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ABSTRACT

Dipesh Gautam. The University of Memphis. August, 2019. Towards Building
Intelligent Collaborative Problem Solving Systems. Major Professor: Vasile Rus,
Ph.D.

Historically, Collaborative Problem Solving (CPS) systems were more focused on

Human Computer Interaction (HCI) issues, such as providing good experience of

communication among the participants. Whereas, Intelligent Tutoring Systems

(ITS) focus both on HCI issues as well as leveraging Artificial Intelligence (AI)

techniques in their intelligent agents. This dissertation seeks to minimize the gap

between CPS systems and ITS by adopting the methods used in ITS researches. To

move towards this goal, we focus on analyzing interactions with textual inputs in

online learning systems such as DeepTutor and Virtual Internships (VI) to

understand their semantics and underlying intents.

In order to address the problem of assessing the student generated short text,

this research explores firstly data driven machine learning models coupled with

expert generated as well as general text analysis features. Secondly it explores

method to utilize knowledge graph embedding for assessing student answer in ITS.

Finally, it also explores a method using only standard reference examples generated

by human teacher. Such method is useful when a new system has been deployed

and no student data were available.

To handle negation in tutorial dialogue, this research explored a Long Short

Term Memory (LSTM) based method. The advantage of this method is that it

requires no human engineered features and performs comparably well with other

models using human engineered features.

Another important analysis done in this research is to find speech acts in

conversation utterances of multiple players in VI. Among various models, a noise

label trained neural network model performed better in categorizing the speech acts

of the utterances.
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The learners’ professional skill development in VI is characterized by the

distribution of SKIVE elements, the components of epistemic frames. Inferring the

population distribution of these elements could help to assess the learners’ skill

development. This research sought a Markov method to infer the population

distribution of SKIVE elements, namely the stationary distribution of the elements.

While studying various aspects of interactions in our targeted learning

systems, we motivate our research to replace the human mentor or tutor with

intelligent agent. Introducing intelligent agent in place of human helps to reduce the

cost as well as scale up the system.
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Chapter 1

Introduction

1.1 Tutoring Systems and Collaborative Problem Solving Systems

Due to increased success and reduced cost in providing education with

computer based learning systems, computer is becoming important tool for

education. A study conducted by VanLehn (VanLehn, 2011) showed that the

effectiveness of computer tutoring was as good as human tutoring. Moreover since

the digital contents could be distributed very fast to a large number of learners with

low cost, education providers are attracted towards using educational softwares.

Fig. 1.1: DeepTutor interface

1



Various forms of learning systems ranging from one to one Intelligent

Tutoring Systems (ITS) to multi-player Collaborative Problem Solving (CPS)

Systems have been developed to the date. For instance, in one to one tutoring

systems such as AutoTutor (Graesser, Lu, et al., 2004), DeepTutor (Rus,

Stefanescu, Niraula, & Graesser, 2014) and Electronix Tutor (Graesser et al., 2018),

students are asked different kinds of questions by the intelligent tutor and the

students give answer. The students’ answers are automatically assessed and then a

feedback, hint or another question is generated depending upon the answer given by

the student. The interface of DeepTutor (Figure 1.1) shows the problem description

and the dialogue history. The problem, often referred as task, is authored by

domain expert and consists of problem description, expected answers to the

questions, prompts, possible hints and other relevant feedback. During tutoring, the

system asks questions and the student respond to it in the form of natural language

text and the dialogue continues. The dialogue consists of multiple cycle of

tutor-student interaction in the form of (1)tutor question (2)student answer

(3)relevant feedback from tutor until all the expectations of the task are complete

after which the student are expected to master the concept.

Whereas in CPS systems such as Virtual Internships, students work in team

on real world problems. They conduct background research, interview clients,

develop and test prototypes and work with their colleagues to evaluate technical,

social, economical and ethical impact and propose solution to the problem. In such

system, the role of the mentor is to coordinate group discussions, provide feedback

and assistance when students have questions, and assess proposal, submitted as free

short text (notebook) by the students. An interface of Virtual Internship, for

instance “Nephrotex” (Arastoopour et al., 2012), showing task, required sections of

the task, a student submitted notebook (shown as a paragraph of text) and other

details is shown in Figure 1.2. The participants in these Virtual Internships
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Fig. 1.2: Virtual internship interface showing student generated (notebook) entry

communicate via e-mail or by chat using the interface provided by the system. At

present, mentoring is done by human mentors who have interest and knowledge on

the project. Noting that the human involvement in assessment is a greater

hindrance both in terms of cost and scalability, one of the objectives of our research

is to automate the assessment process in order to achieve the bigger goal of

replacing human mentors with an intelligent agent. Unlike one to one tutoring, the

Virtual Internship is multi-player system where mentors intervene less during

learning. However, the short answer assessment methods that were successful in

tutoring systems could be adopted in assessing notebooks in Virtual Internships.

Furthermore, the conversation utterances produced by the participants could be

analyzed and used to improve the collaboration among the students.
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1.2 Challenges and Approaches to Understand Students’ Inputs

For the success of a learning system, not only the content but the quality of

service that the system provides has a great impact. In one research (Wang & Chiu,

2011), it was noted that the interaction between learners though positively

contributes to learning, the efficient and quality service to users has great impact on

the success of the e-learning system.

Those qualities are characterized by the ability of the system to analyze the

users’ interactions efficiently with respect to time, cost and accuracy. While the

users interact in various forms such as by multimedia, mouse click or by textual

inputs, analyzing those interactions presents separate research challenges. We limit

our research to explore methods of understanding natural language text inputs in

ITS and CPS.

Table 1.1: An example showing reference answers, answer given by the student for a
question asked by “DeepTutor”. The student has to answer questions based on the
problem description provided. “Q” refers to question, “SA” refers to student answer

and “RA” refers to reference answer

Problem Description: A mover pushes a desk with a horizontal force
such that the desk moves with constant velocity v0 across a carpeted
floor. Suddenly, the mover doubles his force
Q:What can you say about the speed of the desk?
SA: The velocity of the desk will increase but it will not necessarily
double in velocity.
RA1: The desk moves with increasing velocity.
RA2: The desk will move with constant acceleration and the speed
will increase.
RA3: The desk increases its speed as the net force is non-zero.
RA4: The desk increases its speed as the net force is not zero any-
more.

While the natural language interactions could be the conversation, or free

text writing, the type and length of interaction could vary widely from few words to

few paragraphs. For example, the interactions in Intelligent Tutoring System occurs

via textual conversational utterances whose length range from a single word to one

or two sentences (Table 1.1). Those conversational texts entered by students are

4



expected to have targeted concepts that are needed to answer the questions asked to

the student by the system.

On the other hand, in Virtual Internships, students submit a paragraph of

text in the form of notebook as work proposal to the given problem (Table 1.2). In

engineering design problem (Nephrotex and RescueShell; (Chesler et al., 2015)),

these notebooks include design specifications such as material, manufacturing

process, carbon nano-tube percentage, and the list goes on. Whereas in Land

Science, a virtual internship of city zoning plan, notebooks include design plan which

balances demands of stakeholders who advocate for indicators of community health.

Moreover, students interact with their peers and mentors using chat or by e-mail.

Table 1.2: An example of notebook from the virtual internship “Nephrotex”

Design Specifications: The design has a CNT concentration of
20.0%, which is made through a dry-jet wet printing process. It uses
a hydrophilic surfactant in PESPVP. Justification: The CNT con-
centration was chosen because it provides a disproportionately good
performance for a linear increase in price. The dry-jet wet printing
manufacturing process was chosen because it is the cheapest manu-
facturing option, which is an important factor for my client. I chose
a hydrophilic surfactant because it is the most affordable surfactant,
which makes up for its lack in marketability.

These text inputs could provide important information about the current

state of the system, studens’ learning, knowledge and skills, which could be used by

learning systems to fulfill different purposes. To illustrate, in conversational systems

such as ITS, the student’s inputs are compared with ideal reference answers to check

if student answer covered all or subset of expected concept or have misconception,

and provide just in time feedbacks and hints. Also, discovering and classifying

speech act of the utterances created by students is important in both ITS and CPS.

For example, when a student says: ”Please give me an example of action and

reaction force!”, the system should be able to understand that the student is
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requesting help, and able to provide a an instance of ”action and reaction forces”

that act in pair in real world.

Whereas in CPS systems such as virtual internships, the student generated

notebooks are assessed by comparing with the rubrics or exemplars created by

teachers. And ability to automatically assessing those notebooks reduces the cost

and time. Specifically, at present, for every 30 students, at least 2 human graders

are needed to assess notebooks in Virtual Internships. Replacing human assessor

with computers not only scale up the system, but also improve the reliability by

avoiding the bias induced by the traits of assessor.

Having said that the notebooks are assessed by comparing with rubrics, we

explored two fundamental approaches. The first approach is data driven approach

where the student notebooks are graded by human annotators based on rubrics and

Machine Learning models are trained with these annotated notebooks. For that, the

notebooks are converted into combination of features including domain expert

features and general text analysis features inspired from previous work on

automated essay scoring (Dikli, 2006; Leacock & Chodorow, 2003; Shermis &

Burstein, 2003) and text analysis software tools such as CohMetrix (Graesser,

McNamara, Louwerse, & Cai, 2004) and LIWC (Pennebaker, Francis, & Booth,

2001). The other approach uses only exemplars to generate core concepts classifiers.

This approach is useful for a newly created Virtual Internships, where students’

notebooks have not been collected yet to train the Machine Learning model. In this

approach, the rubric is used only for final grading of notebooks after they are

classified as presence or absence of core concepts. The concepts are keywords or

phrases that are defined and tagged in few exemplars by teacher during authoring

the Virtual Internship. These core concept classifiers use semantic similarity

approach to find if core concept is present in some part of the text in student’s

notebook. The computation of such semantic similarity score could be based on
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LSA or Neural Networks, both pre-trained with large domain general corpus. Our

experiment found that the Neural Network performed better compared to LSA.

However proper choice of threshold is a key to the success of semantic similarity

approach. In contrast, the Regular Expression (RegEx) approach does not need

threshold, however teacher has to generate keywords that could be used to create

regular expression lists for each of the core concepts.

While semantic similarity based on LSA or Neural Network can perform

better if expected concepts are mentioned directly in learners’ responses. But it is

difficult to assess in case those concepts are mentioned indirectly. For example, in

DeepTutor, a target Intelligent Tutoring System (ITS) of our study, student could

mention ”downward force from the earth” instead of saying ”gravitational force”. In

this case, even though both the concepts are same, the LSA based similarity score

will be low. Such limitation of LSA based system could be avoided by using graph

embedding method to learn better representation concepts and use them to assess

student answer. Since such knowledge graphs encode relationship between the

concepts in a huge graph, the indirect relation between concepts could be discovered

easily from them.

Another important linguistic phenomenon in every human languages is the

negation. Statements are negated implicitly (using words such as “avoid”,

“prevent”, “prohibit”) or explicitly (using cues such as “no”, “not”). Presence of

negation reverses the polarity of entire statements or of parts of statements. Many

studies showed that negation accounts for a significantly large part of both spoken

and written human language. In one study, it is reported that negation occurs twice

as often in speech as in writing (Tottie, 1993). Some domain-specific corpus

linguistics studies showed that negation occurs most frequently and represents a

major portion of the information within such domain specific texts (Vincze, Szarvas,

Farkas, Móra, & Csirik, 2008; Konstantinova et al., 2012). Also, an analysis of
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student utterances in dialogues collected from experiments with actual students

interacting with the intelligent tutoring system DeepTutor (Rus, D’Mello, Hu, &

Graesser, 2013) showed that 9.36% of student utterances included explicit negation.

Negation presents different challenge in analyzing text to understand its

semantics. Particularly, vector based semantic similarity using latent semantic

analysis is not capable of identifying the the portion of the text negated. This

results an adverse implication in the assessment of students’ input in learning

system by degrading the quality of feedback generated by the system and decreasing

the reliability of overall assessment process and effectiveness of ITS. We address this

issue by proposing a LSTM based negation handling approach in conversational

system.

Besides assessment text response for their correctness, other kind of analysis

such as speech act classification, and more specifically in Virtual Internships,

assessment of professional skill development are needed to move a step closer

towards developing intelligent agents in Learning Systems. The professional

developments in systems like Virtual Internships are characterized by epistemic

frame theory, which states that the learners develop the epistemic frames, or the

network of skills, knowledge, identity, values and epistemology (SKIVE) that are

unique to the professionals (Chesler, Bagley, Breckenfeld, West, & Shaffer, 2010).

While communicating with participants in Virtual Internships, students activates

different SKIVE components, whose distribution could be obtained by Markov

Analysis using random walk. Such distribution could used to measure how much the

students have developed professional skills necessary traits for the profession.

Moreover, speech act classification provides a method to understand

conversation pattern among students (and possibly mentors or tutors) involved in

conversation. Speech acts are a construct in linguistics and the philosophy of

language that refers to the way natural language performs actions in
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human-to-human language interactions, such as dialogues. Speech act theory was

developed based on the “language as action” assumption. The basic idea is that

behind every utterance there is an underlying speaker intent, called the speech act.

For instance, the utterance “Hello, John!” corresponds to a greeting, that is, the

speaker’s intention is to greet, whereas the utterance “Which web browser are you

using?” is about asking a question.

Labeling utterances with speech acts requires both an analysis of the

utterance itself, e.g., “Hello” clearly indicates a greeting, but also accounting for the

previous context, i.e., previous utterances in the conversation. For instance, after a

question, a response most likely follows. This pattern holds in dialogues, i.e.,

interactions between two conversational partners, for instance student and tutor in

DeepTutor, where there is a clear pattern of turn-taking; that is, a speaker’s turn is

followed by a turn by the other speaker. However, in multi-player conversations

such as Virtual Internships, the one that we did our analysis, identifying the

previous utterance that is most relevant to the current one is more difficult. In such

multi-party conversation, the conversations are tangled and it becomes more

challenging to link a target utterance to the previous one that triggered it. The

complexity of untangling such multi-player conversations is further increased as the

number of participants increases.

1.3 Research Objectives

While the bigger goal of this dissertation is to automate the assessment of

learners’ input and develop an intelligent agent, the specific objectives are listed as

follows:

1. Assessment of short text content

2. Concept classifier generation from reference examples

3. LSTM based negation handling
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4. Markov analysis of Learners’ conversation in multi-player system

5. Speech act categorization in multi-player system

6. Use knowledge graph embedding to assess students’ answer in intelligent

tutoring system

1.4 Contributions

This dissertation makes following contributions towards understanding

interaction in learning systems and automating the assessment of learners’

generated textual contents.

In Chapter 2 we present a machine learning approach to automatically assess

student generated textual design justifications in engineering virtual internships.

Particularly we compare two major categories of models coupled with machine

algorithms: domain expert-driven vs. general text analysis models. We found no

quantitative differences among the two major categories of models, domain

expert-driven vs. general text analysis, although there are major qualitative

differences as discussed in the paper.

In Chapter 3 we present a method for generating classifiers using

specifications provided by teachers during their authoring process instead of

participant data. Our models rely on Latent Semantic Analysis based and Neural

Network based semantic similarity approaches in which notebook entries are

compared to ideal, expert generated responses. Furthermore, in Chapter 4 we report

on our effort to develop an LSA-based assessment method without student data. we

also investigate the optimum corpus size and vector dimensionality for these

LSA-based methods.

In Chapter 5 we present a novel approach to automatically handling negation

in tutorial dialogues using deep learning methods. Specifically, we explored various

Long Short Term Memory (LSTM) models to automatically detect negation focus,
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scope and cue in tutorial dialogues collected from experiments with actual students

interacting with the intelligent tutoring system, DeepTutor.

In Chapter 6 we conduct a Markov analysis of learners’ professional skill

development based on their conversations in virtual internships, an emerging

category of learning systems characterized by the epistemic frame theory. We model

individual students’ development of epistemic frames as Markov processes and infer

the stationary distribution of this process, i.e. of the SKIVE elements.

In Chapter 7 we present a novel approach to classify speech acts of chat

utterances in mylti-player system such as virtual internships, where there is no clear

turn taking among the speakers. Our approach is based on pre-training a neural

network on a large set of noisy labeled data.

In Chapter 8 we present a method to use knowledge graph for assessing

student answers in dialogue based intelligent tutoring systems. We focus to develop

and evaluate our model for DeepTutor, an intelligent tutoring system for high school

physics students.

We conclude with Conclusions and Future Works in Chapter 9.
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Chapter 2

Assessment of Short Text Content

In Engineering Virtual Internships, students work as interns at fictional

companies to create engineering designs. To improve the scalability of these virtual

internships, a reliable automated assessment system for tasks submitted by students

is necessary. Therefore, we propose a machine learning approach to automatically

assess student generated textual design justifications in two engineering virtual

internships, Nephrotex and RescuShell. To this end, we compared two major

categories of models: domain expert-driven vs. general text analysis models. The

models were coupled with machine learning algorithms and evaluated using 10-fold

cross validation. We found no quantitative differences among the two major

categories of models, domain expert-driven vs. general text analysis, although there

are major qualitative differences as discussed in this chapter.

2.1 Introduction

In virtual internships, students play the role of interns in a virtual training

environment. In engineering virtual internships, such as Nephrotex (NTX) and

RescueShell (RS), students research and create multiple engineering designs

(Chesler et al., 2015). As part of their design process, they regularly submit written

work in the form of electronic engineering notebooks that are assessed by human

judges. This human assessment is labor intensive, time consuming, and error-prone

under certain circumstances such as time pressure. Furthermore, prior work has

suggested that the reliability of human assessments can vary depending on the traits

of the assessor, their experience, and the types of problems being assessed (Tisi,

Whitehouse, Maughan, & Burdett, 2013) . Thus, an automated assessment method

that could provide efficiency in terms of time and cost as well as improved reliability

is much needed. Our work presented here constitutes a step in this direction.
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In the present study, we explored various models for automatically assessing

notebooks in the engineering virtual internships NTX and RS. The content of these

notebooks varies; however, in this study we focus on only one type of notebook in

which students must justify their engineering designs by typing a short, free-text

justification. We have experimented with models that emulate an expert analysis of

the student notebook entries as well as models derived from general textual analysis

features. It should be noted that our work differs from previous attempts which rely

on a semantic similarity approach, i.e. measuring how semantically close a

student-generated response is to an ideal, expert-generated response as in (Mohler

& Mihalcea, 2009).

The domain expert-driven models incorporate theoretically driven,

content-based features identified by human experts such as “referencing any

performance parameter such as cost”, which is a general design feature because it

applies to all engineering designs in NTX and RS, or “indicating the power source”,

a feature specific to the concrete task of designing an exoskeleton, which was the

focus of the RS internship and not NTX. A challenge with the domain expert-driven

models is that the features are specific to either the type of task, e.g. engineering

design, or the concrete task itself, e.g. design an exoskeleton. This results in a

scalability issue as these models must be redesigned manually by domain experts

when moving to a new domain, new type of task, and/or a new concrete task.

However, the net theoretical advantage of these domain expert-driven models is that

they are tailored to the task at hand and therefore are expected to yield very good

performance. These models also afford the ability to create automatic and tailored

feedback to students given their task-specific diagnostic capabilities.

The other category of models that we used rely on general text analysis

features inspired from previous work on automated essay scoring (Dikli, 2006;

Leacock & Chodorow, 2003; Shermis & Burstein, 2003) and text analysis software
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tools such as CohMetrix (Graesser, McNamara, et al., 2004)and LIWC (Pennebaker

et al., 2001). For instance, in automated essay scoring the length in words of the

essay, i.e. the number of all word occurrences or word tokens, is by far the best

predictor of essay quality. Coh-Metrix is a software package that calculates the

coherence of texts in terms of co-reference, temporal cohesion, spatial cohesion,

structural cohesion, and causal/intentional cohesion. LIWC (Linguistic Inquiry and

Word Count) uses a word count strategy to characterize texts along a number of

dimensions that include standard language categories (e.g., articles, prepositions,

pronouns), psychological processes (e.g., positive and negative emotion word

categories), and traditional content dimensions (e.g., sex, death, home, occupation).

The key advantage of the general text analysis models is that they are

generally applicable across types of tasks, specific tasks, and domains. In addition,

the general text analysis features are relatively cost-effective and easy to derive from

the data compared to features derived by domain experts, which require

(significantly more) human time and effort.

In this work, we explore the predictive power of the two major categories of

models mentioned above, domain-expert vs. general text analysis, in conjunction

with a number of machine learning algorithms such as decision trees, näıve Bayes,

Bayes Nets, and logistic regression. Furthermore, we employed an ensemble of

classifiers approach in order to boost the performance of individual models. We

conclude the chapter with a qualitative assessment of the relative benefits of the

proposed models for virtual internships by considering their predictive value, the

labor involved in their development, and their ability to provide interpretable

assessments for students.

2.2 Background

We review in this section prior work on assessing students’ openended

responses with an emphasis on prior work in the area of educational technologies.
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Automated essay scoring systems (Dikli, 2006; Leacock & Chodorow, 2003;

Shermis & Burstein, 2003) have been developed for more than two decades as a way

to tackle the costs, reliability, generality, and scalability challenges associated with

assessing student generated open-ended responses to essay prompts. There are a

number of systems available for automated essay scoring, some of which are

commercial. It is beyond the scope of this dissertation to offer a thorough review of

the work in this area. We limit ourselves to noting that the focus on automated

essay scoring is on the argumentative power of an entire essay while in our case the

focus is on required (design) items that must be present in paragraph-like

justifications. This entails that style and higher level constructs such as rhetorical

structure are less important in our task as opposed to the essay scoring task and

that factors that focus more on content measures are highly important. Given these

differences and the fact that the two most predictive factors of essay quality are also

content related, we included in our models the following two features: word count,

i.e. total number of word occurrences or tokens in student justifications, and

content word count, i.e. the total number of content word occurrences (nouns,

verbs, adjectives, and adverbs).

Directly relevant to our study is previous work by Rus, Feng, Brandon,

Crossley, and McNamara (Rus, Feng, Brandon, Crossley, & McNamara, 2011) who

studied the problem of assessing student-generated paraphrases in the context of a

writing strategy training tutoring system. One of the strategies in this tutoring

system is paraphrasing. As the system is supposed to prompt students to

paraphrase and then provide feedback on their paraphrases, Rus and colleagues

collected a large corpus of student-generated paraphrases and analyzed them along

several dozen linguistic dimensions ranging from cohesion to lexical diversity

obtained from Coh-Metrix (Graesser, McNamara, et al., 2004). There are significant

differences between their work and ours. First, we deal with justifications which can
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vary in length from a few words to a full paragraph as opposed to explicitly elicited

paraphrases of target sentences. Second, we do use extra features to build our

models besides the Coh-Metrix indices. Third, we assess the student generated

justifications as acceptable or unacceptable (i.e., correct or incorrect). We could

eventually investigate finer levels of correctness, e.g. on a scale from 1-5, which we

plan to do as part of our future work.

Williams and D’Mello (Williams & D’Mello, 2010)worked on predicting the

quality of student answers (as error-ridden, vague, partially-correct or correct) to

human tutor questions, based on dictionary-based dialogue features previously

shown to be good detectors of cognitive processes (Williams & D’Mello, 2010, cf.).

To extract these features, they used LIWC (Linguistic Inquiry and Word Count;

(Pennebaker et al., 2001)), a text analysis software program that calculates the

degree to which people use various categories of words across a wide array of texts

genres. They reported that pronouns (e.g. I, they, those) and discrepant terms (e.g.

should, could, would) are good predictors of the conceptual quality of student

responses. Like Williams and D’Mello, we do use LIWC to analyze student

notebooks’ justifications. Furthermore, we employ expert-identified features and

features from Coh-Metrix and automated essay scoring.

Prior work by Rus, Lintean, and Azevedo (Rus, Lintean, & Azevedo,

2009)investigated the performance of several automated models designed to infer

the mental models of students participating in an intelligent tutoring system (ITS).

The ITS was designed to teach students self regulatory processes while they were

learning about science topics such as the human circulatory system. Rus and

colleagues used two methods, a content-based method and a word-weighting

method, to derive features for their models. While our present work does not

investigate models using word-weighting methods, we do investigate models using

content-based features.
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The content-based features used by Rus and colleagues included a taxonomy

of relevant biology concepts derived by human experts, expert annotated pages of

content from the ITS, and expert generated paragraphs. In the present study, the

content-based features, or domain-expert (DE) features, we used consist of discourse

codes developed by human experts. Discourse codes indicate the presence or

absence of specific concepts in student talk, or in this case, student written work.

The DE features were developed through a grounded analysis of student design

justifications collected from engineering virtual internships (Glaser & Strauss, 2009).

The learning that occurs in engineering virtual internships can be

characterized by epistemic frame theory. This theory claims that professionals

develop epistemic frames, or the network of skills, knowledge, identity, values, and

epistemology that are unique to that profession (D. W. Shaffer, 2006b). For

example, engineers share ways of understanding and doing (knowledge and skills);

beliefs about which problems are worth investigating (values), characteristics that

define them as members of the profession (identity), and a ways of justifying

decisions (epistemology). In this study, we used epistemic frame theory to guide the

development of the DE features. In prior work, elements of the engineering

epistemic frame have been operationalized as discourse codes and used to assess

engineering thinking in virtual internships (Chesler et al., 2015). In this study, the

DE features we identified correspond to elements of the engineering epistemic frame

that relate to justifying design decisions. The presence or absence of these features

in a student’s written work thus represents elements of the engineering epistemic

frame that are present or lacking.

In sum, we used some of the features described by the above researchers in

our work, such as word count, as well as novel features, e.g. features based on the

engineering epistemic frame.
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2.3 Engineering Virtual Internships

In this study, we examined student written work collected from the

engineering virtual internships, Nephrotex (NTX) and RescueShell (RS). In NTX,

students work in teams to design filtration membranes for hemodialysis machines,

while in RS, student teams design the legs of a mechanical exoskeleton used by

rescue workers.

All interactions in virtual internships take place via a website in which

students communicate with their teams using email and chat. During the

internships, students research and create engineering designs in two cycles. In each

cycle, students design five prototypes and later receive performance results for each

prototype which they have to analyze and interpret.

During their design process, students submit records of their work via

electronic notebook entries for each substantive task they complete, including

summarizing research reports and justifying design decisions. The expectations of

notebook entries are outlined in prompts, which students receive via email in the

virtual internship website. Each notebook that students submit is divided into

notebook sections, i.e., separate text fields for items that are defined by the email

prompts. In this study, we analyzed notebook sections in which students provided

justifications for their prototype design decisions.

Once students complete each notebook section, they submit the notebooks to

trained human raters for assessment. In the fiction of the virtual internships, these

raters play the role of more senior employees in the company who act as mentors to

the students. The role of the mentors is to answer student questions and lead team

discussions, in addition to assessing student work.

Once a mentor receives a notebook, they assess each section as acceptable or

unacceptable using provided rubrics. The assessment system used by the mentors

automatically generates pre-scripted feedback corresponding to the assessment given
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to each section. Currently, this feedback is generic in the sense that it does not

respond to the particulars of a student’s response. For example, an assessment of

unacceptable on a notebook section requiring a summary generates feedback that

(1) informs the student that the section was unacceptable, (2) reminds them of the

content they were asked to summarize, and (3) points them to the documents they

were asked to summarize. This automated feedback does not inform the student

exactly why the section was rated as unacceptable. However, the mentor does have

the option to compose specific feedback for the student if they wish.

Our work here moves us towards a more automated and student tailored

assessment and feedback mechanisms which could have significant impact on the

economy of scaling virtual internships to all students, anytime, anywhere via

Internet-connected devices.

2.4 Experiments and Results

We describe first the data set we used in our experiments before presenting

the experiments and results obtained with the models.

2.4.1 Dataset

In this study, we analyzed notebook sections from the NTX and RS virtual

internships in which students justified their engineering design decisions. In these

notebook sections, students were required to include the design input choices they

selected—that is, their design specifications, and a justification explaining why this

design was chosen for testing.

Mentors assessed these notebook entries as acceptable or unacceptable in

real-time during the virtual internship using the following rubric:

1. Listed their design specifications

2. Included a justification referencing at least one design specification.

Acceptable justification may include:
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1. Prioritizing attributes

2. Referencing internal consultant requests

3. The performance of a design specification on a specific attribute

4. Experimental justifications (e.g., holding design specifications constant)

To select data for this study, we randomly sampled 298 justification sections

from 20 virtual internship sites, i.e. datasets corresponding to 20 schools where the

virtual internships were implemented. Twelve were NTX sites and eight were RS

sites. Of the 298 justifications sampled, 146 were from NTX and 152 were from RS.

Students were given the same prompts for justification sections in NTX and RS. In

addition, the same rubrics were used by raters in NTX and RS. Thus, we combined

data from RS and NTX to train our models.

As described above, justification sections were originally assessed by mentors

during the virtual internship in real time. The mentors were trained to assess

notebook section, but they were not experts in the domain of engineering or the

content of the virtual internships. In addition, they had to assess notebook sections

under time constraints and while completing their other responsibilities as a mentor.

For example, they could have to respond to student questions via chat while

assessing. Thus, to obtain potentially more valid and reliable assessments for model

training, the justification sections in this study were re-assessed by more experienced

raters that did not face the constraints placed on the mentors. We found that the

agreement between the human mentors and our experienced raters on the 298

student justifications we used in this work was kappa = 0.271. This value is very

low, indicating that mentors’ assessments are not reliable, as we suspected.

Each justification section was re-assessed by two new raters, benchmark rater

1 (BE1) and benchmark rater 2 (BE2). BE1 had over two years of experience rating

notebook sections from virtual internships and had contributed to the content
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Table 2.1: Example of acceptable and unacceptable notebooks from the virtual
internship “Nephrotex”

Notebook entry Assessment

Design Specifications: PAM, Vapor, Negative Charge, 4 % Justifica-
tion: This prototype was altered slightly from the original with this
material by changing from 2% CNT to 4%. This is an attempt to
increase reliability without hindering flux or blood cell reactivity.

Acceptable

Design Specifications: PAM, Vapor, Negative Charge, 2.0 Justifica-
tion: These specificaions ran best for PAM material

Unacceptable

Table 2.2: Distribution of human-ratings in the 298 instances

Human Rating #Instances

Acceptable 217
Unacceptable 81
Total 298

development of both NTX and RS. BE1 was thus considered an expert rater for the

purposes of this study. BE2 was a less experienced rater trained to assess

justification sections. BE1 and BE2 assessed all 298 justification sections using the

rubric above and agreed on one final judgement (acceptable or unacceptable) for

each justification. Their inter-annotator reliability as measured by kappa was 0.767.

Table 2.1 includes examples of notebook sections from NTX assessed as acceptable

and unacceptable by the benchmark raters. About 73% of the instances in the data

set were rated positively by the BEs. The distribution of positive and negative

instances is shown in Table 2.2.

2.4.2 Feature Selection

As already mentioned, we focused on two major categories of models: models

that rely on domain-experts (DE) versus models that rely on more general textual

analysis features. We developed the DE features through a grounded analysis

(Glaser & Strauss, 2009)of a sample of 98 justification sections. These features were

developed by two researchers who re-assessed the sample and developed discourse

codes corresponding to what they attended to while assessing. Next, we automated

these codes using the nCoder, a tool for developing and validating automated
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discourse codes that relies on authoring targeted regular expressions for each of the

expert identified codes (D. Shaffer et al., 2015). These codes were included as

features in our models (see Table 2.3 for descriptions).

The general textual analysis features were further divided by their source

into the following three categories: features inspired from automated essay scoring

(ES) research, features obtained with the automated tool for textual analysis

Coh-Metrix, and features obtained with the automated tool for textual analysis

LIWC. This categorization of the general textual analysis features is needed for

several reasons. First, the various sources capture different aspects of a text.

Second, this categorization allows us to conduct ablation studies in which we assess

the contribution of each major category of features to solving the task at hand. It

should be noted that there is overlap among the features from various

groups/sources. For instance, the WC (LIWC), DESWC (Coh-Metrix), and

Word Count (DE) features are all counts of white-spaces in a target text, i.e.

justifications in our case. These features are slightly different from the token Count

feature in the ES group which counts number of tokens after applying the Stanford

tokenizer tool. Similar features will not end up in the same models if they correlate

highly, as explained next.

Not all features have equal predictive power and having redundant or

irrelevant features can decrease the performance of the models. Therefore, we had a

feature selection step keeping features that have low correlation with each other

(<.70). When two features in a model had a correlation greater than .70 of them

was dropped. For instance, from the LIWC and Coh-Metrix groups of features the

features selected via this process were: WC, SIXLTR, adverbs, verbs, DESSC,

DESSL, DESSLd, PCNARz, PCCONNp (See Table 2.3 for descriptions). The

feature selection step was needed given that we worked with various machine
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Table 2.3: Descriptions of the some features used in the proposed models (not all
shown due to space constraints)

Features Description

LIWC(LI)
Word Count Word Count-(WC: Total number of words in text); Token

Count-(TC: Number of unique words in text); Words >6
letters- (SIXLTR: total number of words greater than 6

letters); Punctuations
Type Token

Ratio
Ratio of TC and WC

Coh-Metrix(CM)
Lexical

Component
Counts

DESPC - (Paragraph count: number of paragraphs);
DESSC - (Sentence count: number of sentences); DESWC -

(Word count: number of words)
DESPL DESPL - (Paragraph length: number of sentences, mean);

DESPLd - (Paragraph length, standard deviation);
DESSLd - (Sentence length, standard deviation)

Connectives
Features

PCCONNp - (the degree to which the text contains
connectives such as adversative, additives and comparative

connectives to express relations in the text.)
Temporality

Features
PCTEMPz - (the temporality such as tense or aspect of the

text); SMTEMP - (temporal cohesion, measured by
repetition score of tense and aspect)

LDTTRa Type token ratio of all words.
Domain Expert(DE)

Exoskeleton
Design Inputs

Control Sensor, Range of Motion, Power Source, Material,
Actuator

Dialyzer Design
Inputs

Process, Surfactant, Material, Carbon Nanotube Percentage

Attributes Referencing any design attribute or performance parameter
such as cost, reliability, etc.

Justification
Features

Balancing - Justifying input choices by stating it made up
for the weakness of another choice or by saying that another
choice will balance out its weaknesses; Client - Justifying
input choices by stating it would be good for the client or
end user of the product; Consultant Requests - Justifying in-
put choices because the results meet or are expected to meet
internal consultants’ requests; Evaluation - Justifying input
choices by evaluating the performance of the inputs

Essay Scoring (ES)
Token Count Count of word occurrences in the justification.
Content Word

Count
Count of all content words (noun, adjective, verb, adverb) in

the justification.
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learning algorithms, some of which do not have a feature selection process linked to

them, e.g. the stepwise variable selection in some regression implementations.

2.5 Results

We experimented with the proposed models in conjunction with a number of

classification algorithms including decision trees, näıve Bayes, Bayes Nets, and

logistic regression. We present here the results obtained with the logistic regression

classifier as it yielded the best results overall. The models were validated using

10-fold cross validation. Performance was measured using standard measures such

as accuracy, false positive rate, precision, recall, F measure, and kappa statistic.

The false positive rate, the percentage of true negatives predicted as positives, is of

special interest because it gives us an idea of how many justifications are deemed

correct when in fact are not, by a particular method. That is, it indicates how many

opportunities for feedback a specific method might miss as a justification deemed

correct means there is no need for specific feedback to improve it. The evaluation

results are shown in Table 2.4. We focus next on the most important model

comparisons due to space constraints, e.g. we do not show results when combining

two groups of features.

Table 2.4: Performance evaluation results for various models

S.N. Features Acc FPR P R F1 Kappa

1 ES 85.2349 0.249 0.85 0.852 0.851 0.6181
2 LI 83.2215 0.295 0.827 0.832 0.829 0.5591
3 CM 85.2349 0.295 0.848 0.852 0.846 0.5991
4 DE 83.2215 0.302 0.827 0.832 0.828 0.5555
5 ES + LI 84.8993 0.258 0.846 0.849 0.847 0.6079
6 ES + CM 83.557 0.301 0.83 0.836 0.831 0.5626
7 ES + DE 83.8926 0.277 0.835 0.839 0.836 0.5801
8 LI + CM 82.5503 0.328 0.818 0.826 0.819 0.5301
9 LI + DE 81.5436 0.293 0.813 0.815 0.814 0.5283
10 DE + CM 82.8859 0.319 0.822 0.829 0.823 0.541
11 ES+LI+CM 83.8926 0.292 0.834 0.839 0.835 0.5733
12 LI + DE + CM

+ ES
81.8792 0.3 0.815 0.819 0.817 0.5314
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Table 2.5: Classification performance of ensemble models with majority voting
(rows 1 and 2 include weakest individual and combined models, respectively; rows 3

and 4 include the best individual and combined models, respectively)

S.N. Features Acc FPR P R F1 Kappa

1 (DE)+(LI)+(ES) 0.8523 0.264 0.8483 0.8523 0.8503 0.612
2 (LI +DE)+

(LI+DE+CM+ES)+(LI+
CM)

0.8624 0.237 0.8595 0.8624 0.8609 0.6427

3 (ES) + (CM) + (DE) 0.8658 0.2435 0.8624 0.8658 0.8641 0.6473
4 (ES+LI)+(ES+DE)+

(ES+CM)
0.8557 0.2627 0.8516 0.8557 0.8536 0.6192

We started with models that included features from only one group, i.e. the

individual feature group models shown in rows 1-4 in Table 2.4, selected the best

such model and then added, sequentially, features from the other groups in batches,

where each batch contained the selected features in one group. This procedure, also

known as an ablation study in machine learning, allows to see what we gain if we

add a group of features to a model that already contains feature from one or more

groups. From Table 2.4, we infer that the ES and Coh-Metrix individual models are

the best as they have slightly higher accuracy in prediction (85.23% for ES and

85.23% for Coh-Metrix) compared to other two individual feature groups. Also their

kappas are the highest among the models with only one group of features.

In row 5, we show the results when combining all general text analysis

features: ES, LIWC, and Coh-Metrix. As already mentioned before, we are directly

interested in comparing the domain expert-driven model, derived from the DE

features, with the model in row 5 that includes all the general text analysis features

from the ES, LIWC, and Coh-Metrix groups. As we notice, these two qualitatively

different models have very similar performance across all performance measures.

In addition to developing the above models from subsets of features, we used

ensembles of 3 individual and combined models, respectively, in conjunction with a

majority voting mechanism. For instance, if 2 or 3 out of 3 models predicted a

justification as accepted then the final prediction for the instance was accepted. We
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experimented with voting in two different ways: (1) we used the best 3 models from

the individual or combined groups of features; (2) we used the weakest 3 models

obtained with any combinations of features from individual and combined groups of

features; this latter case is based on results from statistics that show that combining

weak classifiers should result, in general, in better performance relative to the

performance of each of the weak classifiers. Both types of ensembles (weakest versus

best) yielded in the best cases similar accuracies of 86% and similar performance

across all the other performance measures (see Table 2.5). The false positive rate of

the weakest combined model ensemble was lowest.

2.6 Conclusions

In this work, we experimented with multiple models designed to

automatically assess notebook sections from engineering virtual internships. In

particular, we developed models to assess notebook sections in which students

justified design decisions. All models performed very well with good and very good

kappa scores (kappas scores of 0.6-0.8 are considered very good) indicating that they

are much better than chance predictions. Our results show that, in this context, the

predictive value of models using only the general text analysis features is

comparable to the predictive value of a model using only the DE features (a

McNemar’s test on paired nominal data revealed no significant difference between

the two models’ prediction).

In particular, the ES group of features is the best predictor of students’

justifications quality. When other groups of features are added to the individual ES

model, the results do not improve significantly. The fact that the ES features are so

good is not surprising. Word count, or essay length, which is one of the features in

the ES group, is known as being the best predictor of essay quality in automated

essay grading (Mohler & Mihalcea, 2009; Rus & Niraula, 2012). Also, the CohMetrix

group of features are a good predictor of the quality of students’ justifications.
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It is important to note, however, that the predictive power of a model is only

one dimension for evaluating the utility of automated assessment models in learning

environments like virtual internships. We suggest that developmental cost and

interpretability of the models are also valuable dimensions to consider. Of the

models presented above, those using only the general text analysis features have the

lowest developmental cost. Moreover, these features are generally applicable across

types of tasks, specific tasks, and domains. In contrast, models containing the DE

features have a relatively high developmental cost because their features required

the time and expertise of humans to develop. We do note that the DE features

described in this chapter were automated. Thus, they can readily be applied to

more justification sections from engineering virtual internships. However, these DE

features are specific to this context and are likely not generalizable outside of

engineering virtual internships.

The utility of these automated assessment models lies in implementing them

in real-time during a virtual internship where they will be used to assess student

work and either generate automatic feedback or suggest feedback for human

mentors to give. For the models using only the general text analysis features, any

potential feedback would be in terms of features such as word count or “narrativity”

of the text that are not directly related to the domain-relevant content of the text.

Those models using DE features, however, could potentially generate

domain-relevant feedback in terms of what DE features were present and absent in

the text. For example, if a student’s justification section fails to relate their design

decisions to the requests of the company’s internal consultants, that is, it lacks the

“Consultant Requests” DE feature, feedback could be suggested to the mentor or

provided automatically to the student informing them of this missing information

and suggesting ways to include it. Thus, in terms of ease of interpretation, those
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models using only the general text analysis features have a relatively low ease of

interpretation compared to those models that include the DE features.

In this context, we then suggest the use of the best predictive model to assess

the overall quality of justifications in engineering virtual engineering internships,

and subsequently use the DEbased model to identify potential domain-specific

missing parts in an unacceptable justification in order to provide direct feedback to

the student or at least make suggestions to human mentors regarding possible weak

aspects of the justification. This approach balances the tradeoffs between generality

and reliability versus domain and task specific diagnostic capabilities.

We plan to further improve the predictive power, generality, and diagnostic

capabilities of our models. For instance, we are considering unsupervised methods

to automatically detect domain specific codes that could be used as features in our

DE models. Furthermore, we are considering unsupervised topic detection in

student-generated justification as a way to generalize the applicability of our models

to other domains and types of tasks.
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Chapter 3

Concept Classifier Generation from Reference Examples

While working as interns in virtual internships, participants complete

activities and then submit write-ups in the form of short answers, digital notebook

entries. Unlike prior work that used classifiers trained on participant data to

automatically assess notebook entries, we evaluate a method for generating

classifiers using specifications provided by teachers during their authoring process.

Our models rely on Latent Semantic Analysis based and Neural Network based

semantic similarity approaches in which notebook entries are compared to ideal,

expert generated responses. We also investigated a Regular Expression based model.

The experiments on the proposed models on unseen data showed high precision and

recall values for some classifiers using a similarity based approach. Regular

Expression based classifiers performed better where the other two approaches did

not, suggesting that these approaches may complement one another in future work.

3.1 Introduction

Recently, authoring tools have been developed that let teachers customize and

create new versions of digital learning environments such as intelligent tutoring

systems and simulations (D. W. Shaffer, Ruis, & Graesser, 2015). However, if these

environments use integrated automated systems, such as classifiers, customization

can be problematic: a new environment invalidates previous automated systems and

participant data does not yet exist to train new ones. Therefore, teachers who

author these learning environments must implement them, at least initially, without

a key component of the technology.

For example, during virtual internships, participants complete activities and

submit work in the form of digital notebook entries. Typically, these are short

answer responses ranging from a few sentences to a paragraph in length. Prior work
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has investigated automated assessment of notebook entries by training classifiers on

participant data (Rus, Gautam, Swiecki, Shaffer, & Graesser, 2016). However, since

the development of the Virtual Internship Authoring Tool (Swiecki & Shaffer, 2017),

teachers can now customize activities and their notebook requirements. Thus,

previously developed classifiers may no longer be valid and, initially, participant

data is not available to use for model training.

In this work, we present and test a method that addresses this issue by

generating classifiers from specifications that teachers provide during the authoring

process rather than waiting to generate them from participant data. Ultimately,

these classifiers will be integrated into a fully automated assessment system that

will score participant notebook entries. In this study, however, we only report on

the development of classifiers for determining whether teacher defined requirements

are present or absent in an entry, not classifiers that assign a final assessment.

3.2 Background

Several automated essay scoring systems (Dikli, 2006; Leacock & Chodorow,

2003; Shermis & Burstein, 2003)have been developed to tackle the challenges of

costs, reliability, generality and scalability while assessing open-ended essays.

Previous researches on automated essay scoring focused on the argumentative power

of an entire essay, while in our case, the student generated content is typically short

text the length of a sentence or paragraph. Also, the focus of our assessment is to

classify the content based on the presence or absence of semantic content defined by

teachers during their authoring process. This means that style and higher-level

constructs, such as rhetorical structure, are less important in our task compared to

essay scoring and that factors that focus more on content measures are more

important. Therefore, we limit our work to a semantic similarity approach and

Regular Expression (RegEx) matching approach to identify the presence of targeted

semantic content in participant generated text.

30



Various methods of text similarity measures have been used from the very

early years of information retrieval. One of the simplest approach is to use the

lexical overlap between the texts, however this approach does not consider the

semantic relation between the words. Salton & Lesk (Salton & Lesk, 1968)used is

term frequency based vector model for documents similarity. Such model fails when

two texts with same meaning have few overlapping words. Other approaches use

knowledge base such as WordNet to find semantically similar words in two text

(Fernando & Stevenson, 2008; Lintean & Rus, 2012). However these approaches face

challenges of word sense disambiguation. Other approaches use LSA or LDA

methods that rely on large corpus and do not face word sense disambiguation

challenge (Rus, Lintean, Graesser, & McNamara, 2009).

Rus et al. (Rus, Lintean, Graesser, & McNamara, 2009)collected a large

corpus of student-generated paraphrases and analyzed them along several dozen

linguistic dimensions ranging from cohesion to lexical diversity obtained from

Coh-Metrix (Graesser, McNamara, et al., 2004). They used the most significant

indices to build a prediction model that can identify true and false paraphrases and

also several categories of paraphrase types. Our work is significantly different than

their work as our classifier model does not rely on participant generated content (we

develop classifiers from teachers specifications of content before any participant

response is available), secondly our paraphrase detection model measures semantic

relation between the text without depending on linguistic features such as content

word counts.

Our LSA based similarity method relies on the combination of constituent

words a phrase. Hence the similarity score will be more biased towards phrases

having common words. While the Neural Network (NN) based semantic similarity

method proposed by (P.-S. Huang et al., 2013; Shen, He, Gao, Deng, & Mesnil,

2014), which we also explored, projects the phrase pairs into common low
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dimensional space hence the similarity score obtained will be more consistent

irrespective of the presence of common words in the phrases.

Our work closely relies on previous works (Corley & Mihalcea, 2005;

Fernando & Stevenson, 2008; Lintean & Rus, 2012)where the authors proposed

methods to measure the semantic similarity between texts. The authors in (Corley

& Mihalcea, 2005)and (Fernando & Stevenson, 2008)used knowledge bases such as

WordNet while the authors in (Lintean & Rus, 2012)used word to word similarity

and vectorial representation of words derived using Latent Semantic Analysis (LSA)

to compute the semantic similarity of two given texts. In addition to these methods,

we used in our work presented here phrase vectors generated using Neural Network

based models (P.-S. Huang et al., 2013; Shen et al., 2014).

Our work is also partially related to the work by Cai et al. (Cai et al., 2011),

which proposed methods to evaluate student answer in an intelligent tutoring

system. They used LSA and RegEx to assess student answers. Their work showed

that the carefully created RegEx had high correlation with human raters’ scores.

They also noted that the correlation increased when the expected answers created

by experts were combined with the previous students’ answers to assess new student

answers.

3.3 Methods

We developed three different types of classifier models and evaluated their

performances separately.

To generate our classifiers, we worked with data from one teacher as she

authored an activity in the virtual internship, Land Science. In Land Science,

participants work to design a city zoning plan that balances the demands of

stakeholders who advocate for indicators of community health. In the activity that

this teacher customized, participants describe their proposed zoning changes in a

notebook entry. In the first step of our method, the teacher defines assessment
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criteria for an entry in terms of core concepts, or the key semantic content they

want to be present or absent in an entry. For this entry, the teacher defined five core

concepts (see Table 3.1). Next, she constructed six example entries and identified

the chunks of text in each example that expressed each concept. In addition, she

provided lists of keywords for each core concept that she expected to be present in

participant notebook entries.

Afterward, we developed various classifiers for each core concept based on

the teacher provided items: sample responses, core concepts, and concept keywords.

In this work, we report three such classifier types; The LSA based semantic

similarity threshold classifier, the NN based semantic similarity classifier, and the

RegEx based classifier.

In both the LSA based and NN based classifiers, we use a sliding window to

search for the most similar chunk in an intern’s notebook entry. That is, for each

teacher-defined chunk, we slide a window of equal size over the student entry. For

each such participant-chunk identified by the sliding window over the student’s

notebook entry, we calculate the semantic similarity of the text within the window

to the teacher-defined chunk. After the similarity of all windows to a teacher-chunk

has been calculated, we assign the highest value as the similarity score for a given

core concept. For LSA based classifiers, we calculated the similarity score using

SEMILAR (Rus, Lintean, Banjade, Niraula, & Stefanescu, 2013). For the NN based

classifier, we calculated similarity score using the Sent2Vec1 tool. Since both the

tools are capable of taking phrases or sentences as input, we give the chunks as

input phrase, hence in the rest of the sections, we call these chunks as phrases.

If the highest similarity score is high enough, e.g. higher than a threshold, we

decide the target core concept is present in the student response. Otherwise, we

1https://www.microsoft.com/en-us/download/details.aspx?id=52365
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infer the student respond does not include the core concept. That is, we developed a

semantic similarity based classifier for assessing students’ responses.

In order to choose a threshold for the similarity based classifiers, we derived

a threshold by calculating the similarity score between the chunks of each of the

core concepts tagged by the teacher for both LSA based and NN based methods.

See the experiment section for details.

To test the validity of our approach, we developed classifiers for each target

concept and then tested them using 199 participant entries coded by humans for the

presence or absence of each core concept.

Because our initial thresholds were created without the aid of participant

data, we expected that better thresholds would exist. We therefore sought to

compare the performance of our classifiers using two different thresholds, the

derived thresholds above and ideal thresholds (described in more detail below). To

calculate the ideal threshold for each classifier we varied the semantic similarity

thresholds from zero to one and obtained precision and recall measures for each

threshold using participant data.

For the RegEx based classifiers, we used the teacher provided keywords,

which were generated without using participant data, to create regular expression

lists for each core concept. We infer that the target core concept is present in a

given entry as long as any of its associated keywords are present, as determined by

regular expression matching. Therefore, in contrast to the LSA and NN models, a

threshold is not required for the RegEx classifiers.

The semantic similarity approach minimizes the teachers’ input which

encouraged us to adopt it for assessing participant responses with respect to

containing (or not) targeted, required concepts. This method is also relatively easy

to automate, meaning that after the teacher has made a small set of specifications,

classifiers can be developed without further human input. The RegEx approach is
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less flexible compared to the semantic similarity approach as novel expressions of a

core concept, not encoded yet in the regular expressions, are less likely to be

correctly identified. However, the RegEx is capable of identifying core concepts that

are characterized by a closed set of keywords and semantic similarity may not be

able to perform as needed.

3.4 Experiments and Results

First, we describe the data set we used in our experiments and then present

the results obtained with our automatically generated classifiers. We also apply

these classifiers to participant generated notebook entries to assess the performance

of our models on unseen data.

3.4.1 Dataset

As we mentioned above, our classifiers were generated from specifications

made by a teacher as she customized an activity in Land Science. To evaluate our

method and test how our classifiers would perform on unseen data, we selected 199

participant entries from prior, uncustomized, implementations of Land Science. We

took these entries from uncustomized versions of the activity the teacher in this

study worked to customize. In this case, the customizations to this activity’s

notebook requirements and assessment criteria, as defined by the core concepts,

were not drastically different from the requirements and criteria of the original

activity. Thus, this situation provided a case where we could test our classifiers on

data that was expected to contain some distribution of the core concepts. In

general, however, our method for generating classifiers is meant to accommodate

both small customizations, such as we have here, and more drastic ones, such as a

case where a teacher creates an entirely new activity. Therefore, we cannot always

expect to have such similar data for testing.

The 199 participant entries were manually coded for each core concept by

two raters. Both raters had worked with the teacher in this study to define the core
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concepts and had extensive prior experience coding notebook entries from Land

Science. Using the process of social moderation (Herrenkohl & Cornelius, 2013), the

raters agreed on the presence or absence of each core concept for each of the 199

entries. From Table 3.1, we see that the distributions of some concepts are balanced

(C2), while others are skewed (C5). However, because we built classifiers based on

the textual features of teacher samples, skewness should have a small effect on the

performance of the model.

Table 3.1: Distribution of concepts in dataset

Concept Notations #Concepts %Concepts

land use changes C1 141 72.860
original land use configuration C2 114 57.280
location of land use change C3 79 39.690
indicator changes C4 128 64.320
stakeholder demands C5 46 23.110

3.4.2 Threshold Initialization Method

To derive a similarity score threshold, which is needed for the semantic

similarity based classifiers, we calculated the similarity scores between the tagged

chunks of text for each core concept in the teacher provided examples. Next, we

calculated the average and standard deviation of these scores and set our threshold

as the average similarity minus one standard deviation for each core concept. The

values we obtained using this approach are reported in Table 3.2, where the last

column is the derived threshold for each classifier. Table 3.2 shows thresholds for

both LSA based similarity and the NN based model.

Phrase similarity based on LSA relies on the combination of constituent

words a phrases. Hence the similarity score will be more biased towards phrases

having common words. While the NN based semantic similarity method

(P.-S. Huang et al., 2013; Shen et al., 2014)projects the phrase pairs into common

low dimensional space hence the similarity score obtained will be more consistent

irrespective of the presence of common words in the phrases.
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Table 3.2: Derived threshold for LSA based and NN based similarity method

Classifier Avg. Std. Avg. - Std.

C1
LSA 0.584516 0.228474 0.356042
NN 0.437065 0.122893 0.314172

C2
LSA 0.239488 0.189726 0.049762
NN 0.242053 0.168682 0.073372

C3
LSA 0.696795 0.103681 0.593114
NN 0.523347 0.077424 0.445923

C4
LSA 0.278877 0.170271 0.108607
NN 0.174579 0.124677 0.049902

C5
LSA 0.466482 0.196369 0.270113
NN 0.149499 0.096005 0.053494

Note: Avg.=average similarity score, Std=standard deviation.

In Table 3.2 it is also observed that the standard deviations of similarity

scores for NN based models are less than that of the LSA based semantic similarity

model in all the five classifiers. This validates our previous understanding that LSA

based similarity measures is more biased towards phrases with high degree of word

overlap and gives lower score for the phrases with lower degree of or word overlap,

resulting high variation in the score. On the other hand, NN based method does not

suffer from such biasedness.

3.4.3 Results

We now present precision and recall results for LSA based and NN based

models for the derived thresholds presented earlier and for ideal thresholds

(described next). Afterward, we present results for the RegEx based classifiers.

As an alternative to deriving classifiers based on teacher-specified input, we

wanted to see how well our methods performed when trained on actual, participant

data. That is, when the threshold used in the classifiers to make the final decision

was fit based on actual participant data. We call such participant data-trained

threshold, the ideal threshold. This ideal threshold could only be computed when

participant data is available, which is a major constraint when developing a new

internship, as we pointed out earlier.

Figure 3.1 and 3.2 shows the precision and recall plot for increasing
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Fig. 3.1: Precision and recall for LSA based similarity thresholds (solid lines are
precision; dotted lines are recall)

Fig. 3.2: Precision and recall for neural network based similarity thresholds (solid
lines are precision; dotted lines are recall)

thresholds of LSA based and NN based similarity methods. These plots were

obtained by comparing the model classifications to the manual classifications on the

199 participant entries. It is generally seen that whenever precision increases at a

particular threshold, the recall decreases or vice versa. The point of intersection of

the precision and recall for a particular classifier gives the ideal precision and

recall—that is, the classifier has balanced performance in terms of precision and

recall. From the figure, it is clear that if we want fewer false negatives, for example,

the value of the threshold should be increased. In such a case, the precision will be

compromised. Therefore, the threshold should be chosen carefully not to

compromise either precision or recall to an undesirable extent.
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The results obtained with ideal and derived thresholds are summarized in

Table 3.3. These data suggest that, for the ideal thresholds, the LSA based

classifiers for core concepts C1 through C4 performed well with the lowest precision

and recall value being 0.72. However, the NN based classifiers outperformed the

LSA classifiers for all core concepts other than C2. LSA based models depend on

the overlapping content words in phrases and the performance suffers in cases where

the phrases contain out of vocabulary words. Out of vocabulary here means the

LSA similarity relies on pre-built vocabulary from a large corpus that does not

contain some of the words, such as proper nouns that are specific to Land Science.

However, NN based similarity models rely on letter trigrams from a very large

corpus, and every input phrase is converted to letter trigrams. Therefore, the NN

based models are capable of capturing the semantics even when there are out of

vocabulary words in the phrases or context of the phrases. Hence, the NN based

classifiers are superior for these concepts. However, for C2, the NN based classifier

lagged in performance by 2% in precision and recall compared to the LSA based

classifier because the teacher samples used for C2 contained only short phrases with

very few context words and some of the overlapping words in the phrases boosted

LSA based classifiers. The classifier C5 performed poorly for both LSA and NN

based classifiers.

For the LSA based classifiers, the highest precision using derived thresholds

was 0.92 with recall of 0.80 for C3 and the lowest precision was 0.22 with recall of

0.98 for C5. As we saw with the derived thresholds, NN based classifiers generally

outperformed their LSA based classifiers counterparts, with the exception of the

recall for concept C3.

The results in Table 3.3 suggest that a good threshold could be derived

without participants’ data. The high recall and precision using derived thresholds

for concepts C1 and C3 suggest the possibility of assessing the core concepts in
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Table 3.3: Precision and recall for ideal and derived thresholds for LSA based and
NN based similarity method

Classifier Threshold Precision Recall
I D I D I D

C1
LSA 0.36 0.35 0.84 0.82 0.84 0.86
NN 0.34 0.31 0.86 0.84 0.86 0.92

C2
LSA 0.80 0.05 0.80 0.57 0.80 1.00
NN 0.52 0.07 0.78 0.57 0.78 1.00

C3
LSA 0.38 0.59 0.82 0.92 0.82 0.80
NN 0.36 0.44 0.86 0.96 0.86 0.78

C4
LSA 0.56 0.11 0.72 0.64 0.72 1.00
NN 0.46 0.05 0.74 0.64 0.74 1.00

C5
LSA 1.00 0.27 0.00 0.22 0.00 0.98
NN 0.80 0.05 0.00 0.23 0.00 1.00

Note: I=ideal, D=derived.

participant notebook entries with classifiers generated using only the teacher’s

sample responses. However, when compared to the results using the ideal

thresholds, classifiers C2, C4 and C5 did not perform well; their derived thresholds

differed largely from their ideal thresholds, and their precision and recall suffered.

The relatively low derived threshold values for these concepts suggests that their

associated examples, which were used to calculated the thresholds, were

semantically dissimilar. Dissimilar examples for a given concept could imply an

ill-defined concept and that the provided examples do not represent it well.

Alternatively, dissimilar examples could imply a complex or varied concept that

requires highly different examples to represent it fully. Because we cannot

distinguish between these cases automatically, we plan in future work to set a best

guess threshold of 0.5 in such cases.

Table 3.4: Performance of regular expression model

Concepts Precision Recall

C1 0.963 0.551
C2 0.640 1.000
C3 1.000 0.746
C4 0.791 0.890
C5 0.894 0.739
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Table 3.4 shows the precision and recall of RegEx based classifiers. Here the

performance for concepts C2, C4, and C5 is more interesting when we compare

those values with the previously discussed result. For example, the precision and

recall for C5 improved impressively with values 0.89 and 0.73 respectively, whereas

in previous case those values were either undefined or 0 precision with recall 1.

Furthermore, the precisions of C1 and C3 are high, however the recalls are relatively

low. Qualitatively investigating these results suggested that participants entries

expressed these concepts in a variety of ways that were not captured by the regular

expression lists.

Given that we see improvements for some core concepts using the regular

expression based approach, these results suggest that the teacher provided samples

on which the similarity measures where based may not have included a variety of

key terms that could indicate the presence or absence of these core concepts.

Comparing the sample responses and the keywords provided revealed that the

samples indeed did not contain many of the keywords in the list. In some cases, the

keywords were synonyms or other instances of particular kinds of words provided in

the sample responses. For example, in Land Science, there are sixteen stakeholders

who give demands on zoning plans. The core concept C5, stakeholder demands, is

meant to capture references to these 16 stakeholders in participant notebook entries.

Examining the teacher provided samples, we found that only four stakeholders were

covered, while the keyword list for the core concept mentioned all sixteen. We plan

in future experiments to either ask teachers to provide enough samples to cover

finite sets of semantic content such as this or to incorporate the provided keyword

list into the semantic similarity methods as extra samples.

3.5 Conclusions

In this work, we investigated a method for creating classifiers for virtual

internship notebook entries using teacher provided specifications without the use of
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participant data. Our classifiers used LSA based and NN based semantic similarity

methods to capture the general semantic relationships among concepts. We also

investigated regular expression based classifiers. The results are impressive in the

sense that some classifiers, using both LSA and NN, gave high precision and recall

values using thresholds derived without participant data, which suggests that our

general method is plausible.

Furthermore, the superiority of the NN classifiers over the LSA classifiers

suggests that NN methods are preferable when the participant responses vary

widely in terms of style, content, and word overlaps with the teacher provided

sample response.

The improved performance for some core concepts, such as C5, using regular

expression based classifiers implies that such classifiers performed better for

concepts whose sample responses did not contain a variety of keywords, despite the

benefits we saw for NN models. These results suggest that, in some cases, teachers

may need to provide more exhaustive samples, and that provided keywords and

regular expression based classifiers may supplement a semantic similarity approach.

In future work, we will investigate a method to combine the classifiers in

order to better understand how performance of one model is boosted by another in

the scenario where participants responses vary widely compared to the sample

responses. We will also see how the performance be affected by setting up the

thresholds to 0.5 for concepts C2, C4 and C5.

Our work has several limitations; most obviously, we used participant data in

to evaluate the performance of some of our classifiers. In the real use case of our

method, we cannot expect to have such data available. We want to make clear,

however, that our purpose in using participant data was not to train better

classifiers, but to evaluate our method for generating them. Thus, our results
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suggest that this method can produce classifiers that would perform well on unseen

data, but more refinements are needed.
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Chapter 4

Effect of Corpus Size and LSA Vector Dimension in Assessment

Semantic similarity is a major automated approach to address many tasks

such as essay grading, answer assessment, text summarization and information

retrieval. Many semantic similarity methods rely on semantic representation such as

Latent Semantic Analysis (LSA), an unsupervised method to infer a vectorial

semantic representation of words or larger texts such as documents. Two ingredients

in obtaining LSA vectorial representations are the corpus of texts from which the

vectors are derived and the dimensionality of the resulting space. In this work, we

investigate the effect of corpus size and vector dimensionality on assessing student

generated content in advanced learning systems, namely, virtual internships.

Automating the assessment of student generated content would greatly increase the

scalability of virtual internships to millions of learners at reasonable costs. Prior

work on automated assessment of notebook entries relied on classifiers trained on

participant data. However, when new virtual internships are created for a new

domain, for instance, no participant data is available a priori. Here, we report on

our effort to develop an LSA-based assessment method without student data.

Furthermore, we investigate the optimum corpus size and vector dimensionality for

these LSA-based methods.

4.1 Introduction

Semantic similarity is about determining whether two texts (documents,

paragraphs, or words) are similar in their meaning. Often the semantic similarity

methods represent the documents or terms using a vectorial representation and then

apply a similarity function such as computing the cosine of the angle between the

corresponding vectors of the documents. The cosine is equivalent to the normalized

dot product of the two vectors thus quantifying to what degree the two vectors are
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close to each other. The similarity score obtained with such methods depends upon

the vectors used in the calculation. The vectors are derived based on a statistical

analysis of a large corpus of documents. The analysis produces a term-by-document

matrix in which terms represent the rows and documents the columns. Each cell in

the matrix indicates, for instance, how frequent the corresponding term in the row is

in the corresponding document in the column. Latent Semantic Analysis (LSA) uses

Singular Value Decomposition (SVD) to map such high-dimensionality

term-by-document matrices onto reduced-rank matrices with the added benefit of

being able to capture second order semantic relationships among words (Landauer,

Foltz, & Laham, 1998; Bradford, 2008).

Studies have shown that the rank (number of dimensions) of the LSA

semantic space and therefore of the LSA vectors (Landauer et al., 1998; Bradford,

2008) as well as the corpus size and its nature (Kontostathis, 2007; Crossley,

Dascalu, & McNamara, 2017) influence the quality of the resulting vector

representations. Landauer et al. (Landauer et al., 1998) noted that a vector

dimension of 300 obtained from moderate corpus sizes performs best in general.

However, obtaining the optimum corpus size and vector dimensionality for a

particular domain of interest and task is yet to be determined. In this study, we

investigate the optimum domain corpus size and vector dimensionality to develop

LSA based assessment methods for virtual internships.

4.2 Background

4.2.1 Virtual Internships and Automated Assessment

During virtual internships, students work on various tasks, e.g., engineering

design tasks. While working on these tasks, they need to provide justifications for

their work, e.g., justifications for their designs, in digital notebooks. The notebook

entries are then assessed as acceptable or unacceptable by human raters.

Automating this assessment task is an important step towards reducing the time
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and cost associated with developing and running such virtual internships. Previous

attempts to automatically assess notebook entries in virtual internships focused on

automated classifiers trained on participant data collected after the initial

development and deployment of the corresponding virtual internship. This means

that one needs to run the virtual internship at the beginning using human graders,

which is tedious, time-consuming, not-scalable, and expensive. The major challenge

to developing automated assessment methods from the very start is the fact that

participant data is not available at the time when a new internship is being

developed, e.g., for a completely new set of tasks or a completely new domain

(Swiecki & Shaffer, 2017)). For instance, when instructors create new activities or

customize existing activities for an existing internship, previously trained

assessment classifiers become invalid. Indeed, customization makes trained clasifiers

invalid whereas new internships for new domains leaves the virtual internship

system without classifiers until learner data is collected. Our work is motivated by

this need to develop automated assessment method early on, at design time, for a

new virtual internship when participant data is not yet available. To this end, we

explore methods to generate classifiers without student data. Such approaches

would enable the development of virtual internships that incorporate automated

assessment methods from the very beginning, avoiding the need to have human

raters assess learner responses during initial deployment of such new virtual

internships. We further extend prior work (Gautam, Zachari Swiecki, Graesser, &

Rus, 2017) by exploring optimum corpus size and the LSA vector dimensionality for

student notebook assessment.

4.2.2 LSA and its Use in Text Analysis

LSA is a vector space model for deriving semantic representations of words

and largers texts such as documents. It relies on a reduced-rank approximation of a

term-document matrix which captures word co-occurrence information from natural
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texts such as textbooks. The rank reduction is used to remove the noise introduced

by sparsity of the term document matrix. Jessup and Martin (Jessup & Martin,

2001) showed that the optimal rank choice delivers improvement in performance in

an information retrieval task. Using LSA vectors instead of using standard term

frequency - inverted document frequency (tf-idf) vectors in a retrieval system, the

system will be able to retrieve documents based on concepts as opposed to

keywords, which improves the recall of the system (Bellegarda, 2005). It should be

noted that, usually, when recall increases precision decreases.

In addition to the rank (vector dimension), the size of the input corpus also

has an impact on the performance of LSA vector spaces. A study conducted by

Crossley et al. (Crossley et al., 2017) showed that LSA space developed using larger

corpora performed better than when smaller corpora was used in a word association

task and a vocabulary level test. It should be noted that they developed the LSA

space using a multiple domain corpus (TASA1) and a single domain corpus from the

Corpus of Contemporary American English (COCA) (Davies, 2010). Furthermore,

Landauer et al. (Landauer et al., 1998) generated an LSA space from encyclopedia

articles and used it for a Test of English as a Foreigh Language (TOEFL2)word

comparison task. They found that the vectors with dimensionaliy of 300 performed

best, which was considered a standard number of dimensions for many applications.

LSA has been used successfully in various tasks such as answer grading, text

summarization, e-mail categorization, and information retrieval. For instance, LSA

based essay grading yields comparable performance to human graders. Landauer

and colleagues compared the human ratings of passages written by students with

LSA-obtained rating and found that the meaning of passages could be carried by

the words independent of their order, which is what LSA is about (Landauer,

Laham, Rehder, & Schreiner, 1997). In another study, (Mohler & Mihalcea, 2009)

1http://lsa.colorado.edu/spaces.html
2www.ets.org/toefl
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showed that an LSA based short answer grading method performed as well as a

knowledge based method, e.g., methods that rely on knowledge-based resources such

as WordNet. The LSA based approach has a major advantage over the knowledge

based approach - the LSA model could be constructed automatically, in an

unsupervised manner, whereas knowledge based approaches, e.g., such as those

relying on WordNet, require extensive manual efforts to build the knowledge based

resources.

Pérez et al (Pérez, Alfonseca, et al., 2005; Pérez, Gliozzo, et al., 2005)

obtained LSA space from a large collection of pre-categorized domain corpus and

combined with the BLEU algorithm, a method used to evaluate machine translation

(Papineni, Roukos, Ward, & Zhu, 2002), to assess student’s freely generated textual

answers. They claimed that their method achieved state-of-the-art correlations to

teachers’ scores. In their method, they averaged word vectors to represent student

and reference answers. It should be noted that, though our vector representation

approach is similar, we have collected domain corpus from Wikipedia by

automatically filtering the Wikipedia articles.

Other uses of LSA relevant to our work are from text summarization. LSA

based methods have been shown to extract better summaries (Gong & Liu, 2001;

Steinberger & Ježek, 2004; Yeh, Ke, Yang, & Meng, 2005), particularly, when

choosing appropriate vector dimensions, LSA helps to extract better semantically

similar summaries from original documents when compared to keyword based

summaries (Yeh et al., 2005).

Another related method was proposed by Dredze and colleagues (Dredze,

Wallach, Puller, & Pereira, 2008) to generate keywords for e-mail messages without

annotated training data. E-mail summary keywords are generated to represent

e-mails in e-mail filtering systems. The keywords act as features for e-mail

classification. In the Dredze and colleagues’ method, they generated LSA vectors to
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represent each word in e-mails and identified each word as a keyword if the word

was present in an e-mail. They claimed that the LSA based method provided a

good representation of e-mails compared to tf-idf based approaches.

Like these approaches above, our method uses LSA for assessing learners’

free responses in learning environments such as virtual internships. We explore the

impact of the corpus size and space dimensionality on the performance of the

resulting assessment method. This work leverages the previous approach (Cai et al.,

2018) of extracting domain corpus. However, it should be noted that the the

previous work analyzed the learners’ responses that were few words to a sentence

length. Whereas in this work we further extend previous study by analyzing the

learners’ response consisting of a paragraph of two to four sentences.

4.3 Our Method

Our method involves a two step process. First, we develop core concept

identifiers based on a small set of seed data provided by teachers when developing a

new internship or new tasks for an exiting internship. Second, we evaluated the

performance of these classifiers as a function of the corpus size and dimensionality

of the semantic space. We describe next the method and the corpus we used in our

experiments.

4.3.1 Classifier Generation

In the first step of our method for generating classifiers without student

data, teachers define a small set of seed concepts for a given task, e.g., an

engineering design task. The seed concepts represent the key semantic content

student notebook entries should contain. In addition, teachers provide a small set of

exemplar or benchmark notebook entries in which they tag the seed concepts.

Using this seed information we develop a semantic similarity based identifier

for each seed or core concept. That is, we try to identify whether a target core

concept is present in the student answer or not. There is one identifier for each of
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Table 4.1: Algorithm to obtain average similarity score between the chunks of a
concept in exemplars

Input: Set C of annotated chunks for a con-
cept in exemplars
Output: Average A and standard deviation
SD of similarities between chunks of a con-
cepts in exemplars
Initialize: S = empty list of similarities
Initialize: P = empty list of set of chunk
pairs
do for each ci in C:

do for each cj in C:
p = set(ci,cj)
if ci 6= cj and p not in P:

S = S + similarity(ci,cj)
P = P + p

A = Average(S)
SD = Standard deviation(S)

the core concepts. The identifiers are modeled as classifiers. Each of the classifiers

uses a sliding window to search for the chunk of text in a participant notebook entry

that is most similar to the target core concept. For this purpose, we use a sliding

window of size equal to the length of the core concept. The window slides over the

participant response and for each instance, we calculate the similarity between the

chunk of text in the window and a target core concept. We select the chunk of text

in the student notebook entry that corresponds to the highest similarity score.

If the highest score is higher than a threshold, we decide that the target core

concept is present in the student response. In order to obtain the threshold for a

target core concept, we calculated similarity scores between all possible tagged

chunk pairs for that concept in the teacher generated ideal responses, ie., exemplars.

Then, we computed the threshold as one standard deviation below the average

similarity score. The detailed steps for obtaining the average and standard

deviation are provided in Table 4.1.

To calculate the similarity score between core concepts and the sliding

window, we use an LSA-based semantic similarity implementation available in
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Fig. 4.1: Concepts in exemplars and sliding windows

SEMILAR (Rus, Lintean, et al., 2013). Figure 4.1 shows the overview of obtaining

cosine similarity scores between a core concept and the chunk of texts corresponding

to one instance of the sliding window.

In our previous work (Rus et al., 2016), we obtained word vectors from the

TASA corpus. The corpus consists of contents from textbooks, literature works.

This domain general LSA model was developed from about 38,000 documents and

92,000 terms (Stefănescu, Banjade, & Rus, 2014). We compared the performance of

our classifiers using the TASA corpus to the performance obtained with a domain

specific corpus, which is described next.

4.3.2 Domain Corpus Collection

To collect the domain specific corpus, we started with a seed corpus of a

small number of documents from our target internship, Land Science. These

documents include text resources about urban planning and instructions sent to

participants during the virtual internship. Next, we extracted keywords from this

seed corpus and assigned a “keyness” value to each keyword. The keyness depends

upon two factors: first, if a word occurs frequently in domain general corpus (such

as TASA), then the word is less important for a particular domain. Second, if a

word occurs frequently in a domain specific corpus, the word is important for that
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Table 4.2: Annotation of exemplar for core concepts

Based off of <C5>Natalie’s wish to de-
crease runoff into rivers</C5>, <C1>I de-
cided to change most of the <C3>land
around the river</C3><C2>that was in-
dustrial</C2>to wetlands</C1>. <C4>I
noticed the CO, jobs, and sales went
down</C4>as well, but the <C4>Oriole
count and the turtle nesting sites went
up</C4>.

domain. Hence the keyness value is obtained by taking into account both factors as

described in (Cai et al., 2018). An average “keyness” value is obtained based on the

keyness values for each word that appears in a Wikipedia document. This average

keyness is viewed as the document keyness by which the documents are ranked in

order to select the domain specific documents.

While LSA vectors are essential components in our method, the

dimensionality of the LSA space and therefore of the LSA vectors as well as the size

of the domain specific corpus are important parameters that affect the predictive

power as well as scalability of the classifiers we develop. Therefore, in this work we

analyze the impact of these parameters on the performance of the assessment

classifiers by exploring different corpus sizes and vector dimensionalities and

observing their impact on the performance of our classifier in terms of F-1 scores, as

explained next.

4.4 Experiments and Results

4.4.1 Dataset

As mentioned, our goal is to study how corpus size, corpus domain specificity,

and dimensionality of LSA vectors affect the performance of student answer

assessment methods. Our experimental data consists of student responses in virtual

internships which were used to evaluate our classifiers. The classifiers classify each

sentence from student responses as the presence or absence of a core concept in it.
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Table 4.3: Number of core concepts in exemplars and
student notebooks

Concepts Notation # E # S

Runoff C1 2 26
Phosphorous C2 2 15
Orioles C3 3 25
Housing C4 4 33
Turtles Nesting Sites C5 3 17
Jobs C6 5 45
Sales C7 2 27
CO C8 4 17
Justification C9 11 101
Land use change C10 13 120
Indicator change C11 14 92
Indicator value C12 9 5
Directly quotes information

from resource readings
or teammate

C13 5 0

Note: # E for exemplars and # S for student notebooks.

i Domain corpus: It consists of documents selectively chosen from Wikipedia

articles. The corpus consists of 32,000 documents that are relevant to the Land

Science virtual internship. From the collection, we randomly selected 2,000,

4,000, 8,000, 16,000 and 32,000 documents to generate 1,000 dimension LSA

word vectors. Since the vector dimensions are ranked, we generated 1,000

dimension vectors, instead of generating separate LSA vectors of different

dimensions with varying number of documents. Selecting fewer dimensions from

1,000 dimension vector simplifies the LSA vector generation process with

negligible information loss.

ii Notebooks: Two sets of of annotated notebooks from Land Science, one with 14

exemplars created by teachers and 100 randomly selected participant notebooks

entries. The exemplar notebooks were annotated for the core concepts (see

Table 4.2). The 100 notebook entries were split into 550 sentences. These

sentences are manually filtered to remove noisy sentences that only consist of
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non-english words or out of domain words. After filtering, we were left with 278

sentences, each of was then annotated with the presence or absence of the 13

core concepts. It should be noted that a notebook may consist of a small subset

of core concepts, which means some concepts are more likely to appear than the

others as seen in Table 4.3. The distribution of concepts in exemplars and

student notebooks is seen in Figure 4.2. From the figure, it can be noted that

some of the concepts (e.g., C12 and C13) are much more rare in student answers

compared to the exemplars. For performance calculation, we do not include

concepts (such as C13) which are absent in student notebook.

Besides the domain specific corpus, we also used the TASA corpus in order

to compare the performance with the domain corpus.

Fig. 4.2: Distribution of core concepts

4.4.2 Results

Figure 4.3 shows the surface plot of average F-1 scores for all core concepts

for different combinations of domain corpus size (Spaces) and number of space

dimensions (Dimensions). The plot suggests that the performance initially improves

as the corpus size increases, up to a certain point, after which the performance

starts decreasing. Furthermore, the figure indicates that the performance initially

improves with an increasing number of dimensions, stays constant for a little while,
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Fig. 4.3: Surface plot of average F-1 scores for domain corpus of different sizes
(spaces) and number of dimensions

then starts decreasing and finally increases again. It could be seen that the overall

performance is determined by a combination of corpus size and vector

dimensionality.

Table 4.4: Minimum and maximum average performance among core concepts for
the combination of corpus size and vector dimension

Metrics Values (Space, Dimension)

Minimum
P 0.798 (4000, 1000)
R 0.600 (32000, 2)
F 0.620 (32000, 2)

Maximum
P 0.925 (32000, 1000)
R 0.701 (32000, 1000)
F 0.716 (32000, 1000)

In the Table 4.4, the minimum and maximum of Precision, Recall, and F-1

scores along with the corresponding combination of corpus size and vector

dimensionality for the domain corpus are shown. These scores are obtained by

averaging the corresponding metrics for all 13 concepts. From the table, we see that

1,000 dimensions with 32,000 documents performed best(F-1=0.71). It should be

noted, however, that even though the performance is better compared to other

combinations, other combinations with smaller corpus sizes and fewer dimensions
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Fig. 4.4: Heatmap for F1 scores with different combinations of corpus size and
vector dimensions

Fig. 4.5: Average F-1 scores for domain corpus of different sizes (see legends in the
figure) and number of dimensions

perform comparably well (see Figure 4.5). Figure 4.5 further suggests that the F-1

score initially improves (except for a corpus size of 16,000) when vector

dimensionality increases, followed by a drop, and then improves again at a quick

rate followed by a plateau in which the performance remains constant. Moreover, it

is seen from the heatmap (Figure 4.4) that the performance remains comparatively

same with a corpus size of 4,000 through 32,000 documents for dimensionality of 32.

The overall performance is almost comparable to the maximum performance

(F-1=0.716), suggesting that a small corpus (size=400) and small dimensionality
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Fig. 4.6: F-1 scores for TASA corpus with varying dimensions

(=32) could be good enough to develop an assessment component for virtual

internships.

Figure 4.6 shows the trend of F-1 scores for varying vector dimensions of the

TASA corpus. The graph resembles the similar pattern observed for the domain

specific corpus, where the performance improves initially, then remains

comparatively the same and then starts dropping again. It can be concluded that a

small domain corpus can give better performance than the much larger TASA corpus

when a proper combination of corpus size and vector dimensionality is chosen.

4.5 Conclusions

We presented in this paper an approach to develop student answer

assessment methods without student data. We also analyzed the impact of corpus

size, corpus specificity, and semantic space dimensionality on the performance of the

assessment methods. Our analysis showed that the LSA spaces generated from a

domain specific corpus can perform better when compared to a space generated

from the much larger TASA corpus for the notebook assessment task. For the

domain specific corpus, the best average performance over all the target concepts

was obtained for the maximum available corpus size and the maximum number of

dimensions. However, this performance is comparable to results obtained with a

smaller corpus size and smaller vector dimensionality indicating that smaller
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corpora and spaces can be good enough to boost assessment components for virtual

internships. We plan to further experiment with our method on other virtual

internships and data from other adaptive learning technologies to see if our current

conclusions hold on such new data.
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Chapter 5

LSTM Based Negation Handling

Negation plays a significant role in spoken and written natural languages.

Negation is used in language to deny something or to reverse the polarity or the

sense of a statement. This paper presents a novel approach to automatically

handling negation in tutorial dialogues using deep learning methods. In particular,

we explored various Long Short Term Memory (LSTM) models to automatically

detect negation focus, scope and cue in tutorial dialogues collected from

experiments with actual students interacting with the state-of-the-art intelligent

tutoring system, DeepTutor. The results obtained are promising.

5.1 Introduction

All human languages have negation as a key linguistic feature. Negation reverses

the polarity of entire statements or of parts of statements. (Givón, 1993)

categorized negation broadly into two classes: morphological and syntactic negation.

The morphological negation follows a specific structure where a root word is

modified by prefixes such as ”non”, ”un” or suffixes such as ”less”. On the other

hand, in syntactic negations, explicit negation cues are used to affect the meaning of

a single word or a group of words.

Negations are marked by a set of cue words (or negation words) such as

“no”, “none”, “not”, “neither”, “nor” and their variants(such as “ ’nt”). Statements

might be negated either explicitly with explicit cues, e.g. ”no” or ”not”, or

implicitly such as ”avoid”, ”prevent”, ”prohibit” and so on. In the latter case, we

have implicit negation. The negation cue can affect one or more parts of the

statement in which it occurs - the affected parts are called the scope of negation.

The constituent in the scope that is prominently negated is called the focus of the

negation (Huddleston, Pullum, et al., 2002).
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An example of negation is shown below. The negation clue is delimited by

<<>>, within square brackets ([]) we show the scope of negation, and within curly

brackets {} we show the negation focus.

[There are] <<no>>[{forces} acting upon the puck] because it is at rest.

Many studies showed that negation accounts for a significantly large part of

both spoken and written human language. In one study, it is reported that negation

occurs twice as often in speech as in writing (Tottie, 1993). Some domain-specific

corpus linguistics studies showed that negation occurs most frequently and

represents a major portion of the information within such domain specific texts. For

example, in a corpus of medical textual documents and biological scientific papers

developed by Vincze and colleagues (Vincze et al., 2008), 10% of the sentences

contain negation. A customer review corpus of movies, books and consumer

products (Konstantinova et al., 2012) includes 18.1% negated sentences. Also, an

analysis of student utterances in dialogues collected from experiments with actual

students interacting with the intelligent tutoring system DeepTutor (Rus, D’Mello,

et al., 2013) showed that 9.36% of student utterances included explicit negation.

In this work, we focus on handling negation in dialogues. Linguistics

phenomena, such as ellipsis and pragmatics that are more prevalent in dialogues,

make negation more complex to automatically analyze in this case as the meaning

of a sentence relies on previous dialogue turns, i.e. previous context. The example

below shows five possible answers with explicit (A1-A3 ) or implicit (A4 and A5 )

negation for the same tutor question (Q). It should be noted that in this work, we

limit our analysis to explicit negation.

Q: Do a ping-pong ball and a bowling ball falling from the same height hit the

ground with same force of impact?

A1: No

A2: They do not hit the ground with the same force of impact.
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A3: The respective impacts of the two balls is never the same.

A4. The impact of ping-pong ball will be smaller.

A5. The impact of bowling ball will be greater.

Previous automated approaches to negation handling rely on the key

observation that both written and spoken texts can be regarded as sequences of

events, i.e. words, in which a word occurrence depends upon the long sequence of

the previously occurred words. An analysis of such sequences of observations, e.g. to

detect the negation scope, could be approached as a sequence labeling task in which

each word is labeled as being part (or not) of the negation scope associated with a

negation cue word. For instance, probabilistic approaches such as Hidden Markov

Models (HMM) or Conditional Random Fields (CRF) have been used for negation

handling (Pröllochs, Feuerriegel, & Neumann, 2016; Banjade, Niraula, & Rus, 2016).

In these approaches such as HMM, the model becomes complex when long term

dependency is taken into account. And in the case of CRF it also requires a set of

hand crafted features (in addition to labeled data). Because of recent successes in

training deep neural networks, and in particular recurrent neural networks (RNN)

which are relevant to our task, and because of their ability to handle sequential

data, it makes sense to approach the task of negation handling using a recurrent

neural network approach. In this work, we will explore one version of RNNs that

account for long term dependencies, namely, Long Short Term Memory (LSTM)

RNNs (Hochreiter & Schmidhuber, 1997). Neural networks can perform equally well

or sometimes better than other complex sequence labeling models with

comparatively large number of parameters or human constructed features. The only

human involvement in a neural network based model is the labeling of data.

Specifically, we propose a deep learning approach to identify negation scope,

negation focus and negation cues in tutorial dialogues. We explore various LSTM

network architectures and compare their performance on a negation handling task
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using actual student utterance from several DeepTutor experiments. Furthermore,

we explore a better input-output strategy to train and test the model in order to

performance, i.e. better handle negation of unseen sequences of words which are

future dialogue utterances in our case. While the negation scope and focus detection

task is similar to prior work (Banjade, Niraula, & Rus, 2016), it should be noted

that the primary motivation and novelty of this work is to explore deep learning

methods. Our model detects negation cues as well, which is an additional

contribution of our work compared to Banjade and colleagues.

In the next sections, we discuss related works, various models, experiments

and results. The paper ends with conclusion and future work.

5.2 Related Works

Negation in natural language has been studied since ancient time (Wedin,

1990). It is worth mentioning Horn’s work (Horn, 1989) on the effect and influence

of negation in languages. Horn described the construct, usage and cognitive

processing of negation. It should be noted that in computational linguistics,

negation handling methods were initially studied in the context of medical

documents. Mutalik and colleagues (Mutalik, Deshpande, & Nadkarni, 2001)

developed a tool called Negfinder to detect negated concepts in dictated medical

documents. They hypothesized that the negated concepts could be detected using a

lexer and parsers that are generally used to analyze programming languages. In

another work, Rokach and colleagues (Rokach, Romano, & Maimon, 2008) proposed

a pattern learning method for the automatic identification of the negative context in

clinical narrative reports. They proposed several steps including corpus preparation,

regular expression pattern learning, and training classifiers to predict negation.

Councill and colleagues (Councill, McDonald, & Velikovich, 2010) developed

a Conditional Random Fields (CRFs) based state-of-the-art sentiment analysis

system using features from an English dependency parser. In this work, they limit
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their study to explicit negation within a single sentence. They also developed a

negation corpus of English product reviews obtained from the open web.

Banjade and colleagues (Banjade, Niraula, & Rus, 2016) proposed a sequence

labeling model using CRFs to detect the negation scope and focus in dialogues.

They also collected and manually annotated about 1,000 dialogues, i.e. student and

tutoring system interactions collected from actual students using DeepTutor (Rus,

D’Mello, et al., 2013). Their work is the first to use CRFs to automatically detect

the negation scope and focus both within the curent utterance and previous

utterance. That is, in their case the negation scope could include parts of the

previous utterrance (previous dialogue context) besides parts or the whole current

student utterance. Though we performed our experiment on DeepTutor dialogues,

our approach is different from theirs in two aspects: firstly, we proposed a deep

learning method using LSTM and, secondly, the LSTM based models we proposed

do not rely on labor intensive feature engineering.

LSTM-based approaches have been succesfully used in various natural

language processing tasks. Cho et al. (Cho et al., 2014) proposed a recurrent neural

network (RNN) model to encode sequence of input words (a phrase) into a fixed

dimension vector. A varient of Cho’s model was explored by Sutskever and

colleagues (Sutskever, Vinyals, & Le, 2014). They proposed a deep LSTM approach

for sequence to sequence learning for machine translation. In their method, a

multilayer LSTM (encoder) mapped a sequence of inputs onto a fixed dimension

vector and another multilayer LSTM (decoder) constructed the target sequence

from the vector. They demonstrated that even with limited vocabulary, their model

outperformed statistical machine translation models that use a large vocabulary to

translate from English to French. They also found that reversing the input data

improved the performance of the model. Since we model our negation handling task
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as sequence labeling problem, we explore an encoder-decoder model similar to

Sutskever and colleagues.

Recurrent neural networks have been used in predicting sequences such as

generating words by using models that predict next letters (Sutskever, Martens, &

Hinton, 2011). Motivated by the success of recurrent neural network in sequence

generation, Bi-directional LSTM (B-LSTM), a variant of LSTM, have been used in

sequence tagging tasks (Z. Huang, Xu, & Yu, 2015). Huang proposed various LSTM

based models for sequence tagging. Their experiments on NLP benchmark sequence

tagging tasks and using standardized data sets showed that hybrid models that

combines B-LSTM with CRF produce state of the art accuracy on parts-of-speech

tagging (POS), chunking, and named entity recognition (NER).

In many applications that need automated natural language understanding

such as intelligent tutoring systems or question answering systems, challenges arise

when dealing with negation such as accounting for context. Widdows and Peters

(Widdows & Peters, 2003) proposed a model of vector negation in which the portion

of the negation vector was subtracted from the vector representation of the

document, which captures in some ways the full context of the document. RNNs, on

which our approach relies, account for previous context using memory elements.

A critical ingredient in machine learning approaches to negation handling is

collecting relevant data. There were several attempts to develop negation corpora in

different domains. Vincze et al. (Vincze et al., 2008) developed the BioScope corpus

which consists of biomedical texts. BioScope contains annotations at token level for

negative and speculative keywords and their scope within a sentence. Konstantinova

et al. (Konstantinova et al., 2012) developed an annotated corpus for negation and

speculation in review texts. The corpus consisted of 400 documents of movie, book

and consumer product reviews. They annotated negative and speculative keywords

at token level and their scope (at sentence level). Morante and colleagues (Morante,
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Schrauwen, & Daelemans, 2011) published a comprehensive guideline for annotating

negation cues and their scope. Blanco and Moldovan (Blanco & Moldovan, 2011)

proposed a method to semantically represent negation using focus detection. They

extracted and annotated negation focus on texts extracted from PropBank. The

annotated data set was used in one of the shared tasks held in 2012 (*SEM 2012 )

which was about resolving the scope and focus of negation (Morante & Blanco,

2012). These data sets do not fit our goal of handling negation in dialogue. Instead,

we will use the data set prepared by Banjade and colleagues (Banjade, Niraula, &

Rus, 2016) which contains annotated tutorial dialogues.

5.3 Model Description

We model the negation handling task as a sequence labeling task where a

sequence of input tokens, i.e. words, need to be labeled within scope/focus and cue

tags. Unlike previously proposed sequence labeling methods such as HMM or CRF,

our LSTM-based approach is better suited for identifying the scope and focus of the

negation cue in dialogues because the scope and focus could extend to previous

dialogues utterances relative to the utterance where the negation cue is. In such

cases, a model able to take into account long term dependencies should be preferred;

that is, a long term memory based model such as LSTM.

More specifically, in our approach a sequence of tokens provided as input is

processed and a sequence of tags, one for each input token, is produced as output.

During training, input sequences are constructed from labeled conversation data by

sliding a specific sized window over each utterance. Since the LSTM requires

training sequences to be of equal length and the average size of our corpus is

roughly 10 tokens per utterance, we set the window size to be of 5 tokens. In order

to preserve the continuity of the context tokens that are in the original dialogue, we

slide the window one step at a time so that each consecutive window overlaps to the

previous window. Also, we slide the window over the labels exactly in the same way
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to obtain a sequence of labels for the corresponding tokens in the input utterance so

that each input sequence is paired with the corresponding label sequence. For

sequences shorter than the window size, a special padding symbol is appended both

to the input and label sequences.

Figure 5.1 & 5.2 show our two different LSTM network architectures for

negation handling. In the figures, the LSTM blocks from left to right show the

unrolled network over time (t1 through tn). The output sequence is seen as the

probability (given by softmax layer) of each label once the labels for all the tokens

are processed (confirmed by time distributed dense layer). The labels (tags)

corresponding to the input tokens are predicted by decoding the probability

distribution given by the softmax layer.

In the following subsections, we describe in more detail the two different

model architectures namely Sequence to Sequence Tagger and Tag Sequence

Generator we designed for negation handling.

5.3.1 Sequence to Sequence Tagger

Similar to various sequence to sequence architectures proposed previously,

our sequence to sequence architecture uses two different layers of LSTMs, one for

encoding the input sequence into an embedding vector and the other to decode the

embedding representation onto an output sequence. In general, such

encoder-decoder architecture could be used to map an input sequence to an output

sequence whose length may not be equal to the input. However, our task is to label

each word with a negation tag, hence the output tag sequence is same length as

input sequence. Instead of feeding the previous output back to its input, as in

(Sutskever et al., 2014; Cho et al., 2014), we feed copies of the vector from the

encoder to each of the LSTM units of decoders. Since each LSTM unit uses its state

from the previous time step, simply feeding a copy of encoder output simplifies our

model without loss of generality of the model. The Repeat layer (Figure 5.1) does
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Fig. 5.1: LSTM network of encoder-decoder model for predicting labels of tokens
sequence

Fig. 5.2: LSTM network of label sequence generator

the job of copying the final output of encoder layer to the decoder layer at every

time step of decoding.

5.3.2 Tag Sequence Generator

Recurrent neural networks were successfully used in language models to

generate next letter or word based on long term context (Sutskever et al., 2011;

Graves, 2013). Unlike sequence to sequence architecture, where the input sequence

is mapped to output sequence of arbitrary length, this architecture generates one

tag for each input word. Since this architecture does not have a decoding LSTM

layer, it generates a label immediately after receiving an input token. Similar to

previous architecture, a time distributed dense layer is used (Figure 5.2) to ensure

that a sequence of labels is obtained once all the tokens in the input sequence have

been seen.
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5.4 Experiments and Results

We performed two categories of experiments with the above architectures for

various model configurations presented in Tables 5.1. In the first category, we used

one-hot-encoding vector representation of each token in the dialogue utterances. In

the second category, we used word2vec (Mikolov, Chen, Corrado, & Dean, 2013), a

distributed word vector representation (word embedding) for each token in the

dialogues. In order to represent words that are not present in the word2vec model,

we used a vector average of the synonyms of the corresponding word. Also, if

synonyms are not available, we randomly initialized the vector for that word. The

performance of the models were evaluated using standard performance measures

such as precision, recall and F-1 scores obtained using a 10-folds cross-validation

methodology. Results were obtained for identifying the cue, scope and focus,

respectively. While annotating our tutorial dialogues, we followed annotation

guideline proposed by Morante and colleagues (Morante et al., 2011; Morante &

Blanco, 2012), however, in constrast to their data, which was extracted from

PropBank and consists of non-dialogue texts, our dataset contains dialogue data.

5.4.1 Dataset

As mentioned, we use an annotated corpus extracted from the set of

dialogues between a computer tutor (DeepTutor1) and high-school students. During

the tutor-tutee interactions, students are challenged to solve conceptual physics

problems and if they struggle then a scaffolding dialogue is initiated in which the

computer tutor is trying to help the student solve the problem based on

socio-constructivist theories of learning. As previously noted, 9.36% of the student

utterances in the dataset contain at least one explicit negation cue word such as no

and not.

1www://deeptutor.org/
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Table 5.1: Configurations of models

Model Configuration

M1, M2
� Single layer of both encoder and decoder with 150 LSTM units

in each

� No dropouts

� M1 has training batch size = 100, M2 has batch size of 50

M3, M4

� M3:Single layer of both encoder and decoder with 150 LSTM
units in each

� M4:Two layers with 150 LSTM units in each layer of both
encoder and decoder

� Dropouts = 0.3 for each unit

� Training batch size = 50

M5

� Two layers with 150 LSTM units in each layer

� Dropouts = 0.3 for each units

� Training batch size = 50

Note:M1, M2, M3 and M4 are Sequence to Sequence (encoder-decoder) model and M5
is Sequence Generator model
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The DT-Neg corpus consists of 1,088 instances of student utterances with at

least one negation cue word. Each of these utterances were manually annotated

with negation cue word, negation scope and negation focus. As shown in the

examples below, the scope and focus could be in same dialogue utterance (Example

1) or in the previous dialogue utterance (Example 2).

Example 1: Q: According to Newton’s first law, if the parachutist moves with

constant velocity what is the net force acting on the parachutist?

A: <<no>>[{net forces}]

Example 2: Q: According to Newton’s first law, if the parachutist moves with

constant velocity [what is the {net force} acting on the parachutist]?

A: <<no>>

About 42% of the instances in the DT-Neg corpus have the scope and focus

located in the previous dialogue utterance (i.e., dialogue context).

5.4.2 Results

Tables 5.2, 5.3 and 5.4 show the average precision, recall and F-1 scores

based on 10-folds cross validation for five different model configurations. In average,

M4 has the highest F-1 scores for the detection of focus(.839), scope(.857) and

cue(.995) when one-hot-encoding is used for input sequences. Also M4 exhibited

best F-1 scores when word embeddings for input sequences were used. From

Table 5.3, 5.2 & 5.4, it can be seen that the F-1 measure impoves from first model

to the fourth when one-hot-encoding was used. In fact, we experimented with more

configurations, however we present only the best ones here. The improvement in the

F-1 score for scope and focus detection for M3 shows the positive effect of using

dropout on the generalization power of the underling model. Adding one more layer

for encoder-decoder slightly improved performance. For focus detection, the F-1

score (0.839) is higher than that obtained (0.826) in previous work by Banjade and

colleagues (Banjade, Niraula, & Rus, 2016).
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Fig. 5.3: F-1 scores of 10-folds cross validations of different models for scope
detection

Fig. 5.4: F-1 scores of 10-folds cross validations of different models for focus
detection

Table 5.2: Detection of scope

One Hot Word Embedding
Model P R F-1 P R F-1

M1 0.824 0.802 0.812 0.822 0.786 0.803
M2 0.829 0.821 0.824 0.816 0.783 0.799
M3 0.860 0.847 0.853 0.848 0.811 0.828
M4 0.863 0.851 0.857 0.850 0.826 0.837
M5 0.697 0.551 0.614 0.700 0.565 0.625

Four of our models, i.e. all except M5, were able to predict the cues almost

perfectly. Since our corpus consisted of limited number of unique cue words, the

models were able to see those words most often during training. Among the five

models, M5 differs with respect to the other models in its architecture.
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Fig. 5.5: F-1 scores of 10-folds cross validations of different models for cue detection

Table 5.3: Detection of focus

One Hot Word Embedding
Model P R F-1 P R F-1

M1 0.812 0.791 0.800 0.792 0.737 0.762
M2 0.819 0.788 0.802 0.818 0.747 0.779
M3 0.832 0.812 0.820 0.809 0.773 0.790
M4 0.839 0.843 0.839 0.817 0.780 0.797
M5 0.473 0.315 0.377 0.498 0.344 0.405

It is interesting to see that most of the models (except M5) trained with

one-hot-encoding outperformed the model trained with word embedding for negation

focus and scope detection. However. in the case of cue detection, models with word

embeddings performed better. This could be explained by the fact that the word

embedding vectors have been learned from a huge collection documents and our

models were confused to some extent to generalize the DeepTutor data which is

limited in size and diversity. whereas the In cae of M5, the absence of separate

encoding and decoding phases could be the reason behind its poor performance as it

had to predict the label immediately without seeing the full input sequence.

Figures 5.3, 5.4 and 5.5 show the F-1 scores (10-fold cross validation) for

scope, focus and cue obtained with our models trained, respectively, with

one-hot-encoding and word embeddings. From the figures, it can be seen that the

the performance of all models except M5 remained consistent during each fold.

Among the five models we presented, M4 performed best in average as well as in
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Table 5.4: Detection of cue

One Hot Word Embedding
Model P R F-1 P R F-1

M1 0.994 0.985 0.990 0.996 0.994 0.995
M2 0.991 0.991 0.991 0.994 0.994 0.994
M3 0.991 0.995 0.993 0.998 0.996 0.997
M4 0.992 0.999 0.995 1.000 0.998 0.999
M5 0.621 0.493 0.549 0.707 0.542 0.612

individual run on 10-folds cross validation. The best performance of M4 is confirmed

by its topmost position for the F-1 score plots of 10-folds cross validation. Also after

through analysis of each run of 10-folds cross validation, we found that M4, had a

best (among 10 different runs) F-1 score of 0.885 with and kappa of 0.822 for focus

detection and F-1 of 0.889 with Cohen’s Kappa of 0.840 for scope detection.

5.5 Conclusions

We explored various LSTM models and configurations for handling negation

in tutorial dialogues. We have experimented with five models, broadly with two

distinct network architecture, namely sequence to sequence tagger and tag sequence

generator. We experimented and validated our models using real dialogues between

student and an intelligent tutoring system. Our experiments suggests that the

sequence to sequence tagger can handle well the substasks of negation scope, focus

and cue detection, outperforming a previous method based on CRF that relied on

human engineered features. A good choice of hyper-parameters of LSTM such as

dropouts, number of units and layers could result in a competitive model for

negation handling.

In this work, we have considered only the previous context while training the

model. However, experiments has shown that LSTM RNNs trained with both past

and future context perform better. In future work, we plan to build models that

could be trained with both past and future contexts. We also plan to experiment
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with a hybrid model that uses word embeddings as well as human engineered

features.
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Chapter 6

Markov Analysis of Learners’ Conversation in Multi-Player System

In this paper, we conduct a Markov analysis of learners’ professional skill

development based on their conversations in virtual internships, an emerging

category of learning systems characterized by the epistemic frame theory. This

theory claims that professionals develop epistemic frames, or the network of skills,

knowledge, identity, values, and epistemology (SKIVE) that are unique to that

profession. Our goal here is to model individual students’ development of epistemic

frames as Markov processes and infer the stationary distribution of this process, i.e.

of the SKIVE elements. Our analysis of a dataset from the engineering virtual

internship Nephrotex showed that domain specific SKIVE elements have higher

probability. Furthermore, while comparing the SKIVE stationary distributions of

pairs of individual students and display the results as heat maps, we can identify

students that play leadership or coordinator roles.

6.1 Introduction

In virtual internships students play the role of interns in a virtual training

environment meant to simulate real internship experiences. The learning that

occurs in virtual internships can be characterized by epistemic frame theory. This

theory claims that professionals develop epistemic frames, or the network of skills,

knowledge, identity, values, and epistemology (SKIVE elements) that are unique to

that profession (Chesler et al., 2010). For example, engineers share ways of

understanding and doing (knowledge and skills); beliefs about which problems are

worth investigating (values), characteristics that define them as members of the

profession (identity), and ways of justifying decisions (epistemology).

In this study, we propose a new method to characterize learners’ professional

skill development in virtual internships in terms of SKIVE elements distributions.
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The basic idea is to use a Markov process approach to infer the stationary

distribution of SKIVE elements based on an analysis of interns’/learners’

conversations with other players, e.g. a mentor or intern, in engineering virtual

internships. Specifically, we analyze interns’ online conversations during the design

process, a key activity in the engineering virtual internships such as Nephrotex

(NTX) in which students research and create multiple engineering designs (Bagley

& Shaffer, 2009).

Following prior work, elements of the engineering epistemic frame are

operational zed as discourse codes in order to detect when students activate such

SKIVE elements during conversations. An example of the identification of SKIVE

elements as discourse codes in virtual internship conversations is shown in Table 6.1

where the student utterance encodes a reference to design Skills.

Table 6.1: An example of an utterance and SKIVE codes

Utterance S K I V E

Let me know if you have any ques-
tions about their requirements for
membrane design.

1 0 0 0 0

While an empirical distribution could be derived by computing the relative

proportion of each activated SKIVE elements during conversations, our goal is to

infer the true or stationary distribution of SKIVE elements for each student by

modeling students’ epistemic frames as Markov processes. The stationary

distribution is the true distribution of SKIVE elements that would be observed if

the student would talk forever (or an extremely long period of time). We designed

Markov processes for SKIVE elements in virtual internships as briefly explained

next. Markov processes are characterized by a set of states, which in our case are

the SKIVE elements, and a set of transition probabilities, which we derive from

analyzing the activation of SKIVE elements during the virtual internship

conversations. For instance, we consider transitions from SKIVE elements activated
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by a student in prior dialogue utterances to the SKIVE elements activated by the

student in the current utterance. More precisely, we will use a moving window to

delimit the number of previous dialogue utterances to consider when deriving the

transitions. The size of the prior context moving window (in terms of number of

utterances) can be set by the experimenter, as we will explain later. The larger the

window the more likely we will identify transitions between various SKIVE

elements, therefore, reducing data sparseness issues. On the other hand, a larger

previous context window, i.e. one that includes many previous utterances, will

account for long-distance transitions, i.e. between SKIVE elements activated in

utterances that are far apart, which may be less relevant.

Given the above design, we experimented with several methods of deriving

Markov processes to infer SKIVE elements’ stationary distributions. For instance,

we differentiated between methods that consider utterances from a single player

versus all utterances (of all players). Also, we varied the way we derive the

state-to-state transition counts, which are used to compute the transition

probabilities, from a source state to a destination state: transitions between SKIVE

elements/states in any utterance in the moving window will make the same

contributions to the final transition count versus a penalizing model in which

transitions from SKIVE elements/states farther away in the prior dialogue context

are contributing less, e.g. there is a discounting parameter. We also compared

models with and without a dummy SKIVE element/state (noSKIVE state) used to

characterize utterances in which no SKIVE element is present (i.e., the student is

not mentioning any discourse code indicative of a SKIVE element).

Once we inferred the SKIVE epistemic frame in terms of a stationary

distribution for each student/intern, we compared students’ SKIVE epistemic

frames against each other and also against an average epistemic frame distribution

obtained by computing an average of the stationary distributions of students’
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epistemic frames. We compare the epistemic frame distributions using

Kullback-Leibler (KL) divergence.

Our work has a merit in the sense that it provides a more rigorous way of

describing students’ emergence/mastery of SKIVE elements in terms of

stationary/true distributions as opposed to empirically derived distributions. In the

next sections, we discuss related work, Markov Chain theory and its use in virtual

internship, the proposed conversation models, the engineering virtual internship

Nephrotex datasets we used, and experiments and results. The paper ends with

Conclusions and Future Work.

6.2 Related Works

The epistemic network analysis (ENA) framework was proposed as a way to

characterize learning during internship when young apprentices are beginning their

professional career by interacting with seasoned professionals (Bagley & Shaffer,

2009; D. W. Shaffer et al., 2009). ENA is grounded in epistemic frame hypothesis

(D. W. Shaffer, 2006a) according to which professionals develop epistemic frames or

the network of skills, knowledge, identity, values, and epistemology(SKIVE) that are

unique to that profession. The network or interconnections between concepts enable

the process of assessment of learning progression in context. The ENA framework

offers evidence-centered design that provides evidence of learning by systematically

linking models of understanding, observable actions, and evaluation rubrics.

Rupp and colleagues (Rupp et al., 2009) described a method to represent

students’ epistemic frames using ENA. In their method, the sequence of activities in

the Urban Science, a virtual internship game, is divided into time slices and each

slice is coded based on whether the slice activates one or more of the SKIVE codes.

They then constructed an adjacency matrix of these codes for each slice based on

whether any two of the codes co-occur in the slice. A cumulative adjacency matrix is

also derived for a player/intern or the mentor from the whole sequence of activities
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(an accumulation of all activated SKIVE codes over all time slices). They used

different statistics such as overall weighted density, absolute and relative centrality

and rescaled cumulative association to build a network structure of SKIVE elements

based on the adjacency matrices. Students’ mastery of SKIVE elements was

measured by distance metrics among different players under comparison.

In another work, Bodin (Bodin, 2012) analyzed university physics students’

epistemic frames while working on a task in which they were supposed to simulate a

particle-spring model system. Students’ epistemic frames were analyzed before and

after the task using a network analysis approach derived from an analysis of

interview transcripts. They found that students change their epistemic frames when

switching from a modeling task to a physics task.

Zhu and Zhang (Zhu & Zhang, 2016) did a pilot investigation to understand

the patterns of the communication and connections of engineering professional skills

(EPSs). For the pattern of communication, they identified who was talking to whom

at different points of time and identified whether one or more EPSs co-occurred in

an utterance. They applied social network analysis to the resulting co-occurrence

network and found that the high-performing group tend to show denser and more

balanced network connections in both the communication and EPS networks.

In our work, we used Markov process theory to characterize students’

development of SKIVE epistemic frames in terms of stationary distributions, as

described next. That is, we consider students’ development of SKIVE elements as a

Markov process in which there is a state corresponding to each SKIVE element and

the transitions among those SKIVE elements are observed during dialogues. Based

on the transitions, we can derive the stationary distribution of an interns’ SKIVE

elements, which can be regarded as a reflection of that students’ master of their

target profession’s skills, knowledge, identity, values, and epistemology.
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6.3 Markov Process

A Markov process is a random process characterized by a set of states and

transition probabilities among these states. The probability of the Markov process

being in a particular state only depends on the previous state. The dependency of

the current state only on the previous state, or a limited history of previous states, is

called the Markov property of a Markov process. The Markov property is expressed

formally using Equation 6.1, where X1, X2,..., Xn is a sequence of random variables.

P (Xn+1|X1, X2, ..., Xn) = P (Xn+1|Xn) (6.1)

The transition probability matrix of a Markov process is of the form shown

in Equation 6.2, where rows indicates the source state and columns indicate

target/destination states. A particular element, e.g. p13, indicates the probability

of making a transition from source state, say 1, to a destination state, say, 3.

P =



p11 p12 . . . p1n

p21 p22 . . . p2n
...

...
. . .

...

pn1 pn2 . . . pnn


(6.2)

The transition probabilities can be used to predict the probability of being in

a particular state after a number of transitions when starting from a particular

state. For instance, the probability of being in state j after 2 transitions/steps when

starting from state i is shown in Equation 6.3, where superscript two (2) indicates

the number of steps.

p
(2)
ij = pi1p1j + pi2p2j + ...+ pinpnj (6.3)

Furthermore, equation 2 is simply the dot product of the ith row and jth
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column vectors of the transition matrix. Therefore, we can predict the future state

of the Markov process by obtaining the power of the transition matrix. The

probability that a Markov process reaching state j from state i after transiting to

k-1 states in between is given by (i,j)th element of the matrix Pk = P*P*. . . *P (P

multiplied k times). Importantly for our work, the convergence theorem of Markov

processes indicates that when k tends to infinity the matrix Pk attains a stationary

state in which all rows are equal (Tierney, 1994).After reaching convergence, the

probability of reaching a state is constant irrespective of the state from which the

system had started. In our case, we rely on this convergence theorem to derive the

stationary distribution of students’ SKIVE elements based on transition

probabilities derived from conversations during virtual internships, as explained

next.

6.3.1 Markov Processes for Epistemic Frames

Besides content knowledge, students need to master their target profession’s

skills, knowledge, identity, values, and epistemology (SKIVE or epistemic frame

elements). We propose here a novel way to monitor and assess students’ mastery of

the SKIVE elements in terms of stationary distributions of the states of a SKIVE

Markov process in which there is a state for each of the SKIVE elements. We rely

on students’ activation of SKIVE elements during their conversations with other

players in the virtual internship to characterize the underlying Markov process and

infer the stationary SKIVE distribution for each intern.

For this purpose, every utterance of a conversation is being annotated with

binary codes indicating whether a particular SKIVE element is present or absent in

the utterance. That is, whether the student activated the corresponding SKIVE

elements during his conversational moves.

We model each SKIVE element as a state of an underlying Markov process.

Because a student can activate multiple SKIVE elements in the same utterance,
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another option is to consider as a state a combination of SKIVE elements that

students may articulate in any given utterance. We opted for the

one-SKIVE-element per Markov process state option because we are interested in

characterizing students in terms of SKIVE elements distributions as opposed to

combinations of such elements. Secondly, considering all possible combinations

SKIVE elements increases the complexity of the Markov process by increasing

exponentially the number of states to all possible subsets of SKIVE elements, i.e. to

2n states where n is the number of SKIVE elements. This will lead to two problems:

(i) a data sparseness problem when deriving the transition probabilities and (ii)

difficulty with interpreting the outcome.

We derive transition probabilities for each student’s Markov process from the

sequence of SKIVE elements identified in student’s utterances during virtual

internship conversations. That is, SKIVE elements activated in previous utterances

are considered source states and SKIVE elements activated in the current utterance

are considered target states of a state transition. We count each such transition

from a source SKIVE state to a target SKIVE state and then normalize the values

across all transitions with the same source state to infer the transition probabilities.

There are three important aspects of the way in which we derive the

transition probabilities. First, instead of using the full previous dialogue context to

detect source states for the transitions, we use a limited dialogue history in the form

of a moving window of k previous utterances relative to the current utterance

inspired from previous work (Rupp et al., 2009; Rus et al., 2014). The larger the

window the more likely it is that we will identify transitions between various SKIVE

elements, therefore, reducing data sparseness issues. On the other hand, a larger

previous context window, i.e. one that includes many previous utterances, will

account for long-distance transitions, i.e. between SKIVE elements activated in

utterances that are far apart, which may be less relevant.
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Second, when analyzing conversations to count the number of transitions

from one SKIVE element to another, one can treat transitions from utterances close

to each other the same way as transitions from utterances far apart in which case

both such types of transitions will contribute an equal count of 1 to the final count.

An alternative is to give less weight to transitions derived from utterances far apart.

We present results with both these weighting methods.

A third key aspect with respect to deriving the transition probabilities is

what utterances in a conversation to consider: the utterances of the student being

analyzed or all utterances of all the players. We present results with both models:

student-utterances vs. all-utterances.

A formal description of our conversation models and the transition

probabilities are derived is presented next.

6.4 Conversation Model

A conversation is a sequence of utterances u1...uT where an utterance uk is

coded with a set of binary codes corresponding to each of the SKIVE elements

Ck1...CkN. We also define a set of weights w1...wN corresponding to an utterance uk

such that a weight wj is given by:

wj =



p=k−1∑
p=k−n

αp−k+1Cpj if previous utterance window is weighted

1 otherwise if Cpj = 1 for some p and unweighted window

0 otherwise if Cpj = 0 for all p and unweighted window

where α is a decay factor (set to 2, as explained later)that penalizes the

contribution of farther utterances in the window/slice corresponding to the current

utterance. Cpj is the jth SKIVE element of previous utterance p within the moving

window of size n.

The weighted count transition matrix M of dimension NxN is obtained by
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the algorithm listed in Table 6.2. The above conversation model allows us to derive

the transition probabilities among SKIVE elements by constructing an adjacency,

binary or weighted, matrix.

Table 6.2: Algorithm to obtain weighted count matrix

Initialize: M = a zero matrix do for each utterance ui:
U = a NxN zero matrix
do for each code Cj of ui:

uij =wj*Cj, where uij is an element of U
M = M + U

The adjacency matrix for a given student is basically constructed by scanning

her conversation utterances and counting the number of times the student activates

SKIVE element B in the current utterance while activating SKIVE element A in one

of the k previous utterances included in our moving window of size k. The

adjacency matrix thus obtained cumulatively counts the number of transitions

between any pair of SKIVE elements. The result is a state transition matrix whose

entries are raw cumulative count of transitions from one SKIVE element to another.

The final state transition probability matrix is obtained by dividing each

entry in the adjacency matrix by the sum of the elements in the corresponding row.

In order to deal with sparse matrices, which have many zero entries, we do Laplace’s

add-one smoothing (Lidstone, 1920).

6.4.1 Adjacency Matrix with Single Player Window

In this model, an adjacency matrix is created for each player by considering

only utterances of that player. For example in Table 6.3, for any player pli, the

utterance for the player is the set of all utterances where pli is marked (x).

Table 6.3: Truth table of utterance and players in a conversation

pl1 pl2 ... pln

utt1 x
utt2 x
...
uttk x ...
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6.4.2 Adjacency Matrix with Multi-Player Window

In this model, an adjacency matrix is created for each player by taking into

consideration utterances spoken by all the players in the conversation. In this case,

in Table 6.3, for any player pli, the utterances for the player is the set of all the

utterances utt1 through uttk.

6.5 The Nephrotex Dataset

We experimented with data from the virtual internships Nephrotex in which

groups of students work together on a design problem, e.g. designing filtration

membranes for hemodialysis machines, with the help of a mentor.

In the Nephrotex dataset, there are 25 players divided into five groups. Each

group is assigned a virtual room to work together on a task.

Table 6.4: Excerpt of a conversation in Nephrotex; only few SKIVE codes(design,
professional, collaboration and data) are shown

Player Utterence s.des s.prof s.coll s.data

4 Let me know if you have
any questions about
their requirements for
membrane design.

1 0 0 0

4 At Nephrotex, we have
internal consultants
who are experts in their
fields.

0 0 0 0

18 When they say carbon
nanotubes, to which
surfac-tant are they re-
ferring to?

0 0 0 0

16 I believe it’s any of
them. It’s just using
the carbon nanotubes
in general.

0 0 0 0

Once the task is finished, the players are assigned to other groups and a

group is again assigned a room to work on a task. In total, there were 10 unique

groups and 19 unique rooms formed. The dataset consists of a total of 2,970

utterances with an average of 37 utterances per room.

85



Table 6.4 is an excerpt of a conversation in Nephrotex. The utterances are

coded with 20 SKIVE elements. While analyzing the dataset, we found that some of

the utterances do not contain any SKIVE elements, hence a row attributed to that

utterance has zero counts across all SKIVE elements, i.e. columns in Table 6.4. We

handled such scenario following two different approaches. In a first approach, we

discarded all the utterances with all-zero counts. In another approach, we

introduced a dummy state, called no-SKIVE state, which indicates a state when no

SKIVE element was activated by a student in an utterance.

6.6 Experiments and Results

We experimented with a combination of single-player vs multi-player models,

weighted vs. non-weighted counts/binary counts, and Markov processes with or

without no-SKIVE state. For the weighted window models, we selected a decay

factor of α = 2 thus penalizing by a factor of 2 transition counts from previous

utterances for each one unit increase in distance from the current utterance.

For each model we ran the Markov process iteratively until it converged, i.e.

reaching the stationary state. Figure 6.1 shows the average stationary distribution

of SKIVE elements when the utterances from all the players are considered while

Figure 6.2 shows the average stationary distribution derived using only utterances of

one player.

Because the Nephrotex dataset is an engineering design internship,

engineering specific components such as design, data, manufacturing, attributes,

materials and engineers have higher probabilities compared to others. Also adding a

no-SKIVE state in the analysis, shifted a good chunk of probability to the

no-SKIVE state. This is the case because a significant part of the conversation

consist of short dialogue turns in which the speakers use elliptical responses, in

which much is implied from the context, or they focus on general conversation and

process topics, e.g. greeting each other or asking about how to use the system.

86



Fig. 6.1: Distribution of probabilities of SKIVE elements for all-player conversation
model with non-weighted and weighted window and distributions when noState

added

When comparing the weighted window model to its nonweighted counterpart,

the distributions are similar as confirmed by distance measures (KL-divergence)

between the corresponding distributions of SKIVE elements of the weighted and

non-weighted models (KL=0.00031 for all player without no-SKIVE state;

KL=0.00035 for one player without no-SKIVE state). However, one can notice that

the probability distribution of the least frequent SKIVE elements are boosted. This

is in a way a desired effect because the most frequent elements, if not penalized,

tend to dominate by the simple fact that they occur in more utterances throughout

a conversation and therefore are more likely to be present in a moving window which

in turn leads to increased transition counts. The weighted model penalizes frequent

components when occurring in remote utterances relative to the current utterance.

Once the stationary distributions of SKIVE elements were obtained, we

conducted an analysis of students’ SKIVE profiles by computing KL-divergence

(KL) scores between pairs of distributions of SKIVE elements for individual

students. A summary of the KL scores is shown as a heat map in Figure 3. Student

players are sorted based on their average KL score with other players. The left

vertical color bar in the maps show the intensity of the user’s average KL score in

sorted order.
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Fig. 6.2: Distribution probabilities of SKIVE elements for single player conversation
model with non-weighted and weighted window and distributions when noState

added

Fig. 6.3: KL-divergence of distribution SKIVE elements of players for window with
single player utterances (bottom two are for noState)
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It can be seen that some players have similar distributions, e.g. those shown

in the lower left corner of the heat maps in Figure 6.3. The lower left corner

corresponds to lower divergence scores. When using a no-SKIVE state and weights,

the distributions of SKIVE elements between players seem to be more similar as

shown in the heat maps on the lower right hand side of Figure 6.3. Furthermore,

adding a no-SKIVE state (bottom left and bottom right) revealed that some of the

players move from an upper position, corresponding to a higher average divergence

score, to lower-divergence positions in the heat map. Those that move to

lower-divergence positions are more likely to have utterances in which no SKIVE

elements are activated. They may correspond to students playing more

leadership/coordinator roles as their utterances focus more on process and

conversational management topics and less on SKIVE elements. We only show

results for single-player utterances models due to space reasons.

6.7 Conclusions

We conducted a Markov process analysis of students’ mastery of epistemic

frames which is generally applicable to any epistemic frame. We have experimented

and validated our method on data from an engineering epistemic frame using eight

different ways to model Markov processes for each student participating in

engineering virtual internships. The comparison of the distribution of SKIVE

elements for individual students in models with noState revealed that some students

may play more managerial or coordinator roles than others.

In future work, we plan to use the stationary distribution of SKIVE

components obtained from this analysis to better understand students’ effectiveness

of acquiring much needed skills to be successful professionally. Furthermore, we plan

to develop a dual Markov process to infer stationary distributions of states and

transitions.
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Chapter 7

Speech Act Categorization in Multi-Player Conversational Systems

This work is a step towards full automation of auto-mentoring processes in

multi-player online environments such as virtual internships. We focus on

automatically identifying speaker’s intentions, i.e. the speech acts of chat

utterances, in such virtual internships. Particularly, we explore several machine

learning methods to categorize speech acts, with promising results. A novel

approach based on pre-training a neural network on a large set of (and noisy)

labeled data and then on expert-labeled data led to best results. The proposed

methods can help understand patterns of conversations among players in virtual

internships which in turn could inform refinements of the design of such learning

environments and ultimately the development of virtual mentors that would be able

to monitor and scaffold students’ learning, i.e., the acquisition of specific

professional skills in this case.

7.1 Introduction

In virtual Internships, interns gain professional experience without actually

being present in a physical, actual company. While working as interns, the students

participate in activities such as solving designated problems or tasks for which they

actively interact with their mentor(s) as well as other interns through instant text

messages, voice messages, chatrooms, and multimedia elements. The learning that

occurs in engineering virtual internships, our focus, can be characterized by

epistemic frame theory. This theory claims that professionals develop epistemic

frames, or the network of skills, knowledge, identity, values, and epistemology that

are unique to that profession (D. W. Shaffer, 2006b). For example, engineers share

ways of understanding and doing (knowledge and skills); beliefs about which

problems are worth investigating (values), characteristics that define them as
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members of the profession (identity), and a ways of justifying decisions

(epistemology).

It is important to understand patterns of conversations between the various

players in a virtual internship in order to refine the design of such virtual

internships and to ultimately develop a virtual mentor that would be able to

monitor and scaffold students’ learning, i.e., the acquisition of specific professional

skills in this case. Currently, virtual internship environments rely on human

mentors. Our work here is a step towards a deeper understanding and full

automation of the mentoring process. Indeed, understanding the mentoring process

implies detecting patterns of actions by the mentor and by the students that are

effective. Since conversations are the main type of interactions between the mentors

and the student interns, understanding the actions or intents behind each utterance

in the conversations is critical. We offer here such solutions to automatically

detecting the intent, or speech act, behind chat utterances in virtual internships.

Furthermore, such solution are critical to fully automate the mentoring process, i.e.,

to building auto-mentors. Indeed, knowing students’ speech acts can inform an

automated mentoring agent to plan the best reply. For instance, if a student is

greeting, the system should respond with a greeting or if a student is asking a

question the system should plan to, for instance, answer the question.

Speech acts are a construct in linguistics and the philosophy of language that

refers to the way natural language performs actions in human-to-human language

interactions, such as dialogues. Speech act theory was developed based on the

“language as action” assumption. The basic idea is that behind every utterance

there is an underlying speaker intent, called the speech act. For instance, the

utterance “Hello, John!” corresponds to a greeting, that is, the speaker’s intention is

to greet, whereas the utterance “Which web browser are you using?” is about asking

a question. As already hinted earlier, discovering learners’ patterns of actions in the
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form of patterns of (speech) acts in virtual internships could be revealing. For

instance, we may find that interns that ask more questions acquire better and faster

target professional skills based on the theory that asking more relevant questions

indicates a more active and engaged learner which typically leads to more effective

and efficient learning processes.

Labeling utterances with speech acts requires both an analysis of the

utterance itself, e.g., “Hello” clearly indicates a greeting, but also accounting for the

previous context, i.e., previous utterances in the conversation. For instance, after a

question, a response most likely follows. This pattern holds in dialogues, i.e.,

interactions between two conversational partners where there is a clear pattern of

turn-taking; that is, a speaker’s turn is followed by a turn by the other speaker.

However, in multi-player conversations such as the one that we deal with in this

work, identifying the previous utterance that is most relevant to the current one is

more difficult. For example, in the snapshot of conversation shown in Table 7.1 from

one of our virtual internships, the question in chat utterance 3 from player2 is

addressed to the mentor whose reply is in utterance 6. The next Player2’s reply is

in utterance 9. Indeed, in such multi-party conversations, it becomes more

challenging to link a target utterance to the previous one that triggered it. The

complexity of untangling such multi-player conversations is further increased as the

number of participants increases. Therefore, even though the speech act of an

utterance is determined to some degree by the previous, related chat utterances, in

this work we explore a method for speech act classification that relies only on the

content of the target utterance itself, ignoring the previous context.

To this end, we used various existing classifiers such as Naive Bayes and

decision trees along with a Neural Network (NN) approach. Based on previous

experience such as (Samei, Li, Keshtkar, Rus, & Graesser, 2014; Rus, Moldovan,

Niraula, & Graesser, 2012), we selected leading words in each utterrance as the
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Table 7.1: A snapshot of conversation in nephrotex

S.N. Speaker Utterance

1 mentor I’m here to help you.
2 player1 hi!
3 player2 Has anyone been able to

get the tutorial notebook to
open?

4 player3 Hey
5 player4 Hello!
6 mentor Which web browser are you

using?
7 player3 are you guys real?
8 player1 yes we’re real lol
9 player2 I switched to Firefox, now

everything is working.
Thanks!

features of the underlying model. The feature-based representations of utterances

were then fed into Naive Bayes and decision tree classifiers. For neural networks, we

used the pre-trained sent2vec (Pagliardini, Gupta, & Jaggi, 2017) model, trained on

a large collection of Wikipedia articles, to map an entire utterance onto a vector

representation or embedding. Nevertheless, our data is dialogue data which differs

from Wikipedia texts to some degree. To compensate for this discrepancy, the basic

model is used to further train a small neural network using a comparatively small

domain specific dataset in order to improve the predictive power for the type of

instances seen in our dataset. That is, this is a form of transfer learning where our

model first uses generic knowledge from the pre-trained Wikipedia model which is

then tranferred or adapted to a specific domain data by training with domain data.

Furthermore, using pre-trained models can also lead to better parameter learning in

NN (Pan & Yang, 2010).

We also investigated a novel approach to building a speech act classifier for

multi-player conversational systems using a mix of noisy and golden data, as

explained next. In this approach, we trained a decision tree model with a small set

of human annotated data and then used that trained model to generate (noisy)
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labels for a much larger collection of utterances. The noisy labeled utterances were

then used to pre-train the neural network and then further trained with the human

annotated gold dataset. The advantage of pre-training here is to have a huge

collection of training data to pre-train the network and then refine the training

using the (smaller) human-annotated (noise-free or gold) dataset.

Next, we present a quick overview of related work in this area before

presenting details of our methods and experiments and resuts.

7.2 Background

As mentioned, our approach to label utterances with speech acts is based on

the speech act theory according to which when we say something we do something

(Austin, 1975; Searle, 1969). Austin theorized the acts performed by natural

language utterances. Later on, Searle (Searle, 1969) refined Austin’s idea of speech

acts by emphasizing the psychological interpretation based on beliefs or intentions.

According to Searle, there are three levels of actions carried by language in parallel.

First, there is the locutionary act which consists of the actual utterance and its

exterior meaning. Second, there is the illocutionary act, which is the real intended

meaning of the utterance, its semantic force. Third, there is the perlocutionary act

which is the practical effect of the utterance, such as persuading and encouraging.

In a few words, the locutionary act is the act of saying something, the illocutionary

act is an act performed in saying something, and the perlocutionary act is an

actperformed by saying something. For example, the phrase “Don’t go into the

water” might be interpreted at the three act levels in the following way: the

locutionary level is the utterance itself, the morphologically and syntactically

correct usage of a sequence of words; the illocutionary level is the act of warning

about the possible dangers of going into the water; finally, the perlocutionary level

is the actual persuasion, if any, performed on the hearers of the message, to not go

into the water.
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Many researchers have explored the task of automatically classifying speech

acts as well as the related task of discovering speech acts. For instance, Rus and

colleagues (Rus et al., 2012) proposed a method to automatically discover speech

act categories in dialogues by clustering utterances spoken by participants in

educational games. In our case, we use a predefined taxonomy of speech acts which

was inspired by Rus and colleagues’ work and further refined by dialogue experts.

The same group of researchers explored the role of Hidden Markov Models

(HMMs), a generative model, and Conditional Random Fields (CRFs), a

discriminative model, in classifying speech acts in one to one human tutorial

sessions (Rus et al., n.d.). They demonstrated that the CRF model with features

constructed from the first three tokens and last token of previous, next and current

utterances, length of current utterance, and other surface features such as bigrams

and the speech acts of context utterances performed better than HMM models.

They have not worked with multi-party conversations as it is the case in our work.

In other work, Moldovan and colleagues (Moldovan, Rus, & Graesser, 2011)

applied supervised machine learning methods to automatically classify chats in an

online chat corpus. The corpus consisted of online chat sessions in English between

speakers of different ages. Their supervised approach relied on an expert defined set

of speech act categories. In their work, they hypothesized that the first few tokens

were good predictors of chat’s speech act. Samei et al. (Samei et al., 2014) adopted

Moldovan and colleagues’ hypothesis about the predictive power of first few tokens

and extended the supervised machine learning model with contextual information,

i.e., previous and following utterances. From their experiments with data from an

online collaborative learning game, they found that the role of context is minor and

therefore context is not that important and can mostly be ignored in predicting

speech acts. Similar to those works, we also explore the effectiveness of leading word

tokens in utterances for Naive Bayes and decision tree based classifiers.
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Ezen and Boyer (Ezen-Can & Boyer, 2013) proposed an unsupervised method

for dialogue act classification. They used a corpus from a collaborative learning

programming tutor project which consisted of dialogues between pairs of tutors and

students collaborating on the task of solving a programming problem. They applied

an information retrieval approach in which the target utterance was considered as a

query and the rest of the utterances were considered as documents. Based on the

ranked list of relevant utterances to the query utterance, a vector representation is

derived for each query utterance. The vector representation is then fed into a

k-means clustering algorithm to identify clusters of utterances. For evaluation

purposes, they used manually labeled data. Each cluster was assigned the majority

human-generated label of all utterances in the cluster. An utterance that was placed

in a particular cluster by the k-means clustering algorithm was assigned the label of

that cluster as its speech act category for evaluation purposes. It should be noted

that they varied the number of clusters to obtain a maximum overall accuracy of

the discovered labels. Their algorithm outperformed a previous approach for

dialogue act clustering, which Ezen and Boyer used for classification and which

relied on a simple tf-idf representation and cosine similarity for clustering.

Kim and colleagues investigated the task of classifying dialogue acts in

multi-party chats (S. N. Kim, Cavedon, & Baldwin, 2012). They analyzed two

different types of live chats: (i) live forum chats with multiple participants from the

US Library of Congress and (ii) Naval Postgraduate School (NPS) casual chats

(Forsyth, 2007). In order to classify the utterances in the chats in various speech act

categories, Kim and colleagues (J. Kim, Chern, Feng, Shaw, & Hovy, 2006) used

speech act patterns which they defined manually using cue words derived from the

utterances. They classified the discussion contributions into six speech act

categories. They found that the previous chat utterances used as context did not

contribute significantly to predicting speech acts in multi-party conversations until
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the entanglement amongst the utterances was resolved. Our work is similar to theirs

in the sense that we analyze multi-party conversations. Nevertheless, our work is

conducted in the context of the virtual internship Nephrotex, where learners focus

on specific design problems as opposed to the types of conversations used by Kim

and colleagues such as the casual NPS chats, which did not focus on a particular

given task. We do not explore the accuracy of our methods in context.

Furthermore, we do not resolve the entangled dialogues and then use contextual

information for speech act classification. We do plan to address the role of context

and entanglement in multi-party conversations in future work.

A regular expression based speech act classifier was proposed by Olney et al

(Olney et al., 2003). Their classifier used regular expression which they called a

finite state transducer to classify utterances of AutoTutor, an intelligent tutoring

system. They showed that the classifier constructed by cascading parts of speech

information, the finite state transducer, and word sense disambiguation rules

yielded good performance in classifying utterances into 18 categories. We have not

compared our work with a regular expression based classifier due to the labor

intensive aspects of such an approach. Typically, such regular-expression approaches

should lead to high-precision results and not generalize very well unless they target

speech act categories which are more or less closed-class such as greeting expressions

(there is a limited number of expressions in which someone can greet).

7.3 Engineering Virtual Internships: an Overview

Our work presented here was conducted on conversations among students

and mentors in Nephrotex (NTX), a virtual internship. Nephrotex was designed and

created to improve engineering undergraduate students’ professional skills. It was

incorporated into first-year engineering undergraduate courses at the University of

Wisconsin-Madison (D’Angelo, Arastoopour, Chesler, Shaffer, et al., 2011).

In NTX, groups of students work together on a design problem, e.g.
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designing filtration membranes for hemodialysis machines, with the help of a

mentor. Working on a design problem involves choosing design specifications from a

set of input categories. Each student is assigned to a team of five members. There

were five such teams who were each expected to learn about one of five different

materials.

After completing a set of preliminary tasks, students design five prototypes

to submit for testing. Later, they receive performance results for these prototypes

which they have to analyze and interpret. Overall, students in each internship

complete two such cycles of designing, testing, and analysis before deciding on a

final design to recommend. During these cycles, students hold team meetings via

the virtual internship’s chat interface in which they reflect on their design process

and make decisions on how to move forward. Once teams recommend a final design,

they present this design to their peers. The conversations among the participants

take place virtually via an online chat interface in Nephrotex, or in person outside

of the class.

As previously mentioned, in this work, we focus on analyzing chat utterances

in Nephrotex in order to discover the underlying speech act. Automated speech acts

classification could have significant impact on scaling virtual internships to all

students, anytime, anywhere via Internet-connected devices. This is not currently

possible because the human mentors can only handle that much.

7.4 Methods

Our approach to classifying learner utterances in virtual internships relies on

machine learning algorithms that take as input utterances represented in a feature

space. The features in our case are either surface features (such as leading words) or

latent features (such as dimensions in neural sentence embeddings). We developed

and compared the performance of two different categories of classifiers that rely on

these two types of representations. We describe briefly those classifiers, the features
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we used, and the results obtained during experiments meant to validate the

proposed classifiers.

7.4.1 Classifier Using Surface Features

The surface feature representation of a text uses a number of important

lexical and syntactic elements such as leading words or the punctuation mark at the

end of the utterance, e.g., the ending question mark at the end of a question. In

conversation data such as chat utterances in virtual internship, lexical features such

as leading words alone have competitive power in terms of speech act representation

of the utterance. Therefore we adopted the model representation proposed

previously (Moldovan et al., 2011; Rus et al., 2012) due to its solid theoretical

foundations and competitive results. The basis of this approach is that humans infer

speakers’ intention after hearing only few of the leading words of an utterance. One

argument in favor of this assumption is the evidence that hearers start responding

immediately (within milliseconds) or sometimes before speakers finish their

utterances (Jurafsky & Martin, 2009). Accordingly, we selected few leading words

(first few words) of the utterance as the features to represent the utterance.

Although we have experimented with different number of leading words, we report

here results with the six leading words (first six words) as this combination yielded

best performance as explained later. Once each utterance was mapped onto such a

feature-representation, we performed experiments with two different types of

classifiers: naive Bayes and decision trees.

Before feature construction, we pre-processed the utterances by lemmatizing

the words and removed the punctuations. Although some of the punctuations, such

as “question mark (?)” or “exclamation mark (!)”, are predictive on some of the

speech acts, they seem to not always be present in or seem to appear at improper

places in the utterance. Hence we ignored the punctuations for our analysis here.
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Table 7.2: Speech act taxonomy with examples

Speech Acts Examples

expressive evalu-
ation
(XPE)

–It is excellent in all values except
for cost
–great
–The lag is pretty bad

greeting
(GRE)

–Welcome back interns !
–Hello Team !

metastatements
(MST)

–sorry littles confused here
–Whoops , I was reading that
wrong .
–lol

other
(OTH)

–or addition
–etc

question
(QUE)

–Is biocompatability cummula-
tive ?
–who is going to write the email
?

reaction
(REA)

–I ’m ok with this
–alright , i think i agree with u
guys

request
(REQ)

–Please keep that in mind during
your team selection of membrane
prototypes .
–K , I would like to start the team
meeting now .

statement
(STM)

–I read an article that said most
dialyzers take 6 hours to run .
–I can start the meeting with ja-
mon ...
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7.4.2 Classifier Using Latent Features

The other category of classifiers we used relies on latent features that were

automatically learned using neural networks. These features are the components of

automatically generated vectors that represent sentences. Such neural network

generated vectors are derived from textual units such as character, letter n-grams,

words and words n-grams. In our model, we adopted sent2vec, a sentence

representation model proposed by Pagliardini and colleagues (Bojanowski, Grave,

Joulin, & Mikolov, 2016; Pagliardini et al., 2017) and which was developed by

training a neural network on a collection of Wikipedia articles.

Based on such latent representations of utterances, we designed a neural

network model in two stages. First, the model obtained a latent representation for

an utterance using the generic pre-trained sent2vec model. In a second stage, the

embedded vector representation is used to further train our neural network to

perform speech act classification.

While training the neural network with domain specific data, we applied two

methods of training. In the first method, we used a small set of human annotated

gold data for training and validation. In the second method, we pre-trained the

neural network with noisy labeled data generated from a domain corpus and then

further trained and validated the model with gold data. We will discuss in detail the

process of generating noisy labels in the next section.

7.5 Experiments and Results

In this section, we present the experiments that were conducted and the

results obtained, starting with a brief description of the data we used.

7.5.1 The Virtual Internship Conversation Dataset

Our dataset consists of a collection of more than 22 thousands utterances

from the Nephrotex virtual internship. The eight categories of speech acts we used

101



are presented in Table 7.2 (acronyms are shown in parentheses) together with

example utterances.

Table 7.3: Distribution of speech acts in corpus

Human Labeled Noisy Labeled
Speech act # %Dist # %Dist

XPE 24 2.4 256 1.26
GRE 14 1.4 285 1.40
MST 40 4.0 405 2.00
OTH 11 1.1 166 0.82
QUE 173 17.3 3098 15.25
REA 202 20.2 3347 16.47
REQ 56 5.6 1041 5.12
STM 480 48.0 11719 57.68

Total 1000 20317

From the examples, it could be observed that the leading tokens in each

utterance are indicative of the underlying speech act shown in the first column. For

instance, greetings start with “Hello” and “Welcome back” whereas questions start

with wh-words (“Who”) or auxiliary verbs (“Is”) while requests start with “Please”,

which is typically used to ask for something in a nice manner.

The Data Annotation Process

Of the 22,317 utterances, 2,000 utterances were manually annotated by three

annotators. Out of these 2,000 utterances, 1,000 utterances were used for training

the annotators. Agreement among annotators was computed as the average of

Cohen’s kappa between all possible pairs of annotators. The average agreement

between any two annotators was 0.64.

The remaining 1,000 utterances were labeled by the annotators after

finishing their training. The average agreement, measured as Cohen’s kappa, among

the coders was 0.69. To generate a final, unique label for each annotated utterance

in cases in which there were any disagreements, a discussion among the annotators
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took place as well as the group of co-workers in the project team. We used the 1,000

human-labeled utterances as a gold dataset on which a 10-fold cross validation

evaluation methodology was applied to evaluate the proposed speech act

classification methods.

The Noisy Label Generation

The rest of the utterances in the whole dataset of 22,317 utterances was

automatically labeled using the decision tree model trained on the first 1,000

instances labeled by trainee annotators. We chose decision trees to generate noisy

labels because decision trees performed better than the Naive Bayes classifier. It

should be noted that we used the other 1000 human-labeled gold data for 10 folds

cross validations of our classifier models. Table 7.3 shows the distribution of speech

acts in the gold and noisy labeled datasets. From the table, we observe that the

noisy labels generated follow roughly comparable pattern of distribution for the

speech acts that are more frequent in corpus. Therefore it makes sense to some

extent to use those noisy labels to pre-train the neural network model.

7.5.2 Results

The results of the 10-fold cross-validation evaluation are summarized in

Table 7.4 and Table 7.5. We report performance in terms of precision, recall, F-1

score, accuracy, and kappa. The data in Table 7.4 suggests that the performance of

the neural network classifier is highest of all with an average F-1 score and accuracy

of 0.764 and 0.779, respectively, and kappa of 0.666, which are the highest among all

three types of classifiers including Naive Bayes and decision trees. Moreover, the

two sample t-test on 10-fold cross validation accuracies revealed that, neural

network performed significantly better than Naive Bayes (p− value ≈ 0.00) and

decision tree with (p− value ≈ 0.00).

The results shown in Table 7.5 shows that the neural network model

pre-trained with noisy labels improved the performance. The overall improvement
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Table 7.4: Performance of naive bayes, decision tree and neural network classifiers

NB DT NN
SA P R F1 P R F1 P R F1

XPE 0.200 0.042 0.069 0.000 0.000 0.000 0.556 0.208 0.303
GRE 1.000 0.143 0.250 0.000 0.000 0.000 0.667 0.143 0.235
MST 0.000 0.000 0.000 0.283 0.375 0.323 0.692 0.450 0.545
OTH 0.099 1.000 0.180 0.176 0.273 0.214 1.000 0.091 0.167
QUE 0.000 0.000 0.000 0.429 0.468 0.448 0.921 0.879 0.899
REA 0.354 0.342 0.348 0.630 0.599 0.614 0.687 0.683 0.685
REQ 0.000 0.000 0.000 0.143 0.143 0.143 0.614 0.482 0.540
STM 0.581 0.831 0.684 0.680 0.642 0.660 0.791 0.908 0.846

Wt. Avg. 0.370 0.482 0.406 0.549 0.536 0.542 0.774 0.779 0.764
Accuracy = 0.482 Accuracy = 0.536 Accuracy = 0.779

Kappa = 0.177 Kappa = 0.341 Kappa = 0.666

in precision, recall, F-1 score, and accuracy is about 2% with about 2% better kappa

when compared to the neural network classifier (Table 7.4) without using the much

larger, noisy label dataset. However, a t-test showed that the accuracy of the noisy

label trained neural network is not significantly better than neural network trained

without noisy label data (p− value ≈ 0.53). This could have happened because of

the small samples used for the t-test: 10 from 10-folds cross validations. Using a

larger number of folds, say, 50, could help us getting a large sample of accuracy

values.

Table 7.5: Performance of noise label trained neural network classifier

SA P R F1

XPE 0.900 0.375 0.529
GRE 1.000 0.357 0.526
MST 0.947 0.450 0.610
OTH 0.000 0.000 0.000
QUE 0.921 0.879 0.899
REA 0.774 0.713 0.742
REQ 0.742 0.411 0.529
STM 0.762 0.925 0.835

Wt. Avg. 0.796 0.795 0.781
Accuracy 0.795

Kappa 0.685
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Fig. 7.1: Confusion matrix for classification of decision tree (values refer to
percentage expressed in decimal, acronyms refer to the speech acts defined in Table

7.2)

Fig. 7.2: Confusion matrix for classification of neural network (values refer to
percentage expressed in decimal, acronyms refer to the speech acts defined in Table

7.2)

It can be observed from the table that the performance for the “other”

category is the weakest among all four classifiers. The reason is because of the

nature of those utterances which contain only a few tokens, i.e., one or two words

(see Table 7.2), with a lot of variation in terms of lexical content. In addition, the

human labeled dataset contained few instances for this category which resulted in

poor performance when the neural network model was trained using the human

labeled data. Similarly, in the noisy, automatically-labeled dataset there are many

misclassified “other” instances which led to poor training of the neural network
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Fig. 7.3: Confusion matrix for classification of noise label trained neural network
(values refer to percentage expressed in decimal, acronyms refer to the speech acts

defined in Table 7.2)

model. Furthermore, the next phase of training the pre-trained neural network

model with the human labeled data did not compensate enough because there were

not sufficient “other” instances in the human labeled data to correct the pre-trained

model. This is further supported by analyzing the confusion matrix where the

number of true positives for the “other” category is 0%; the “other” category is

labeled as “statement” 90% of the time in the case of the neural network model

pre-trained with noisy labels (see Figure 7.3). Further evidence for this is provided

by analyzing the confusion matrix for neural network trained only with gold labels

where true positives for “other” utterances was 9% (see Figure 7.2). In this case,

“other” utterances were labeled as “question” and “reaction”. Other challenging

speech acts are ”request”, which is most often confused with “statement”. This is

not surprising as the lexical composition of requests and statements is similar to

some degree.

For decision trees, a quick analysis of the confusion matrix (see Figure 7.1)

revealed that the true positives for “expressive evaluation” was 0%, being confused

mostly with “reaction” or “statement” (41% and 29% of the time, respectively).

Also, “greeting” is confused with “metastatement” by 21%, “request” by 21%, and

“statement by 28%”.
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7.6 Conclusions

In this work, we explored several methods for speech act classification. We

explored various classifier models with different categories of features as well as

training strategies. We found that the latent features generated by a pre-trained

sentence embeddings model (derived from a large Wikipedia corpus) yielded better

performance compared to the other models. Besides that, the predictive power of

the neural network model was further boosted when pre-trained with noisy label

before training with expert-annotated data.

In future work, we plan to expand the current models by using more

contextual information. Given the multi-party nature of our conversation data,

before we can use contextual information, it is necessary to disentangle the

conversations into sets of related utterances. Our future models will disentagle the

multi-party conversations before attempting to use contextual information for

speech act classification.
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Chapter 8

Answer Assessment in Intelligent Tutoring System

In this chapter we present a noble method of assessing student answers in

dialogue based intelligent tutoring systems. We focus to develop and evaluate our

model for DeepTutor, an intelligent tutoring system for high school physics

students. Particularly, we have experimented with different assessment models that

are trained with the features generated from knowledge graph embeddings. Our

experiment showed that the model trained with the feature vectors generated by

Neural Tensor Networks (NTN) that are trained with combination of domain

specific and domain general triplets perform better than the existing system.

8.1 Introduction

ITSs mimic human tutor in terms of conversational and pedagogical

capabilities. Though they have been designed differently for different learning

systems, the goal of these systems is to provide customized instruction or feedback

to individual learner in order to maximize learning for the learner. As observed by

several researchers (Nwana, 1990; Freedman, Ali, & McRoy, 2000; Nkambou,

Mizoguchi, & Bourdeau, 2010), intelligent tutoring systems consist of four basic

components: the domain model, the student model, the tutoring model and the user

interface. The domain experts build domain model based on what to teach to the

learners. While building the model, the domain experts apply the theory of learning

which takes into account of concepts, rules and problem solving strategies of the

domain to be learned.

The student model monitors student cognitive states and learning as the

learning process advances. It uses learner’s personalized data such as knowledge

state and error made during learning, in order to provide personalized feedback and

hints to guide student through the learning path that is designed in domain model.
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Using information from domain and student model, the tutor model makes

choice of tutoring strategies. The model makes instructional decision such as correct

choice of teaching methods that suit best for individual learner. Moreover, it

assesses the cognitive state of the learner and decides whether a learner can proceed

to the next learning stage or revised the previous stage.

The user interface integrates the previous three models and provides

environment through which the learner can interact with the system.

While an ITS has those components, the behavior of ITS during tutoring can

be described using Van Lehn’s (Vanlehn, 2006) two-loop framework: the outer loop

and the inner loop.

The outer loop determines the appropriate ordering of tasks that are

presented to the learners to work on.

The inner loop, on the other hand assesses learner’s input and provide

adaptive feedback while the learner is working on a task. During the process, the

tutor asks a question and the learner submits answer to the question. The ITS

monitors the learner’s performance through its assessment model, updates its

student model and determine whether the learner’s answers has the expected

concepts. If answer has all the expected concepts, the outer loop activates and

selects next task. Otherwise, the inner loop uses its updated student model to

provide appropriate feedback to get expected local goal.

Natural language understanding is the foundation of assessment model of

ITS. Typically, automatic answer assessment systems assess student responses by

measuring how much the student answer contains the targeted concept. These

targeted concepts are created by subject matter experts and the semantic similarity

between student’s answer and target(reference) answer is measured to evaluate the

correctness of the answer. The method to compute similarity scores by knowledge

based approach such as using WordNet or corpus based approach such as Latent
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Semantic Analysis (LSA) (Landauer, 2006), and Latent Dirichlet Allocation (LDA)

(Blei, Ng, & Jordan, 2003) have been popular from several years. Also several works

(Pérez, Gliozzo, et al., 2005; Mohler, Bunescu, & Mihalcea, 2011) to harness the

power of corpus driven approach with knowledge driven approach or vice versa have

been studied in the past years.

However, the limitation of similarity based method is that such approaches

assume student answer and reference are self contained. But most often, the student

responses are indirect, elliptical or depends on context of domain. For example, in

Table 8.1, the student answer A1 is more complete and semantic similarity approach

could provide high similarity score with expected answer (E). However, previous

study by Penumatsa et al. (Penumatsa et al., 2006) showed longer text yield larger

cosine score. This means even student does not contain expected content but

reference answers and student answers are longer, then similarity score would be

high. On the other hand the correct short answer could be elliptical (A2 and A3)

and give low similarity score with the expected answer. The small score will be even

more prominent if some of the concepts are mentioned indirectly (for instance:

”downward force from the earth” in A3). The concepts that are mentioned directly

could be identified using semantic similarity approach by comparing definite sized

chunk of text from student answer and reference answer, however for indirect

mentions, it is more challenging.

We propose a knowledge graph based approach by representing the concepts

in student answers and reference answer with embedding vectors that are learned

directly from a knowledge graph which encodes indirect relationship between the

concepts.
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Table 8.1: An example of student tutor conversation in DeepTutor

Q: What forces are acting on the puck while the puck is moving on
the ice between the two players?
A1: The forces acting are gravitational force and the normal force
from the ice.
A2: The normal force coming from the ice and the gravitational
force.
A3: The downward force from the earth and the normal force
from the ice.
E: The forces acting on the puck are the downward force of gravity
and the upward normal force from the ice.

8.2 Background and Related Works

8.2.1 Knowledge Graphs and its Use

Knowledge graphs have been used in several NLP tasks such as text

categorization, information extraction, information retrieval, question answering and

computing semantic relatedness. A knowledge graph is a relation graph consisting

of edges, representing different relations and nodes, representing different entities

participating in relations. An example of animal kingdom knowledge graph is shown

in Figure 8.1. The figure shows a simple example with entities participating in a

single relation, “BelongsToPhylum”, however it should be noted that the entities

could participate in multiple relations. These relations are represented by a tensor,

with which various mathematical transformation could be possible. A tensor is a

generalized matrix with multiple dimensions. A typical example of a 3-D tensor is

shown in Figure 8.2 where each frontal slice represents one of m relations between

entities E1 through En.

Though knowledge graph could be used in various NLP problems such as

question answering or finding semantic link between entities, automatically

extracting knowledge from unstructured data is challenging. There have been a

number studies such as (Angeli, Premkumar, & Manning, 2015; Jiang & Zhai, 2007;

Chan & Roth, 2010), to extract knowledge from the text. These study basically
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Fig. 8.1: Graphical representation of relations between entities

follow the classification approaches to classify whether the entity participate in

particular relation. Implementing the methods proposed by Angelie and colleagues

(Angeli et al., 2015), OpenIE, an information extraction library has been released

by Stanford NLP Group1. This library provides various method to extract

named-entity, and the information as a triplet of entities and the relations in which

they participate.

Fig. 8.2: Tensor representation of relations between entities

While knowledge graphs are directly constructed from the entity relations,

one of the tasks of relational learning model is to compute the lower ranked matrix

factors of the tensor to discover latent relation between entities. Similar to matrix

factorization in Latent Semantic Analysis (LSA), the tensor factorization encodes

the latent relations between the entities in all the relations in the tensor.

A model for relational learning is proposed by Nickel et al. (Nickel, Tresp, &

Kriegel, 2011) where they presented a tensor model for relational data. They

1https://nlp.stanford.edu/
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proposed RESCAL approach that used tensor factorization to factorize the tensor

obtained from relational data to encode latent relations in the factors. This

approach is comparable to LSA with two dimensional matrix representation relation

between entities. However in RESCAL, representation of relations with three

dimensional matrix enable to model multiple relationships between entities. For

example, in case of knowledge graph of animal kingdom (Figure 8.1), it could be

inferred that there exists a link between “Lizard” and “Chordata” in

“BelongsToPhylum” relation. This information could be revealed by the similar

connection strength of “Monkey” and “Lizard” with “Chordata” entity as they

belongs to same phylum “chordata”. In other words, the information from other

relation (“BelongsToClass”) has flowed to “BelongsToPhylum” which led to reveal

the latent relationship between “Monkey” and “Lizard”.

Often the knowledge bases constructed with collection of entity and relation

between the entities are important resources for various tasks such as question

answering and information retrieval. However a rich knowledge base also suffers

from missing links(i.e. the relations) between the entities and lack of reasoning

capability. Several attempts have been done to complete the knowledge bases.

Socher and colleagues (Socher, Chen, Manning, & Ng, 2013a) proposed a

neural network approach to represent the relation with neural network. They

developed a method to represent the entities as vectors and relations as neural

tensor networks(NTN), a variant of neural network which harnesses the feed forward

model with a bi-linear tensor product. The parameters of such NTN encode the

latent relationship between the entities. One of the import aspect of NTN that

attracted our attention towards using the model in answer assessment is that it

learns the entity embedding for each of the concepts as a vector that inherently

encodes the relationship with the other entities. Such embeddings of concepts could
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help to discover the concepts that are correct but mentioned indirectly when

compared to the reference answer in answer assessment problem.

Kotnis and Nastase (Kotnis & Nastase, 2017) showed that augmenting the

relation with entity type information improves the prediction of missing links in the

entity relation graph. They particularly used entity type information as type

regularizer in their learning model and tested on knowledge completion task by

predicting either source or target entity in Freebase knowledge graph dataset.

8.2.2 Related Works

Automated answer assessment systems have been developed in past decades.

Earlier those systems (Dikli, 2006; Leacock & Chodorow, 2003; Shermis & Burstein,

2003) were mostly developed for open ended texts such as essay, where the ideas

about some topics were expressed as a few paragraphs of text. On the other hand,

in tutoring systems, the short answers in the form of dialogues are more common.

And those short answers are are more focused and have a fixed expected answer.

Unlike the essay grading, which focus more on style, coherence organization of

concepts, the short answer assessment systems focus on the concept that the

learners’ responses carry. We mainly discuss on short answer assessment methods.

One of the earlier assessment system was OLAE, proposed by Martin and

VanLehn (Martin & VanLehn, 1995). OLAE produces a student model with a

collection of correct and incorrect rules from the domain model used by a particular

student and Bayesian network is used to compute probable answer to a problem in

the same way as the student does. One of the limitations to this approach is that

the human must generate Bayesian network for each problem, i.e. the approach has

a problem of scalability.

Pérez et al. (Pérez, Gliozzo, et al., 2005) applied a combination of BLEU

(Papineni et al., 2002), an evaluation algorithm for machine translation, and LSA

(Foltz, Laham, & Landauer, 1999) to grade student generated free text short
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answers. Their main idea was to combine semantic information captured by LSA

with the syntactic information captured by BLEU-inspired algorithm. They did

shallow syntactic analysis such as tokenizing, parts of speech tagging and stemming.

These shallow syntactic analysis though kept their system simple, portable,

language independent and domain knowledge independent, the system was able to

produce significantly correlated assessment score to the teacher’s score.

Another work using LSA for short answer grading was by Graesser et al.

(Graesser et al., 2000) in their computer literacy tutoring system: AutoTutor. They

studied the quality of student contributions in tutorial dialog, and found that LSA

provided evaluation that was as good as the evaluations provided by intermediate

experts of computer literacy. They also found that though the LSA did not provide

evaluation as high as experts in computer science, it was capable of discriminating

students quality as good, vague, erroneous and mute students.

Mohler an Mihalcea (Mohler & Mihalcea, 2009) studied unsupervised text

similarity techniques for short answer grading. In their work, they compared a

number of knowledge-based (WordNet) and corpus-based(LSA and ESA) measures

used in grading short answers to the intermediate computer science assignment

questions. They studied the effect of domain and the size on corpus-based methods

and found that the similarity score correlates high with human ratings when the

medium sized domain-specific corpus built from Wikipedia was used. In another

work, Mohler and colleague (Mohler et al., 2011) studied graph alignment methods

and lexical semantic similarity methods for short answer assessment. They found

that the combination of lexical semantic similarity measures and graph alignment

features can grade student answer more accurately than the two methods when used

individually.

Rus and Graesser (Rus & Graesser, 2006) presented lexico-syntactic

information and synonymy embedded in a thesaurus to assess student answers in

115



AutoTutor (Graesser, Lu, et al., 2004), an Intelligent Tutoring System(ITS). They

used approach of recognizing textual entailment (RTE) (Dagan, Glickman, &

Magnini, 2005) by treating Expected answer as entailing text(T) and the student

answer as hypothesis (H).

In other work, Rus et al. (Rus, McCarthy, Graesser, Lintean, & McNamara,

2007) studied the the performance of textual entailment (TE) method, LSA

method, word overlap method and synonymy approach to assess student generated

self explanation, a comprehension that student creates for a text excerpt extracted

from science text. Their study showed that the TE method provided highest

accuracy compared to other methods.

A major limitation of textual entailment (TE) methods proposed by Rus and

colleague is that these can assess student answer as either correct or incorrect.

However, in many ITS such as DeepTutor, the student answer are assessed in more

than two level of correcteness. Several other studies (Mohler et al., 2011; Sultan,

Salazar, & Sumner, 2016; Gomaa & Fahmy, 2012; Banjade, Maharjan, et al., 2016;

Maharjan, Banjade, & Rus, 2017; Maharjan, Gautam, & Rus, 2018) were performed

to assess student answers in multiple levels.

While analyzing tutorial dialogues in a dialogue based tutorial system ,

Niraula and colleague (Niraula et al., 2014) found that a significant portion of

student answers contain pronoun that refer entities in the previous utterances. In

order to address such dependency on previous context, several methods for instance

(Bailey & Meurers, 2008; Banjade, Maharjan, et al., 2016; Maharjan et al., 2018,

2017) were studied before, where they assume that the question and the problem

description provide import contextual cues for elliptic answers.

Bailey and Meurers (Bailey & Meurers, 2008) used previous questions as

context to resolve pronoun and eliminate concepts that are given in the question. In

other work, Banjade et al. developed DT-Grade dataset (Banjade, Maharjan, et al.,
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2016) for assessing student answer in DeepTutor. They also presented word

weighting approach, which instead of ignoring question, gives less weights to the

words present in question and compute the similarity score between student answer

and the reference answer. They then applied logistic regression for classifying the

student answers to predict the correctness label.

Other attempt to assess student answer in DeepTutor is by Maharjan and

colleague (Maharjan et al., 2017, 2018). In (Maharjan et al., 2017), they presented

Gaussian Mixture Model (GMM) that used number of context aware features based

on counts and word weighted lexical and alignment similarity scores. While in

(Maharjan et al., 2018), they presented LSTM-based approach by capturing

long-term dependencies between student answer and the previous context from

problem description and the question. Both of their approach improved better than

previous attempt by Banjade et al. (Banjade, Maharjan, et al., 2016), however

LSTM model was better in terms of accuracy and features the model used, as no

feature engineering is needed.

8.3 Methods

Our assessment system is based on a multi-class classifier that classifies a

student answer into one of the four assessment labels: (i) correct, (ii) correct but

incomplete, (iii) incorrect and (iv) contradictory. For this we convert each of the

student answers and reference answers into feature vectors which come directly from

the entities’ vectors embedding learned while training Neural Tensor Network

(NTN) (Socher et al., 2013a). The idea here is that once the NTN is trained, these

entity vectors encode relationships among each other in the knowledge graph and

the more an entity share neighbors and the relation with other entity, more similar

their vector representation be. For instance, in Figure 8.3, the entity ”gravitational

force” and ”downward force from the earth” are more likely to have similar vector

embedding since they share same neighbors (i and problem 1 ) and relation
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types(constituent of, has head and is expected concept). In the next section we will

discuss methods of entity extraction, knowledge graph construction and learning

entity and graph embeddings in detail. Finally we discuss the answer assment

model in detail.

Fig. 8.3: Excerpt of knowledge graph for answer assessment

8.3.1 Entity Relations Extraction

Knowledge graph is a huge network of entities and their relationships. In

order to construct the knowledge graph, a large collection of entities and relations

triplets are needed. These triplets could then be used to learn latent relationships

and discover missing links between the entities. In our work, we make use of two

categories of such entity relations: (i) General entity relations obtained from

WordNet and (ii) Domain entities relations defined and extracted from our domain

dataset, i.e. Dt-Grade dataset.

The general entity relations triplets were obtained from the WordNet dataset

used by Socher and colleague in their work (Socher et al., 2013a). It should be

noted that the an entity represented by same word or token can have different

senses. However in our work, we do learn a representation as a single entity for a

token with multiple senses by merging such multi-sense tokens into a single entity.
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Fig. 8.4: Example of a sentence parsed with SpaCy dependency parser

Fig. 8.5: Example of a sentence parsed with SpaCy dependency parser (phrase
merged)

In order to obtain domain entity relation triplets, we assume that there are

finite number of problems that are authored for the tutoring system. We then define

entities and their relations for the system.

An entity is a token, a text chunk, or an unique identification number of the

problem. The token entities are obtained by tokenizing the reference answers. From

those tokens, we keep only content words such as nouns, verbs, adverbs and

adjectives as entities. The text chunks are obtained from dependency parse tree

parsed. We used SpaCy (Honnibal & Montani, 2017) for text parsing. Besides that,

other kind of entities are represented by binary relationships in answers text, that

are extracted using Ollie (Mausam, Schmitz, Bart, Soderland, & Etzioni, 2012), a

state-of-art tool for information extraction.
In addition to extracting phrases, the dependency parse tree provides a way

to define the syntactic relation between those entities. For instance, from Figures

8.4 and 8.5, we can infer several possible relations between the tokens. We define

following five relations and present such relations in Table 8.2.

1. is concept of : relates if an entity is an expected concept of a problem. A
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Table 8.2: Entities and relations extracted from example sentence ”Newton’s second
law says that net force equals mass times acceleration.”

Method Entity Relation Triplet

SpaCy Newton second law Newton second law : has head text : say
net force net force: has head text : equal
mass time acceleration mass time acceleration : has head text : equal
mass mass : is part of : mass time acceleration
law law : has child text : newton
law law : has child text : second
Newton Newton: has ancestor text : law
second second : has ancestor text : law

OLLIE Newton second law; say;
that net force equal mass
time acceleration

-

problem is an abstract entity that represents problm’s unique identification

number (”Problem 1 ” is an abstract entity; Figure 8.3).

2. is constituent of : relates if an entity is constituent of another entity; i.e. if

an entity token is a part of another entity text chunk (”force” is constituent of

”gravitational force”; Figure 8.3)

3. has head text: relates if an entity’s head text is another entity according to

dependency parse tree.

4. has ancestor text: relates if an entity’s ancestor is another entity according

to dependency parse tree.

5. has child text: relates if an entity’s child is another entity according to

dependency parse tree.

8.3.2 Knowledge Graph Embedding

While an entity relation triplet represents a direct relation, a collection of

such triplet forms a knowledge graph that provides information on indirect relation

between two entities. However such knowledge graph suffers from incompleteness in

the form of missing links. We discussed several approaches for discovering such
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Table 8.3: Example of training triplet obtained after corrupting entities (Score = 0
for corrupted triplet)

Relation Triplet Relation Score

(stress, type of, force) 1
(stress, type of, shell) 0
(atlantic, has part, iceland) 1
(atlantic, has part, corner 0
(atlantic, has part, north sea) 1

missing links in previous sections. In our work, we used Neural Tensor Network

(NTN) proposed by Socher and colleagues (Socher et al., 2013a), which learns to

identify if two entities have some kind of relationships. The way NTN relates two

input entities with bilinear tensor product makes it different from the a feed forward

network. The NTN architecture consists of a bilinear tensor layer as well as feed

forward layer, which according to the paper, makes NTN powerful by harnessing the

power of both bilinear and feed forward networks. Here we present a high level

architecture (Figure 8.6) of a typical Neural Tensor Network and the scoring

function (see equation 8.1) that is originally used in the original paper by Socher et

al. Several NTN units (in fact equal to the number of relation types) trained in

unison produces a knowledge graph embedding. Since the errors from each unit (i.e

error for each relation type) are aggregated while training, the weights of each cell

affect each other during training. In other words, the whole knowledge graph

represented by neural tensor network gets updated. While after training, the weights

of these NTN embed the relation between entities, the connection strength of two

entities in the knowledge graph is given by the score function shown in equation 8.1.

g(e1, R, e2) = UT
Rf
(
eT1W

[1:k]
R e2 + VR [e1e2] + bR

)
(8.1)

where e1, e2 ∈ Rd are d dimensional vectors of entities, f = tanh, is a non

linear activation function, W
[1:k]
R ∈ Rd×d×k is a tensor and the bilinear tensor
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Fig. 8.6: High level architecture of knowledge graph embedding network using NTN.
N NTN units for N relation types are trained in unison by minimizing the error

product eT1W
[1:k]
R e2 results in a vector h ∈ Rk, where each entry is computed by one

slice i = 1, ..., k of tensor: hi = eT1W
i
Re2. The other parameters for relation R are the

standard form of neural network: VR ∈ Rk×2d and U ∈ Rk, bR ∈ Rk

To train such NTN, the negative examples are created by corrupting one of

the entities in each of the positive relation triplets (see Table 8.3). Then such

negative and positive triplets with corresponding binary labels are used to train the

NTN. While training, the network updates its weights as well as the entity vector to

obtain better representation of each of the entity after each epoch. Such vectors

that are produced as bi-product are useful in our answer assessment system.

8.3.3 Classifier Using Entity Embedding

Upon completion of training the NTN, the entities vectors encode

information about the relationships in the knowledge graphs. As those relations

come directly from WordNet, that organize words in semantic hierarchy, and from

the syntactic structure of actual domain data, it makes sense to expect that the

vector captures general semantics as well as the domain specific relationship

between the entities. Therefore using vectors that integrate domain general as well

as domain specific information would provide better assessment model.

Using entity embedding as a basic unit, we construct vectors by extracting
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Fig. 8.7: Classifier that takes only student answer as input

Fig. 8.8: Classifier that takes student answer as well as reference answer as input

entities from an answer instance and average the entity vectors to get a single vector

for the instance. We obtain such vectors for both student answer as well as the

reference answers. While applying vector average of constituent entities, the

problem of out of vocabulary entity in student answer which should be handled. We

address this problem by trying to replace with the synonym of the entity or its

constituent tokens that are in the entity vocabulary. If none exists, we simply

replace the constituent token with ”NULL” word vector.

Our assessment model is a classifier that classifies the student answer into

one of the classes that represent the assessment labels. In this work we used two

types of classifiers that are based on neural network. First type is a simple neural

network with one input(Figure 8.7), which takes an input vector from student
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answer and produce classification. The other type has an additional layer after

input layer to concatenate reference answer vector and student answer vector

(Figure 8.8). The advantage of classifier with two input vectors is its ability to learn

by comparing student answer with standard reference answer during training. In

other words, such classifier learns to distinguish between a good answer that

satisfies all the expectation with poor and bad answer that does not satisfy any of

the expectations when compared to reference answer. Additionally, the reference

answers are generally self contained and complete, hence they can provide

contextual cues to the student answer, when used together.

Compared to one input classifier, training and predicting with two input

classifier is different when there are multiple possible reference answer for same

problem. For training, those reference answers, paired with corresponding student

answer produce large number of training examples, a clear advantage over one input

classifier. However, while predicting, multiple pairs with same true label but

different predicted label could be possible for a single instance of problem (student

answer). In such situation, a majority vote strategy is used to select the predicted

assessment label; i.e. the assessment label that is predicted most frequently for a

student answer is selected as predicted label.

8.4 Experiments and results

We performed experiments on two different types of classifiers using entity

vectors learned by Neural Tensor Network trained with both domain general and

domain specific relation triplets. The two types of classifiers: one input, and two

inputs, trained with different entity vectors obtained from various triplet source is

shown in Table 8.4. The domain general triplets are obtained from WordNet

relations (prefixed with ”WN”), the domain specific triplets are obtained from

DT-Grade dataset (prefixed with ”DT”). We also performed experiment by

augmenting the domain general triplets with domain specific triplets (prefixed with
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Table 8.4: Experiment models

Classifier Type Acronym Triplet Source

O
n
e

In
p
u
t WN1IP WordNet

DT1IP DT-Grade
Aug1IP Augmented (WordNet &

DT-Grade combined)

T
w

o
In

p
u
t WN2IP WordNet

DT2IP DT-Grade
Aug2IP Augmented (Wordnet &

DT-Grade combined)

”Aug”). For augmentation, we combined the domain general entities and relation

obtained from WordNet with entities and triplets obtained from DT-Grade dataset.

In the following sections we first describe datasets and then present the results

obtained in various experimental setups.

8.4.1 Dataset

Tutorial Dataset

We used DT-Grade dataset (Banjade, Maharjan, et al., 2016) which are

extracted from logged tutorial interaction 40 junior level college students and

DeepTutor system while solving conceptual physics problems. The dataset consists

of 900 student responses for the same number of tutorial questions. Moreover each

of the tutorial questions have a number of (approx. 5) expected answers. The

student responses were labeled with the following four assessment labels:

1. Correct: Answer that covers all the expected concepts

2. Correct but incomplete: Answer that covers some of the expected concepts

3. Contradictory: Answer that is semantically opposite or contrast to expected

answer.

4. Incorrect: Answer that does not include any of the expected concepts.

Though the original DT-Grade dataset consists additional information (see
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Table 8.5: DT-Grade dataset

Labels Distribution
Correct 367 (40.77%)
Incomplete 211 (23.44%)
Contradictory 84 (9.33%)
Incorrect 238 (26.44%)

Total 900

Fig. 8.9: An annotation example of DT-Grade dataset

Figure 8.9); we only use student answers, reference answers and the labels for

student answers. Table 8.5 shows the distribution of labels in the dataset.

Knowledge Graph Dataset

We use wordnet knowledge graph dataset that was used by Socher and

colleagues (Socher, Chen, Manning, & Ng, 2013b). We preprocess the wordnet

triplets to combine the different sense for same word into a single entity for training

our neural tensor network. Though the different senses are combined, the relation

that those different sense words previously participated was kept unchanged and

treated as a separate training instance. This makes the model simple yet encoding

the relations in the embedding. There are 11 relations categories obtained from

WordNet. These categories characterize the semantic relations between the entities

in knowledge graph. Besides that we created entity relation triplets dataset from

reference answers in DT-Grade dataset. The entities we created are of two types: (i)
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Table 8.6: Knowledge graph dataset. The number of triplets are the actual number
of positive instances (doubles after corrupting the triplets)

source #Entity #Triplet
WN 33163 109165
DT 1263 22941
Combined 34352 132106

the question itself is the entity; i.e. there are 900 such entities. (ii) The content

words, phrases, head words, parents and children obtained by parsing the reference

answers using SpaCy (Honnibal & Montani, 2017) dependency parser. After

obtaining the entities, we identified 5 syntactic relations among the entities obtained

from reference answers (see Table 8.7). We used these two categories of knowledge

graph dataset separately as well as we augment the syntactic knowledge graph

dataset by combining with semantic knowledge graph dataset. Table 8.6 shows the

number of entities and relations in different knowledge graph dataset we used.
Table 8.7: Semantic and surface relations

Type Relations

S
em

an
ti

c

has instance
type of
member meronym
member holonym
part of
has part
subordinate instance of
domain region
synset domain topic
similar to
domain topic

S
u
rf

ac
e

is concept of
is constituent of
has head text
has ancestor text
has child text

8.4.2 Results

The results of 10-folds cross validation is summarized in Table 8.8. We

report the performance in terms of accuracy, and F1 measure. The result shows

that Aug2IP, performed best with average accuracy of 0.644, which is 2.2% better
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than *LSTM, our previous best performing model(0.622) (Maharjan et al., 2018).

Also its F1 score (=0.642) is 2.2%, and Kappa (=0.482) is 3.2% better than of

*LSTM. The previous model (*LSTM) used LSTM that take problem description,

tutor question, student answer and reference answer as input, however, this work

learns entity or word vectors to discover general semantic and domain specific

linguistic relationships. In fact, our two input classifier in this work when used with

domain specific vectors (DT2IP & Aug2IP) performed better. This suggests that

the NTN model could learn vectors better than the one-hot-encoding used in

previous approach.

Besides performing better than previous model, the result suggests that

when trained with vectors created from same dataset, the classifiers that takes both

student answer answer and reference answer as input perform better compared to

that only takes student answer as input. For instance, DT2IP has average accuracy

of 0.626 which is 5.7% higher than of DT1IP. Similarly Aug2IP has average

accuracy of 0.644 which is 4% higher than Aug1IP. Whereas the performance of

WN2IP is higher than of WN1IP, it is small improvement (1.3%) when compared to

other classifiers.

Table 8.8 further shows that the classifier when trained domain specific

vectors (prefixed with DT) perform better than domain general vectors prefixed

with WN). Moreover, when the domain specific triplets were augmented with

domain general triplets, the performance boosted up significantly (3.5%

improvement for Aug1IP than DT1IP, and 1.8% for Aug2IP than DT2IP).

Figure 8.10 shows the average precision, recall and F1 score of various model

we experimented. As seen from the figure, our two input classifier trained with

augmented vector performed best in terms of precision(0.639), recall(0.644) and F1

score. Compared to domain specific vectors (DT1IP and DT2IP) the domain

general vectors(WN1IP and WN2IP) performed worse. The reason could be because
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significant number of the entities extracted from student answers and reference

answers from DT-Grade dataset were not present in domain general vocabulary.

And lack of such entities resulted inaccurate representation of entities. Because such

entities need either semantically similar entities or synonym words and even further

may have to rely on NONE entity in the vocabulary.

Fig. 8.10: Comparison of precision, recall and f1 score for different models

Table 8.8: Performance of models

Model Avg acc F1 Kappa

*LSTM (Maharjan et al., 2018) 0.622 0.620 0.450
DT2IP 0.626 0.624 0.450
Aug2IP 0.644 0.642 0.482
WN2IP 0.564 0.569 0.334
DT1IP 0.569 0.569 0.350
Aug1IP 0.604 0.604 0.409
WN1IP 0.551 0.565 0.302

8.5 Conclusions

In this work we proposed different knowledge graph based models to assess

student responses in DeepTutor. The improved performance in terms of accuracy

and F1 of our models suggests knowledge graph yields better vectorial

representation of student answer and reference answer text. In addition, the two

input classifier always performed better than one input classifier when trained with

same set of vectors. This is expected, since the two input classifier uses reference
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answer as one input which provides context for student answers. More importantly

when the two input classifier is trained with the augmented vectors, they performed

best. This suggest that that the relation triplets obtained from actual tutorial data

helps to encode highly predictive features while training NTN.

Our method has several areas where further improvement is possible. One of

those area is to define more relations in Newtonian physics domain. In this work we

have limited to the syntactic analysis of the text to discover relations. In future we

plan to study on automatically discovering more relations from free text that are

more semantic than syntactic.
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Chapter 9

Conclusion and Future Works

9.1 Conclusions

Our dissertation is motivated towards reducing gaps between ITS and CPS

researches by adopting the techniques that are successful in ITS fields. To achieve

this, we have studied various aspects of interactions between learners and the

learning systems, and proposed different assessment models to assess textual

contents generated by learners. We particularly concentrated our analysis in two

categories of systems, one the virtual internships where learners are focused on

gaining skills in virtual companies and the responses are more open ended with

limited guidance from the teacher. Other systems’ interaction we analyzed is

physics tutoring system DeepTutor, where students are guided by computer tutor in

every step of learning.

For automatically assessing notebooks in engineering virtual internships, we

developed different models by using mainly for categories of features namely essay

scoring features, domain expert features, LIWC, and Co-Metrix. All models

performed very well with good and very good kappa scores (kappas scores of 0.6-0.8

are considered very good). Our results show that, in this context, the predictive

value of models using only the general text analysis features is comparable to the

predictive value of a model using only the DE features. In particular, the ES group

of features is the best predictor of students’ justifications quality. When other

groups of features are added to the individual ES model, the results do not improve

significantly. The fact that the ES features are so good is not surprising. Word

count, or essay length, which is one of the features in the ES group, is known as

being the best predictor of essay quality in automated essay grading. Also, the

131



CohMetrix group of features are a good predictor of the quality of students’

justifications.

It is important to note, however, that the predictive power of a model is only

one dimension for evaluating the utility of automated assessment models in learning

environments like virtual internships. We suggest that developmental cost and

interpretability of the models are also valuable dimensions to consider. Of the

models presented above, those using only the general text analysis features have the

lowest developmental cost. Moreover, these features are generally applicable across

types of tasks, specific tasks, and domains. In contrast, models containing the DE

features are more specific to engineering virtual internships, have a relatively high

developmental cost because their features required the time and expertise of humans

to develop.

Besides those methods to assess open ended responses using general text

analysis and domain expert features, we also developed model for more

constrained(requiring criteria) text assessment. For this, we investigated a method

for creating classifiers for virtual internship notebook entries using teacher provided

specifications without the use of participant data. These classifiers used LSA based

and NN based semantic similarity methods to capture the general semantic

relationships among concepts. We also investigated regular expression based

classifiers. The results are impressive in the sense that some classifiers, using both

LSA and NN, gave high precision and recall values using thresholds derived without

participant data, which suggests that model development using small number of

teacher created specification is plausible.

Moreover, for the classifiers that use LSA based semantic similarity methods,

we also analyzed the impact of corpus size, corpus specificity, and semantic space

dimensionality on the performance of the assessment methods. Our analysis showed

that the LSA spaces generated from a domain specific corpus can perform better
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when compared to a space generated from the much larger TASA corpus for the

notebook assessment task. For the domain specific corpus, the best average

performance over all the target concepts was obtained for the maximum available

corpus size and the maximum number of dimensions. However, this performance is

comparable to results obtained with a smaller corpus size and smaller vector

dimensionality indicating that smaller corpora and spaces can be good enough to

boost assessment components for virtual internships.

Additionally, to understand conversation pattern and the students’ mastery

of epistemic frames, we conducted a Markov process analysis of students’

conversation. We have experimented and validated our method on data from an

engineering epistemic frame using eight different ways to model Markov processes

for each student participating in engineering virtual internships. Our analysis

showed that most of the students attain similar SKIVE profile after spending

sufficiently long time in virtual internships. The comparison of the distribution of

SKIVE elements for individual students in models with noState revealed that some

students may play more managerial or coordinator roles than others.

To further understand the conversation pattern in virtual internships, we

explored several methods for speech act classification. We explored various classifier

models with different categories of features as well as training strategies. We found

that the latent features generated by a pre-trained sentence embeddings model

(derived from a large Wikipedia corpus) yielded better performance compared to

the other models. Besides that, the predictive power of the neural network model

was further boosted when pre-trained with noisy label before training with

expert-annotated data. In summary, representing chat utterances with vector

embeddings could be a better candidate method for analyzing conversation in the

system where there is no clear turn taking between the speakers and the analysis
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has to rely mostly on the content of the utterance itself rather than the previous

chat utterances.

We also explored various LSTM models and configurations for handling

negation in tutorial dialogues. We experimented and validated our models using real

dialogues between student and an intelligent tutoring system. Our experiments

suggests that the sequence to sequence tagger can handle well the substasks of

negation scope, focus and cue detection, outperforming a previous method based on

CRF that relied on human engineered features. A good choice of hyper-parameters

of LSTM such as dropouts, number of units and layers could result in a competitive

model for negation handling.

While studying various aspects of interactions in learning system, this

dissertation has made substantial contributions towards developing intelligent

Collaborative Problem Solving system that will deliver effective, personalized, and

cost-effective instruction to all learners at any time with access to an

internet-connected device.

9.2 Future Works

For further advancement of the research in assessment of learners response

and automating the mentoring and tutoring process in learning systems, we plan to

work on one or more of the follwing areas.

While assessing notebooks in virtual internships, we are considering

unsupervised methods to automatically detect domain specific codes that could be

used as features in our DE models. Furthermore, we are considering unsupervised

topic detection in student-generated justification as a way to generalize the

applicability of our models to other domains and types of tasks.

We will investigate a method to combine the classifiers that only use teacher

created notebooks for assessing student notebooks, in order to better understand
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how performance of one model is boosted by another in the scenario where

participants responses vary widely compared to the sample responses.

We plan to build LSTM based negation handling models that could be

trained with both past and future contexts. We also plan to experiment with a

hybrid model that uses word embeddings as well as human engineered features.

We plan to use the stationary distribution of SKIVE components obtained

from the analysis we have done so far to better understand students’ effectiveness of

acquiring much needed skills to be successful professionally. Furthermore, we plan

to develop a dual Markov process to infer stationary distributions of states and

transitions.

We plan to expand the speech act classification model we studied by using

more contextual information. Given the multi-party nature of our conversation

data, before we can use contextual information, it is necessary to disentangle the

conversations into sets of related utterances. Our future models will disentagle the

multi-party conversations before attempting to use contextual information for

speech act classification.
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Pérez, D., Gliozzo, A. M., Strapparava, C., Alfonseca, E., Rodriguez, P., & Magnini,

B. (2005). Automatic assessment of students’ free-text answers underpinned

by the combination of a bleu-inspired algorithm and latent semantic analysis.

In Flairs conference (pp. 358–363).
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