A (with 2

different maximum limits) such that DW(k; A, B, C; p) generator achieves the super maxi-

mum period. The list of 22 super-order DW(k; A, B, C; p = 231 − v) for 3 values of k and

5 values of C are given in Table 14. There are 3 cases in which there is no A (failed search) for

which f(x) as in (5.1) is a primitive polynomial(see, the 3 blank spaces in Table 14).

Table 14. List of A for 22 DW(k;A,B,C = 2e : p = 231 − v); k=40751, 50551, 50873 and
e=5, 6, 7, 8, 9.

k v B
C
32 64 128 256 512

40751 890301 20000 75040 41383 38231 43873
40751 890301 30001 85221 51148 80990 39409 57227
50551 758421 30004 61061 98532 94652 61243
50873 1359861 20000 75712 59812 79297 12800
50873 1359861 30001 94637 31031 93060 26174 43496

5.5 Evaluation

Empirical Evaluation

As we mentioned earlier in Section 5.3, efficiently implementing the DW-k generators in

parallel across k processors requires generating k numbers at a time from the iteration in equation

(5.5) and assigning each of these numbers to one of the k processors. As we showed in Section 3.4,

for the other special cases of MRGs, maximum period MRGs have excellent empirical performance

when the generated output are taken in successive sequences. These special class of MRGs are one

of the few kinds of random number generators that are able to pass all the stringent batteries of

tests in the TestU01 package proposed by L’Ecuyer and Simard, 2007. As we saw in Section 2.2,

D. Knuth, 1998, noted that concerning output from generated large order maximum period MRGs,

”all known evidence indicates that the result will be a very satisfactory source of randomness”.

67

With this in mind, we can conclude that the k sequences of DW-k generator has excellent empirical

performance.

The above assertion is also satisfactory when generating numbers one at a time from the MCG of

the iteration in (5.5). Of course we mentioned in Section 5.3 that this MCG has its own merits as a

standalone generator. For each combination of super-order k, modulus p, and parameters A,B,C,

listed in Table 14, we generated numbers one at a time and apply the sequential output to Small

Crush and Crush batteries of the stringent empirical tests in the TestU01 package. It should be

noted here that this a similar procedure to the one we used in Section 3.4. We will use 5 starting

seeds, following the approached used in Deng, J.-J. H. Shiau, and Lu, 2012b, and only the p-values

produced outside of [10−5, 1− 10−5] will be reported.

For Small Crush battery of test, the total number of p-values is 1650(22× 5× 15). The empirical

performance for this test is satisfactory, though we did not report it in this study. We will report

results for the Crush battery of tests.

For the Crush battery of tests, the total number of p-values produced is 15, 840(22 × 5 ×

144). The proportion of these p-values is summarized in Table 15 below.

Only 2 out of 15, 840, p-values, with proportions of 0.00006, respectively, is outside the

range [10−5, 1−10−5]. Furthermore, none of these p-values is outside the range, [10−10, 1−10−10],

as stated in L’Ecuyer and Simard, 2007. Therefore, these results lead us to the same conclusion.

That is, we have strong empirical evidence that even generating numbers one at a time from the

MCG in iteration (5.5) yields a satisfactory source of randomness.

Nevertheless, to implement DW-k generators, numbers must be generated k at a time. Thus, gen-

erating numbers k at a time is highly recommended.

Theoretical Evaluation

As defined in Section 2.3, the spectral test for an MRG is a theoretical test that measures the

uniformity of the MRG farther than its k dimension. For dimension r ≤ k, the nice equi-distribution

68

Table 15. Results of Crush tests on DW-k generators with five starting seeds.
Dw-k p-value < 10−3 < 10−4 < 10−5 > 1− 10−3 > 1− 10−4 > 1− 10−5

DW-40751(2,880 p-values each)

B=20000
count 0 1 0 0 0 0
proportion 0 0.00035 0 0 0 0

DW-40751(3,600 p-values each)

B=30001
count 1 1 1 6 0 0
proportion 0.00028 0.00028 0.00028 0.00167 0 0

DW-50551 (2,880 p-values each)

B=30004
count 0 2 0 0 1 0
proportion 0 0.00069 0 0 0.00035 0

DW-50873(2,880 p-values each)

B=20000
count 3 0 0 0 0 1
proportion 0.00104 0 0 0 0 0.00035

DW-50873 (3,600 p-values each)

B=30001
count 1 0 0 5 0 0
proportion 0.00028 0 0 0.00139 0 0

DW-k (15,840 p-values in total)
DW-k count 5 4 1 11 1 1
Total proportion 0.00032 0.00025 0.00006 0.00069 0.00006 0.00006

property [Lidl and Niederreiter, 1994, Theorem 7.43] for maximum period MRGs guarantee very

good uniformity.

In Chapter 4, we discussed the measure of this uniformity for dimensions r = k+d. Using the tra-

ditional methods, calculation of spectral test becomes quite tedious and very inefficient when the

order of k is large. We used the simple and intuitive algorithm proposed by Winter, 2014, Page 38

to bypass this difficulty for MRGs with few nonzero terms, like the DX generators. However, for the

DW-k generator with many nonzero terms, it is not likely that this simple and intuitive algorithm

used in Chapter 4 will be any more efficient. Thus, computing the spectral test for super-order

MRGs with many nonzero terms is computationally demanding.

For maximum period MRGswith good spectral test performance in dimensions beyond k, L’Ecuyer,

1997 stated a necessary (but not sufficient) condition that the sum of squares of the multipliers,∑k
i=1 α

2
i should be large. Thus, one would prefer MRGs with large

∑k
i=1 α

2
i . Since the DW-k

69

generator has many nonzero multipliers, it is likely to have excellent spectral test performance.

Further more, as stated in Section 2.2, there is strong statistical justification for MRGs with many

nonzero terms as well. An MRG will become ”more and more uniform” with larger number of

nonzero terms in the summation, for details, see, for example, Deng, 2016, and Deng and George,

1990.

Concerning timing, Winter, 2014, showed that DW-k generator is very efficient by comparing it

with the Mersenne-Twister (MT19937), Matsumoto and Nishimura, 1998, and the combined MRG,

(MRG32k3a), L’Ecuyer, 1999.

5.6 Summary

In this Chapter, we examined the DW-k generator as proposed by Winter, 2014, as another

special class of MRG with many nonzero terms whose iteration can be implemented efficiently

and in parallel, using a k-th order MCG sharing the same characteristic polynomial. We extended

the work-done in Winter, 2014, by searching for super-order DW-k generators using our super

large k values (k = 40751, k = 50551, k = 50873) that we obtained in Chapter 3. Using extensive

computer searches, we found and listed 22 super-order maximum period DW(k; A, B, C, p =

231 − v) generators. We evaluated the empirical performance of these found generators using the

Small Crush and Crush batteries of tests in the TestU01 suite, though we reported only the Crush

results. Our super-order generators are found to have excellent empirical performance. It is likely

that their theoretical performance on the spectral test are good as well.

70

Chapter 6

Conclusion

In this study, we used some results from number theory as discussed in Deng, J.-J. H. Shiau,

and Lu, 2012b, to proposed an efficient method to accelerate the computer search of super-order

maximum period multiple recursive generators (MRGs). After this extensive computer searched,

and for the 32-bit PRNGs, we were able to find some values of k and p for which R(k, p) is a

prime (GMP). In particular, we found super-order MRGs, with orders 40751, 50551, and 50873 and,

approximate period lengths of 10380278.1, 10471730.6, and 10474729.3, respectively. We used these

values of k′s and the efficient algorithm GMP as proposed by Deng, 2004, to extend some existing

results for some special classes of MRGs. In particular, after extensive computer searches, we were

able to identify 114, DX/DL/DS/DT generators that are portable, efficient, have equi-distribution

in super high dimensions, super long period lengths, and superior empirical performances. The

generators we listed here are far better than some popular MRGs such as the MT19937. MT19937

is a popular generator proposed by Matsumoto and Nishimura, 1998, it has a period length of

219937 − 1 ≈ 106001 and equi-distribution up to 623 dimensions. The property of equi-distribution

in dimensions up to 40751, 50551, and 50873, can be very good for super-scale simulation studies.

All the 114 generators found in this study passed the stringent Small Crush and Crush batteries of

TestU01 suite.

For an MRG(k,p) with maximum period, we consider an r-tuple Xi, Xi+1, · · · , Xi+r−1

with the index i running through the entire period (pk − 1). For r ≤ k, generators in MRG(k,p)

71

are quite close to an ”ideal” generator; only the all-zero tuple is generated one time less than the

other r-tuples, by the equi-distribution property. For r > k, the r-dimensional points lie on a

relatively small family of equidistant parallel hyperplanes in a high dimensional space. In this

study, we calculated the spectral distance between these hyperplanes. For LCGs, MRGs, and

other generators with lattice structures, the spectral test is the most perfect figure of merit. D.

Knuth, 1998, notes that ”Not only do all good generators pass this test, all generators now known

to be bad fail it. Thus, it is by far the most powerful test known, and it deserves particular atten-

tion”. A drawback of the spectral test is its computational complexity. Using the LLL algorithm,

Winter, 2014, proposed a simple and intuitive method for calculating spectral distance. Using this

method, we extended the search for ”better” DX-k-s-t beyond k = 25013 as proposed in Win-

ter, 2014. In particular, we searched and listed, 24, ”better” super-order DX-k-s-t generators for

k = 40751, k = 50551, and k = 50873.

Finally, we discussed the DW-k generator as proposed by Winter, 2014, as another special

class of MRG with many nonzero terms whose iteration can be implemented efficiently and in

parallel, using a k-th order MCG sharing the same characteristic polynomial. We extended the

work-done in Winter, 2014, by searching for super-order DW-k generators using our super large

k values (k = 40751, k = 50551, k = 50873) that we obtained in Chapter 3. Using extensive

computer searches, we found and listed, 22, super-order maximum period DW(k; A, B, C,

p = 231− v) generators. We evaluated the empirical performance of these found generators using

the Small Crush and Crush batteries of tests in the TestU01 suite. Our super-order generators are

found to have excellent empirical performance. It is likely that their theoretical performance on

the spectral test are good as well.

72

Bibliography

[1] J. D. Alanen and D. E. Knuth, “Tables of finite fields,” Sankhyā: The Indian Journal of

Statistics, Series A (1961-2002), vol. 26, no. 4, pp. 305–328, 1964, ISSN: 0581572X. [On-

line]. Available: http://www.jstor.org/stable/25049338.

[2] D. Knuth, “Art of computer programming, volume 2: Seminumerical algorithms,” vol. 2,

1998.

[3] L.-Y. Deng and H. Q. Xu, “Design, search and implementation of high-dimension, efficient,

long-cycle and portable uniform random variate generator,” 2005.

[4] L.-Y. Deng, J.-J. H. Shiau, and H. H.-S. Lu, “Large-order multiple recursive generators with

modulus 231- 1,” INFORMS Journal on Computing, vol. 24, no. 4, pp. 636–647, 2012.

[5] P. L’Ecuyer, F. Blouin, and R. Couture, “A search for good multiple recursive random

number generators,” ACM Transactions on Modeling and Computer Simulation (TOMACS),

vol. 3, no. 2, pp. 87–98, 1993.

[6] L.-Y. Deng, “Generalized mersenne prime number and its application to random number

generation,” Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 167–180, 2004.

[7] L.-Y. Deng, J.-J. H. Shiau, and H. H.-S. Lu, “Efficient computer search of large-order multi-

ple recursive pseudo-random number generators,” Journal of Computational and Applied

Mathematics, vol. 236, no. 13, pp. 3228–3237, 2012, ISSN: 0377-0427. DOI: https :

//doi.org/10.1016/j.cam.2012.02.023. [Online]. Available: http://

www.sciencedirect.com/science/article/pii/S0377042712000805.

[8] B. R. Winter, Design, Search and Implementation of Improved Large Order Multiple Recur-

sive Generators and Matrix Congruential Generators. The University of Memphis, 2014.

73

[9] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cambridge

university press, 1994.

[10] D. H. Lehmer, “Mathematical methods in large-scale computing units,” Annu. Comput. Lab.

Harvard Univ., vol. 26, pp. 141–146, 1951.

[11] G. MARSAGLIA, “The structure of linear congruential sequences,” in Applications of Num-

ber Theory to Numerical Analysis, S. Zaremba, Ed., Academic Press, 1972, pp. 249–285,

ISBN: 978-0-12-775950-0. DOI: https://doi.org/10.1016/B978- 0- 12-

775950-0.50013-3. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/B9780127759500500133.

[12] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical testing of random number

generators,” ACM Trans. Math. Softw., vol. 33, no. 4, Aug. 2007, ISSN: 0098-3500. DOI:

10.1145/1268776.1268777. [Online]. Available: https://doi.org/10.

1145/1268776.1268777.

[13] L.-Y. Deng and H. Xu, “A system of high-dimensional, efficient, long-cycle and portable

uniform random number generators,” ACM Transactions on Modeling and Computer Simu-

lation (TOMACS), vol. 13, no. 4, pp. 299–309, 2003.

[14] L.-Y. Deng, “Recent developments on pseudo-random number generators and their theoret-

ical justifications,” J Chin Stat Assoc, vol. 54, pp. 154–179, 2016.

[15] L.-Y. Deng and E. O. George, “Generation of uniform variates from several nearly uniformly

distributed variables,” Communications in Statistics-Simulation and Computation, vol. 19,

no. 1, pp. 145–154, 1990.

[16] A. Grube, “Mehrfach rekursiv-erzeugte pseudo-zufallszahlen,” ZAMM-Journal of Applied

Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 53,

no. 12, T223–T225, 1973.

74

[17] P. L’Ecuyer and F. Blouin, “Linear congruential generators of order k¿ 1,” pp. 432–439,

1988.

[18] L.-Y. Deng, “Efficient and portable multiple recursive generators of large order,” ACM

Transactions on Modeling and Computer Simulation (TOMACS), vol. 15, no. 1, pp. 1–13,

2005.

[19] L.-Y. Deng and D. K. Lin, “Random number generation for the new century,” The American

Statistician, vol. 54, no. 2, pp. 145–150, 2000.

[20] F. Panneton, P. L’Ecuyer, and M. Matsumoto, “Improved long-period generators based on

linear recurrences modulo 2,” ACM Trans. Math. Softw., vol. 32, no. 1, pp. 1–16, Mar. 2006,

ISSN: 0098-3500. DOI: 10.1145/1132973.1132974. [Online]. Available: https:

//doi.org/10.1145/1132973.1132974.

[21] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed

uniform pseudo-random number generator,” ACM Transactions on Modeling and Computer

Simulation (TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[22] L.-Y. Deng and J.-J. H. Shiau, “Uniform random numbers,” In:Wiley StatsRef: Statistics

Reference online. Hoboken, NJ: Wiley, pp. 1–14, Dec. 2015.

[23] L.-Y. Deng and D. Bowman, “Developments in pseudo-random number generators: Pseudo-

random number generators,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 9,

e1404, Aug. 2017. DOI: 10.1002/wics.1404.

[24] L.-Y. Deng, H. Li, J.-J. Shiau, and G.-H. Tsai, “Design and implementation of efficient and

portable multiple recursive generators with few zero coefficients,” Monte Carlo and Quasi-

Monte Carlo Methods 2006, pp. 263–273, Jan. 2008. DOI: 10.1007/978-3-540-

74496-2_15.

75

[25] L.-Y. Deng, J.-J. Shiau, and G.-H. Tsai, “Parallel random number generators based on large

order multiple recursive generators,” Monte Carlo and Quasi-Monte Carlo Methods 2008,

pp. 289–296, Jan. 2009. DOI: 10.1007/978-3-642-04107-5_17.

[26] G. Marsaglia, “Random numbers fall mainly in the planes,” Proceedings of the National

Academy of Sciences, vol. 61, no. 1, pp. 25–28, 1968, ISSN: 0027-8424. DOI: 10.1073/

pnas.61.1.25. eprint: https://www.pnas.org/content/61/1/25.full.

pdf. [Online]. Available: https://www.pnas.org/content/61/1/25.

[27] P. L’Ecuyer, “Bad lattice structures for vectors of nonsuccessive values produced by some

linear recurrences,” INFORMS Journal on Computing, vol. 9, no. 1, pp. 57–60, 1997.

[28] D. E. Knuth, Art of computer programming, volume 2: Seminumerical algorithms. 3rd ed.

Addison-Wesley Professional, 2014.

[29] P. L’ecuyer, “Tables of linear congruential generators of different sizes and good lattice

structure,” Mathematics of Computation, vol. 68, no. 225, pp. 249–260, 1999.

[30] C. Kao and H.-C. Tang, “Upper bounds in spectral test for multiple recursive random number

generators with missing terms,” Computers & Mathematics with Applications, vol. 33, no. 4,

pp. 119–125, 1997.

[31] G. S. Fishman and L. R. Moore III, “An exhaustive analysis of multiplicative congruential

random number generators with modulus 23̂1-1,” SIAM Journal on Scientific and Statistical

Computing, vol. 7, no. 1, pp. 24–45, 1986.

[32] H. Niederreiter, “A pseudorandom vector generator based on finite field arithmetic,” Math.

Japonica, vol. 31, no. 5, pp. 759–774, 1986.

[33] P. L’Ecuyer, “Random numbers for simulation,” Communications of the ACM, vol. 33,

no. 10, pp. 85–97, 1990.

76

[34] J. N. Franklin, “Equidistribution of matrix-power residues modulo one,” Mathematics of

Computation, vol. 18, no. 88, pp. 560–568, 1964.

[35] H. Grothe, “Matrix generators for pseudo-random vector generation,” Statistische Hefte,

vol. 28, no. 1, pp. 233–238, 1987.

[36] H. C. Williams and E. Seah, “Some primes of the form (an − 1)/(a − 1),” Mathematics of

Computation, vol. 33, no. 148, pp. 1337–1342, 1979, ISSN: 00255718, 10886842. [Online].

Available: http://www.jstor.org/stable/2006470.

[37] J. Brillhart, D. Lehmer, J. Selfridge, B. Tuckerman, and J. Wagstaff S.S., Factorizations of

bn±1, b = 2, 3, 5, 6, 7, 10, 11, 12, up to high powers, Third, ser. Contemporary Mathematics

Series. Providence, RI, USA: American Mathematical Society, 2002. [Online]. Available:

http://www.ams.org/online_books/conm22.

[38] H. C. Williams, Édouard Lucas and primality testing. John Wiley & Sons, 1998, vol. 23.

[39] L.-Y. Deng, “Issues on computer search for large order multiple recursive generators,” in

Monte Carlo and Quasi-Monte Carlo Methods 2006, S. Keller Alexander and Heinrich and

H. Niederreiter, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 251–261.

[40] P. L’Ecuyer, “Good parameters and implementations for combined multiple recursive ran-

dom number generators,” Oper. Res., vol. 47, pp. 159–164, 1999.

[41] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in p,” Annals of mathematics, pp. 781–

793, 2004.

[42] G. Marsaglia, “The marsaglia random number cdrom including the diehard: A battery of

tests of randomness. see http://stat.fsu.edu/pub/diehard,” Tech. Rep., 1996. [Online]. Avail-

able: http://stat.fsu.edu/pub/diehard.

[43] A. Rukhin, “Testing randomness: A suite of statistical procedures,” Theory of Probability

and Its Applications, vol. 45, pp. 111–132, Apr. 2000. DOI: 10.1137/S0040585X97978087.

77

[44] P. L’Ecuyer and R. Simard, “On the lattice structure of a special class of multiple recursive

random number generators,” INFORMS Journal on Computing, vol. 26, no. 3, pp. 449–460,

2014. DOI: 10.1287/ijoc.2013.0576. eprint: https://doi.org/10.1287/

ijoc.2013.0576. [Online]. Available: https://doi.org/10.1287/ijoc.

2013.0576.

[45] P. L’Ecuyer and R. Couture, “An implementation of the lattice and spectral tests for multiple

recursive linear random number generators,” INFORMS Journal on Computing, vol. 9, no. 2,

pp. 206–217, 1997.

[46] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational coeffi-

cients,” Mathematische annalen, vol. 261, no. ARTICLE, pp. 515–534, 1982.

[47] H. Cohen, A Course in Computational Algebraic Number Theory. 1993, vol. 138.

[48] D. E. Knuth, Art of computer programming, volume 2: Seminumerical algorithms. 2nd ed.

Addison-Wesley, Reading, MA, 1981.

78

	EFFICIENT COMPUTER SEARCH FOR MULTIPLE RECURSIVE GENERATORS
	Recommended Citation

	tmp.1685112842.pdf.0voHh

