
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

1-1-2020

Algorithmic methods for large-scale genomic and metagenomic Algorithmic methods for large-scale genomic and metagenomic

data analysis data analysis

Quang Tran

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Tran, Quang, "Algorithmic methods for large-scale genomic and metagenomic data analysis" (2020).
Electronic Theses and Dissertations. 2972.
https://digitalcommons.memphis.edu/etd/2972

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2972?utm_source=digitalcommons.memphis.edu%2Fetd%2F2972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

ALGORITHMIC METHODS FOR LARGE-SCALE GENOMIC AND
METAGENOMIC DATA ANALYSIS

by

Quang Minh Tran

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Computer Science

The University of Memphis

August 2020

Copyright c© 2020 Quang Minh Tran

All rights reserved

ii

ACKNOWLEDGMENTS

This accomplishment would not have been possible without the assistance of some

special people I’ve worked with during my time at the University of Memphis. I would

like to express my gratitude to: My advisor Dr. Vinhthuy Phan for his guidance and

support throughout this work. My committee members: Dr. Ramin Homayouni, Dr.

Thomas Watson, Dr. Vasile Rus, for their insight and patience. My labmates: Nam Sy Vo,

Shanshan Gao, Kevin Okello, Diem-Trang Pham, Eric Hicks, for all their useful

comments and suggestions.

I’d also like to thank: The Computer Science department’s administrative staff

greatly helped me navigate the logistics of the degree and all the paperwork. Rhonda

Smothers, Corinne O’Connor and Lyndsey Rush: Thank you for your constant support.

Eric Spangler for his help with installing the tools and troubleshoots of running jobs on

the research high performance computing cluster. The Department of Computer Science

at the University of Memphis for awarding me a Graduate Assistantship so that I could

complete my dissertation.

During my PhD journey, I was fortunate enough to have some exciting internships

where I gained some valuable insight into real problems. To my mentors: Jian Yin, Bayo

Lau, Betty Ulitsky, Hugo Lam, and Alexej Abyzov. Thank you for investing so much time

and effort into working with me. To my colleagues: Lai Xu, Roger Liu, Yunfei Guo, Arijit

Panda, Milovan Suvakov, Shobana Sekar, Taejeong Bae, Vivekananda Sarangi. I am also

grateful for the great friendship during those summers.

And finally, thank you deeply to my family for their unconditional love, patience,

and continued support during my study.

iii

ABSTRACT

Tran, Quang Minh. PhD. The University of Memphis. August 2020. Algorithmic
methods for large-scale genomic and metagenomic data analysis. Major Professor: Dr.
Vinhthuy Phan.

DNA sequencing technologies have advanced into the realm of big data due to

frequent and rapid developments in biologic medicine. This has caused a surge in the

necessity of efficient and highly scalable algorithms.This dissertation focuses on central

work in read-to-reference alignments, resequencing studies, and metagenomics that were

designed with these principles as the guiding reason for their construction.

First, consider the computing intensive task of read-to-reference alignments, where

the difficulty of aligning reads to a genome is directly related their complexity. We

investigated three different formulations of sequence complexity as viable tools for

measuring genome complexity along with how they related to short read alignments and

found that repeat measures of complexity were best suited for this task. In particular, the

fraction of distinct substrings of lengths close to the read length was found to correlate

very highly to alignment accuracy in terms of precision and recall. All this demonstrated

how to build models to predict accuracy of short read aligners with predictably low errors.

As a result, practitioners can select the most accurate aligners for an unknown genome by

comparing how different models predict alignment accuracy based on the genomes

complexity. Furthermore, accurate recall rate prediction may help practitioners reduce

expenses by using just enough reads to get sufficient sequencing coverage.

Next, focus on the comprehensive task of resequencing studies for analyzing

genetic variants of the human population. By using optimal alignments, we revealed that

the current variant profiles contained thousands of insertion/deletion (INDEL) that were

constructed in a biased manner. The bias is caused by the existence of many theoretically

optimal alignments between the reference genome and reads containing alternative alleles

at those INDEL locations. We examined several popular aligners and showed that these

aligners could be divided into groups whose alignments yielded INDELs that either

iv

strongly agreed or disagreed with reported INDELs. This finding suggests that the

agreement or disagreement between the aligners called INDEL and the reported INDEL is

merely a result of the arbitrary selection of an optimal alignment. Also of note is

LongAGE, a memory efficient of Alignment with Gap Excision (AGE) for defining

geneomic variant breakpoints, which enables the precise alignment of longer reads or

contigs that potentially contain SVs/CNVs while having a trade off of time compared to

AGE.

Finally, consider several resource-intensive tasks in metagenomics. We introduce a

new algorithmic method for detecting unknown bacteria, those whose genomes have not

been sequenced, in microbial communities. Using the 16S ribosomal RNA (16S rRNA)

gene instead of the whole genome’s information is not only computational efficient, but

also economical; an analysis that demonstrates the 16S rRNA gene retains sufficient

information to allow us to detect unknown bacteria in the context of oral microbial

communities is provided. Furthermore, the main hypothesis that the classification or

identification of microbes in metagenomic samples is better done with long reads than

with short reads is iterated upon, by investigating the performance of popular

metagenomic classifiers on short reads and longer reads assembled from those short reads.

Higher overall performance of species classification was achieved simply by assembling

short reads.

These topics about read-to-reference alignments, resequencing studies, and

metagenomics are all key focal points in the pages to come. My dissertation delves deeper

into these as I cover the contributions my work has made to the field.

v

TABLE OF CONTENTS

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Contributions 3
1.2 Outline 4

2 Algorithms for Predicting Short-read Performance 5
2.1 Background 5
2.2 Methods 6

2.2.1 Formulations of Sequence Complexity 6
2.2.2 Calculation of Repeat Complexity 8

2.3 Results 9
2.3.1 Short-read Aligners and Their Performance 9
2.3.2 Genomic data 10
2.3.3 Determining a Suitable Measure of Complexity 11
2.3.4 Finding an Optimal k for Repeat Complexity Rk 13
2.3.5 The Effect of Sequence Quality and Sequencing Errors 13
2.3.6 Prediction of Performance based on Repeat Complexity 15
2.3.7 Selecting Aligners based on Repeat Complexity 16

2.4 Discussion 18

3 Optimal Alignment Algorithms for Aligners’ Bias in Existing Variant Profiles 21
3.1 Introduction 21
3.2 Methods 22

3.2.1 Pairwise Alignment 23
3.2.2 Constructing all Optimal Alignments 24

3.3 Experimental Design 26
3.4 Results 27

3.4.1 Analysis of INDELs with Multiple Optimal Alignments 28
3.4.2 Characterization of INDEL Complexity 30

3.5 Discussion 33

4 Memory Efficient Algorithms for Alignment with Gap Excision 35
4.1 Introduction 35
4.2 Methods 35

4.2.1 Memory-efficient Implementation 35
4.2.2 Resolving Breakpoints of mCNVs using Long-reads 37

4.3 Results 39
4.4 Discussion 41

4.4.1 LongAGE’s Features 42
4.4.2 Best Practice for Resolving SV Breakpoints 42
4.4.3 Resolved Breakpoints of CNVs on Chromosome 1 of GIAB HG005 44

v

5 Algorithms for Detecting Unknown Microbes 51
5.1 Motivation and Related Work 51
5.2 Uniqueness of the 16S rRNA Genes 52
5.3 Method 54

5.3.1 Overview 54
5.3.2 Clustering Unmapped Reads 55
5.3.3 Post Clustering Processing 56
5.3.4 Method Evaluation 57

5.4 Experiments 59
5.4.1 Mock Oral Microbial Communities 59
5.4.2 The Affect of Coverage on Prediction Accuracy 60
5.4.3 The Affect of Unknown Bacteria Concentration 61

5.5 Discussion 62

6 Read Assembly Algorithms for Improving Species Classification 63
6.1 Background 63
6.2 Results 64

6.2.1 Experimental Design 64
6.2.2 Performance Assessment 65
6.2.3 Data 66
6.2.4 Findings 66
6.2.5 Discussion 70

6.3 Methods 72
6.3.1 Classifiers 74
6.3.2 Assemblers 75

6.4 Summary 75

7 Conclusion and Future Work 77

References 79

A Source Code Availability 88

B Publications 89

C Reviewers’ Comments 92

vi

LIST OF FIGURES
Figure Page

2.1 Correlation between performance of short-read aligners and complexity
measures. Correlation is measured by linear coefficient, which ranges be-
tween -1 and 1. R75 has the highest correlation with performance (accuracy,
coverage, and precision) across all aligners. 12

2.2 Correlation between performance of short-read aligners and Rk on read
datasets of length 100. Compared to the other,R75 correlated most strongly
to performance (accuracy, precision, coverage) across all aligners. 14

2.3 Correlation versus prediction error. Stronger (negative) correlations be-
tween alignment performance and repeat complexity lead to smaller pre-
diction errors. 16

2.4 Linear models of coverage performance. Bowtie2’s and Smalt’s models
are, respectively, defined by the equations (i) y = −0.8617x + 0.9898 and
(ii) y = −0.5234x + 0.9716. All sequences in our datasets have repeat
complexity (R75) less than 0.35. 17

3.1 Distribution of INDEL complexity across human chromosomes 31

3.2 Density of INDEL complexity across human chromosomes 32

4.1 Defining breakpoints of mCNV on chromosome 19 in Chinese Trio from
GIAB. (A) Read depth signals from top to bottom corresponding to father
(HG006), mother (HG007), and son (HG005), (B) Haplotypes with dele-
tion and duplication are passed down from both parents to son, (C) Haplo-
types with tandem duplication and deletion were assembled by haplotype-
assigned PacBio reads. Breakpoints of the deletion and duplications are
different. 40

5.1 Distributions of U(k, gi) of 16S rRNA genes suggest that k-mers longer
than 16 can effectively be used to distinguish bacteria in the human oral
microbiome. 53

5.2 Reads mapped to a contiguous region of a 16S rRNA gene 55

5.3 Accuracy of predicting unknown bacteria (measured by four different met-
rics) at read coverage ranging from 10x to 100x. 60

5.4 Accuracy of predicting unknown bacteria (measured by four different met-
rics) at different amount of unknown bacteria. 62

vii

6.1 Overall F-1 scores of species-level classification produced with short reads
(abbreviated ”na”) and assembled reads by MEGAHIT(abbreviated ”MH”),
metaSPdes(abbreviated ”MS”) and Ray 68

6.2 Contig length distribution compared to PacBio and ONT long read length
distribution. Contigs were assembled by different assemblers (left to right):
MEGAHIT, metaSPAdes and Ray. The bottom subfigures are PacBio (left)
and ONT (right) read length distribution. 69

6.3 Workflow of metagenomic classification: (A) original workflow, which
uses short reads, (B) modified workflow, which uses assembled reads. Metege-
nomic classifiers are Kaiju, CLARK, Kraken, MetaCache, MetaPhlAn2,
DUDes and GOTTCHA. Metagenomic assemblers are MEGAHIT, metaS-
PAdes, and Ray. 73

viii

LIST OF TABLES
Table Page

2.1 Correlation between Rk and precision or accuracy at read lengths 50, 75
and 100. For read lengths 50 and 75, R50 was chosen. For read length 100,
R75 was chosen. 14

2.2 Correlation between Rk and precision or accuracy at different sequencing
error rates (0.5%, 1% and 2%). 14

2.3 Prediction error of linear models for different aligners. 15

2.4 Average performance of aligners on the two datasets with simulated reads
(to measure precision and accuracy) and real reads (to measure coverage). 17

3.1 Percentage of correct mapping, actual and expected alignment by aligners 28

4.1 Memory usage in megabytes and run time in seconds of AGE and Lon-
gAGE in controlled experiments on aligning two sequences with various
variant lengths. Benchmarks were made on an Intel Xeon(R) Gold 6148
Processor (27.5M Cache, 2.40 GHz) with 192 GB of memory. 38

4.2 Selecting support reads at regional coordinates chr1:1581001-1587000; AS:
Alignment Score, ER: Excised Regions, ILF: Identic Left Flank, IRF: Iden-
tic Right Flank 46

4.3 Selecting support reads at regional coordinates chr1:1581001-1587000; AS:
Alignment Score, ER: Excised Regions, ILF: Identic Left Flank, IRF: Iden-
tic Right Flank (continue) 47

4.4 Deletion support reads of mCNV (chr19:54, 219, 999-54, 241, 000) on chr.19;
L: length of the read, AS: Alignment Score, ER: Excised Regions 48

4.5 Duplication support reads of mCNV (chr19:54, 219, 999-54, 241, 000) on
chr.19; L: length of the read, AS: Alignment Score, ER: Excised Regions 49

4.6 Resolved breakpoints on chromosome 1 of GIAB HG005 (son); SV type:
type of CNVs (deletion or duplication); Est. Coordinates: estimate coor-
dinates called by CNVnator with bin size = 1000; Est. L.: estimate length
of the SV produced by CNVnator; Res. Coordinates: resolved coordinates
using best practice; Res. L.: resolved length of the SV using best practice 50

ix

6.1 Precision, recall, F-1 of species-level classification of four metagenomic
classifiers on three synthetic short read datasets, which are, respectively,
not assembled and assembled by three assemblers. 67

6.2 Assembly statistics for all assemblers on simulated (10s, 100s, 400s) and
real (ERR2017411, ERR2017412) data 70

6.3 Number of species predicted by each classifiers 71

6.4 Pairwise similarity of a method to other methods 71

x

Chapter 1

Introduction

The past decade marked impressive progress in DNA sequencing technologies,

due to the advent of next-generation sequencing (NGS) platforms which cut the cost for

sequencing large genomes, like humans, from millions to thousands of dollars [1]. These

advances have lead to current sequencing platforms generating increasingly higher

volumes of data at faster speeds than ever before. A recent example is the Illumina

sequencing machine, which can produce more than a terabyte of data per day [2]. The

ability to sequence DNA quickly and cost effectively is providing us with a new ability to

understand the biological world around us at a much deeper level. These advancements

have shifted research in the fields of genomics, medicine, and computational biology to a

new era of possibilities.

Current sequencing platforms are limited despite vast improvements with DNA

sequencing data [3, 4]. DNA sequences are often released with low error rates (1-2%) as

sets of short unordered reads, which greatly limits the ability to accurately reconstruct the

initial sequence, due to its complex and highly repetitive nature. These challenges

complicate downstream analysis (e.g. clinical applications). Single-molecule sequencing

(SMS) technology has been able to address some of these challenges [5, 6, 7]; however,

they operate with larger sequencing error rates (10-15%) and are still prohibitively

expensive.

While genome is the complete set of genes or genetic material present in a cell or

organism, metagenome usually refers to the collection of microbial genomes present in a

sample. This dissertation presents several methods designed to leverage both genomic and

metagenomic data features, in order to guarantee efficiency and scalability.

Genomic data analysis has completely revolutionized how genetic variants are

studied with the advent of sequencing technologies making it possible to survey variants

or mutations across an entire genome within a reasonable amount of time. The technology

1

itself has undergone a series of paradigmatic shifts and keeps improving in terms of speed,

accuracy, and cost-efficiency. This technological breakthrough promises to transform the

field of biomedicine by opening new opportunities for studying genetic variants and

mutations at the population level. It will be crucial to implement well-designed

computational algorithms to fully capitalize on this innovations.

In metagenomic data analysis, samples sometimes contain hundreds or even

thousands of various microbes. The human body carries more than a thousand various

organisms, so sequencing produces short reads corresponding to a mixture of various

genomes, since there are more microbial cells than human cells. There is no single

reference with which these reads can be compared. Although we have reference genomes

for numerous microorganisms, unknown species may form a large portion of samples,

which results in a very challenging time figuring out which microbial species are present

or even how many various genomes there are.

The algorithms presented in this dissertation ultimately serve to answer the

following concept: Given reads sequenced from a genome, what can we conclude about

that genome? Multiple directions are possible to target this question, depending on

various points of view on vast different data and techniques. On one hand, if reads are

sequenced from a known reference, we have a resequencing study. Techniques can be

used such as read-to-reference mapping and variant profile comparison. On the other

hand, if reads are from an organism with an unknown reference, de novo assembly must

be used to study these unknown organisms. Metagenomic studies focus on reads

represented by a mixture of genomes. Besides the techniques used for each of the above

research categories, data comprehension is also important, since its characteristics can

significantly affect end results.

We present algorithms relevant to read-to-reference alignment performance

predictions, resequencing studies, and metagenomic applications.

2

1.1 Contributions

The contributions of this dissertation are presented below.

• We investigated the extent to which the complexity of genomic sequences

affects the performance of short read aligners. We demonstrated that a proper

measure of sequence complexity was essential in studying the relationship

between alignment performance and the abundance of repeats in genomes. This

finding suggests a novel approach to selecting aligners for new genomes and

has great potential for reducing experimental cost.

• We have demonstrated that the current insertion/deletion (INDEL) variants of

the human population profile constructed and curated by the 1000 Genome

Project exhibits a bias at certain INDEL locations. These locations can be

identified by counting the number of optimal alignments between reads

containing alternative alleles to the reference genome at those locations. The

bias is essentially an effect of either short-read aligners or variant callers having

to choose one out of many equally theoretically optimal alignments.

• We developed a memory-efficient implementation – LongAGE – based on the

classical Hirschberg algorithm. We demonstrated an application of LongAGE

for resolving breakpoints of SVs embedded into segmental duplications on

Pacific Biosciences (PacBio) reads that can be longer than 10Kbp. Furthermore,

we observed different breakpoints for a deletion and a duplication in the same

locus, providing direct evidence that such multi-allelic copy number variants

(mCNVs) arise from two or more independent ancestral mutations.

• We proposed a method for detecting unknown bacteria in environmental

samples. Our approach is unique in its utilization of short reads only from 16S

rRNA genes rather than from entire genomes. We showed that short reads from

16S rRNA genes retain sufficient information for detecting unknown bacteria in

oral microbial communities.

3

• We compared performance of popular metagenomic classifiers on short reads

and longer reads, which are assembled from the same short reads. When using a

number of popular assemblers to assemble long reads from the short reads, we

discovered that most classifiers made fewer predictions with longer reads and

that they achieved higher classification performance on synthetic metagenomic

data. On real metagenomic data, we observed a similar trend that classifiers

made fewer predictions. This suggested that they might have the same

performance characteristics of having higher precision while maintaining the

same recall with longer reads.

1.2 Outline

This dissertation is structured as follows. Chapter 2 presents machine learning

algorithms for predicting performance of short-read aligners using Genome Complexity.

Chapter 3 presents analysis of Optimal Alignments that unfolds aligners bias in existing

variant profiles. Chapter 4 presents LongAGE, a memory-efficient implementation of

Alignment with Gap Excision (AGE). Chapter 5 presents Union-Find like algorithms for

detecting unknown microbes along with oral microbial applications. Chapter 6 presents

Read Assembly algorithms for producing longer reads as an input to improve species

classification in metagenomics. Chapter 7 concludes the dissertation with a brief

description of on-going and future work.

4

Chapter 2

Algorithms for Predicting Short-read Performance

2.1 Background

Advances in next-generation sequencing (NGS) technologies have fostered an

active development of computational methods to align short reads to reference genomes

[8, 9, 10, 11, 12, 13, 14, 15]. The alignment of short reads to reference genomes plays a

critical role in many important applications and workflows that utilize NGS data such as

assembling genomes, genotyping, profiling metagenomics samples and measuring gene

expression. To find the best performing aligners, a conventional approach is necessary to

compare different aligners on selected genomic datasets and pick the best ones based on

their overall performance [16, 17]. While this approach can identify high-performing

aligners with studied genomes, it is uncertain how accurately the aligners will perform on

new genomes. In other words, the most reliable way to find the best aligners for a new

genome has been simply trying different aligners on that particular genome and picking

the best ones. But experimenting with different software configurations and parameters to

find the best aligner for a specific genomic dataset is often time consuming. As a result,

researchers often adopt a well-known aligner and presume that it is appropriate enough for

any type of genomes.

Yu et al. [18] evaluated several aligners and reported that long repeats seriously

degraded their performance. Algorithmically, the abundance of repeats makes it difficult

for aligners to map reads to correct chromosomal locations. Genetic variants and

sequencing errors result in repeats that are approximately matched. Consequently this

complicate mapping and alignment of short reads even further. Efforts have been taken to

identify regions of genomes that are difficult to map reads accordingly. Lee and Schatz

[19] assigned a mappability score to each genomic position and were able to identify up to

14% of the human, mouse, fly and yeast genomes that would be difficult to analyze with

short reads. Although mappability scores get improved with longer reads, Li et al. [20]

5

showed that the diminishing return was about 200; reads longer than 200 would not

improve significantly mappability of the human genome.

Although the negative effect of repeats on the performance of aligners have been

widely observed, no serious effort has been taken to study and exploit the relationship

between repeat abundance and aligner performance. The reason for this might be partly

due to the lack of a appropriate formulation of sequence complexity for the specific

purpose of studying short-read alignment. Complexity of sequences has been studied

extensively. Lempel and Ziv [21, 22] formulated the notion LZ-complexity and related it

to how much sequences can be compressed. Nan and Adjeroh [23] explored several

measures of complexity and found that the linguistic complexity (LC) was useful in its

ability to help identify known biologically relevant relationships. Recently, Becher et. al

[24] introduced the I-complexity, which is defined in terms of discrete logs of longest

common prefixes of consecutive sorted suffixes. The authors demonstrated that the

I-complexity was close to the LZ-complexity. Furthermore, LZ-complexity and

I-complexity of a sequence are related to the number of different substrings and thus the

number of repeats of the sequence. Other studies [25, 26, 27] introduce interesting ways

to visualize and characterize complexity of genomes in terms of k-mer frequencies and

spectra.

2.2 Methods

2.2.1 Formulations of Sequence Complexity

Lempel-Ziv complexity: The LZ-complexity [21, 22] measures the degree of randomness

in sequences and as such it can be used to compress sequences effectively. The

LZ-complexity is defined as the number of different patterns in a sequence when it is

scanned from left to right; we used the version introduced by Lempel and Ziv in 1978

[22]. For example, the sequence ACTACGTT has complexity 6 because there are 6

different patterns (A, C, T, AC, G, TT) when the sequence is scanned from left to right.

The manner of left-to-right scanning does not rewind, which means, for example, ACT is

6

a substring but it is not considered as one of the different patterns accounted by the

complexity measure. We normalized the LZ-complexity by dividing it by the maximum

number of patterns a sequence of given length could possibly get.

This complexity has broad applications and in particular provided meaningful

interpretations in a biomedical context [28].

I-complexity: Becher and Heiber, [24], introduced this measure to account for the number

of different substrings of a sequence. For example, the different substrings of the sequence

above are: A, C, G, T, AC, CT, TA, CG, GT, TT, ACT, CTA, TAC, ACG, CGT, GTT,

ACTA, CTAC, TACG, ACGT, CGTT, ACTAC, CTACG, TACGT, ACGTT, ACTACG,

CTACGT, TACGTT, ACTACGT, CTACGTT, ACTACGTT. All repeats of a substring are

counted only once. The I-complexity is not exactly the number of different substrings, but

it does account for it. It is defined as follows:

I(g) =

|g|∑
i=1

log4(LCP [i] + 1)− log4(LCP [i] + 2)

where LCP is the array storing the lengths of the longest common prefixes of consecutive

sorted suffixes of the sequence g. It was shown [24] that for a DNA sequence s,

LZ(s)
8
≤ I(s) ≤ LZ(s)(log4 |s|+ 1).

Linguistic complexity: Troyanskaya et al. [29] introduced the linguistic complexity and

used it to study complexity profiles of prokaryotic genomic sequences. Nan et al. [23]

found that the linguistic complexity was a good measure of biological sequences due to its

ability to help identify biological relationships. The linguistic complexity of a sequence g

is defined as the ratio of the number of distinct substrings in g to the maximum possible

number of distinct substrings in g. Mathematically, let f(x) be the number of occurrences

of a substring x in g. Then,

LC(g) =
|{x : f(x) > 0}|(|g|

2

)

7

Repeat complexity We define the repeat complexity of a sequence g as the ratio of all

repeats of length k to all substrings of length k in g:

Rk(g) =

∑
x∈g:f(x)>1,|x|=k f(x)

|g| − k + 1

where f(x) denotes the number of occurrences of x in g. The number of substrings of

length k in g is |g| − k + 1. More generally, we can define the repeat complexity of a

chromosome ci as part of a genome g as

Rk(ci) =

∑
x∈ci:F (x)>1,|x|=k f(x)

|ci| − k + 1

where F (x) denotes the number of global occurrences of x in g. Note that the occurrences

of each repeat x in ci are counted over the entire genome g, i.e. across all chromosomes,

not just in chromosome ci.

These complexity measures are constant in the sense that the complexity of a

sequence is always the same. This works fine for text compression since the degree of

compressibility does not rely on external parameters. In contrast, the alignment of reads to

genomes depends on external parameters introduced by sequencing technologies. In

particular, the length of reads can affect greatly the performance of alignment.

In contrast with I-complexity and LZ-complexity, Rk is not a constant; a different

value of k results in a different complexity value.

2.2.2 Calculation of Repeat Complexity

The LZ, I and LC complexity can be computed efficiently. The repeat complexity

of a sequence g, Rk(g), can also be calculated optimally in linear time and space. To

accomplish this, we rely on two special data structures called the suffix array (SA) and

array (LCP). The suffix array of a sequence stores indices of sorted suffixes of the

sequence. The lcp array stores the lengths of the longest common prefixes of consecutive

8

entries in the suffix array. SA and LCP can be constructed efficiently in linear time and

space [30, 31].

The total number of repeats of length k can be counted by traversing the LCP array

once while keeping track of intervals that correspond to occurrences of repeats.

Specifically, the number of repeats of length k is equal to
∑

[i,j]∈I(j − i+ 2), where I is

the set of intervals [i, j]’s in LCP such that:

1. LCP [u] ≥ k for i ≤ u ≤ j

2. LCP [i− 1] < k unless i = 1

3. LCP [j + 1] < k unless j = |g|

This procedure is correct because each interval [i, j] satisfying these properties

corresponds uniquely to all occurrences of exactly one repeat of length k. This repeat is

precisely the prefix of length k shared by all suffixes in SA in positions specified by this

interval. Thus, the number of occurrences of this repeat is exactly j − i+ 2. Summing

over all such intervals accounts for all occurrences of repeats of length k in g.

The same procedure can be modified slightly to compute, Rk(ci), the repeat

complexity of a chromosome as part of a genome g. To do so, concatenate all

chromosomes into a whole genome, g, to which the same procedure can be applied. Then,

while traversing through suffixes in each interval [i, j] that satisfies the three properties,

add (j − i+ 2) to the counter of the chromosome that contains each suffix.

2.3 Results

2.3.1 Short-read Aligners and Their Performance

To investigate the relationship between short-read alignment performance and

sequence complexity, we considered many existing aligners and multiple aspects of

alignment performance [32, 8, 9, 10, 11, 12, 13, 14, 15, 33]. These approaches employ

various heuristics for building indexes of genomes (e.g. q-grams, FM index, hash table)

for efficient search of exact matches between reads and genomes. These exact matches,

also known as seeds, are extended to align reads to genomes. After a careful evaluation,

9

we narrowed down to only aligners that could finish aligning large read datasets of an

entire genome on a high-performance cluster within several days without stalling or

crashing in any instances. With this requirement, we were left with five aligners: Bowtie2

[11], BWA-SW [12], CUSHAW2 [13], SeqAlto [10], and Smalt [15]. These five aligners

were used in our experiments to study how sequence complexity were correlated to

short-read alignment performance. Representative performance of each aligner was

obtained from default parameters provided by its software package. We are not interested

in the best performance of each aligner, but rather in the correlation between each aligner

performance and sequence complexity.

Performance of a short-read aligner can be defined in different ways. In this work,

we considered three different aspects of alignment performance:

1. Precision, which is the percentage of correctly mapped reads out of all reads

that are aligned,

2. Accuracy, which is the percentage of correctly mapped reads out of all reads,

and

3. Coverage, which is the portion of the genomic sequence covered by mapped

reads. We want to distinguish coverage from sequencing depth, which is the

expected number of times aligned reads would cover the genome under the

assumption that reads are uniformly distributed. A sequencing depth is

typically much larger than 1 (e.g. 50x) , whereas actual coverage by mapped

reads is at most 1.

All performance measures have range between 0 and 1 with 0 being the worst and

1 being the best.

2.3.2 Genomic data

Genomic sequences were obtained from The European Bioinformatics Institute

(EBI) and the National Center for Biotechnology Information (NCBI) databases. More

10

information is available in the Supplement1. We utilized the SAMtools package [34] to

simulate reads, with various realistic parameters, from a diverse dataset with 100 genomic

sequences, which are chromosomes and long contigs from bacteria, plants, and

eukaryotes. “N” bases were removed from these genomic sequences because they were

not real contents and constituted false long repeats that inappropriately affected the true

complexity. For each genome, 2x (expected) coverage of reads at lengths 50, 75, and 100

were generated using the wgsim program. Single-end reads were generated with

sequencing error rates 0.5%, 1%, and 2%; mutation rates varying from 0.1% to 1%. By

default, 15% of mutations are indels.

To measure coverage, we also created a second dataset consisting of real reads

from 54 genomic sequences, including 24 chromosomes of homo sapiens (humans), 20

chromosomes of glycine max (soybean), and 10 chromosomes of zea mays (corn). Reads

are obtained at http://sra.dnanexus.com. Zea mays data has id SRR801164. Glycine max

data has id SRR596509. Homo sapiens data has id ERR251193.

2.3.3 Determining a Suitable Measure of Complexity

We investigated the suitability of the Lempel-Ziv complexity (LZ), I-complexity,

linguistic complexity (LC) and repeat complexity (Rk) for studying the performance of

short-read aligners. A suitable measure of complexity must have high correlation to

different aspects of short-read alignment performance, namely accuracy, precision and

coverage. Correlation for an aligner’s performance is done as follows. The aligner is used

to align reads to genomic sequences in the dataset and the performance (accuracy,

precision, coverage) for each sequence is measured. Thus, for each aligner and

complexity measure, we have two sets of data representing two variables: P , the

performance of genomic sequences, and C, the complexity of those genomic sequences.

Linear correlation was used to correlate these two variables. Linear correlation between

two variables is quantified in the Pearson correlation coefficient R, whose value is

1http://github.com/vtphan/repeat-complexity

11

Fig. 2.1: Correlation between performance of short-read aligners and complexity
measures. Correlation is measured by linear coefficient, which ranges between -1 and 1.
R75 has the highest correlation with performance (accuracy, coverage, and precision)
across all aligners.

between -1 and 1. If R = 0, there is no correlation between the two variables. If R is 1 (or

-1), the two variables are maximally positively (or negatively) correlated. Generally,

R ≥ 0.75 is considered a high correlation.

For precision and accuracy, we used simulated reads; this is necessary because we

needed to know correct locations of reads in the sequences. For chromosomal coverage,

we used real reads to capture the true underlying distribution of reads in chromosomes.

First, we observed that the I and LZ complexity measures showed moderate to low

negative correlation with precision, accuracy and coverage across all five short-read

aligners (Bowtie2, BWA-SW, CUSHAW2, SeqAlto, and Smalt). The LC complexity

showed moderately high positive correlation with chromosomal coverage, but almost no

correlation at all with accuracy and precision. This is shown in Figure 2.1.

We also found that R75 correlated highly or very highly to all three aspects of

performance, precision, accuracy and coverage, across all five aligners. The strong

negative correlation implies that the more repeats of length 75 there are in these genomic

12

sequences, the worse these short-read aligners perform. This finding suggests that with an

appropriate choice of k, repeat complexity, Rk, can be the most suitable measure of

complexity for the purpose of studying the performance of short-read aligners.

2.3.4 Finding an Optimal k for Repeat Complexity Rk

Given a dataset with reads of certain length, an optimal choice of repeat length (k)

yields the highest correlation between repeat complexity (Rk) and the performance of

aligning short reads to reference genomes. Shown in Figure 2.1, R75 strongly correlated

with all three performance measures across all aligners. To investigate the effect of

different repeat lengths, we correlated R25, R50, R75, R100 and R125 to the performance of

aligning reads of length 100 to reference genomic sequences. This is shown in Figure 2.2.

We could see that although all Rk’s had moderate to high correlation with performance,

R75 had the strongest negative correlation across all three performance measures and

across all aligners.

We suspected that the reason that k = 75 yielding the highest correlation might be

closely related to the fact that in these datasets read length was 100. In fact, we found that

the optimal value of k, which gave an Rk with highest correlation to performance, varied

slightly for different read lengths. For example, for datasets with read length 50 and 75,

we found that R50 had the highest correlation with performance compared to

R25, R75, R100 and R125, whereas for datasets with read length 100, as reported early, R75

was found to have the highest correlation. Table 2.1 shows the optimal Rk at a given read

length 50, 75, or 100. The Pearson correlation coefficient r’s across all five aligners are

mostly in the range of -0.95 to -0.98.

2.3.5 The Effect of Sequence Quality and Sequencing Errors

Strong correlation between Rk and alignment performance found in experiments

reported in Figures 2.1, 2.2 and Table 2.1 was found on simulated reads with default

sequencing errors (to measure precision and accuracy) and real reads of high quality (to

measure coverage). To measure the effect that sequencing errors had on the correlation

13

Table 2.1: Correlation between Rk and precision or accuracy at read lengths 50, 75 and
100. For read lengths 50 and 75, R50 was chosen. For read length 100, R75 was chosen.

Corr. with Precision Corr. with Accuracy
read length 50 75 100 50 75 100
Bowtie2 -0.97 -0.95 -0.89 -0.98 -0.95 -0.89
BWA-SW -0.98 -0.96 -0.94 -0.74 -0.80 -0.85
CUSHAW2 -0.98 -0.98 -0.95 -0.98 -0.98 -0.95
SeqAlto -0.97 -0.97 -0.95 -0.98 -0.97 -0.96
Smalt -0.96 -0.97 -0.95 -0.97 -0.97 -0.95

Fig. 2.2: Correlation between performance of short-read aligners and Rk on read datasets
of length 100. Compared to the other, R75 correlated most strongly to performance
(accuracy, precision, coverage) across all aligners.

Table 2.2: Correlation between Rk and precision or accuracy at different sequencing error
rates (0.5%, 1% and 2%).

Corr. with Precision Corr. with Accuracy
base error rate 0.5 1.0 2.0 0.5 1.0 2.0
Bowtie2 -0.96 -0.98 -0.97 -0.96 -0.98 -0.97
BWA-SW -0.95 -0.96 -0.97 -0.96 -0.98 -0.97
CUSHAW2 -0.95 -0.96 -0.96 -0.95 -0.96 -0.96
SeqAlto -0.96 -0.95 -0.96 -0.96 -0.95 -0.96
Smalt -0.96 -0.96 -0.96 -0.96 -0.96 -0.96

between alignment performance and repeat complexity, we simulated reads of length 100

using SAMtools [34] at different sequencing error rates ranging from 0.5%, 1% and 2%.

14

We found that sequence quality or sequencing errors did not affect the correlation

between repeat complexity and aligner’s performance in terms of precision and accuracy

very much. As summarized in Table 2.2, at each sequencing error rate, we found the

correlation between the best Rk and alignment performance in terms of precision and

accuracy were all very strong at between -0.95 and -0.98.

2.3.6 Prediction of Performance based on Repeat Complexity

To build a model for an aligner, first, select a set of sequences with diverse

complexity. Next, choose an appropriate value of k and Rk, where k is similar to read

length. Then, measure alignment performance and complexity for each sequence in the

dataset, producing a list (p1, c1), · · · , (pm, cm), where pi and ci are, respectively, the

performance value and complexity value of sequence i. Having constructed such a linear

regression model, to predict the aligner’s performance for an unknown sequence, one

computes the complexity of the sequence, uses the linear equation obtained from the

model to interpolate alignment performance. To reduce variability, we employed 2-fold

cross validation with repeated random subsampling by repeating training and testing 100

times.

Table 2.3: Prediction error of linear models for different aligners.

Bowtie2 BWA-SW CUSHAW2 SeqAlto Smalt
Pre 0.00093 0.00073 0.00067 0.00068 0.00064
Acc 0.00099 0.00105 0.00066 0.0007 0.00069
Cov 0.01746 0.03973 0.03011 0.01832 0.02652

Table 2.3 shows prediction errors of linear models for each performance level

precision (Pre), accuracy (Acc) and coverage (Cov) of all aligners.

We observed that prediction errors, across all five aligners, were very small for

precision and accuracy. Across all aligners, prediction errors were less than 0.01% for

both precision and accuracy. For coverage, prediction errors were still between 1 and 4%.

Bowtie2’s and SeqAlto’s models had lower errors than the other aligners’ models.

A closer examination of aligners’ correlation with performance (Figures 2.1 and 2.2)

15

Fig. 2.3: Correlation versus prediction error. Stronger (negative) correlations between
alignment performance and repeat complexity lead to smaller prediction errors.

shows that across all 3 performance measure, especially coverage, these two aligners had

as high as or higher correlations compared to the others. More generally, as depicted in

Figure 2.3, we observed that higher correlations between performance and repeat

complexity would lead to more accurate predictions of performance based on complexity.

2.3.7 Selecting Aligners based on Repeat Complexity

There are many factors involved in adopting a computational tool for a job.

Software quality, reliability, maintenance and sustainability are among important reasons

that affect the adoption of a piece of software. Within the scope of this work, we focus

strictly on the performance of short-read aligners. Even within the realm of performance,

there are different aspects, among which precision, accuracy and coverage are three

important ones. With respect to choosing an aligner, a simple approach, e.g. [16, 17], is

simply to choose the best performing aligner on a well-chosen dataset. The assumption is

that a high-performance aligner on a known dataset will similarly perform highly on a new

dataset.

Our finding on the correlation between alignment performance and repeat

complexity suggests a novel approach to choosing aligners: based on complexity of the

genomes of interest. To illustrate this, suppose that we would like to determine the best

16

Table 2.4: Average performance of aligners on the two datasets with simulated reads (to
measure precision and accuracy) and real reads (to measure coverage).

Precision Accuracy Coverage
Bowtie2 0.997 0.989 0.909
BWA-SW 0.997 0.995 0.867
CUSHAW2 0.998 0.997 0.913
SeqAlto 0.998 0.992 0.898
Smalt 0.997 0.997 0.923

Fig. 2.4: Linear models of coverage performance. Bowtie2’s and Smalt’s models are,
respectively, defined by the equations (i) y = −0.8617x+ 0.9898 and (ii)
y = −0.5234x+ 0.9716. All sequences in our datasets have repeat complexity (R75) less
than 0.35.

aligner among our tested five based on their performance under our datasets. The average

performance of the five aligners under the datasets is summarized in Table 2.4. Based on

the average performance of aligners in these datasets, one could easily recommend Smalt

as the overall best performer. In terms of coverage, Smalt’s performance is higher than

that of any other tested aligner. Although the average performance on these two datasets

suggests that Smalt will perform well on new datasets, it does not reveal much about the

characteristics that make Smalt performs well. In other words, although it is less probable,

it is entirely possible that Bowtie2 might have higher performance in terms of coverage

than Smalt on a new genome, even though on our dataset Bowtie’s average coverage

(0.909) is lower than Smalt’s (0.923).

17

In fact, a close look at linear models of Smalt and Bowtie2, as shown in Figure 2.4,

reveals that neither one of these is an absolute winner. The best choice depends on the

repeat complexity of genomic sequences in the new dataset. Specifically, for sequences

with repeat complexity less than 0.0538, Bowtie2 is predicted to yield higher coverage,

and for sequences with complexity higher than 0.0538, Smalt is predicted to yield higher

coverage.

2.4 Discussion

Researchers have long known that the abundance of repeats is detrimental to the

performance of computational methods in NGS experiments and extra cost and care must

be used to obtain satisfactory results. For instance, to sequence genomes known to have a

high number of repeats, large numbers of reads (e.g. sequencing depth larger than 50x)

must be used to ensure high coverage (closer to 1) and extra care must be exercised to

assemble long contigs. But beyond this intuitive understanding and practical rules of

thumb, no formal analysis has been proposed to study the relationships between the

complexity of genomic sequences in terms of abundance of repeats and the performance

of computational methods.

An important contribution of this work is that it assists researchers in

understanding better aligners’ performance on new genomes and consequently make more

informed decisions on selecting appropriate aligners for a specific genome. Determining if

aligner A performs better than aligner B can be very hard; A can give slightly better result

than B for some sequences but slightly worse for others. The more relevant question is

“Will A perform better than B for a specific genome?” The answer can be obtained

experimentally: tweak and experiment with parameters of A and of B, and use each set of

parameters to align millions of reads to that genome. The problem with this approach is

that it is impractical. Each run of millions of reads is already time consuming (both in

execution time and manual work to process the results). Attempting many runs with

different parameters to compare A and B properly for each specific genome is simply not

18

practical. As a consequence, in practice, each research group tends to adopt an aligner that

is deemed to be good enough and use it for all of their data.

We demonstrated how Rk could be used to select aligners that would be likely to

perform well on unknown genomic sequences. Bowtie2 and SeqAlto had good

performance on tested datasets and at the same time they had high correlation between

performance and repeat complexity. Thus, their performance should be similarly high

with unknown sequences. In contrast, one should be cautious in choosing aligners that

perform well on tested datasets, but have lower correlation with Rk.

Accurate prediction of alignment performance can have an impact on experimental

designs and analyses that are based on NGS data, since short-read alignment is an

essential component of many important computational tasks such as genome assembly,

genotyping, and gene expression measurement. In particular, performance measures such

as accuracy and coverage might help reduce experimental costs. Accuracy of alignment

(the percentage of correctly aligned reads out of all reads) gives a hint to how much reads

are wasted by an aligners. Thus, an accurate prediction of alignment accuracy can help

researchers estimate better an appropriate amount of reads needed for an experimental

design. Further, alignment coverage (the percentage of genomes covered by aligned reads)

can also help researchers estimate how many reads will be needed to cover most parts of

genomes. In other words, this work opens up opportunities for further investigations into

how to make better prediction of alignment performance and how to use such accurate

prediction to actually reduce experimental costs.

The notion of repeat complexity being directly connected to the degree of

difficulty of genomic computational analysis is analogous to the notion Shannon entropy

[35] and Lempel-Ziv complexity [21] being directly related to the degree of randomness

and compressibility of texts. Rk might be used to correlate with performance of other

computational problems. For problems that require complex algorithmic strategies, the

19

correlation might not be very strong, and the notion of sequence complexity might need to

be modified. But, this work shows that such a task is possible.

20

Chapter 3

Optimal Alignment Algorithms for Aligners’ Bias in Existing Variant Profiles

3.1 Introduction

The International HapMap Project and 1000 Genomes Project [36, 37] produced

over 10 million single nucleotide variations (SNV) and approximately one million

insertion/deletion (INDEL) of the human population. This resource has been utilized to

develop a nearly complete map of haplotypes of the human genome [38] and to discover

the great extent to which diseases are affected by human genetics. Various approaches for

detecting variants have been developed [39, 40, 41, 42, 43, 44, 45, 46, 47]. These variant

callers often rely on external tools which align short reads to a reference genome to detect

genetic variants. For example, the popular variant caller framework GATK [39] often used

an external aligner known as BWA-SW [12] to align reads to reference genomes.

Although methods of aligning reads to genomes are diverse, they are essentially

based on two important steps: finding seeds (which are exact matches between a substring

of a read and substrings of the genome) and extending seeds into full alignments. Further,

the extension of seeds into a full alignment often utilizes a technique based on the local

pairwise sequence alignment [48]. Variant callers utilized alignments produced from

aligners to call genetic variants that are different from the reference genome. In essence,

each difference (substitution or gap) in a correct alignment results in a variant call (SNP or

INDEL). Unfortunately, the basic algorithm of pairwise alignment does not account for

multiple optimal alignments, each of which might result in different variant calls. From

the theoretical point of view, each of the optimal alignments is equally likely to be the

correct biological alignment. Thus, the choice of one optimal alignment over another is

purely arbitrary.

In this chapter, we demonstrate that many popular aligners can be divided into two

groups. The first group of aligners produce alignments that would result in INDEL calls

that agree with those reported in existing variant profiles, such as the resources curated by

21

the 1000 Genomes Project. The second group of aligners produces alignments and INDEL

calls that disagree with those reported in existing variant profiles. This finding implies that

thousands of INDELs that have been reported in public resources were constructed based

on algorithmic bias of alignment strategies. This source of bias adds to the list of biases in

variant calling caused by sequencing technologies or coverage [49, 50]. It presents a

problem for researchers who presume existing resources of human genetic variants as a

gold standard for studying genetic variants.

3.2 Methods

Methods that determine genetic variants from NGS data by and large rely on

computational methods that align short reads to reference genomes and detect differences

between them. The task of aligning short reads to genomes consists of two separate steps:

(1) mapping reads to correct chromosomal locations and (2) aligning reads correctly to

those chromosomal locations. A read can be correctly mapped and incorrectly aligned.

Misalignment at a correct chromosomal location can affect the determination of

insertion-deletion variants (INDEL). An INDEL is represented in the form x1|x2| · · · |xk,

which means that at that location the string x1 appears in the reference genome, and any of

x1, x2 · · · xk can appear in another genome at that location.

To see how a read can be correctly mapped and incorrectly aligned, consider an

example, in which the read TCAGG is correctly mapped to the genome at location p, and

that the substring starting at this location of length 8 is TCACACAG. Depending on the

model of alignment, there are two or three different optimal alignments:

TCACACAG TCACACAG TCACACAG

T--CA--G TCA----G T----CAG

The first alignment results in 2 INDEL calls: TCA|T at location p and ACA|A at location

p+ 4. The second alignment results in an INDEL call ACACA|A at location p+ 2. And

the third alignment results in an INDEL call TCACA|T at location p.

22

In an alignment model where gap extensions and openings are equally penalized,

these three alignments are all optimal because the gaps in each alignment equate to a

deletion of 4 bases. In a model such as the affine gap model, in which a gap opening is

penalized more than a gap extension, however, there are only two optimal alignments (the

second and third) because the first alignment would be penalized more than the other two.

So, even in the more sophisticated affine gap model, there can be multiple optimal

alignments, resulting in different INDEL calls. And if an aligner picks one of these based

on some algorithmic bias, this bias will end up in a biased calling of INDEL.

The goal of this work is to examine known INDEL locations and determine if those

locations permit multiple optimal alignments. Further, for INDEL locations that permit

multiple optimal alignments, we aim to examine the possibility that they were constructed

in a biased manner based on biased alignments of many popular short-read aligners.

3.2.1 Pairwise Alignment

The mechanism by which aligners can create a biased alignment can be seen more

easily by an examination of the basic pairwise alignment algorithm [48]. Although

different alignment methods have different ways to speed up the mapping of reads to

genomes, e.g. using an FM index or a hash table, the alignment itself is essentially the

same formulation of optimal pairwise alignment, based on dynamic programming.

In a simple alignment model with no penalty for gap opening, an optimal

alignment between x = x1 · · ·xn and y = y1 · · · ym is found by constructing a matrix M ,

in which M [i, j] is the score of an optimal alignment between x1 · · ·xi and y1 · · · yj , for

1 ≤ i ≤ n and 1 ≤ j ≤ m. With M [i, 0] = i and M [0, j] = j, the matrix M is constructed

based on the following relation:

M [i, j] = max

M [i− 1, j − 1] +match(xi, yj)

M [i− 1, j] + ε

M [i, j − 1] + ε

(3.1)

23

where match(xi, yj) is the cost of substituting xi for yj and ε is the cost of deleting xi or

inserting yj .

In the affine gap model, finding an optimal alignment between x and y depends on

the computation of three matrices M,X , and Y . Here, M [i, j] is the score of an optimal

alignment between x1 · · ·xi and y1 · · · yj , where xi is aligned with yj . X[i, j] is the score

of an optimal alignment in which xi aligns with a gap. And, Y [i, j] is the score of an

optimal alignment in which yj aligns with a gap. The computation of the three matrices

can be done based on the following relations:

M [i, j] = max

M [i− 1, j − 1] +match(xi, yj)

X[i, j]

Y [i, j]

(3.2)

X[i, j] = max

M [i− 1, j] + (ε+ ρ)

X[i− 1, j] + ε

(3.3)

Y [i, j] = max

M [i, j − 1] + (ε+ ρ)

Y [i, j − 1] + ε

(3.4)

where ε is the cost of inserting or deleting a base, and ρ is the cost of inserting or deleting

the first base (i.e. the penalty for gap opening).

3.2.2 Constructing all Optimal Alignments

In Equations 3.1-3.4, when there exist more than one ways to achieve a maximal

value, the choice adopted by an alignment algorithm will be arbitrary. Further, each

arbitrary choice of maximal value of each step will lead to a specific optimal alignment.

Thus, given the existence of more than one maximal cases to choose from in Equations

3.1-3.4, there will necessarily be multiple optimal alignments, which all have the same

alignment scores despite being slightly different from one another.

24

To construct all optimal alignments under the non-affine gap model after the

matrix M is filled, one starts from the entry with the highest cost and retraces all steps at

which optimal decisions (as specified in Equation 3.1) are made. The following procedure

constructs all optimal alignments in the non-affine model, after the matrix M is computed:

1: Find (i, j) such that M [i, j] is maximum.

2: return Trace(M, i, j)

Algorithm 1: Trace(M, i, j)

1: if i < 0 or j < 0 then
2: return ∅
3: if M [i, j] ==M [i− 1, j − 1] +match(xi, yj) then
4: m← Trace(M, i− 1, j − 1)
5: Append (xi, yi) to each alignment in m
6: if M [i, j] ==M [i− 1, j] + ε then
7: i← Trace(M, i− 1, j)
8: Append (xi,−) to each alignment in i
9: if M [i, j] ==M [i, j − 1] + ε then

10: d← Trace(M, i, j − 1)
11: Append (−, yj) to each alignment in d
12: return m ∪ i ∪ d

As described in Algorithm 1, the call Trace(i, j) returns all optimal alignments

ending at xi and yj . Trace is done by identifying whether each of the three conditions in

Equation 3.1 is optimal. If the condition is optimal, Trace is called recursive to obtain all

optimal alignments starting at that entry. By induction, the three recursive calls return all

possible optimal alignments just before xi and yj . Then, the algorithm correctly returns

the union of all of the optimal alignments ending at xi and yj .

To construct all optimal alignments under the affine gap model, the process is

similar. After the matrices M,X, and Y are filled, one starts from the entry of M with

maximum value and retraces all the steps at which optimal decisions (as specified in

Equations 2,3,4) are made. The only technical difference is that we need to specify the

appropriate matrix (either M , X , or Y) in each recursive call.

25

3.3 Experimental Design

We hypothesize that the usage of an aligner to detect variants will result in

incorporating the aligner’s bias into the construction of a variant profile. Specifically, this

bias will exhibit itself at INDEL locations that have multiple optimal alignments. In our

analysis the reference human genome, obtained from NCBI, build GRCh37, and the

known variant profile obtained from the Integrated Variant Set release from the 1000

Genomes Project Consortium, we found that among 1,442,639 INDEL locations, 6,685 of

them had multiple optimal alignments.

To demonstrate that many of these INDELs were created based on the bias of some

alignment algorithms, we set out to reverse engineer the process of determining these

INDELs based on various alignment algorithms. In the reverse engineering process, we

create a set of readsR that bear alternative alleles from INDEL locations with more than

one optimal pairwise alignments and use each aligner to align these reads to the reference

genome. The alignment of each read inR to the correct INDEL location gives rise to a

variant call. By recording the number of variant calls that agree with the known variant

profile, we can compare the aligners’ degrees of agreement with known variant profiles

and detect aligners’ bias, if there is any. Specifically, the process works as follows:

1. Suppose that the INDEL location i has two known alleles: A and ACGA,

where A is in the reference genome, and ACGA is an alternative allele.

2. Suppose the reference genome g is represented as xAy (gi is A).

3. Let u be a suffix of x, and v be a prefix of y. (Both presumably have length k).

In other words, u and v are k-substrings of the genome that are on the left and

the right of the allele A.

4. We will create a string r = uACGAv. The string r is presumed to be the

substring of another genome that differs from the reference genome at the

exact location i with allele ACGA. We varied the length of u and v between 25

26

and 50. Thus, the length of the read r is around 50 to 100. (The actual length is

equal to the length of u or v plus the length of the INDEL allele at location i.)

5. Now if we align r to the reference genome, and if r is correctly mapped to

location i, then two possible optimal alignments can be observed:

uA---v u---Av

uACGAv uACGAv

6. Of these two optimal alignments, the one on the left resulted in the variant

A|ACGA, which agrees with the known profile. The other alignment resulted

in a variant call at location i− 1 that is different from the known profile. In

general, there can be many optimal alignments but only one of them results in a

variant call that agrees with the known variant profile.

7. If there are multiple alternative INDEL alleles at location i, each string r is

created for each alternative allele.

8. LetR be the set of strings r’s that are constructed as we have described. For

each INDEL location with more than one optimal pairwise alignments, there

are exactly 10 reads with length between roughly 50 to 100, as described

above, yielding a 10x coverage at those INDEL locations. To test whether the

existing variant profile consists of INDELs that might have been constructed

based on a bias alignment method, we employed several popular short-read

aligners to all strings inR.

3.4 Results

To map and align reads inR to the reference genome, we considered several

popular aligners: Bowtie2 [11], BWA-SW [12], CUSHAW2 [13], Smalt [15],

SRmapper [51], SHRiMP2 [8], RazerS [52], GASSST [32], SeqAlto [10], Masai [14], and

Soap2 [53]. Most aligners employed a seed-and-extend strategy, which first finds exact

matches (seeds) between reads and the genome, and then extend such seeds to full

alignments between reads and the genome. While these aligners adopt a wide range of

27

algorithmic techniques in building indexes to facilitate efficient seed finding, the extension

phase of their methods is based on the basic local alignment strategy, which is described

in Section 3.2. We eliminated four aligners SeqAlto, Masai, Soap2, and SRmapper, due to

their inability to map reads inR to their correct positions. Possible reasons include: (1)

reads inR are relatively short and aligners might have been designed to work effectively

with long reads, and (2) these reads might have been mapped to multiple chromosomal

locations, and these aligners might have decided not to map any of them due to such

confusion. For BWA, we used the BWA MEM version that is designed to work with both

short and long reads.

3.4.1 Analysis of INDELs with Multiple Optimal Alignments

The set of readsR surrounding known INDEL locations were aligned by all

aligners to the reference genome. For each aligner, we recorded the percentage of reads in

R that the aligner was able to map to their correct locations. By design, each read covers a

specific INDEL. A read is mapped correctly if it overlaps with the INDEL location that it

is supposed to covers. Given that a read is mapped correctly, the alignment between the

read and the genomic region gives rise to a unique variant call at that INDEL location. If

there are more than one optimal pairwise alignments, the choice of which optimal

alignment depends on the specifics of each alignment algorithm. As a result, the resulting

variant call may or may not be the same with the reported variant profile that was created

based on a different alignment algorithm.

Table 3.1: Percentage of correct mapping, actual and expected alignment by aligners

Aligners Correct mapping % Actual agreement % Expected agreement % p-value
Bowtie2 96 99 30 0.0000546
BWA 93 99 30 0.0000550
SHRiMP2 97 99 31 0.0001491
RazerS 88 75 31 0.0001631
CUSHAW2 97 70 31 0.0000562
GASSST 91 8 17 0.0015892
Smalt 96 5 31 0.0003852

28

As shown in Table 3.1, most aligners were able to map most reads inR to their

correct INDEL locations with mapping percentages range from 88% to 97%. Mapping a

read to its correct INDEL location means that the read is mapped to a chromosomal

location that overlaps the INDEL that the read was designed to cover. A correct mapping

of a read does not mean that the alignment of the read to this location will yield a variant

call that agrees with (or matches) the known variant profile. When there are multiple

optimal alignments between a read and genomic fragment, each optimal alignment results

in a different INDEL call. An alignment agrees with the existing information, if it

produces an INDEL that is the same as the existing known INDEL. Table 3.1 reveals that

these aligners can be divided into 3 groups:

1. Aligners whose correctly mapped reads (to INDEL locations with multiple

optimal alignments) are aligned in high agreement with the known variant

profile, about 99% in agreement. These aligners include Bowtie2, BWA (MEM

version), and SHRiMP2;

2. Aligners whose correctly mapped reads are aligned in moderate agreement

with the known variant profile (between 70-75%). These include RazerS and

CUSHAW2; and

3. Aligners whose correctly mapped reads are aligned in high disagreement with

the known variant profiles (less than 10%). These include GASSST and Smalt.

To analyze if there exists alignment bias in reported variant profiles, we compare

an aligner’s degree of agreement with reported variant profiles to the expected agreement

if the algorithmic choice happens by chance. Suppose that at INDEL location i, there are

ni optimal pairwise alignments (under the affine-gap model), then the probability pi that

an aligner produces an alignment that yields a call in agreement with the known variant

profile is 1
ni

. The expected number of agreed calls is also 1
ni

. Summing over all events, we

find that the expected number of instances that agree with the known variant profile is

29

∑N
i=1

1
ni

, where N is the number of INDEL locations with multiple pairwise alignments

that the aligner can map correctly reads inR to.

The last column of Table 3.1 shows the expected percentage of agreement by each

aligner (1
N

∑N
i=1

1
ni

). We can see that across all aligners, there is a significant different

between the expected percentage of agreement and the actual agreement. For example,

with Bowtie2, the expected percentage of alignment is 30% compared to the actual

percentage of agreement, which is 99%. This vast difference between the expected and

actual degree of agreement suggests that variant calls at these INDEL locations were

obtained by alignment algorithms that were very similar to those aligners in the first

groups (Bowtie2, BWA, SHRiMP2) whose actual percentage of agreement is more than 3

times the expected percentage of agreement. To compute the likelihood of this difference,

we calculated the probability that the difference between the actual agreement and

expected agreement (as happened by chance) is as much as or even more extreme than

what we observed. This p-value can be bounded by the Chebyshev-Cantelli’s inequality,

P (X − µ < λ) < σ2

σ2+λ2
, where λ is the observed difference between actual and expected

agreement, µ and σ are the expected agreement and its variance. As described above,

µ =
∑N

i=1
1
ni

. Further, σ2 =
∑N

i=1
1
ni
(1− 1

ni
). The very small p-values shown in the last

column of Table 3.1 suggest that the difference in actual and expected agreement is

extremely unlikely caused by chance.

3.4.2 Characterization of INDEL Complexity

The existence of multiple optimal alignments giving raise to different INDEL calls

is an inherent problem. We have demonstrated that in many cases there are more than one

theoretically optimal alignment, each of which has the same chance of being biologically

correct. It is important to note that there is no correct optimal alignment among all

possible optimal alignments: they are all optimal and thus equal probability of being the

correct alignment. In other words, it does not matter which optimal alignment an aligner

chooses and a variant caller utilizes the aligner’s result, there must be inevitably some

30

bias. The only way to cope with this is for an aligner to report all optimal alignments and

for a variant caller to derive all alternative possibilities of INDELs from these optimal

alignments. This is tedious and not being done in practice. Existing variant profiles do not

report alternative possibilities of INDELs; they only report one.

Fig. 3.1: Distribution of INDEL complexity across human chromosomes

Thus, it is useful to examine known INDEL locations and characterize the extent

to which they are affected by multiple optimal alignments. We define the complexity of

each INDEL location as the number of optimal alignments that can be had when reads

31

Fig. 3.2: Density of INDEL complexity across human chromosomes

bearing alternative alleles are aligned (under the affine-gap model) to the reference

genome at this location. Figure 3.1 shows the distribution of INDEL complexity across

human chromosomes. We observed that chromosome Y has no INDEL with multiple

optimal alignments. Further, a closer examination of the density of INDEL complexity on

all chromosomes, as shown in Figure 3.2, suggests that these distributions are very similar,

with the peak occurs at around 3. A majority of these INDELs have 3 multiple optimal

alignments. Additionally, chromosomes 2, 6, 15, and 16 stood out with the most number

32

of INDEL locations with multiple optimal alignments. Larger chromosomes do not

necessarily have more complex INDELs. For example, compared to the others,

chromosome 1 has fewer INDELs with multiple optimal alignments.

3.5 Discussion

The accuracy of calling variants can be improved by increasing coverage (i.e.

using more reads) and realigning reads that overlap INDEL locations. But we argue that

neither increasing coverage nor realigning reads around INDELs can help resolve the

problem caused by multiple optimal alignments. Increasing reads can reduce the

damaging effect of sequencing errors, which occur independently across reads. While

realigning reads around an INDEL as described by Li [54] can achieve a better multiple

alignment of reads aligned to the INDEL, the multiple alignment is still biased as it is

based on one of the optimal pairwise alignments. For instance, recall the example given

earlier, in which the read TCAGG is correctly mapped to the genome and is aligned to the

genomic sequence TCACACAG. As we showed earlier, there are multiple optimal

pairwise alignments. Let us supposed that many reads are aligned to this region. It is

possible (due to different chromosomal positions), the alignments of some reads might

look like the first alignment in this example; the alignments of some other reads might

look like the second alignment; and the alignments of the rest might look like the third

alignment. The goal of realigning reads [54], which were pairwise aligned, is to obtain a

consistent multiple alignment of reads. The result of such realignment would be an

adoption of the same alignment for all reads aligned to this region to obtain a high quality

call. But the adopted multiple alignment is still based on one of the three optimal pairwise

alignments. As such, the realignment of reads still produces biased results.

We have demonstrated that the current INDEL profile constructed and curated by

the 1000 Genome Project exhibits a bias at certain INDEL locations. These locations can

be identified by counting the number of optimal alignments between reads containing

alternative alleles to the reference genome at those locations. The bias is essentially an

33

effect of either short-read aligners or variant callers themselves having to choose one out

of many equally theoretically optimal alignments. There is no obvious way to

“standardize” this phenomenon by designating one optimal alignments as the “canonical”

one. As such, it seems the only way to deal with this is reporting all optimal alignments

and consequently reporting all alternative INDEL calls as the result of those alignments.

If this phenomenon is not addressed, there can be potential serious problems

relating to the analysis and study of INDEL. For example, certain alignment techniques

will result in wrong calls at those INDEL locations. Case in point is Smalt, which was

able to map 96% of the reads, but very few of the alignments produced the “correct”

INDEL calls (as specified by the existing INDEL information). At these location, Smalt

was wrong simply because it chooses a different optimal alignment from the one based on

which the INDEL was constructed.

34

Chapter 4

Memory Efficient Algorithms for Alignment with Gap Excision

4.1 Introduction

Recent single-molecule sequencing (SMS) technologies generate very long reads,

enabling the capture of multiple variant types including structural and copy number

variations (SVs/CNVs). However, precise alignment around SVs is a challenge, because

of large gaps in alignment [55, 56, 57]. Previously, Alignment with Gap Excision (AGE)

was described as a precise method that uses dynamic programming to solve the problem

[58]. However, its application is limited to alignment of short reads/contigs to relatively

small genomic regions because its implementation uses matrices, hence it requires vast

memory usage. While not intended to be the sole tool used for aligning against a reference

genome, its primary purpose is to optimally realign reads around the sites of suspected

CNVs.

To address the shortcomings in memory usage, we introduce LongAGE, a

memory-efficient implementation of AGE. LongAGE leverages linear space alignment

algorithms based on the idea first presented to solve the longest common subsequence

problem [59] and several other such algorithms for sequence alignments [60]. We show

that LongAGE significantly improves memory usage compared to AGE. This allows users

to realign long reads or contigs on a regular compute node, desktop, or laptop.

4.2 Methods

4.2.1 Memory-efficient Implementation

Given two sequences to be aligned of length N ,M : X = x1x2x3...xN and

Y = y1y2y3...yM , with ω = max(M,N). Let P0 = 0, Pi = Pi−1 ⊕ φ(aξ, bτ) denote the

optimal score for the left flank (ξ∗, τ∗) and Qω = 0, Qj = Qj+1 ⊕ φ(aχ, bψ) denote the

optimal score for the right flank (χ∗, ψ∗), where φ is defined to be the maximum sum of

35

values (aligning x to y, or either x or y to a gap ”-”) of up-to the aligned pairs. The AGE

algorithm is summarized as follows:

max
i,j

{Pi +Qj}

s.t. 0 ≤ i < j ≤ ω

P0 = 0

Qω = 0

(4.1)

Recall that the AGE algorithm uses matrices to compute the best score (BS) of

aligning n and m nucleotides at the 5′-ends and N − n and M −m nucleotides at the

3′-ends is ML(n,m) +MR(n+ 1,m+ 1), where ML is the maximum in the leading

submatrix [0, n]× [0,m] and MR is the maximum in the trailing submatrix

[n+ 1, N + 1]× [m+ 1,M + 1]:

BS = max(ML(n,m) +MR(n+ 1,m+ 1)) (4.2)

We reckon that ML and MR are values of Pi and Qj respectively. To reduce

memory usage, we can use a single array (α, β) for each matrix:

Pi = max
0≤ξ≤n
0≤τ≤m

{ατ + φ(xξ, yτ)} (4.3)

Qj = max
n+1≤χ≤N+1
m+1≤ψ≤M+1

{βψ + φ(xχ, yψ)} (4.4)

AGE’s matrices implementation finds the alignment of two sequences by tracing

back to a cell having the best local alignment. However, with our linear-space

36

implementation, we have to walk through the sequences once again to find the best local

alignments that sum up to the best score.

BS = max

〈
k−1,l−1∑
i,j=0,0

φ(ui → ui+1) +
k−1∑
i=0

φ(ui → ui+1)

〉
(4.5)

max
1≤j<k≤ns.t.Pj=1∧Qk=1

j + n− k + 1 (4.6)

Our main implementation is summarized in two steps:

• Compute the maxima scores using the linear-space algorithms using the detail

implementation outlined by [60].

• Reconstruct pair-wise alignments based on the maxima scores (the second

round of the same procedure of finding the maxima scores).

It is well known that CNVs and SVs can have homologous and identical sequences

around their breakpoints [61]. Several optimal alignments exist with the same maxima

scores because of identical sequences at SV breakpoints [62], differences in alignments

result from shifting along the identical sequences. By common convention LongAGE

returns the left-shifted solution. LongAGE reduces the space usage from θ(NM) to

θ(max(N,M)), while increasing computation time by at most four times. As mentioned

in [61], there are homology sequences around breakpoints of SVs, where it happens that

several optimal alignments can occur when aligning sequences containing SVs [62].

Therefore, we might have several alignments with the same maxima scores, however their

actually alignments are slightly different. Additionally, Hirschbergs method reduces the

space use from θ(NM) to θ(N) while possibly doubling the worst case time needed for

the computation.

4.2.2 Resolving Breakpoints of mCNVs using Long-reads

Figure 4.1 shows an application using AGE alogrithm to resolve breakpoints for

haplotypes with deletion and tandem duplication (one case of mCNVs) in a family

37

Table 4.1: Memory usage in megabytes and run time in seconds of AGE and LongAGE in
controlled experiments on aligning two sequences with various variant lengths.
Benchmarks were made on an Intel Xeon(R) Gold 6148 Processor (27.5M Cache, 2.40
GHz) with 192 GB of memory.

Tools
Memory usage (megabytes)

1Kbp 2Kbp 4Kbp 8Kbp 16Kbp 32Kbp 1Mbp

AGE 550.83 600.85 700.90 901.04 1,301.21 2,101.68 �
LongAGE 2.71 2.92 3.13 3.55 3.62 5.55 113.29

Tools
Running time (seconds)

1Kbp 2Kbp 4Kbp 8Kbp 16Kbp 32Kbp 1Mbp

AGE 5.05 5.55 6.57 8.37 12.03 19.27 �
LongAGE 18.92 20.72 22.80 23.77 32.06 50.63 1159.61

(parents and a child). Our method for resolving breakpoints of mCNVs using long-read

data went as follows:

Identify SVs of interest (Figure 4.1A): Aligned Illumina HigSeq short-reads [63]

in BAM format are available for three trios from the Genome in a Bottle (GIAB)

Consortium. The coverage was 100× for the parents and 300× for the child. CNVs were

discovered in children using CNVnator [64] with default options and 1Kbp bins. We then

genotyped CNVs in corresponding parents using the same bin size. CNVnator returned

estimated copy number (CN) for each member of the trio. Applying the condition: (0.5 ≤

CN(in one parent) ≤ 1.5) and (2.5 ≤ CN(in the other parent) ≤ 3.5) and (1.5 ≤ CN(in

child) ≤ 2.5) for each GIAB trio, we obtained two candidate mCNVs. The candidate

mCNV in the Ashkenazim trio was likely a false positive as no PacBio reads supported

deletion and duplication in that region. The other mCNV in the Chinese trio was around

20Kbp in length and contained a deletion in the father (HG006) and a duplication in the

mother (HG007) (Figure 4.1B).

Analyze long-reads containing SVs (Figure 4.1C): NGMLR [57] was used to

map the GIAB Mt Sinai PacBio reads of the Chinese son (HG005) [63] to the Human

Reference GRCh38, where the option was “−x pacbio”. Using SAMtools [65], we

38

extracted reads from regions of interest, which are chromosomal coordinates where

coordinate intervals [L− 40Kbp, R + 40Kbp], where L and R refer to the left and right

breakpoint coordinates from read depth (RD) analysis. Extracted reads were realigned to

the reference genome around the breakpoints using LongAGE with either “−indel” or

“−tdup” which specify alignment that is expected to have indels or duplications in the

read sequence respectively. However, it should be noted that until recently long-reads

have had high error rates [66], hence our use of a lower gap opening penalty “−go = −1”.

Rectify SV breakpoints (Figure 4.1C): Realigned reads were grouped based on

which haplotype (deletion or duplication) had better support. For the best alignment, we

required that: (i) the ranges of excised regions from LongAGE’s alignment roughly match

the breakpoints of mCNV; (ii) every flank of a read should be fully aligned from the

beginning to the first breakpoint and from the second breakpoint to the end of the read;

(iii) its score is at least 500 more than for the alignment in the alternative mode (“−indel”

for “−tdup” and vice versa). We assembled the above-selected reads into two contigs

using a long-read assembler wtdbg2 [67] and then aligned those contigs with the same

parameters to precisely resolve the breakpoints.

4.3 Results

To study the trade-off between memory usage and running time, we created a

synthetic dataset of SVs with lengths varying from 1Kbp to 32Kbp, and one of 1Mbp

length. Inspired by [55, 56], we randomly generated coordinates of a synthetic deletion of

a certain length, then created the sequence of SV allele by joining left and right flanks of

10Kbp in length total. We then aligned the created sequence of SV allele against the

regions in the reference from the 5-end of the left flank to 3-end of the right flank. We

perform alignment with AGE and LongAGE on each pair of such sequences for all lengths

of synthetic SVs.

Table 4.1 summarizes run time and memory usage of AGE and LongAGE by

Valgrind [68] on all pairs of synthesized sequences. In LongAGE, memory usage grows

39

Fig. 4.1: Defining breakpoints of mCNV on chromosome 19 in Chinese Trio from GIAB.
(A) Read depth signals from top to bottom corresponding to father (HG006), mother
(HG007), and son (HG005), (B) Haplotypes with deletion and duplication are passed
down from both parents to son, (C) Haplotypes with tandem duplication and deletion were
assembled by haplotype-assigned PacBio reads. Breakpoints of the deletion and
duplications are different.

linearly, while computation time is 2.6 to 3.7× longer than AGE, which is expected under

Hirschbergs method. Given 192GB of memory on a Gold 6148 Processor workstation,

AGE failed to align sequences of 1Mbp due to the lack of memory allocation. LongAGE

completed in nearly twenty minutes and only needed a maximum of 114 megabytes for

the task.

Thousands of deletion and duplication polymorphisms larger than 1Kbp in human

genomes, called copy number variations (CNVs), can impact phenotypes by causing gene

dosage and structure to vary among individuals [69]. Some rare and de novo CNVs have

well-known roles in diseases; however, many CNVs are multi-allelic (mCNVs) where

their structural alleles have been rearranged multiple times in their ancestors. The origin

of such events is not fully understood due to difficulties in resolving their breakpoints with

short reads, as the breakpoints are often embedded in segmental duplications. To

demonstrate the applicability of LongAGE, we resolved breakpoints of reciprocal deletion

and duplication with long homologies around breakpoints in the Chinese Trio sequenced

by the GIAB Consortium. Such events have been previously described by [64] and were

40

hypothesized to occur from a single non-allelic homologous recombination (NAHR)

mentioned in [55, 56].

First, we identified a copy number neutral region on the Human Genome GRCh38

of mCNV (chr19:54, 219, 999-54, 241, 000) with possible deletion and duplication

haplotypes in a child using Illumina HiSeq short-read data [63] (Figure 4.1A). Then,

assuming the two (deletion and duplication) haplotypes are present in the child (Figure

4.1B), we locally realigned PacBio long-reads with LongAGE using both INDEL (for

alignment with deletion) and TDUP (for alignment with tandem duplication) modes.

Next, by comparing alignments in each mode, we selected reads likely to be supported by

deletion and tandem duplication. Breakpoints can be imprecise due to sequencing

errors/homologies, yet roughly match those identified from RD analysis. We obtained 26

deletion-supporting reads, and 20 duplication-supporting reads. We then assembled these

reads into two contigs, which aligned to the reference (by LongAGE in appropriate mode)

with a high percent identity of over 98%. We observed that deletion breakpoints are

left-shifted compared to duplication breakpoints for 1538bp and 1541bp for the left

breakpoint and the right breakpoint respectively (Figure 4.1C). Such a shift suggests that

the deletion and duplication occurred ancestrally from two different events.

4.4 Discussion

We have presented LongAGE, a memory-efficient implementation of AGE. Even

when aligning megabase-long sequences, LongAGEs memory footprint is less than

hundreds of megabytes, while it is at most four times slower than AGE in terms of running

time. The tool facilitates the resolution and standardization of SV breakpoints in highly

repetitive regions at a single base pair. It is capable of refining read alignment once a read

has been heuristically mapped to a particular genomic location that is expected to contain

an SV. In addition, with AGE acting as a generalized algorithm, the software is compatible

for use in various biological studies that primarily rely on alignments and it can even be

extended into several different versions for various purposes.

41

4.4.1 LongAGE’s Features

LongAGE1 has the same features of AGE [58], which aligns indel

(insertion/deletion), tdup (tandem duplication), inv (inversion) modes. For more complex

SVs, one can create a sudo SV sequence, then use the tool for aligning the sudo sequence

to the reference for resolving the breakpoints. LongAGE’s modes are as follows:

• INDEL mode (“-indel”) assume alignment has deletion or insertion (default)

• TDUP mode (“-tdup”) assume alignment has tandem duplication

• INV mode (“-inv”) assume alignment has inversion; tries alignment over the left

and right breakpoints; reports the best alignment

LongAGE core software was developed in C++, and source code is free for

noncommercial use and available at https://github.com/Coaxecva/LongAGE.

4.4.2 Best Practice for Resolving SV Breakpoints

Methods that determine the breakpoints of genetic variants from sequencing data

rely by and large on computational methods that align reads to reference genomes and

methods that detect where the consensus of the starting and ending differences occur.

Reads can be correctly mapped and incorrectly aligned. Misalignment at a correct

chromosomal location can affect the determination of a variant’s breakpoints. Moreover,

many SVs/CNVs have breakpoints that are often embedded in segmental duplications,

which makes the breakpoints are difficult to resolve.

Our goal was to standardize the breakpoint resolution process of SVs/CNVs such

that (1) the methods used to resolve the breakpoints produce precise and consistent results,

(2) the adoption of the process for resolving breakpoints is standardized such that it can be

applied more easily with different tools, and (3) the process can be extended by various

variant types (insertion, deletion, and inversion) and genome context.

The task for resolving SV/CNV breakpoints consists of these steps:

1. Identify regions of interest in SVs/CNVs:
1for help option, Help: $./long age align

42

Given aligned short-reads in BAM format, we call CNVs using CNVnator

[64]. There are five steps for calling CNVs using CNVnator: extract reads with

specified chromosomes/sequences, generate a read depth histogram with

chosen bin size, compute statistics, partition read depth signal, and then call

CNVs. Note that choosing bin size is important since bin size directly affects

the resolution at which CNVs can be called. These locations where CNVs are

called are regions of interest.

2. Extract long-reads mapped around the regions of SVs/CNVs:

For long read data, we recommend using Minimap2 [70] or NGMLR [57] for

read-to-reference alignment. Aligned long reads are then extracted using

SAMtools [65] based on the regions of interest. Of the several extracted unique

reads that overlap a region of interest, we only select reads that are longer than

the length of expected CNVs, for further analysis. High read coverage would

be preferable for both long and short read data [71, 72], since we are able to

collect more reads.

3. Analyze long-reads containing SVs/CNVs:

Selected long reads are realigned (by AGE/LongAGE) to the reference around

the sites of interest. A site of interest is the chromosomal coordinate; and

coordinate intervals are often extended to the right and left some thousands of

bps, e.g. [L - 10k, R + 10k], where L and R refer to the left and right

breakpoint coordinates of a called CNV. An appropriate mode is applied upon

the suspected type of CNVs (deletion or duplication or inversion).

4. Rectify SV/CNV breakpoints:

Reads are once again selected based on the quality of their alignments, which

often have similar lengths between excised regions and SVs, have relatively

long left and right flanks compared to the read length, and are fully aligned.

These reads are assembled to contigs using a long-read assembler wtdbg2 [67]

43

or SPAdes [73]. We then align those contigs to sites of interest using

AGE/LongAGE. We need this step since read-to-reference alignments often

have some wrinkles that only show approximate breakpoints. By assembling

reads to contigs, and precisely aligning contigs to sites of interest, we would

achieve high confident breakpoints.

4.4.3 Resolved Breakpoints of CNVs on Chromosome 1 of GIAB HG005

To apply the best practice on a genome-wide study for resolving numbers of CNV

breakpoints, we used the tools previously mentioned for defining breakpoints of CNVs on

chromosome 1 in Chinese Trio from the Genome in a Bottle (GIAB) Consortium in the

son (HG005). Short and long read data were downloaded from the GIAB Consortium FTP

[63].

The human genome remains unassembled, unmapped, and poorly characterized by

as much as 10% if not more [74]. These missing regions are annotated as multi-megabase

heterochromatic gaps and are found primarily near centromeres and on the short arms of

the acrocentric chromosomes. Therefore, from a set of around 300 CNVs called on the

chromosome 1 using Illumina HiSeq short-reads we discarded a significant number of

CNVs that fall in these genomic gap regions. During the process of resolving the

breakpoints, we have also observed that some of these chosen CNVs consists of several

SV events; such events should be further investigated at a later date. We solely reported

resolved CNV breakpoints with high confidence. Table 4.6 shows both the original CNV

coordinates and lengths called by CNVnator (with bin size = 1000) and the resolved ones.

The majority of coordinates and lengths are very close, but some are slightly shifted from

less than 50 bps to several hundred bps.

One example of resolving CNV breakpoints is the case where we have a deletion

type CNV length of 6000bp (chr1:1581001-1587000). An example of selecting support

reads for the deletion CNV is shown in Table 4.2 and Table 4.3. Its resolved breakpoints

are also reported in Table 4.6.

44

In addition, we have also provided read identifiers used in the main paper in Table

4.4 and Table 4.5 that are either deletion (DEL) or duplication supporting reads. The

criteria for selecting supporting reads here are that (1) the excised regions on the reference

have a length similar to the expected length of the SV, (2) the left and right flanks get fully

aligned, and that (3) the alignment score is relatively high.

45

Ta
bl

e
4.

2:
Se

le
ct

in
g

su
pp

or
tr

ea
ds

at
re

gi
on

al
co

or
di

na
te

s
ch

r1
:1

58
10

01
-1

58
70

00
;A

S:
A

lig
nm

en
tS

co
re

,E
R

:E
xc

is
ed

R
eg

io
ns

,I
L

F:
Id

en
tic

L
ef

tF
la

nk
,I

R
F:

Id
en

tic
R

ig
ht

Fl
an

k

R
ea

dI
D

L
en

gt
h

A
lig

nm
en

ts
co

re
E

xc
is

ed
re

gi
on

s
IL

F
(%

)
IR

F
(%

)
Se

le
ct

ed
m

54
01

6
17

12
28

07
21

00
/5

26
25

55
9/

14
91

29
03

9
27

54
8

30
53

60
61

91
40

(8
5%

)
18

47
(8

7%
)

ye
s

m
54

01
5

18
01

06
13

29
09

/5
28

22
97

2/
47

04
28

38
8

23
68

4
44

12
64

11
91

46
(8

8%
)

35
28

(8
6%

)
ye

s
m

54
01

5
17

10
28

22
56

33
/6

38
32

57
3/

0
17

98
6

17
98

6
10

6
82

2
16

6
(8

2%
)

25
5

(8
3%

)
no

m
54

01
6

17
12

17
18

57
48

/7
37

94
31

6/
0

22
13

4
22

13
4

48
74

35
95

2
(8

7%
)

15
16

8
(8

6%
)

no
m

54
01

6
17

12
16

22
38

46
/3

55
86

62
9/

0
17

70
5

17
70

5
40

40
10

1
34

54
(8

7%
)

89
88

(8
7%

)
no

m
54

01
6

17
12

16
22

38
46

/3
86

66
56

8/
12

78
6

33
16

2
20

37
6

15
3

11
42

5
21

6
(8

4%
)

16
1

(8
9%

)
no

m
54

01
6

17
11

02
06

31
54

/6
18

01
32

9/
0

17
04

4
17

04
4

34
34

61
31

89
31

(8
6%

)
41

21
(8

6%
)

ye
s

m
54

01
6

17
11

01
20

24
23

/2
98

19
62

6/
0

16
64

3
16

64
3

12
7

89
3

14
1

(8
5%

)
25

8
(8

6%
)

no
m

54
01

5
17

11
11

22
00

10
/1

91
36

78
5/

15
25

3
27

70
3

12
45

0
39

68
61

94
91

43
(8

8%
)

96
2

(9
0%

)
ye

s
m

54
01

6
17

12
27

00
52

14
/9

63
47

78
/0

12
07

9
12

07
9

11
5

32
8

10
4

(9
0%

)
14

2
(8

5%
)

no
m

54
01

6
17

12
16

22
38

46
/1

75
64

57
7/

55
89

23
00

6
17

41
7

80
16

52
5

49
(9

6%
)

11
0

(8
5%

)
no

m
54

01
6

17
12

25
11

01
02

/3
70

94
11

9/
34

8
12

93
8

12
59

0
29

57
63

16
86

16
(8

7%
)

14
04

(7
9%

)
ye

s
m

54
01

5
18

01
06

03
22

01
/3

16
54

07
3/

73
22

78
1

22
70

8
16

6
95

7
27

2
(8

6%
)

18
2

(8
6%

)
no

m
54

01
6

17
11

01
20

24
23

/4
86

94
18

9/
0

16
02

8
16

02
8

40
04

17
1

29
32

(8
5%

)
11

25
8

(8
7%

)
no

m
54

01
6

17
12

14
07

54
21

/6
82

23
42

7/
78

9
25

05
7

24
26

8
10

9
14

80
1

10
2

(8
8%

)
71

(9
3%

)
no

m
54

01
6

17
11

02
06

31
54

/6
43

56
78

5/
13

50
12

98
1

11
63

1
70

15
38

6
59

(9
1%

)
70

(9
2%

)
no

m
54

01
5

17
10

29
09

04
01

/4
87

59
16

5/
0

65
89

65
89

18
80

15
0

10
4

(8
9%

)
55

68
(8

7%
)

no
m

54
01

6
17

11
24

05
31

33
/5

68
85

34
0/

81
41

26
61

1
18

47
0

35
71

87
82

12
(8

6%
)

60
83

(8
4%

)
no

m
54

01
5

17
11

12
08

10
09

/1
81

54
10

1/
86

88
16

03
3

73
45

18
6

32
64

25
3

(9
0%

)
91

(8
9%

)
no

m
54

01
5

17
10

29
09

04
01

/6
53

40
14

6/
0

14
16

1
14

16
1

10
2

18
32

16
5

(8
5%

)
66

(8
7%

)
no

m
54

01
5

18
01

06
03

22
01

/2
49

04
52

5/
47

30
5

55
13

1
78

26
19

06
28

5
33

49
(8

9%
)

24
50

(8
7%

)
no

m
54

01
5

18
01

06
03

22
01

/2
49

04
52

5/
36

75
1

47
26

0
10

50
9

97
79

4
10

5
(8

8%
)

52
(1

00
%

)
no

m
54

01
5

18
01

06
03

22
01

/3
96

49
46

9/
71

10
95

8
10

88
7

82
87

77
11

0
(8

7%
)

49
(9

4%
)

no
m

54
01

6
17

11
22

12
43

50
/1

13
37

97
1/

0
79

41
79

41
75

19
37

11
3

(8
5%

)
14

1
(8

4%
)

no
m

54
01

6
17

11
01

10
13

02
/3

61
10

95
7/

0
69

28
69

28
16

72
89

10
53

(8
6%

)
50

65
(8

6%
)

no
m

54
01

5
17

11
12

08
10

09
/1

48
11

29
8/

61
98

18
03

8
11

84
0

27
44

5
73

09
(8

7%
)

14
83

(8
6%

)
no

46

Ta
bl

e
4.

3:
Se

le
ct

in
g

su
pp

or
tr

ea
ds

at
re

gi
on

al
co

or
di

na
te

s
ch

r1
:1

58
10

01
-1

58
70

00
;A

S:
A

lig
nm

en
tS

co
re

,E
R

:E
xc

is
ed

R
eg

io
ns

,I
L

F:
Id

en
tic

L
ef

tF
la

nk
,I

R
F:

Id
en

tic
R

ig
ht

Fl
an

k
(c

on
tin

ue
)

R
ea

dI
D

L
en

gt
h

A
S

E
R

IL
F

(%
)

IR
F

(%
)

Se
le

ct
ed

m
54

01
6

17
12

16
02

23
08

/3
61

11
26

9/
15

62
9

32
67

9
17

05
0

17
5

85
0

35
3

(8
5%

)
20

4
(8

7%
)

no
m

54
01

5
18

01
06

13
29

09
/1

47
46

01
3/

29
78

0
35

47
1

56
91

54
19

80
7

27
(1

00
%

)
50

(9
1%

)
no

m
54

01
6

17
12

27
00

52
14

/5
32

15
66

9/
19

11
5

35
71

8
16

60
3

10
3

20
92

2
13

5
(8

7%
)

50
(9

4%
)

no
m

54
01

6
17

12
14

07
54

21
/7

09
10

44
7/

27
53

3
34

73
9

72
06

27
67

50
25

22
(8

9%
)

39
37

(9
0%

)
no

m
54

01
5

17
12

22
21

06
05

/1
54

01
75

6/
10

26
9

22
76

9
12

50
0

15
6

90
8

31
7

(8
5%

)
22

2
(8

5%
)

no
m

54
01

6
17

12
14

07
54

21
/7

09
10

44
7/

0
27

48
6

27
48

6
20

9
92

6
34

7
(8

6%
)

23
1

(8
8%

)
no

m
54

01
6

17
12

14
07

54
21

/3
86

01
19

4/
0

21
26

3
21

26
3

11
4

95
73

61
(9

2%
)

19
6

(8
6%

)
no

m
54

01
6

17
11

02
06

31
54

/8
45

46
44

/1
44

30
14

72
3

29
3

46
10

2
70

(8
8%

)
16

(1
00

%
)

no
m

54
01

6
17

11
01

10
13

02
/3

61
10

95
7/

69
73

93
52

23
79

81
48

39
63

(9
3%

)
41

(9
8%

)
no

m
54

01
6

17
11

02
06

31
54

/7
44

49
51

9/
34

01
9

43
74

5
97

26
11

8
93

9
16

7
(8

9%
)

18
0

(8
1%

)
no

m
54

01
5

17
12

27
11

37
09

/1
52

05
16

1/
41

67
4

43
76

1
20

87
94

3
13

16
47

(9
1%

)
25

2
(9

1%
)

no
m

54
01

5
17

12
27

11
37

09
/1

52
05

16
1/

12
06

5
41

62
8

29
56

3
19

0
85

2
20

0
(9

1%
)

23
4

(8
8%

)
no

m
54

01
5

17
11

11
22

00
10

/6
65

19
30

5/
0

71
4

71
4

31
17

70
9

19
(1

00
%

)
12

(1
00

%
)

no
m

54
01

6
17

11
02

06
31

54
/3

13
27

01
9/

0
57

42
57

42
74

22
29

62
(9

3%
)

45
(9

8%
)

no
m

54
01

5
17

10
28

02
41

34
/5

65
58

24
7/

0
99

62
99

62
23

2
21

87
41

7
(8

6%
)

23
0

(8
6%

)
no

m
54

01
6

17
12

16
02

23
08

/7
33

35
32

9/
16

23
12

65
8

11
03

5
16

81
20

09
76

1
(8

5%
)

52
82

(8
6%

)
ye

s
m

54
01

6
17

11
02

06
31

54
/2

80
49

55
9/

87
63

17
29

4
85

31
48

48
35

40
(9

3%
)

28
(9

3%
)

no
m

54
01

6
17

11
23

09
12

38
/7

01
26

74
/0

62
09

62
09

18
0

91
4

36
2

(8
6%

)
24

1
(8

4%
)

no
m

54
01

6
17

11
01

10
13

02
/6

71
09

35
6/

0
14

84
8

14
84

8
24

09
20

23
10

23
(8

9%
)

52
57

(8
8%

)
ye

s
m

54
01

6
17

11
23

09
12

38
/4

01
08

87
5/

0
17

23
0

17
23

0
24

45
10

22
63

33
(8

8%
)

13
78

(8
5%

)
no

m
54

01
5

18
01

06
03

22
01

/3
34

24
17

8/
0

22
99

1
22

99
1

52
83

18
1

72
56

(8
7%

)
11

35
7

(8
6%

)
no

m
54

01
6

17
12

25
00

51
42

/5
13

15
22

6/
0

64
22

64
22

22
13

80
21

71
(8

7%
)

34
99

(8
8%

)
no

m
54

01
6

17
11

22
12

43
50

/3
03

43
56

9/
0

14
06

7
14

06
7

30
11

16
2

27
71

(8
6%

)
64

02
(8

8%
)

no
m

54
01

6
17

12
17

18
57

48
/7

11
06

77
2/

10
07

67
39

57
32

78
57

10
10

8
(8

9%
)

69
(8

8%
)

no
m

54
01

6
17

12
16

02
23

08
/7

08
45

02
6/

61
86

19
46

8
13

28
2

13
3

79
5

23
6

(8
5%

)
27

0
(8

6%
)

no
m

54
01

5
17

12
22

00
49

30
/3

15
89

12
9/

0
44

31
44

31
12

38
20

4
17

46
(8

7%
)

19
86

(8
7%

)
no

m
54

01
6

17
12

16
22

38
46

/5
28

22
93

6/
14

67
0

27
36

8
12

69
8

12
62

61
0

14
44

(8
5%

)
43

61
(8

5%
)

no

47

Table 4.4: Deletion support reads of mCNV (chr19:54, 219, 999-54, 241, 000) on chr.19;
L: length of the read, AS: Alignment Score, ER: Excised Regions

ReadID L AS ER
m54015 171028 124452/11927686/0 5894 5894 4099 19787
m54015 171028 124452/40502023/4621 21625 17004 13630 19746
m54015 171111 220010/45023851/20779 21717 938 641 19752
m54015 171113 042859/68289266/690 10369 9679 7315 19777
m54015 171222 004930/18416590/1488 30909 29421 23408 19745
m54015 171222 004930/29622358/0 27636 27636 21397 19747
m54015 171222 004930/29622358/27681 40498 12817 10278 19746
m54015 171223 071608/30409028/0 20443 20443 16152 19743
m54015 171229 224813/74514908/759 3476 2717 1908 19745
m54015 180106 032201/47055322/14317 34915 20598 16389 19746
m54015 180106 032201/47055322/34959 51683 16724 13684 19743
m54015 180106 132909/10289779/0 6162 6162 4605 19747
m54015 180106 132909/63176887/0 998 998 761 19844
m54016 171101 000840/38994690/6252 12105 5853 4432 19745
m54016 171102 063154/61145748/32600 38234 5634 3895 19746
m54016 171213 113525/29557030/0 6411 6411 4733 19745
m54016 171216 022308/21954906/0 17701 17701 11750 19750
m54016 171216 122926/53608588/33165 55439 22274 14808 19745
m54016 171217 084820/39649562/6571 26530 19959 14450 19738
m54016 171217 084820/39649562/26575 38922 12347 8846 19746
m54016 171218 050715/58917702/19046 41634 22588 16848 19744
m54016 171220 193020/25428496/0 27254 27254 20042 19743
m54016 171220 193020/25428496/27299 31053 3754 3026 19745
m54016 171225 110102/60555644/0 31094 31094 23467 19743
m54016 171227 005214/18875151/23157 29243 6086 4694 19748
m54016 171227 005214/37552377/24484 33548 9064 5987 19745

48

Table 4.5: Duplication support reads of mCNV (chr19:54, 219, 999-54, 241, 000) on
chr.19; L: length of the read, AS: Alignment Score, ER: Excised Regions

ReadID L AS ER
m54015 171029 191526/18743862/0 19312 19312 14384 19756
m54015 171029 191526/51184327/20128 30697 10569 3486 19781
m54015 171111 220010/54198833/11478 15750 4272 2553 19761
m54015 171113 042859/5177604/0 19297 19297 8546 19788
m54015 171113 042859/73531488/0 15177 15177 10399 19749
m54015 171229 224813/9371837/0 14340 14340 8706 19742
m54015 180106 032201/8717133/0 13537 13537 10707 19752
m54015 180106 132909/55772079/358 15568 15210 10076 19758
m54015 180106 233853/29164362/0 25277 25277 17556 19755
m54016 171101 000840/66192044/0 12511 12511 9778 19752
m54016 171101 101302/27984790/8800 24418 15618 11350 19754
m54016 171124 053133/16843161/0 15010 15010 10734 19751
m54016 171213 113525/13435607/19595 43374 23779 17932 19745
m54016 171216 022308/31195929/270 12126 11856 3189 19120
m54016 171216 223846/24511180/12804 39691 26887 20343 19754
m54016 171217 084820/12649301/0 12579 12579 9346 19737
m54016 171218 050715/53674260/2515 16122 13607 8035 19775
m54016 171219 231439/17957098/0 31591 31591 20838 19741
m54016 171227 005214/18088266/18129 21100 2971 2430 19759
m54016 171228 072100/19333688/2340 30269 27929 19873 19747

49

Table 4.6: Resolved breakpoints on chromosome 1 of GIAB HG005 (son); SV type: type
of CNVs (deletion or duplication); Est. Coordinates: estimate coordinates called by
CNVnator with bin size = 1000; Est. L.: estimate length of the SV produced by
CNVnator; Res. Coordinates: resolved coordinates using best practice; Res. L.: resolved
length of the SV using best practice

SV type Est. Coordinates Est. L. Res. Coordinates Res. L.
deletion chr1:1028001-1031000 3000 chr1:1027773-1031373 3599
deletion chr1:1581001-1587000 6000 chr1:1581027-1587055 6027
deletion chr1:9787001-9797000 10000 chr1:9786592-9796634 10041
deletion chr1:14110001-14113000 3000 chr1:14109813-14112445 2631
deletion chr1:24194001-24197000 3000 chr1:24193857-24197185 3327
deletion chr1:24832001-24835000 3000 chr1:24832199-24835023 2823
deletion chr1:25767001-25769000 2000 chr1:25767787-25769385 1597
deletion chr1:27852001-27854000 2000 chr1:27852202-27854291 2088
deletion chr1:47158001-47160000 2000 chr1:47157819-47159974 2154
deletion chr1:54627001-54630000 3000 chr1:54626598-54630293 3694
deletion chr1:75377001-75383000 6000 chr1:75377846-75383253 5406
deletion chr1:82660001-82662000 2000 chr1:82660275-82661887 1611
deletion chr1:84052001-84059000 7000 chr1:84052242-84058947 6704
duplication chr1:86612001-86632000 20000 chr1:86611770-86631274 19503
deletion chr1:91459001-91461000 2000 chr1:91459306-91460671 1364
deletion chr1:93823001-93826000 3000 chr1:93822816-93825701 2884
deletion chr1:109644001-109649000 5000 chr1:109644537-109648774 4236
deletion chr1:112149001-112162000 13000 chr1:112149168-112162082 12913
deletion chr1:152583001-152617000 34000 chr1:152583066-152615265 32198
deletion chr1:156557001-156559000 2000 chr1:156556912-156559144 2231
deletion chr1:174827001-174833000 6000 chr1:174827418-174832707 5288
deletion chr1:175102001-175108000 6000 chr1:175101345-175107500 6154
deletion chr1:184846001-184852000 6000 chr1:184845609-184851667 6057
deletion chr1:194482001-194485000 3000 chr1:194481201-194485183 3981
deletion chr1:197531001-197534000 3000 chr1:197531378-197534142 2764
deletion chr1:198335001-198341000 6000 chr1:198335523-198341149 5625
deletion chr1:218009001-218015000 6000 chr1:218009146-218015253 6106
deletion chr1:236385001-236388000 3000 chr1:236385786-236388030 2243
deletion chr1:242964001-242966000 2000 chr1:242964469-242965914 1444
deletion chr1:245974001-245977000 3000 chr1:245974207-245976531 2323
deletion chr1:246520001-246522000 2000 chr1:246519928-246521874 1945
deletion chr1:247687001-247693000 6000 chr1:247687149-247693207 6057
deletion chr1:247888001-247894000 6000 chr1:247888190-247894398 6207

50

Chapter 5

Algorithms for Detecting Unknown Microbes

Quantification and identification of microbial genomes based on next-generation

sequencing data is a challenging problem in metagenomics. Although current methods

have mostly focused on analyzing bacteria whose genomes have been sequenced, such

analyses are, however, complicated by the presence of unknown bacteria or bacteria

whose genomes have not been sequence. We propose a method for detecting unknown

bacteria in environmental samples. Our approach is unique in its utilization of short reads

only from 16S rRNA genes, not from entire genomes. We show that short reads from 16S

rRNA genes retain sufficient information for detecting unknown bacteria in oral microbial

communities. In our experimentation with bacterial genomes from the Human Oral

Microbiome Database, we found that this method made accurate and robust predictions at

different read coverages and percentages of unknown bacteria. Advantages of this

approach include not only a reduction in experimental and computational costs but also a

potentially high accuracy across environmental samples due to the strong conservation of

the 16S rRNA gene.

5.1 Motivation and Related Work

Although the main objective of metagenomics analysis focuses on profiling known

bacteria, it is complicated by the presence of unknown bacteria (or those without

sequenced genomes). To the best of our knowledge, only MicrobeGPS [75] provides a

basic analysis of unknown bacteria in how they are similar to known bacteria. It does not

address the scenario where unknown bacterial genomes are vastly different from

already-sequenced reference genomes.

To address this challenge, this work focuses on identifying and quantifying

unknown bacteria in microbial communities. In this context, unknown bacteria are those

whose genomes have not been sequenced. Given short reads from a microbial community

that contain genomic materials from known and unknown bacteria, the method works by

51

(i) first separating reads from known bacteria and unknown bacteria, and then (ii)

clustering reads from unknown bacteria into multiple clusters; each cluster represents a

hypothetical unknown bacterium. Importantly, the method utilizes only reads from 16S

rRNA genes as a means to accomplish these tasks. Due to its high conservation,

historically, the 16S rRNA gene has been used as a marker for taxonomic and

phylogenetic analyses ([76, 77]). In the context of metagenomics, whose analyses depend

on only short reads and not entire genes, the 16S rRNA gene was recently used as a means

to construct functional profiles of microbial communities [78].

Using the 16S rRNA gene instead of whole genome information is not only

computational efficient but also economical; Illumina indicated that targeted sequencing

of a focused region of interest reduces sequencing costs and enables deep sequencing,

compared to whole-genome sequencing. On the other hand, as observed by [75], by

focusing exclusively on one gene, one might lose essential information for advanced

analyses. We, however, will provide an analysis that demonstrates that at least in the

context of oral microbial communities, the 16S rRNA gene retains sufficient information

to allow us detect unknown bacteria.

5.2 Uniqueness of the 16S rRNA Genes

Using the 16S rRNA gene as marker instead of the whole genome for

identification and profiling bacterial communities potentially can lose a lot of information.

On the other hand, this gene is highly conserved, which means that using it as the marker

is more advantageous than using the whole genome since the reference gene in our

database is less likely to be different than the gene in bacteria collected from

environmental samples. Our analysis with a dataset that consists of 889 bacteria in the

Human Oral Microbiome database suggests that the use of the 16S rRNA gene as marker

is justified because there is a sufficient amount of information in this gene among different

bacteria to help distinguish these bacteria. Consequently, the use of the 16S rRNA gene as

52

marker to distinguish bacteria enjoys both the advantageous characteristics of the gene

and having sufficient information required for the task.

To analyze the effectiveness of using the 16S rRNA gene as marker, we quantify

the uniqueness of the gene among the set of 16S rRNA genes in bacteria of interest. To be

precise, let G = {g1, g2, · · · , gn} be the set of 16S rRNA genes of bacteria of interest.

Define U(k, gi, gj) to be the number of k-mers in gi that are not in gj or grcj divided by

|gi| − k + 1, where grcj is the reverse complement of gj . Note that 0 ≤ U(k, gi, gj) ≤ 1. In

particular, U(k, gi, gj) being 1 means that all k-mers in gi do not occur in gj or grcj . Thus,

when U(k, gi, gj) = 1, it is likely that reads much longer than k coming from gi will not

be mistakenly mapped to gj . Further, for each gi, define

U(k, gi) = min
1≤j≤n,j 6=i

U(k, gi, gj)

Thus, the uniqueness score, U(k, gi), is a conservative measure of uniqueness of gi

in the whole set G. The closer U(k, gi) is to 1, the more unique it is, and the more likely

that reads much longer than k from gi will not be mistakenly mapped to any other gene gj

in G.

Fig. 5.1: Distributions of U(k, gi) of 16S rRNA genes suggest that k-mers longer than 16
can effectively be used to distinguish bacteria in the human oral microbiome.

53

Figure 5.1 shows, for different values of k, the distributions of U(k, gi) of 889 16S

rRNA genes obtained from the Human Oral Microbiome database. We can see that the

distribution of U(6, ki) peaks at around 0.58; i.e. around 88 genes have uniqueness scores

at approximately 0.58. When k = 8, most genes have uniqueness scores at around 0.97.

When k = 16, most genes have uniqueness scores at 1. When k ≥ 18, we observed that

all genes have uniqueness score of 1. This means for each gene in G, we can distinguish it

with other genes using 18-mers. It also means that given reads produced by current

technologies (e.g. ≥ 10), it is likely that reads that come from some gene gi will not be

mistakenly mapped to any gene other than gi.

5.3 Method

5.3.1 Overview

Our method for identifying unknown bacteria from short reads that come from 16S

rRNA genes of all bacteria (including known and unknown bacteria) in an environmental

sample works as follows:

1. Reads are first roughly assigned to known bacteria. This is done by aligning

those reads to the collection of already-sequenced 16S rRNA genes of known

bacteria. The alignment process can be done using a good aligners such as

Bowtie2 [79], BWA-MEM[80], Soap2 [81], RandAL[82]. We used Bowtie2

due to the efficiency and flexibility of the software package. The aligner works

by creating an indexR of reference 16S rRNA genes, which come from known

(already-sequenced) bacterial genomes.

2. Reads that are not mapped toR are presumed to belong to 16S rRNA genes of

unknown bacteria. We used SAMtools [65, 77] to collect unmapped reads from

the results of Bowtie2. At this point, it is possible and actually expected that (i)

some reads that belong to unknown bacteria have been mistakenly mapped to

R, and (ii) some reads that belong to the 16S rRNA gene of some known

54

bacteria are mistakenly not mapped toR. Thus, the set of unmapped reads, U ,

contain both false positives and false negatives.

3. The unmapped reads, U , are then clustered into distinct clusters. Each cluster

represents a hypothetical unknown bacterium. An additional post-processing

step can be applied to (i) remove clusters with too few reads as they do not

possess sufficient information and (ii) split large clusters that might contain

reads belong to more than one bacteria. At this point, it is possible that (i)

multiple clusters can represent the same unknown bacterium and (ii) an

unknown bacterium is not represented at all by any cluster. Both cases are not

desirable and they both affect the accuracy of predicting the number of

unknown bacteria.

5.3.2 Clustering Unmapped Reads

Fig. 5.2: Reads mapped to a contiguous region of a 16S rRNA gene

The clustering procedure described in Step 3 of Section Overview is a critical

component of this method. Technically, each cluster is a collection of reads that cover a

contiguous genomic region. In other words, if one was to align these reads to the correct

genomic region of a 16S rRNA that contains these reads, they would form a contiguous

sequence. See Figure 5.2.

We employ the data structure that is similar to a Union-Find data structure[83] to

partition unmapped reads in U into a disjoint set of subsets. Each subset or cluster would

represent a contiguous genomic region. This data structure C has following methods:

• MakeSet(x), which creates a singleton set containing the element x.

• Union(x,y), which unions the two disjoint sets that contain x and y.

55

• Find(x), which finds the set that contains x.

• Clusters(), which returns all disjoint subsets that C maintains.

Algorithm 2: Placing reads into disjoint clusters of overlapping reads
1: C ← UnionFind()
2: for each x in U do
3: C.MakeSet(x)
4: for each x in U do
5: for each y in U do
6: if C.Find(x) 6= C.Find(y) and Overlap(x, y) then
7: C.Union(x, y)
8: return C.Clusters()

These methods can be encapsulated in data structure that is similar to the

Union-Find data structure. Given the set of unmapped reads, U , the clustering procedure

(as described in Step 3, Section Overview) can be described in Algorithm 2, which is

described in an inefficient manner to help understandability; our actual implementation is

more efficient. Essentially, the procedure looks at all pairs of unmapped reads and – if

they overlap – merges the contigs to which they belong. Since reads can be in either the

primary or the complementary strand, the determination of overlapping of two reads must

account for this fact. First, given two sequences, define

O(a, b) = HAM(pre(a, k), suf(b, k)), where pre(a, k) is the k-prefix of a; suf(b, k) is

the k-suffix of b; and HAM is the Hamming distance function. Then, the overlapping of

two reads x and y is determined as follows: Overlap(x, y) is True and only if

max(O(x, y), O(xrc, y), O(x, yrc), O(xrc, yrc))

min(|x|, |y|)
≥ τ

where |x| is the length of x; xrc is the reverse complement of x; and τ is an empirically

determined parameter.

5.3.3 Post Clustering Processing

Clusters produced by Algorithm 2 are predicted raw representations of different

bacteria. Additional processing can be done to improve prediction accuracy. In particular,

56

two heuristics can be employed. First, clusters containing too few reads should be

removed as they do not possess enough information to give sufficient confidence in

prediction. Second, clusters with too many reads might contain reads that belong to more

than one bacteria. We consider heuristics that decompose graphs into large disjoint

clusters representing different bacteria. One of such heuristics is based on a well-studied

problem in network analysis: decomposition of graphs into dense subgraphs [84]. To

adopt this strategy, we represent the set of unmapped reads in cluster i as a graph, Gi, in

which vertices represent reads and edges represent overlapping of read pairs. Specifically,

there is an edge (u, v), if and only if Overlap(u, v) is true. As defined in Section

Clustering Unmapped Reads , the function Overlap examines the overlapping of reads as

well their reverse complements. With this representation, reads within each cluster that

belong to different bacteria tend to form dense subgraphs of Gi. These subgraphs are

connected with each other by edges that represent the overlapping of similar reads

belonging to different bacteria.

5.3.4 Method Evaluation

As clusters returned by Algorithm 2 represent predicted species, the quality of

prediction can be quantified in terms of how closely the clusters resemble the set of

bacteria that reads belong to. Let T = {T1, · · · , Tn} be the set of bacteria that unmapped

reads belong to and C = {C1, · · · , Cm} be the set of clusters that our method assigns the

reads to. Although there are many different ways the accuracy of clusterings can be

evaluated, we chose four different metrics that evaluate clustering quality in different

meaningful and complementary ways.

Mutual information is an information-theoretic measure of how similar two joint

distributions are. In the context of clustering, the mutual information between two

clusterings T and C is defined as

MI(T,C) =
n∑
i=1

m∑
j=1

P (i, j) log
P (i, j)

P (i)P (j)

57

where P (i, j) is the probability that a read belongs to both Ti and Cj; P (i) is the

probability that a read belongs to Ti; P (j) is the probability that a read belongs to Cj . The

Adjusted Mutual Information (AMI) [85] of two clusterings is an adjustment of mutual

information to account for chance and is defined as follows:

AMI(T,C) =
MI(T,C)− E(MI(T,C))

max(H(T), H(C))− E(MI(T,C))

where E(MI(T,C)) is the expected mutual information of two random

clusterings and H(T) is the entropy of the clustering T . An AMI value of 0 occurs when

the two clusterings are random, whereas a value of 1 occurs when C and T are identical.

Rand Index is a common measure in classification problems, where the measure

takes into account directly the number of correctly and incorrectly classified items.

RI(T,C) =
2(a+ b)

n(n− 1)

where a is the number of pairs of reads that are in the same cluster in T and C; and

b is the number of pairs of reads that are in different clusters in T and C. The Adjusted

Rand Index (ARI) was introduced to take into account when the Rand Index of two

random clusterings is not a constant value [86]. An ARI value of 0 occurs when two C

and T are independent, whereas a value of 1 means C and T are identical.

In addition to AMI and ARI, we also considered two complementary metrics,

introduced by [87]: homogeneity and completeness. A clustering is homogenous if each

cluster Cj contains only reads that come from some bacterium Ti. A clustering is

complete if all reads that belong to any bacterium Ti are placed into some cluster Cj .

These two metrics are opposing in that it is often hard to achieve high scores on both

homogeneity and completeness. A few examples might help understand this intuition:

• T = C if and only if both homogeneity are completeness scores are 1. T being

58

identical to C only occurs when reads in each Ti are placed in exactly one Cj ,

and all reads in each Cj come only from one Ti.

• Suppose T = {{r1, r2}, {r3, r4}} and C = {{r1, r2, r3, r4}}. Then, the

completeness score is 1, because all reads that belong to T1 (and respectively to

T2) are placed in the same cluster in C. On the other hand, the homogeneity

score is 0, because reads in the only cluster in C come from different bacteria in

T .

• Suppose T = {{r1, r2}, {r3, r4}} and C = {{r1, r3}, {r2, r4}}. Then, both

completeness and homogeneity scores are 0.

5.4 Experiments

In this section, we report experimental results that show various aspects of

accuracy and robustness of this method. Accuracy is measured by four different metrics

Adjusted Mutual Information (AMI), Adjusted Rand Index (ARI), Homogeneity and

Completeness.

5.4.1 Mock Oral Microbial Communities

Experiments were conducted on 16S rRNA genes obtained from 889 sequences

cataloged by the Human Oral Microbiome Database. The lengths of genes vary between

1,323 to 1,656 bases. We simulated mock microbial communities at various settings in

order to be able to compare ground truths and predicted values and ascertain the accuracy

of the method. Each mock community consists of (A) known bacteria, whose 16S rRNA

genes were used to filter out known bacteria, and (B) unknown bacteria, whose 16S rRNA

genes must be identified and separated into different clusters representing different

unknown bacteria.

These mock communities were synthetically created to evaluate various aspects of

our method. In our experiments, short reads from 16S rRNA genes were generated using

Grinder [88] using parameters for the Illumina sequencing platform. Mean read length

was 150 with a standard deviation of 20. Read coverage was between 10x to 100x and the

59

percentage of unknown bacteria varied from 1% to 16%. To study how one parameter

affects the accuracy of the method, we used mock communities in which only that

parameter varied while the others were kept constant.

5.4.2 The Affect of Coverage on Prediction Accuracy

First, we examined how the method’s accuracy (in terms of completeness,

homogeneity, mutual information and Rand index) varied at increasing read coverages.

We expected that having more reads means having more information and that would result

in an observed increase in accuracy. In this experiment, read coverage in mock

communities varied from 10x to 100x. The percentage of unknown bacteria in these

communities were kept constant at 8%.

Fig. 5.3: Accuracy of predicting unknown bacteria (measured by four different
metrics) at read coverage ranging from 10x to 100x.

Figure 5.3 shows accuracies measured by four different metrics. As expected,

prediction accuracy was higher at higher coverage for three of the measures. Additionally,

60

accuracy values measured by AMI are generally higher than ARI. AMI tells us about the

degree of randomness of a predicted clustering compared to the ground-truth clustering,

whereas ARI attempts to quantify the item pairs that are in the same and different subsets.

Our interpretation of this observation is that while predictions are not random, there are

still structural information among clusters or within clusters that our method has not fully

exploited.

Further, predictions were homogeneous than complete. This means that (i) a

cluster more likely contains only reads that belong to some bacterium, and (ii) reads

belonging to a bacterium could be placed in multiple clusters. Observation (i) confirmed

that the method worked as it should. To understand observation (ii), note that if reads

belonging to a gene do not assemble into a contiguous sequence (due to low or

non-uniformity of coverage), then reads belonging to the gene will be placed into multiple

clusters.

Finally, as coverage approached 100x, clusters became less homogeneous. This

happened because having more reads increased the change of mistakenly placing reads

into clusters representing different bacteria. In this experiment, 80x appears to be a good

coverage.

5.4.3 The Affect of Unknown Bacteria Concentration

To study the affect of the amount of unknown bacteria has on prediction accuracy,

we evaluated our method with mock communities in which percentage of unknown

bacteria varied from 2% to 16%, while read coverage was kept constant at 40x with 10

random replicates at each percentage.

The result of this experiment is summarized in the box plot in Figure 5.4. As

expected, prediction accuracy (as measured by AMI, ARI and Completeness) tended to

decrease with more unknown bacteria. On the other hand, homogeneity were not effected

very much. The result shows that accuracy starts dropping dramatically when the

61

Fig. 5.4: Accuracy of predicting unknown bacteria (measured by four different metrics) at
different amount of unknown bacteria.

concentration of unknown bacteria reaches 16%. We hope that future improvements can

increase this number.

5.5 Discussion

Although it is known that 16S rRNA genes can be used to distinguished known

bacteria, we demonstrated that only reads from these genes can be used to predict the

number of unknown bacteria in oral microbial communities. Advantages include (i) a

reduction in cost and computational processing, and (ii) the high conservation of 16S

rRNA genes increases the chance of reference genetic materials being highly similar to

those of bacteria in environments, which eliminates multiple sources of errors and

challenges.

62

Chapter 6

Read Assembly Algorithms for Improving Species Classification

6.1 Background

Species classification and profiling is an important problem in metagenomics

analysis. Many different computational tasks and workflows depend on the identification

and profiling of organisms that are present in metagenomics samples. Examples include

studies that assessed the host-microbe interactions in the gut microbiome to gain better

insight into human health [89], revealed ecological differentiation of closely related

bacteria [90], uncovered the presence of ancient sub-populations of marine bacteria [91],

and highlighted extensive intra-species recombination [92, 93].

Methods for classification and profiling of microbial communities are diverse.

CLARK [94] uses a database of k-mers that aims to uniquely describes genomic regions

of each targeted microbes. GOTTCHA [95] has a different approach to identifying unique

genomic regions of targeted microbes by using a combination of empirical data and

machine learning methods. Kraken [96] also utilizes k-mers, but builds taxonomic trees

that help differentiate closely related microbes. MetaPhlAn2 [97] employs a similar

taxonomic approach, but narrows read alignment and its analysis only on a set of around

one million markers.

Although short reads have low sequencing errors, their short lengths have been a

limitation in the identification of structural variants, sequencing repetitive regions, phasing

of alleles and distinguishing highly homologous genomic regions. This limitation can

have a serious practical consequence. For example, it might have significantly contributed

to the diagnostic gap in patients with genetic disorders [98].

More recent technologies can produce very long reads, but at the expense of

having higher costs and much higher error rates [66]. However, longer reads have been

found to be more appropriate or better compared to short reads in certain studies.

Single-molecule sequencing (SMS) offers exceptionally long reads that enable direct

63

sequencing of genomic regions that are difficult to sequence with short reads, including

long repetitive elements, extreme GC-content regions, and complex gene loci. Similarly,

these platforms enable structural variation characterization at previously unparalleled

resolution and direct detection of epigenetic marks in native DNA [99]. Similarly, the

PacBio sequencing system can capture full-length 16S rRNA sequences [100].

Third-generation nanopore sequencing offers many solutions to the current problems of

using whole metagenome sequencing (WMS) for infectious disease diagnostics. It has

been successfully utilized for pathogen detection, AMR prediction, and characterization

of mixed microbial communities [101].

While long read technologies are more appropriate for certain studies, short read

technologies are mature and less expensive. Is it possible to leverage known strengths of

short read technologies to garner the high performance of long reads?

In this chapter, we demonstrate that it is possible to improve the performance of

species classification in metagenomic applications using long reads that are assembled

from short reads. This finding has two major implications. First, it suggests that many

existing studies that utilize short reads can benefit from long reads that are assembled

from the short reads. Although there is an extra computational cost of assembly and minor

modification to the existing workflows, the increase in performance might justify the cost.

Second, this finding suggests that there are potential gains in utilizing long-reads

technologies in this type of applications. As current long-read technologies have different

characteristics from short-read technologies in terms of cost and sequencing errors, the

trade-offs between these pros and cons remain to be investigated.

6.2 Results

6.2.1 Experimental Design

The main hypothesis is that the classification or identification of microbes in

metagenomics samples is better done with long reads than with short reads. We aim to

design a controlled experiment to verify the hypothesis. To achieve this, we evaluated the

64

ability to detect species in metagenomics samples of several well-known classifiers on

several short-reads datasets and derived long-reads datasets. The choice of which

long-reads datasets are used to compare against which short-reads datasets is an important

design decision. If we choose a long-reads dataset produced by a current technology to

compare against a short-reads dataset produced by a different technology, the result might

be due to differences in technologies rather than in read lengths. As our goal is to examine

the impact of read lengths on classification, we chose to use long reads that are derived

from the same short reads. These derived long-reads datasets are constructed by

assembling short reads from the datasets that are used to evaluate the classifiers’

performance. Although this design choice removes the effect of sequencing technologies,

it introduces the potential effect of assembling reads on the result. To address this, we

evaluated classifiers with different assemblers to remove algorithmic bias on classification

performance.

More descriptions of the experimental design can be found in section Methods.

6.2.2 Performance Assessment

Classifiers were evaluated with synthetic and real samples. Although some tools

can work on the strain level, we evaluate classification results at species levels since most

methods still do not provide strain level identifications. Classification performance of

synthetic data was measured in terms of precision, recall, and F1.

Precision =
TP

TP + FP
;Recall =

TP

TP + FN
;F1 =

2 · precision · recall
precision+ recall

Where TP (true positives): the number of correctly classified species, FP (false

positives): the number of incorrectly classified species, FN (false negatives): the number

of incorrectly classified non-species, by each method.

To access classifiers’ performance on real data, we define the overall pairwise

65

similarity of a method c to other methods as

∑n
i=1,c 6=i |Sc ∩ Si|∑n
i=i |Sc ∩ Si|

where, Si is the number of species predicted by method i. This similarity is between 0 and

1. The closer it is to 1, the higher the overall similarity to other methods.

6.2.3 Data

Mende datasets [102] were simulated for Sanger sequencing, pyrosequencing, and

Illumina sequencing. For each technology, three metagenomes were simulated to mimic

different community complexities 10 species (10s), 100 species (100s), and 400 species

(400s). However, the Sanger sequencing, pyrosequencing technolgies seem

obsolete/out-of-date. We test our hypothesis on Illumina paired-end raw reads of Mende

datasets, which is a very widely used sequencing platform.

To test our hypothesis with the real data, we used the gut microbiome data [103].

The metagenomic shotgun-sequencing data for two samples (ERR2017411,

ERR2017412) was downloaded from the European Bioinformatics Institute (EBI)

database under the accession code ERP023788.

All data used was paired-end reads within the Illumina platform. Synthetic data

consists of 26 million reads for each dataset (10s, 100s, and 400s) with the read length of

75bp. Real data has 17 million reads for each sample with the read length of 90bp. There

is a slightly different in read lengths between synthetic data and real data; however, the

read lengths from 75bp to 100bp have been reported [104, 105] to produce the same

alignment results.

6.2.4 Findings

Using assembled reads, four out of seven classifiers increased their precision by at

most double, while maintaining similar recall; see Table 6.1. These four classifiers are

Kaiju, CLARK, Kraken and MetaCache. The improvement in performance was most

66

Table 6.1: Precision, recall, F-1 of species-level classification of four metagenomic
classifiers on three synthetic short read datasets, which are, respectively, not assembled
and assembled by three assemblers.

Kaiju CLARK Kraken MetaCache
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

10
s

not assembled .02 1.0 .04 .02 1.0 .05 .03 1.0 .06 .20 1.0 .33
MEGAHIT .50 .90 .64 1.0 1.0 1.0 1.0 1.0 1.0 .90 1.0 .95
MetaSPAdes .50 .90 .64 1.0 1.0 1.0 1.0 1.0 1.0 .66 1.0 .80
Ray .39 .90 .54 1.0 1.0 1.0 1.0 1.0 1.0 .83 1.0 .91

10
0s

not assembled .18 .87 .29 .21 .98 .35 .21 .84 .34 .47 .97 .63
MEGAHIT .35 .87 .50 .88 .99 .93 .67 .86 .75 .78 .99 .87
MetaSPAdes .35 .87 .50 .69 .99 .81 .63 .86 .73 .73 .99 .84
Ray .25 .87 .38 .98 .99 .98 .75 .86 .80 .83 .99 .90

40
0s

not assembled .84 .88 .86 .95 .99 .97 .95 .83 .88 .91 .97 .94
MEGAHIT .88 .88 .88 .99 .99 .99 .98 .84 .90 .97 .99 .98
MetaSPAdes .87 .88 .87 .98 .99 .99 .98 .84 .90 .96 .99 .98
Ray .95 .85 .90 .99 .99 .99 .99 .84 .91 .99 .98 .99

drastic for smaller datasets. With the dataset 10s, which consisted of 10 species, CLARK,

for example, benefited from a 50x increase in precision with the same recall, when reads

were assembled by any of the three assemblers. With the dataset 100s, which consisted of

100 species, CLARK benefited from 3x-4x increase in precision with the same recall,

when reads were assembled by any of the three assemblers. With the dataset 400s, which

consisted of 400 species, CLARK benefited from a 1.04x increase in precision with the

same recall. Similarly, other three classifiers benefited from assembled reads. Kraken and

MetaCache benefited from increases in both precision and recall with the larger datasets

100s and 400s.

MetaPhlAn2’s performance got worse with assembled reads, compared to its

performance on unassembled short reads. As seen in Figure 6.1, the overall F1 score is

highest when reads were not assembled. We also observed that DUDes and GOTTCHA

did not benefit from assembled reads. Figure 6.1 shows that the F1 scores of DUDes and

GOTTCHA remained unchanged or decreased slightly with assembled reads. We also

67

Fig. 6.1: Overall F-1 scores of species-level classification produced with short reads
(abbreviated ”na”) and assembled reads by MEGAHIT(abbreviated ”MH”),
metaSPdes(abbreviated ”MS”) and Ray

observed that F1 scores were highest when reads were assembled by MEGAHIT and

metaSPAdes.

We observed that with synthetic, the majority of classifiers predicted much fewer

species when reads were assembled; see Table 6.3. This observation likely explains the

drastic observed increase in precision, while maintaining similar recall, across the board

with synthetic datasets. With real datasets, we observed a similar behavior that classifiers

predicted much fewer species when reads were assembled. Although we could not

compute precision and recall with real data, the same trend suggests that as with synthetic

data, classifiers should be much more precise when reads were assembled. This increase

in precision should, similarly, be drastic when the datasets have much fewer species than

the index database that were used by classifiers to classify species.

Additionally, Table 6.4 shows that with real datasets, the overall pairwise

similarity decreased with assembled reads. This suggests that with assembled reads,

classifiers had a higher chance of showing their uniqueness in predicting species.

68

10s

100s

400s

ERR2017411

ERR2017412

PacBio and ONT

Fig. 6.2: Contig length distribution compared to PacBio and ONT long read length
distribution. Contigs were assembled by different assemblers (left to right): MEGAHIT,
metaSPAdes and Ray. The bottom subfigures are PacBio (left) and ONT (right) read
length distribution.

69

Table 6.2: Assembly statistics for all assemblers on simulated (10s, 100s, 400s) and real
(ERR2017411, ERR2017412) data

Statistics Dataset MEGAHIT metaSPAdes Ray
Synthetic Data

number of contigs 10s 1,069 1,156 3,256
largest contig 10s 835,563 1,436,250 294,361
avg contig 10s 31,529.53 29,211.97 10,307.24
n50 10s 131,416 234,206 31,735
number of contigs 100s 156,074 210,765 717,512
largest contig 100s 573,139 190,202 14,995
avg contig 100s 1,936.78 1,448.98 189.24
n50 100s 3,051 2,732 177
number of contigs 400s 488,142 901,182 59,663
largest contig 400s 21,914 13,618 3,367
avg contig 400s 377.24 323.58 149.72
n50 400s 361 319 138

Real Data
number of contigs ERR2017411 85,426 165,252 252,974
largest contig ERR2017411 516,770 394,993 278,191
avg contig ERR2017411 1,606.59 981.96 443.97
n50 ERR2017411 4,063 2,820 1,620
number of contigs ERR2017412 67,750 141,689 201,038
largest contig ERR2017412 212,503 264,186 192,118
avg contig ERR2017412 1,360.63 807.96 340.48
n50 ERR2017412 2,720 1,816 432

6.2.5 Discussion

In this work, we showed the promising prospect of utilizing long reads in

identifying species in metagenomic samples. Long reads, used in this study, are assembled

from the same short reads, which were used to compare classification performance. This

was performed to remove potential side effects of different sequencing technologies. As

future long-read technologies achieve fewer sequencing errors and become less expensive,

their use for species classification in metagenomics should be desirable.

At presence, we have demonstrated that we can leverage the advantage of long

reads by assembling short reads that would otherwise be used for species classification.

We showed that at least two of the currently popular assemblers can be used for this

purpose. We observed that MEGAHIT and metaSPdes produced higher N50s across

70

Table 6.3: Number of species predicted by each classifiers

Kaiju CLARK Kraken MetaCache MetaPhlAn2 DUDes GOTTCHA
26,666,674 paired-end reads (10s) length of 75bp

n/a 3553 372 346 50 10 9 10
MEGAHIT 25 10 10 11 5 11 10
MetaSPAdes 31 10 10 15 3 13 10
Ray 36 10 10 12 8 12 10

26,667,004 paired-end reads (100s) length of 75bp
n/a 3659 394 380 176 87 73 84
MEGAHIT 1258 95 125 108 80 71 84
MetaSPAdes 1328 122 131 115 81 72 84
Ray 2109 86 107 101 86 74 84

26,665,698 paired-end reads (400s) length of 75bp
n/a 3707 416 405 426 402 282 390
MEGAHIT 2024 403 394 411 370 284 388
MetaSPAdes 2522 405 396 416 375 277 389
Ray 754 398 392 394 10 188 99

17,853,919 paired-end reads (ERR2017411) length of 90bp
n/a 3654 3140 3638 1071 79 29 37
MEGAHIT 2071 1477 1537 718 29 47 25
MetaSPAdes 2618 1782 1867 797 32 33 25
Ray 2679 1630 1731 515 31 40 23

17,793,507 paired-end reads (ERR2017412) length of 90bp
n/a 3647 3075 3651 1044 82 48 45
MEGAHIT 1653 1035 1058 611 23 33 26
MetaSPAdes 2312 1387 1423 679 39 42 29
Ray 2192 1203 1297 448 21 21 22

Table 6.4: Pairwise similarity of a method to other methods

Kaiju CLARK Kraken MetaCache MetaPhlAn2 DUDes GOTTCHA
17,853,919 paired-end reads (ERR2017411) length of 90bp

n/a 0.66 0.69 0.66 0.68 0.65 0.82 0.80
MEGAHIT 0.51 0.63 0.62 0.60 0.76 0.81 0.80
MetaSPAdes 0.53 0.65 0.64 0.63 0.73 0.81 0.81
Ray 0.50 0.64 0.62 0.63 0.74 0.81 0.80

17,793,507 paired-end reads (ERR2017412) length of 90bp
n/a 0.66 0.69 0.65 0.68 0.71 0.82 0.82
MEGAHIT 0.51 0.63 0.62 0.60 0.76 0.81 0.80
MetaSPAdes 0.53 0.65 0.64 0.63 0.73 0.81 0.81
Ray 0.50 0.64 0.62 0.63 0.74 0.81 0.80

71

datasets, while Ray had lower N50s. In fact, it failed to assemble reads when the datasets

contained 400 species. An quick comparison between metaSPAdes and MEGAHIT

assemblers across all the datasets considered in this study confirmed that metaSPAdes

performs better for a smaller dataset (10s) while MEGAHIT performs better for larger

datasets (100s and 400s).

We think that Kaiju, CLARK, Kraken, and MetaCache benefited from the longer

reads because their approach of k-mers as unique markers to distinguish closely related

species. On the other hand, MetaPhlAn2, DUDes and GOTTCHA have built-in statistical

post-processing procedures that align reads to reference genomes, which appear not

benefit from longer reads.

6.3 Methods

Most metagenomic classifiers, including those that we studied in this chapter,

consist of two main steps. In the preprocessing step, a classifier utilizes reference genomic

sequence of existing species to build an index or reference table. The index or reference

table is built only once for a metagenomic environment. In the classification step, the

classifier uses the index or reference table to classify metagenomic data, in the form of

reads, and make predictions.

Our method interrupts this workflow by modifying the classification step. Before

feeding short reads as inputs to a classifier, we assemble them into long reads. Figure 6.3

depicts the process of comparing a classifier’s performance on short reads and long reads.

Figure 6.3A is the standard workflow of a classifier, in which the classifier takes as input a

short reads dataset and outputs species that it predicts to be present in the sample. Figure

6.3B shows a workflow, in which the same short reads are first assembled before feeding

to the classifier.

Different methods may have different types of prediction outputs, which can be

species label for each read, or predicted species for the entire dataset, or predicted

percentages of species in the sample (in case of metagenomics profiling). Profiling

72

Fig. 6.3: Workflow of metagenomic classification: (A) original workflow, which uses
short reads, (B) modified workflow, which uses assembled reads. Metegenomic classifiers
are Kaiju, CLARK, Kraken, MetaCache, MetaPhlAn2, DUDes and GOTTCHA.
Metagenomic assemblers are MEGAHIT, metaSPAdes, and Ray.

classifiers output a rank separated taxanomic profile with relative abundances, whereas

binning classifiers provide sequence identification, length used in the assignment, and

taxon as output. These outputs are then converted into species names. As a result, each

metagenomic classifier produces a list of species as output.

Each classifier requires a reference database of genomic sequences to classify

metagenomic reads into species. We used complete genomes of bacteria archaea, and

viruses from NCBI to construct this database for each classifier. We removed species that

were labeled unclassified or unknown because they might cause problems for taxonomic

prediction [106].

For consistency, we used the NCBI taxonomy database [107] to standardize results

from different classifiers. Further, for classifiers that produced strain-level predictions, we

converted them to species-level predictions so that the results can be compared

consistently across different classifiers.

We compared the outputs of classifiers using default parameters at the species

level because not all classifiers still predicted at strain level. Species is a taxonomic rank

73

more relevant in clinical diagnostics or pathogen identification than genus or phylum.

Although some clinical diagnosis and epidemiological tracking often requires

identification of strains, genomic databases remain poorly populated below the species

level [108]. Evaluation was done in a similar way to [108, 109]. For each classifier, we

evaluated predicted species produced with assembled reads and predicted species

produced with original short reads.

6.3.1 Classifiers

We evaluated with a set of seven metagenomic classifiers: Kaiju (version 1.7.2)

[110], CLARK (version 1.2.6) [94], Kraken (version 1.1.1) [96], MetaCache (version

0.6.1) [111], MetaPhlAn2 (version 2.6.0) [97], DUDes (version 0.08) [112], and

GOTTCHA (version 1.0c) [95]. The choice was motivated by recent publications

comparing the performance of such tools [108].

Kaiju, CLARK, Kraken, MetaCache are k-mer based methods for metagenomic

read classification. CLARK and Kraken were run with the default k-mer size of 31, while

MetaCache use 16-mers by default. Kaiju was run in the fastest MEM mode (with

minimum fragment length m = 11), as well as in the heuristic greedy mode (with

minimum score s = 65).

On the other hand, both MetaPhlAn2 [97] and DUDes [112] have to use results of

read-to-reference mapping from Bowtie2 [79]; however, for some longer contigs (several

million bps), Bowtie2 (version 2.3.4.2) crahsed. We used a read mapper designed for both

short and long reads: Minimap2 (version 2.17) [70] as an alternative for mapping reads to

reference genomes.

While running the classifiers above, we specified the “paired-end reads” option for

raw read input as well as the “singleton read” option for assembled read input.

74

6.3.2 Assemblers

MEGAHIT (version 1.2.9) [113], metaSPAdes (version 3.13.1) [114], Ray

(version 2.3.1) [115] have been used to assemble short-reads into contigs. These tools

were selected based on their popularity for assembling metagenomic reads [116].

Assemblers have been launched with (mostly) default parameters; taking a pair of

FASTQ files that contains raw reads and then producing a single FASTA file that contains

assembled reads for each dataset. The file names of assembled reads from MEGAHIT,

metaSPAdes, and Ray are “final.contigs”, “contigs” and “Contigs” respectively.

Ray parallelizes assembly computations using the Message Passing Interface

(MPI) standard, a run agent “mpirun”. While metaSPAdes consumes very high memory,

MEGAHIT specifies multiple computational threads and optionally a graphical processing

unit for improving its runtime. Due to the scope of this work, we do not report the runtime

as well as memory usage of the assemblers.

6.4 Summary

We compared performance of popular metagenomic classifiers on short reads and

longer reads, which are assembled from the same short reads. Using a number of popular

assemblers to assemble short reads, we discovered that most classifiers made fewer

predictions with longer reads and that they achieved higher classification performance on

synthetic metagenomic data. Specifically, across most classifiers, we observed a

significant increase in precision, while recall remained the same, resulting in higher

overall classification performance. On real metagenomic data, we observed a similar trend

as in the case of synthetic data that classifiers made fewer predictions. This suggested that

they might have the same performance characteristics of having higher precision while

maintaining the same recall with longer reads.

This finding has two main implications. First, it suggests that classifying species in

metagenomic environments can be achieved with higher overall performance simply by

assembling short reads. This finding can make a big impact on the many existing studies

75

that utilize short reads. The modification to their existing workflow is minimal, although

there is an extra computational cost of assembling short reads. We showed that a number

of existing assemblers could be used for the purpose of assembling short reads into longer

contigs for this specific purpose.

Second, this finding suggests that it might be a good idea to consider utilizing

long-read technologies in species classification for metagenomic applications. Current

long-read technologies tend to have higher sequencing errors and are more expensive

compared to short-read technologies. The trade-offs between the pros and cons should be

investigated.

76

Chapter 7

Conclusion and Future Work

In this dissertation, various new algorithms for several computationally intensive

tasks of genomic and metagenomic data analysis have been presented. There are still

problems in this area wide open for further research. For example, realignment analysis is

a very time and resource-demanding computation and in genome-wide studies (e.g.

human) it can take days to complete even on high performance clusters. Moreover, as

sequencing technologies continue to advance, they constantly produce more data and

reads with novel characteristics (e.g. longer lengths, different error profiles), cause new

computational challenges, and create exciting research questions. Here we briefly discuss

several on-going and future projects related to the work presented in this dissertation.

• Long-read data and aligner characteristics: Single-molecule sequencing

(SMS) technologies generate data with properties drastically different from that

of next-generation sequencing technologies (NGS). SMS generates very long

reads with very high sequencing errors. A fundamental characterization of SMS

is a fruitful study, since it is not as widely adopted as NGS. Furthermore, the

bioinformatics tools required to analyze SMS are not as matured or well

understood, hence characterizing sequence alignment methods is an important

prerequisite. In an on-going project, we are looking at pair-wise alignments

between long-reads and a reference genome from various popular long-read

aligners across multiple samples. By measuring the sequencing quality of

alignments by multiple aligners, we compute statistics of sequencing error rates

and presence the pattern across samples.

• Genome-wide SVs/CNVs discoveries: In one chapter of this disertation, a

mCNV was discovered in the human genome GIAB data on a chromosome 19

neutral region. This work can be expanded on resolving breakpoints of complex

structural variation to other complex loci to understand them. Such highly

77

complex loci with overlapping CNVs and loci containing multiple classes of

structural variation still require locus specific strategies in order to be discovered

and typed. This is why complex structural genomics is focused on developing

genome-wide approaches to typing and incorporating complex structural

haplotypes into association studies. Therefore, we have focused on capturing

these variations in larger genome-wide sequence data in an on-going project.

• Single cell data applications: High-throughput DNA sequencing technologies

have recently lead to many noteworthy advances in single-cell studies.

Single-cell sequencing enables comprehensive genome-wide copy number

profiling of thousands of cells of various evolutionary stages and lineage. In

humans, natural-mutation markers that are created within cells as they

proliferate and age are the primary determinants. It is now possible to trace

human lineages in normal, noncancerous cells with a variety of data types using

natural variations in the nuclear and mitochondrial DNA as well as variations in

DNA methylation status. We plan to have an extended version of AGE which

can work with single cell data for defining breakpoints based on statistics of

CNVs in each cell.

With the rapid advance in sequencing technologies, biomedical data is being

generated at an unprecedented rate. Accurate, efficient, and well designed computational

algorithms will ultimately boost the success of personalized medicine, which involves a

full end-to-end solution, from sample preparation to data interpretation. In addition, it

relies on deep domain expertise, as well as highly efficient and accurate computational

solutions to transform the gigantic information into meaningful insights.

78

REFERENCES

[1] E. L. Van Dijk, H. Auger, Y. Jaszczyszyn, and C. Thermes, “Ten years of next-generation
sequencing technology,” Trends in genetics, vol. 30, no. 9, pp. 418–426, 2014.

[2] H. Y. Lam, M. J. Clark, R. Chen, R. Chen, G. Natsoulis, M. O’huallachain, F. E. Dewey,
L. Habegger, E. A. Ashley, M. B. Gerstein, et al., “Performance comparison of
whole-genome sequencing platforms,” Nature biotechnology, vol. 30, no. 1, pp. 78–82,
2012.

[3] M. G. Ross, C. Russ, M. Costello, A. Hollinger, N. J. Lennon, R. Hegarty, C. Nusbaum, and
D. B. Jaffe, “Characterizing and measuring bias in sequence data,” Genome biology, vol. 14,
no. 5, p. R51, 2013.

[4] M. A. Quail, M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Connor, A. Bertoni, H. P.
Swerdlow, and Y. Gu, “A tale of three next generation sequencing platforms: comparison of
ion torrent, pacific biosciences and illumina miseq sequencers,” BMC genomics, vol. 13,
no. 1, p. 341, 2012.

[5] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner, A. Clum,
A. Copeland, J. Huddleston, E. E. Eichler, et al., “Nonhybrid, finished microbial genome
assemblies from long-read smrt sequencing data,” Nature methods, vol. 10, no. 6, p. 563,
2013.

[6] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan,
B. Bettman, et al., “Real-time dna sequencing from single polymerase molecules,” Science,
vol. 323, no. 5910, pp. 133–138, 2009.

[7] E. E. Schadt, S. Turner, and A. Kasarskis, “A window into third-generation sequencing,”
Human molecular genetics, vol. 19, no. R2, pp. R227–R240, 2010.

[8] M. David, M. Dzamba, D. Lister, L. Ilie, and M. Brudno, “Shrimp2: sensitive yet practical
short read mapping,” Bioinformatics, vol. 27, no. 7, pp. 1011–1012, 2011.

[9] C. Alkan, J. M. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci, F. Hormozdiari, J. O.
Kitzman, C. Baker, M. Malig, O. Mutlu, et al., “Personalized copy number and segmental
duplication maps using next-generation sequencing,” Nature genetics, vol. 41, no. 10, pp.
1061–1067, 2009.

[10] J. C. Mu, H. Jiang, A. Kiani, M. Mohiyuddin, N. B. Asadi, and W. H. Wong, “Fast and
accurate read alignment for resequencing,” Bioinformatics, vol. 28, no. 18, pp. 2366–2373,
2012.

[11] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with bowtie 2,” Nature
Methods, vol. 9, no. 4, pp. 357–359, 2012.

[12] H. Li and R. Durbin, “Fast and accurate long-read alignment with burrows–wheeler
transform,” Bioinformatics, vol. 26, no. 5, pp. 589–595, 2010.

[13] Y. Liu and B. Schmidt, “Long read alignment based on maximal exact match seeds,”
Bioinformatics, vol. 28, no. 18, pp. i318–i324, 2012.

79

[14] E. Siragusa, D. Weese, and K. Reinert, “Fast and accurate read mapping with approximate
seeds and multiple backtracking,” Nucl Acids Res, vol. 41, no. 7, p. e78, 2013.

[15] H. Ponstingl and Z. Ning, “Smalt—a new mapper for dna sequencing reads,” F1000
Posters, vol. 1, p. 313, 2010.

[16] H. Li and N. Homer, “A survey of sequence alignment algorithms for next-generation
sequencing,” Briefings in bioinformatics, vol. 11, no. 5, pp. 473–483, 2010.

[17] J. Shang, F. Zhu, W. Vongsangnak, Y. Tang, W. Zhang, and B. Shen, “Evaluation and
comparison of multiple aligners for next-generation sequencing data analysis,” BioMed
research international, vol. 2014, p. 309650, 2014.

[18] X. Yu, K. Guda, J. Willis, M. Veigl, Z. Wang, M. D. Markowitz, et al., “How do alignment
programs perform on sequencing data with varying qualities and from repetitive regions?”
BioData mining, vol. 5, p. 6, 2012.

[19] H. Lee and M. C. Schatz, “Genomic dark matter: the reliability of short read mapping
illustrated by the genome mappability score,” Bioinformatics, vol. 28, no. 16, pp.
2097–2105, 2012.

[20] W. Li, J. Freudenberg, and P. Miramontes, “Diminishing return for increased mappability
with longer sequencing reads: implications of the k-mer distributions in the human
genome.” BMC bioinformatics, vol. 15, p. 2, Jan 2014. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/24386976

[21] A. Lempel and J. Ziv, “On the complexity of finite sequences,” Information Theory, IEEE
Transactions on, vol. 22, no. 1, pp. 75–81, 1976.

[22] J. Ziv, “Coding theorems for individual sequences,” Information Theory, IEEE Transactions
on, vol. 24, no. 4, pp. 405–412, 1978.

[23] F. Nan and D. Adjeroh, “On complexity measures for biological sequences,” in
Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004
IEEE. IEEE, 2004, pp. 522–526.

[24] V. Becher and P. Heiber, “A linearly computable measure of string complexity,” Theoretical
Computer Science, vol. 438, pp. 62–73, 2012.

[25] B. Chor, D. Horn, N. Goldman, T. Levy, and T. Massingham, “Genomic dna k-mer spectra:
models and modalities,” Genome Biology, vol. 10, no. 10, p. R108, 2009.

[26] S. Kurtz, A. Narechania, J. C. Stein, and D. Ware, “A new method to compute k-mer
frequencies and its application to annotate large repetitive plant genomes,” BMC genomics,
vol. 9, no. 1, p. 517, 2008.

[27] N. E. Whiteford, N. J. Haslam, G. Weber, A. Prugel-Bennett, J. W. Essex, C. Neylon, et al.,
“Visualizing the repeat structure of genomic sequences,” Complex Systems, vol. 17, no. 4,
pp. 381–398, 2008.

[28] M. Aboy, R. Hornero, D. Abásolo, and D. Alvarez, “Interpretation of the lempel-ziv
complexity measure in the context of biomedical signal analysis.” IEEE transactions on
bio-medical engineering, vol. 53, no. 11, pp. 2282–2288, 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17073334

80

http://www.ncbi.nlm.nih.gov/pubmed/24386976
http://www.ncbi.nlm.nih.gov/pubmed/17073334

[29] O. G. Troyanskaya, O. Arbell, Y. Koren, G. M. Landau, and A. Bolshoy, “Sequence
complexity profiles of prokaryotic genomic sequences: A fast algorithm for calculating
linguistic complexity,” Bioinformatics, vol. 18, no. 5, pp. 679–688, 2002.

[30] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-time
longest-common-prefix computation in suffix arrays and its applications,” in Proceedings of
the 12th Annual Symposium on Combinatorial Pattern Matching, ser. Lecture Notes in
Computer Science, vol. 2089, 2001, pp. 181–192.

[31] J. Kärkkäinen, P. Sanders, and S. Burkhardt, “Linear work suffix array construction,” J.
ACM, vol. 53, pp. 918–936, 2006.

[32] G. Rizk and D. Lavenier, “Gassst: global alignment short sequence search tool,”
Bioinformatics, vol. 26, no. 20, pp. 2534–2540, 2010.

[33] R. Li, Y. Li, K. Kristiansen, and J. Wang, “Soap: short oligonucleotide alignment program,”
Bioinformatics, vol. 24, no. 5, pp. 713–714, 2008.

[34] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
R. Durbin, and . G. P. D. P. Subgroup, “The sequence alignment/map format and samtools,”
Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[35] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[36] I. H. . Consortium et al., “Integrating common and rare genetic variation in diverse human
populations,” Nature, vol. 467, no. 7311, pp. 52–58, 2010.

[37] . G. P. Consortium et al., “A map of human genome variation from population-scale
sequencing,” Nature, vol. 467, no. 7319, pp. 1061–1073, 2010.

[38] D. Altshuler, L. D. Brooks, A. Chakravarti, F. S. Collins, M. J. Daly, P. Donnelly, R. Gibbs,
J. Belmont, A. Boudreau, S. Leal, et al., “A haplotype map of the human genome,” Nature,
vol. 437, no. 7063, pp. 1299–1320, 2005.

[39] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,
K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al., “The genome analysis toolkit: a
mapreduce framework for analyzing next-generation dna sequencing data,” Genome
research, vol. 20, no. 9, pp. 1297–1303, 2010.

[40] H. Y. Lam, C. Pan, M. J. Clark, P. Lacroute, R. Chen, R. Haraksingh, M. O’Huallachain,
M. B. Gerstein, J. M. Kidd, C. D. Bustamante, et al., “Detecting and annotating genetic
variations using the hugeseq pipeline,” Nature biotechnology, vol. 30, no. 3, pp. 226–229,
2012.

[41] W. Wang, Z. Wei, T.-W. Lam, and J. Wang, “Next generation sequencing has lower
sequence coverage and poorer snp-detection capability in the regulatory regions,” Scientific
reports, vol. 1, 2011.

[42] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg, “Searching for snps with
cloud computing,” Genome Biol, vol. 10, no. 11, p. R134, 2009.

81

[43] R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang, “Snp detection for
massively parallel whole-genome resequencing,” Genome research, vol. 19, no. 6, pp.
1124–1132, 2009.

[44] K. Ye, M. H. Schulz, Q. Long, R. Apweiler, and Z. Ning, “Pindel: a pattern growth
approach to detect break points of large deletions and medium sized insertions from
paired-end short reads,” Bioinformatics, vol. 25, no. 21, pp. 2865–2871, 2009.

[45] C. A. Albers, G. Lunter, D. G. MacArthur, G. McVean, W. H. Ouwehand, and R. Durbin,
“Dindel: accurate indel calls from short-read data,” Genome research, vol. 21, no. 6, pp.
961–973, 2011.

[46] K. Chen, J. W. Wallis, M. D. McLellan, D. E. Larson, J. M. Kalicki, C. S. Pohl, S. D.
McGrath, M. C. Wendl, Q. Zhang, D. P. Locke, et al., “Breakdancer: an algorithm for
high-resolution mapping of genomic structural variation,” Nature methods, vol. 6, no. 9, pp.
677–681, 2009.

[47] D. C. Koboldt, K. Chen, T. Wylie, D. E. Larson, M. D. McLellan, E. R. Mardis, G. M.
Weinstock, R. K. Wilson, and L. Ding, “Varscan: variant detection in massively parallel
sequencing of individual and pooled samples,” Bioinformatics, vol. 25, no. 17, pp.
2283–2285, 2009.

[48] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,”
Journal of molecular biology, vol. 147, no. 1, pp. 195–197, 1981.

[49] A. M. Meynert, M. Ansari, D. R. FitzPatrick, and M. S. Taylor, “Variant detection
sensitivity and biases in whole genome and exome sequencing,” BMC Bioinformatics,
vol. 15, no. 1, pp. 1–11, 2014.

[50] N. Rieber, M. Zapatka, B. Lasitschka, D. Jones, P. Northcott, B. Hutter, N. Jäger, M. Kool,
M. Taylor, P. Lichter, S. Pfister, S. Wolf, B. Brors, and R. Eils, “Coverage bias and
sensitivity of variant calling for four whole-genome sequencing technologies,” PLoS ONE,
vol. 8, no. 6, pp. 1–11, 06 2013.

[51] P. M. Gontarz, J. Berger, and C. F. Wong, “Srmapper: a fast and sensitive genome-hashing
alignment tool,” Bioinformatics, vol. 29, no. 3, pp. 316–321, 2013.

[52] D. Weese, M. Holtgrewe, and K. Reinert, “Razers 3: faster, fully sensitive read mapping,”
Bioinformatics, vol. 28, no. 20, pp. 2592–2599, 2012.

[53] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang, “Soap2: an
improved ultrafast tool for short read alignment,” Bioinformatics, vol. 25, no. 15, pp.
1966–1967, 2009.

[54] H. Li, “Toward better understanding of artifacts in variant calling from high-coverage
samples,” Bioinformatics, vol. 30, no. 20, pp. 2843–2851, 2014.

[55] H. Y. Lam, X. J. Mu, A. M. Stütz, A. Tanzer, P. D. Cayting, M. Snyder, P. M. Kim, J. O.
Korbel, and M. B. Gerstein, “Nucleotide-resolution analysis of structural variants using
breakseq and a breakpoint library,” Nature biotechnology, vol. 28, no. 1, p. 47, 2010.

82

[56] A. Abyzov, S. Li, D. R. Kim, M. Mohiyuddin, A. M. Stütz, N. F. Parrish, X. J. Mu,
W. Clark, K. Chen, M. Hurles, et al., “Analysis of deletion breakpoints from 1,092 humans
reveals details of mutation mechanisms,” Nature communications, vol. 6, p. 7256, 2015.

[57] F. J. Sedlazeck, P. Rescheneder, M. Smolka, H. Fang, M. Nattestad, A. von Haeseler, and
M. C. Schatz, “Accurate detection of complex structural variations using single-molecule
sequencing,” Nature methods, vol. 15, no. 6, p. 461, 2018.

[58] A. Abyzov and M. Gerstein, “Age: defining breakpoints of genomic structural variants at
single-nucleotide resolution, through optimal alignments with gap excision,”
Bioinformatics, vol. 27, no. 5, pp. 595–603, 2011.

[59] D. S. Hirschberg, “A linear space algorithm for computing maximal common
subsequences,” Communications of the ACM, vol. 18, no. 6, pp. 341–343, 1975.

[60] K.-M. Chao, R. C. Hardison, and W. Miller, “Recent developments in linear-space alignment
methods: A survey,” Journal of Computational Biology, vol. 1, no. 4, pp. 271–291, 1994.

[61] J. M. Kidd, T. Graves, T. L. Newman, R. Fulton, H. S. Hayden, M. Malig, J. Kallicki,
R. Kaul, R. K. Wilson, and E. E. Eichler, “A human genome structural variation sequencing
resource reveals insights into mutational mechanisms,” Cell, vol. 143, no. 5, pp. 837–847,
2010.

[62] Q. Tran, S. Gao, and V. Phan, “Analysis of optimal alignments unfolds aligners bias in
existing variant profiles,” in BMC bioinformatics, vol. 17, no. 13. BioMed Central, 2016,
p. 349.

[63] J. M. Zook, D. Catoe, J. McDaniel, L. Vang, N. Spies, A. Sidow, Z. Weng, Y. Liu, C. E.
Mason, N. Alexander, et al., “Extensive sequencing of seven human genomes to
characterize benchmark reference materials,” Scientific data, vol. 3, p. 160025, 2016.

[64] A. Abyzov, A. E. Urban, M. Snyder, and M. Gerstein, “Cnvnator: an approach to discover,
genotype, and characterize typical and atypical cnvs from family and population genome
sequencing,” Genome research, vol. 21, no. 6, pp. 974–984, 2011.

[65] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
R. Durbin, et al., “The sequence alignment/map format and samtools,” Bioinformatics,
vol. 25, no. 16, pp. 2078–2079, 2009.

[66] B. Lau, M. Mohiyuddin, J. C. Mu, L. T. Fang, N. Bani Asadi, C. Dallett, and H. Y. Lam,
“Longislnd: in silico sequencing of lengthy and noisy datatypes,” Bioinformatics, vol. 32,
no. 24, pp. 3829–3832, 2016.

[67] J. Ruan and H. Li, “Fast and accurate long-read assembly with wtdbg2,” Nature Methods,
pp. 1–4, 2019.

[68] J. Seward, N. Nethercote, and J. Weidendorfer, Valgrind 3.3-advanced debugging and
profiling for gnu/linux applications. Network Theory Ltd., 2008.

[69] C. L. Usher and S. A. McCarroll, “Complex and multi-allelic copy number variation in
human disease,” Briefings in functional genomics, vol. 14, no. 5, pp. 329–338, 2015.

83

[70] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinformatics, vol. 34,
no. 18, pp. 3094–3100, 2018.

[71] S. Gao, Q. Tran, and V. Phan, “Understand effective coverage by mapped reads using
genome repeat complexity,” in Proceedings of 11th International Conference on
Bioinformatics and Computational Biology, vol. 60, 2019, pp. 65–73.

[72] Q. Tran, S. Gao, N. S. Vo, and V. Phan, “Repeat complexity of genomes as a means to
predict the performance of short-read aligners,” in Proceedings of the 8th International
Conference on Bioinformatics and Computational Biology (BiCOB), 2016.

[73] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M.
Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al., “Spades: a new genome assembly
algorithm and its applications to single-cell sequencing,” Journal of computational biology,
vol. 19, no. 5, pp. 455–477, 2012.

[74] N. Altemose, K. H. Miga, M. Maggioni, and H. F. Willard, “Genomic characterization of
large heterochromatic gaps in the human genome assembly,” PLoS computational biology,
vol. 10, no. 5, 2014.

[75] M. S. Lindner and B. Y. Renard, “Metagenomic profiling of known and unknown microbes
with microbegps,” PloS one, vol. 10, no. 2, p. e0117711, 2015.

[76] G. Muyzer, E. C. De Waal, and A. G. Uitterlinden, “Profiling of complex microbial
populations by denaturing gradient gel electrophoresis analysis of polymerase chain
reaction-amplified genes coding for 16s rrna.” Applied and environmental microbiology,
vol. 59, no. 3, pp. 695–700, 1993.

[77] E. Stackebrandt and B. Goebel, “Taxonomic note: a place for dna-dna reassociation and 16s
rrna sequence analysis in the present species definition in bacteriology,” International
Journal of Systematic and Evolutionary Microbiology, vol. 44, no. 4, pp. 846–849, 1994.

[78] M. Langille, J. Zaneveld, G. Caporaso, D. McDonald, D. Knights, J. Reyes, J. Clemente,
D. Burkepile, R. Thurberand, R. Knight, R. Beiko, and C. Huttenhower, “Predictive
functional profiling of microbial communities using 16s rrna marker gene sequences,”
Nature Biotechnology, 2013.

[79] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with bowtie 2,” Nature
methods, vol. 9, no. 4, pp. 357–359, 2012.

[80] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with bwa-mem,”
arXiv preprint arXiv:1303.3997, 2013.

[81] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu, X. Chu, K. Zhao,
et al., “Soap3: ultra-fast gpu-based parallel alignment tool for short reads,” Bioinformatics,
vol. 28, no. 6, pp. 878–879, 2012.

[82] N. S. Vo, Q. Tran, N. Niraula, and V. Phan, “Randal: a randomized approach to aligning dna
sequences to reference genomes,” BMC genomics, vol. 15, no. 5, p. S2, 2014.

[83] B. A. Galler and M. J. Fisher, “An improved equivalence algorithm,” Communications of the
ACM, vol. 7, no. 5, pp. 301–303, 1964.

84

[84] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, A Survey of Algorithms for Dense Subgraph
Discovery. Boston, MA: Springer US, 2010, pp. 303–336.

[85] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance,” Journal of
Machine Learning Research, vol. 11, no. Oct, pp. 2837–2854, 2010.

[86] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification, vol. 2, no. 1, pp.
193–218, 1985.

[87] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based external cluster
evaluation measure.” in EMNLP-CoNLL, vol. 7, 2007, pp. 410–420.

[88] F. E. Angly, D. Willner, F. Rohwer, P. Hugenholtz, and G. W. Tyson, “Grinder: a versatile
amplicon and shotgun sequence simulator,” Nucleic acids research, p. gks251, 2012.

[89] M. J. Bonder, A. Kurilshikov, E. F. Tigchelaar, Z. Mujagic, F. Imhann, A. V. Vila, P. Deelen,
T. Vatanen, M. Schirmer, S. P. Smeekens, et al., “The effect of host genetics on the gut
microbiome,” Nature genetics, vol. 48, no. 11, pp. 1407–1412, 2016.

[90] B. J. Shapiro, J. Friedman, O. X. Cordero, S. P. Preheim, S. C. Timberlake, G. Szabó, M. F.
Polz, and E. J. Alm, “Population genomics of early events in the ecological differentiation
of bacteria,” science, vol. 336, no. 6077, pp. 48–51, 2012.

[91] N. Kashtan, S. E. Roggensack, S. Rodrigue, J. W. Thompson, S. J. Biller, A. Coe, H. Ding,
P. Marttinen, R. R. Malmstrom, R. Stocker, et al., “Single-cell genomics reveals hundreds of
coexisting subpopulations in wild prochlorococcus,” Science, vol. 344, no. 6182, pp.
416–420, 2014.

[92] E. S. Snitkin, A. M. Zelazny, C. I. Montero, F. Stock, L. Mijares, P. R. Murray, J. A. Segre,
et al., “Genome-wide recombination drives diversification of epidemic strains of
acinetobacter baumannii,” Proceedings of the National Academy of Sciences, vol. 108,
no. 33, pp. 13 758–13 763, 2011.

[93] M. J. Rosen, M. Davison, D. Bhaya, and D. S. Fisher, “Fine-scale diversity and extensive
recombination in a quasisexual bacterial population occupying a broad niche,” Science, vol.
348, no. 6238, pp. 1019–1023, 2015.

[94] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi, “Clark: fast and accurate classification
of metagenomic and genomic sequences using discriminative k-mers,” BMC genomics,
vol. 16, no. 1, p. 236, 2015.

[95] T. A. K. Freitas, P.-E. Li, M. B. Scholz, and P. S. Chain, “Accurate read-based metagenome
characterization using a hierarchical suite of unique signatures,” Nucleic acids research, p.
gkv180, 2015.

[96] D. E. Wood and S. L. Salzberg, “Kraken: ultrafast metagenomic sequence classification
using exact alignments,” Genome biology, vol. 15, no. 3, p. R46, 2014.

[97] D. T. Truong, E. A. Franzosa, T. L. Tickle, M. Scholz, G. Weingart, E. Pasolli, A. Tett,
C. Huttenhower, and N. Segata, “Metaphlan2 for enhanced metagenomic taxonomic
profiling,” Nature methods, vol. 12, no. 10, p. 902, 2015.

85

[98] T. Mantere, S. Kersten, and A. Hoischen, “Long-read sequencing emerging in medical
genetics,” Frontiers in genetics, vol. 10, p. 426, 2019.

[99] A. Ameur, W. P. Kloosterman, and M. S. Hestand, “Single-molecule sequencing: towards
clinical applications,” Trends in biotechnology, vol. 37, no. 1, pp. 72–85, 2019.

[100] W. Pootakham, W. Mhuantong, T. Yoocha, L. Putchim, C. Sonthirod, C. Naktang,
N. Thongtham, and S. Tangphatsornruang, “High resolution profiling of coral-associated
bacterial communities using full-length 16s rrna sequence data from pacbio smrt sequencing
system,” Scientific reports, vol. 7, no. 1, pp. 1–14, 2017.

[101] L. M. Petersen, I. W. Martin, W. E. Moschetti, C. M. Kershaw, and G. J. Tsongalis,
“Third-generation sequencing in the clinical laboratory: Exploring the advantages and
challenges of nanopore sequencing,” Journal of Clinical Microbiology, vol. 58, no. 1, 2019.

[102] D. R. Mende, A. S. Waller, S. Sunagawa, A. I. Järvelin, M. M. Chan, M. Arumugam,
J. Raes, and P. Bork, “Assessment of metagenomic assembly using simulated next
generation sequencing data,” PloS one, vol. 7, no. 2, p. e31386, 2012.

[103] Z. Jie, H. Xia, S.-L. Zhong, Q. Feng, S. Li, S. Liang, H. Zhong, Z. Liu, Y. Gao, H. Zhao,
et al., “The gut microbiome in atherosclerotic cardiovascular disease,” Nature
communications, vol. 8, no. 1, pp. 1–12, 2017.

[104] V. Phan, S. Gao, Q. Tran, and N. S. Vo, “How genome complexity can explain the hardness
of aligning reads to genomes,” in 2014 IEEE 4th International Conference on
Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2014, pp. 1–2.

[105] Q. Tran, S. Gao, N. S. Vo, and V. Phan, “A linear model for predicting performance of
short-read aligners using genome complexity,” BMC bioinformatics, vol. 16, no. 15, p. P17,
2015.

[106] J. C. Wooley, A. Godzik, and I. Friedberg, “A primer on metagenomics,” PLoS Comput Biol,
vol. 6, no. 2, p. e1000667, 2010.

[107] S. Federhen, “The ncbi taxonomy database,” Nucleic acids research, vol. 40, no. D1, pp.
D136–D143, 2011.

[108] A. Sczyrba, P. Hofmann, P. Belmann, D. Koslicki, S. Janssen, J. Dröge, I. Gregor, S. Majda,
J. Fiedler, E. Dahms, et al., “Critical assessment of metagenome interpretationa benchmark
of metagenomics software,” Nature methods, vol. 14, no. 11, p. 1063, 2017.

[109] A. B. McIntyre, R. Ounit, E. Afshinnekoo, R. J. Prill, E. Hénaff, N. Alexander, S. S. Minot,
D. Danko, J. Foox, S. Ahsanuddin, et al., “Comprehensive benchmarking and ensemble
approaches for metagenomic classifiers,” Genome biology, vol. 18, no. 1, p. 182, 2017.

[110] P. Menzel, K. L. Ng, and A. Krogh, “Fast and sensitive taxonomic classification for
metagenomics with kaiju,” Nature communications, vol. 7, no. 1, pp. 1–9, 2016.

[111] A. Müller, C. Hundt, A. Hildebrandt, T. Hankeln, and B. Schmidt, “Metacache:
context-aware classification of metagenomic reads using minhashing,” Bioinformatics,
vol. 33, no. 23, pp. 3740–3748, 2017.

86

[112] V. C. Piro, M. S. Lindner, and B. Y. Renard, “Dudes: a top-down taxonomic profiler for
metagenomics,” Bioinformatics, vol. 32, no. 15, pp. 2272–2280, 2016.

[113] D. Li, C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam, “Megahit: an ultra-fast single-node
solution for large and complex metagenomics assembly via succinct de bruijn graph,”
Bioinformatics, vol. 31, no. 10, pp. 1674–1676, 2015.

[114] S. Nurk, D. Meleshko, A. Korobeynikov, and P. A. Pevzner, “metaspades: a new versatile
metagenomic assembler,” Genome research, vol. 27, no. 5, pp. 824–834, 2017.

[115] S. Boisvert, F. Raymond, É. Godzaridis, F. Laviolette, and J. Corbeil, “Ray meta: scalable de
novo metagenome assembly and profiling,” Genome biology, vol. 13, no. 12, p. R122, 2012.

[116] M. Ayling, M. D. Clark, and R. M. Leggett, “New approaches for metagenome assembly
with short reads,” Briefings in bioinformatics, 2019.

87

Appendix A

Source Code Availability

All the algorithms have been open-sourced in the following repositories on Github.

• Short-read Performance Prection:

https://github.com/vtphan/shortread-alignment-prediction

• Optimal Alignment Analysis:

https://github.com/Coaxecva/Indel-Analysis

• Unknown Bacteria Hunter:

https://github.com/Coaxecva/Unknown-Bacteria-Hunter

• LongAGE:

https://github.com/Coaxecva/LongAGE

88

Appendix B

Publications

Journals

1. Quang Tran, Alexej Abyzov. LongAGE: Defining Breakpoints of Genomic

Structural Variants through Optimal and Memory Efficient Alignments of Long

Reads (Bioinformatics 2020)

2. Quang Tran, Diem-Trang Pham, Vinhthuy Phan. Using 16S rRNA Gene as

Marker to Detect Unknown Bacteria in Microbial Communities (BMC

Bioinformatics 2017)

3. Quang Tran, Shanshan Gao, Vinhthuy Phan. Analysis of Optimal Alignments

Unfolds Aligners Bias in Existing Variant Profiles. MCBIOS 2016 Best Paper

Award Runner-up (BMC Bioinformatics 2016)

4. Vinhthuy Phan, Shanshan Gao, Quang Tran, Nam S. Vo. How Genome

Complexity Can Explain the Hardness of Aligning Reads to Genomes (BMC

Genomics 2015)

5. Nam S. Vo, Quang Tran, Nobal Niraula, Vinhthuy Phan. RandAL: A

Randomized Approach to Aligning DNA Sequences to Reference Genomes

(BMC Genomics 2014)

Conference

1. Quang Tran, Vinhthuy Phan. Assembling Reads Improves Taxonomic

Classification of Species. The 8th International Conference on Intelligent

Biology and Medicine (ICIBM 2020)

2. Shanshan Gao, Quang Tran, Vinhthuy Phan. Understand Effective Coverage

89

by Mapped Reads using Genome Repeat Complexity. The 11th International

Conference on Bioinformatics and Computational Biology (BICOB 2019)

3. Quang Tran, Shanshan Gao, Nam S. Vo, Vinhthuy Phan. Repeat Complexity

of Genomes as a Means to Predict the Performance of Short-read Aligners. The

8th International Conference on Bioinformatics and Computational Biology

(BICOB 2016)

4. Vinhthuy Phan, Shanshan Gao, Quang Tran, Nam S. Vo. How Genome

Complexity Can Explain the Hardness of Aligning Reads to Genomes. The 4th

IEEE International Conference on Computational Advances in Bio and

Medical Sciences (ICCABS 2014)

5. Nam S. Vo, Quang Tran, Nobal Niraula, Vinhthuy Phan. A Randomized

Algorithm for Aligning DNA Sequences to Reference Genomes. The 3rd IEEE

International Conference on Computational Advances in Bio and Medical

Sciences (ICCABS 2013)

Poster

1. Quang Tran and Vinhthuy Phan. Assembling reads improves taxonomic

classification of species. ISMB Microbiome Community of Special Interest

(COSI) 2020 (ISMB 2020)

2. Quang Tran, Diem-Trang Pham and Vinhthuy Phan. Dimension Reduction

Methods for Metagenomic Data. Memphis DATA 2019-A Data Science

Conference (www.memphis-data.org)

3. Quang Tran, Shanshan Gao, Nam S. Vo, Vinhthuy Phan. A Linear Model for

Predicting Performance of Short-read Aligners based on Repeat Complexity of

Genomes. UT-KBRIN Bioinformatics Summit 2015 (BMC Bioinformatics

2015)

90

4. Quang Tran, Vinhthuy Phan. Alignment of Short Reads to Multiple Genomes

Using Hashing. UT-KBRIN Bioinformatics Summit 2014 (BMC Bioinformatics

2014)

5. Nam S. Vo, Quang Tran, Vinhthuy Phan. An Integrated Approach for SNP

Calling Based on Population of Genomes. UT-KBRIN Bioinformatics Summit

2014 (BMC Bioinformatics 2014)

6. Vinhthuy Phan, Shanshan Gao, Quang Tran, Nam S. Vo. Predicting

Performance of Short-Read Aligners Based on Genome Complexity. The 11th

MidSouth Computational Biology and Bioinformatics Society (MCBIOS 2014)

91

Appendix C

Reviewers’ Comments

“The manuscript by Tran and Abyzov is devoted to the important problem of the

identification of SVs in sequencing data. Despite the biological importance of this type of

genome alterations and their accurate detection still remains a problem. The described

approach is a memory-efficient implementation of previously reported AGE. This is

important because the utilization of AGE is limited due to memory requirements. The

authors demonstrated that the new algorithm is significantly more efficient in memory

usage. Although this improvement comes at the cost of longer analysis time, this is not

critical. The manuscript is well structured and clearly written. ”

— An Anonymous Reviewer (Bioinformatics journal)

“The manuscript by Tran and Abyzov introduced a new tool LongAGE, which is a

memory-efficient implementation of AGE, to resolve breakpoints of SVs embedded into

segmental duplications on the PacBio long read dataset. Defining the precise breakpoint at

the basepair resolution is always challenging. LongAGE is based on the Hirschberg

algorithm and significantly improves memory usage compared to AGE, which allow users

to realign long reads to find the precise breakpoint even on a laptop. With the long reads

sequencing being widely employed in research for a variety of applications, this tool will

be interesting and useful for the SV research community. ”

— An Anonymous Reviewer (Bioinformatics journal)

“The paper compares the performance of popular metagenomics classifiers on

short reads and longer reads assembled from the short reads. The findings can be very

helpful for metagenomics analysis. The paper is very well written and easy to follow. I

really appreciate the authors’ efforts in comparing not only multiple metagenomics

classifiers but also multiple assemblers.”

— An Anonymous Reviewer (Genes journal)

92

	Algorithmic methods for large-scale genomic and metagenomic data analysis
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	Contributions
	Outline

	Algorithms for Predicting Short-read Performance
	Background
	Methods
	Formulations of Sequence Complexity
	Calculation of Repeat Complexity

	Results
	Short-read Aligners and Their Performance
	Genomic data
	Determining a Suitable Measure of Complexity
	Finding an Optimal k for Repeat Complexity Rk
	The Effect of Sequence Quality and Sequencing Errors
	Prediction of Performance based on Repeat Complexity
	Selecting Aligners based on Repeat Complexity

	Discussion

	Optimal Alignment Algorithms for Aligners' Bias in Existing Variant Profiles
	Introduction
	Methods
	Pairwise Alignment
	Constructing all Optimal Alignments

	Experimental Design
	Results
	Analysis of INDELs with Multiple Optimal Alignments
	Characterization of INDEL Complexity

	Discussion

	Memory Efficient Algorithms for Alignment with Gap Excision
	Introduction
	Methods
	Memory-efficient Implementation
	Resolving Breakpoints of mCNVs using Long-reads

	Results
	Discussion
	LongAGE's Features
	Best Practice for Resolving SV Breakpoints
	Resolved Breakpoints of CNVs on Chromosome 1 of GIAB HG005

	Algorithms for Detecting Unknown Microbes
	Motivation and Related Work
	Uniqueness of the 16S rRNA Genes
	Method
	Overview
	Clustering Unmapped Reads
	Post Clustering Processing
	Method Evaluation

	Experiments
	Mock Oral Microbial Communities
	The Affect of Coverage on Prediction Accuracy
	The Affect of Unknown Bacteria Concentration

	Discussion

	Read Assembly Algorithms for Improving Species Classification
	Background
	Results
	Experimental Design
	Performance Assessment
	Data
	Findings
	Discussion

	Methods
	Classifiers
	Assemblers

	Summary

	Conclusion and Future Work
	References
	Source Code Availability
	Publications
	Reviewers' Comments

