
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

1-1-2019

Deeper Understanding of Tutorial Dialogues and Student Deeper Understanding of Tutorial Dialogues and Student

Assessment Assessment

Nabin Nabin Maharjan

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Maharjan, Nabin Nabin, "Deeper Understanding of Tutorial Dialogues and Student Assessment" (2019).
Electronic Theses and Dissertations. 2928.
https://digitalcommons.memphis.edu/etd/2928

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2928?utm_source=digitalcommons.memphis.edu%2Fetd%2F2928&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

DEEPER UNDERSTANDING OF TUTORIAL DIALOGUES AND STUDENT

ASSESSMENT

by

Nabin Maharjan

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Computer Science

The University of Memphis

April 15, 2019

©2019 Nabin Maharjan

All rights reserved

ii

DEDICATION

To my parents and my wife.

iii

ACKNOWLEDGMENTS

First, I am immensely grateful to my advisor and committee chair Dr. Vasile

Rus for his great support and guidance towards completing my Ph.D. degree. I

enjoyed my life as a Ph.D. student because of his genial and supportive personality.

I am also grateful to the rest of my dissertation committee members Dr. Andrew

McGregor Olney, Dr. Scott Fleming, and Dr. Deepak Venugopal for their helpful

discussions and suggestions.

Also, I would like to acknowledge the financial support from the grant

R305A100875 from the Institute for Education Sciences to Dr. Vasile Rus, the

Institute for Intelligent Systems, the Institute for Intelligent Systems Student

Organization, and the Graduate Student Association of the University of Memphis.

I am also thankful to my friends and colleagues including Dr. Rajendra

Banjade, Dipesh Gautam and Dr. Nobal Niraula for their support and collaboration

in research activities, which provided the foundation for my Ph.D. dissertation work.

I am also deeply indebted to my parents who motivated me to pursue the

Ph.D. degree. I would also like to thank my brother and my in-laws. Lastly, I would

like to thank my wife Rosita for her unwavering love and support.

iv

ABSTRACT

Maharjan, Nabin Ph.D. The University of Memphis. April 15, 2019. Deeper
Understanding of Tutorial Dialogues and Student Assessment. Major Professor:
Vasile Rus, Ph.D.

Bloom (1984) reported two standard deviation improvement with human

tutoring which inspired many researchers to develop Intelligent Tutoring Systems

(ITSs) that are as effective as human tutoring. However, recent studies suggest that

the 2-sigma result was misleading and that current ITSs are as good as human

tutors. Nevertheless, we can think of 2 standard deviations as the benchmark for

tutoring effectiveness of ideal expert tutors. In the case of ITSs, there is still the

possibility that ITSs could be better than humans.

One way to improve the ITSs would be identifying, understanding, and then

successfully implementing effective tutorial strategies that lead to learning gains.

Another step towards improving the effectiveness of ITSs is an accurate assessment

of student responses. However, evaluating student answers in tutorial dialogues is

challenging. The student answers often refer to the entities in the previous dialogue

turns and problem description. Therefore, the student answers should be evaluated

by taking dialogue context into account. Moreover, the system should explain which

parts of the student answer are correct and which are incorrect. Such explanation

capability allows the ITSs to provide targeted feedback to help students reflect upon

and correct their knowledge deficits. Furthermore, targeted feedback increases

learners’ engagement, enabling them to persist in solving the instructional task at

hand on their own.

In this dissertation, we describe our approach to discover and understand

effective tutorial strategies employed by effective human tutors while interacting

with learners. We also present various approaches to automatically assess students’

contributions using general methods that we developed for semantic analysis of

short texts. We explain our work using generic semantic similarity approaches to

v

evaluate the semantic similarity between individual learner contributions and ideal

answers provided by experts for target instructional tasks. We also describe our

method to assess student performance based on tutorial dialogue context,

accounting for linguistic phenomena such as ellipsis and pronouns. We then propose

an approach to provide an explanatory capability for assessing student responses.

Finally, we recommend a novel method based on concept maps for jointly evaluating

and interpreting the correctness of student responses.

vi

TABLE OF CONTENTS
Contents Page

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Intelligent Tutoring Systems 1

1.1.1 Research Challenges 3
1.2 Goal 6
1.3 Research Questions 6
1.4 Summary of Primary Contributions 7

2 Discovering Effective Tutorial Strategies Employed by Professional
Tutors 9
2.1 Related Work 11
2.2 Language as Action 11
2.3 Dialogue Taxonomy 12
2.4 Identifying Patterns in Effective Tutorial Sessions 15
2.5 Feature Selection 17
2.6 Experiments and Results 19

2.6.1 Data 19
2.6.2 Dialogue Classification 21
2.6.3 Tutorial Session Analysis 23
2.6.4 Analysis using human judgment measure of learning gain 24
2.6.5 Analysis using computer measure of learning gain 36

2.7 Conclusion 39

3 Assessing Semantic Textual Similarity 41
3.1 Related Work 43

3.1.1 Word-to-word Similarity 43
3.1.2 Sentence-to-Sentence Similarity 45

3.2 Preprocessing 48
3.3 Approach 48

3.3.1 Feature Generation 49
Word Similarity Methods 49
Sentence Similarity Methods 49

3.3.2 Feature Selection 54
3.4 Experiment and Results 56

3.4.1 Datasets 56
Training Data 56
Test Data 56
STS Benchmark Data 56

3.4.2 Models and Runs 57

vii

3.4.3 Results and Discussions 58
3.5 Conclusion 62

4 Assessing Student Answers in Tutorial Dialogue Context 63
4.1 Related Work 66
4.2 Approach 68

4.2.1 Gaussian Mixture Model 68
4.2.2 The LSTM Approach 72

4.3 Experiments and Results 74
4.3.1 Data 74
4.3.2 GMM based Experiments and Results 75
4.3.3 LSTM based Experiments and Results 79

4.4 Conclusion 80

5 SemAligner: A Tool for Interpreting Semantic Textual Similarity 82
5.1 Related Work 84
5.2 The SemAligner tool 85

5.2.1 Chunker 85
5.2.2 Alignment System 88
5.2.3 Alignment Output 89
5.2.4 Alignment System Evaluation 90

5.3 Conclusion 92

6 A Concept Map based Assessment of Free Student Answers in Tu-
torial Dialogues 94
6.1 Related Work 100
6.2 Concept Map based Approach 103

6.2.1 Creation of Ideal Concept Maps 103
6.2.2 Automated Extraction of Student Concept Maps 103
6.2.3 Assessment System 107

6.3 Experiment and Results 110
6.3.1 Data 111
6.3.2 Ideal Concept Maps 111
6.3.3 Automated Tuple Quality Evaluation 113
6.3.4 Binary Classification Task 114
6.3.5 Multi-level Classification Task 116

6.4 Conclusion 118

7 Conclusion and Future Work 119

References 125

viii

LIST OF FIGURES
Figure Page

1.1 Inner Loop Interface of DeepTutor tutoring system. 3

2.1 Tutorial Data Annotation. 19

2.2 Distribution of human ratings of Evidence of Learning (EL) and Evi-
dence of Soundness (ES). 24

2.3 Distribution of dialogue act profile of top versus bottom 10% sessions.
a show the profile for tutors only while b shows the profile for both
tutors and students. 25

2.4 Distribution of mode switch profile of top versus bottom 10% sessions.
a show the profile for tutors only while b shows the profile for both
tutors and students. 26

2.5 Dialogue mode sequence logo for top 10% sessions up to average mode
switch length of 21. 28

2.6 Dialogue mode sequence logo for bottom 10% sessions up to average
mode switch length of 11. 29

2.7 Tutorial Markov Process for effective tutorial sessions. 33

2.8 Dialogue mode profiles of top versus bottom 25% sessions for tutors only. 37

2.9 Dialogue mode profiles of top versus bottom 25% sessions including
both tutor and student initiated modes. 38

2.10 Dialogue mode sequence logo for top 25% sessions of average length 20. 39

2.11 Dialogue mode sequence logo for bottom 25% sessions of average length
19. 40

3.1 General Pipeline of DT TEAM System. 46

3.2 R1 system output in evaluation data plotted against human judgments
(in ascending order). 59

4.1 LSTM model architecture with tri-letter word encodings. 72

5.1 System pipeline of SemAligner tool. 86

ix

6.1 A concept map based student answer assessment approach. 95

6.2 A snippet of an XML representation of an instructional task in Deep-
Tutor. 96

6.3 An ideal concept map representation for the task shown in Figure 6.2. 97

6.4 A comparison of an ideal concept map (a) and computer-generated
concept map (b) for the ideal answer: “When velocity is constant, the
acceleration is zero; therefore the sum of the forces will equal zero”. 98

6.5 Annotating data for binary classification. TupleIds 2 6 and 2 7 consist
of expectation id 2 concatenated with synsetIds 6 and 7 respectively. 111

x

LIST OF TABLES
Table Page

1.1 A sample question and answer between student and DeepTutor with
the ideal expected answer. 5

2.1 A snippet of tutorial dialogue between student and tutor labeled with
dialogue acts and modes. PK refers to Prior Knowledge. 12

2.2 Features 18

2.3 Average Inter Annotator Agreement Between Two Independent Anno-
tators. Mode∗ and Mode∗∗ represent dialogue mode agreement between
verifier and first annotator and, verifier and second annotator respec-
tively. 21

2.4 Performance of dialogue act classifiers 22

2.5 Performance of dialogue act - subact classifiers. CRF-2 uses gold dia-
logue acts to analyze impact of noisy predicted acts. 22

2.6 Performance of dialogue mode classifier 23

2.7 Mapping of dialogue modes to symbols. 27

2.8 Top 12 discriminant speaker differentiated act subsequences. 30

2.9 Top 5 discriminant speaker differentiated act-subact subsequences. 33

2.10 Discriminant mode subsequences. Symbols in subsequences represent
dialog modes as described in Table 2.7. 34

3.1 Interpretation of similarity score (SS) with corresponding example sen-
tence pairs (Agirre et al., 2015). 42

3.2 Example of chunk alignment between two short text with semantic
labels and scores. 50

3.3 Summary of training data. 56

3.4 Distribution of STS benchmark data according to different genres and
data partitions. 57

xi

3.5 Detailed breakdown of STS benchmark data by original names and
task years of the datasets. 57

3.6 Results of our submitted runs on test data (1st is the best result among
the participants). 58

3.7 A set of highly correlated features with gold scores in test data. 59

3.8 Difficult English sentence pairs (Cer, Diab, Agirre, Lopez-Gazpio, &
Specia, 2017). 60

3.9 Performances of top performing STS systems against difficult English
sentence pairs (Cer et al., 2017). 61

3.10 Performances of participating STS systems on STS benchmark data
(Cer et al., 2017). 61

4.1 An example of a problem and student answers to a tutor question.
Context is needed to assess answers A1-A3 properly. 64

4.2 Features used in model development. 70

4.3 Performances of different GMM models. Baseline model M0 is a logis-
tic model presented by Banjade, Maharjan, Niraula, Gautam, et al.
(2016). U-CNT refers to Unique Counts. M14∗ model was developed
using instances not requiring contextual information alone and evalu-
ated on instances requiring contextual information. LSTM∗ refers to
our LSTM approach (Maharjan, Gautam, & Rus, 2018). 75

4.4 Correlation analysis between various features and GMM weights for
correctness labels (CNT Contradictory, C - Correct, CBI Correct-
but-incomplete, IC - Incorrect) computed using model M7. F1-F11
are the features from Table 4.2. Moderate or higher correlation scores
are marked as bold. 78

4.5 Performance of The LSTM Models. Accuracy values are in percentage
followed by Kappa values in brackets. 79

5.1 A sample question and answer between student and DeepTutor with
the ideal expected answer. 83

xii

5.2 Comparison of chunking accuracies of the various chunkers at chunk
level (CL) and sentence level (SL) using gold chunks from the iSTS
task 2015 data. 87

5.3 A sentence from Headlines training data chunked by our CRF chunker. 87

5.4 SemAligner output for a given text-pair. 89

5.5 F1 scores on gold and system chunked Headlines and Images training
data of iSTS 2015 shared task. 90

5.6 F1 scores on gold and system chunked Images and Headlines test data.
MaxScore is the best score for each metric given by any of the partici-
pating systems in the iSTS 2015 shared task. 91

6.1 A sample question and answer between student and DeepTutor with
the ideal expected answer. 95

6.2 Results of different systems on CoNLL-2001 shared task test data.
CM03 (Carreras & Marquez, 2004), CMPR02 (Carreras, Màrquez,
Punyakanok, & Roth, 2002), CM01 (Carreras & Màrquez, 2001). P
= Precision, R = recall, F= F-measure. 105

6.3 An optimal clause split generated from text: the speed of the desk will
increase since more force is being applied. 105

6.4 A list of DT patterns for tuple extraction. 106

6.5 Summary of Data 111

6.6 An ordinal scale with four values for rating an extracted concept map
of an ideal student answer along the metric accuracy. 112

6.7 Mean ratings for concept maps of ideal student answers generated by
different open information extraction methods. The standard devia-
tions are provided in bracket alongside means. 112

6.8 Results of different methods for binary classification. WA-Sim and
WA-Sim-C are optimal word alignment-based STS system without con-
text (Rus & Lintean, 2012) and with context (Banjade, Maharjan, Ni-
raula, Gautam, et al., 2016) respectively. The value inside the bracket
alongside the accuracy is Cohen’s Kappa. 115

6.9 Performance of concept map based approach at the tuple level. 115

xiii

6.10 Performance on Multi-level classification task: Comparison of concept
map approach against Logistic Model (Banjade, Maharjan, Niraula,
Gautam, et al., 2016), GMM Model (Maharjan, Banjade, & Rus, 2017)
and LSTM Model (Maharjan et al., 2018). The value inside the bracket
alongside the accuracy is Cohen’s Kappa. 116

xiv

Chapter 1

Introduction

1.1 Intelligent Tutoring Systems

Providing quality education to students requires sophisticated human tutors

teaching them quality instructional materials. Because of the web, quality

educational materials are easily accessible at affordable or no cost. However, the

task of providing a quality human tutor service for each student anytime and

anywhere at reduced costs is very challenging. Therefore, computer tutor

applications called Intelligent Tutoring Systems (ITSs) that can mimic a human

tutor can play an important role to achieve this goal.

Intelligent Tutoring Systems (ITSs) are computer applications in the

educational domain that can act as a personalized tutor in an interactive

environment. They have been developed to teach students in many domains such as

Science, Technology, Engineering and Maths (STEM) in a personalized and

adaptive environment. Some instances of successful ITSs are AutoTutor (Graesser,

Chipman, Haynes, & Olney, 2005), DeepTutor (Rus, DMello, Hu, & Graesser,

2013), Andes (Gertner & VanLehn, 2000), Crystal Island (Rowe et al., 2009),

CircSimTutor (Evens et al., 1997), GuruTutor (Olney et al., 2012) and

Why2 (VanLehn et al., 2007). Additionally, there is an ITS called

iSTART (McNamara, Levinstein, & Boonthum, 2004) for reading comprehension

and W-Pal for writing (McNamara et al., 2012).

Vanlehn (2006) proposed the general architecture of an ITS consisting of two

loops: outer loop and inner loop. The outer loop is responsible for serving

learner-tailored content and tasks, i.e., the outer loop handles macro-adaptivity by

managing the order of tasks (or problems) for the students to learn during tutoring.

On the other hand, the inner loop provides a micro-adaptive environment to achieve

1

the goals of the current task undertaken by the student, where the student interacts

with the tutor using natural dialogues or some on-screen elements. The inner loop

typically consists of three stages: i) the tutor asks a question, ii) the student provides

the answer to the question and then, iii) the tutor assesses the answer. If the

student has mastered the task, the inner loop transfers the control to the outer loop

to decide the next problem or task. Otherwise, the loop is repeated until the task is

successfully learned.

Figure 1.1 an example of dialogue-based inner loop in the DeepTutor. The

Current Task section describes the current problem or task attempted by the

student along with related multimedia image. The Dialogue History section shows

the history of the interactions between the student and the DeepTutor. The tutor

starts the interaction by asking the student for a short-essay answer to a problem.

The student types the answer in the Student Response section using natural English

text. The tutor then assesses the student’s answer to check what expectations

(solution steps) are covered and provides relevant feedback. If the student’s answer

is incorrect with respect to an expectation, the tutor provides short feedback and

provides hints and prompts to allow the students to make progress. In case the

misconception is uncovered, the tutor explains to the student to correct his

misconception. On the other hand, if the student response is correct, the tutor may

provide positive feedback such as Excellent! and Right ! Subsequently, the tutor asks

the next question covering the next solution step. The task is completed once the

student answers or covers all the expectations for the task.

Recent studies (VanLehn, 2011; Kulik & Fletcher, 2016) have shown that the

Intelligent Tutoring Systems (ITSs) are as effective as average human tutors in

inducing learning gains. Moreover, there is still the possibility that ITSs could be

better than humans by further improving the micro-adaptivity functionality of the

inner loop. In dialogue-based ITSs, effective dialogue and language processing

2

Fig. 1.1: Inner Loop Interface of DeepTutor tutoring system.

algorithms lie at the heart of the inner loop. In these systems, the inner loop relies

on several components such as i) a dialogue based task script, ii) learner models, iii)

models for handling dialogue acts and dialogue modes, iv) identifying and

understanding effective tutorial strategies, v) assessment models for assessing the

student answer and vi) a diagnostic feedback model. We focus on the last four

components in our dissertation work.

1.1.1 Research Challenges

Many researchers have conducted research to identify effective tutorial strategies to

use in the tutoring environment that induce learning gains (Aleven, Popescu, &

3

Koedinger, 2001; Cade, Copeland, Person, & DMello, 2008). However, the task of

identifying effective tutorial strategies is very challenging given that average human

tutors rarely employ sophisticated tutoring (Graesser, DMello, & Person, 2009).

Therefore, there is a need to discover and understand tutoring strategies used by

expert tutors, as opposed to average tutors, or are motivated by pedagogical theory.

The latter approach is to implement pedagogically backed strategies in an ITS and

validate them through controlled experiment (Rus, DMello, et al., 2013). The other

approach is to mine the existing huge amount of tutorial data to discover effective

tutorial strategies. The effective strategies, once discovered, can be implemented in

ITSs that could re-enact these strategies systematically thus leading to effective

ITSs which in turn would lead to an improved educational ecosystem.

Another challenge is to correctly evaluate student answers. The true

understanding of the student answer is an intractable problem since it requires

making inferences over linguistic knowledge, world knowledge, domain knowledge,

and contextual information. Therefore, the widely adopted and scalable approach to

assessing such open-ended student responses is the semantic similarity in which a

score is computed between a target student answer and an expert-provided reference

answer. The underlying assumption, in this case, is that the students provide

explicit and self-contained answers. However, the student answers are often short

involving anaphora and ellipsis. This phenomenon is more common in an interactive

conversational tutoring environment such as DeepTutor. For example, Niraula et

al. (2014) analyzed tutorial conversational logs and showed that 68% of the

pronouns used by students were referring to entities in the previous dialogue turn or

in the problem description.

Additionally, they found that about 65% of pronouns in the student answers

have their referents in the immediate previous utterance, i.e. tutor question and the

problem description. Based on this finding, Banjade and colleagues (Banjade,

4

Table 1.1: A sample question and answer between student and DeepTutor with the
ideal expected answer.

Description

Question: Because it is a vector, acceleration provides what
two types of information?
Student Answer: Acceleration gives magnitude
Expected Answer: Acceleration provides magnitude and direction.

Maharjan, Niraula, Gautam, et al., 2016) used as context the previous utterance

and the problem description while annotating 900 student responses collected from

the logged interactions of 40 different students in an experiment with the

DeepTutor (Rus, DMello, et al., 2013) to create the DTGrade dataset. On

analyzing DTGrade dataset, the authors showed that 25% of the annotated

instances require context to assess the correctness of the student answers. This

highlights the vital role of context when assessing student answers particularly, in

conversational tutoring environments.

The other issue is interpreting the semantic similarity score of a student

answer. The Semantic Textual Similarity (STS) systems merely measure the degree

of similarity, i.e., the correctness of the student responses when compared against

the expert provided answers. However, these systems don’t explain why the two

texts are equivalent, or similar or unrelated. They do not give any information

about which parts of the sentences are equivalent in meaning (or very close in

meaning) and which not. For example, consider a question asked by the DeepTutor,

its expected answer and one of the student responses to the question as shown in

the Table 1.1.

A typical STS system does not indicate which information is missing in the

student answer for the above question. If there existed explanatory functionality

that could explain the missing information is direction, we could use this diagnostic

information to generate a follow-up question by the tutor as What other information

5

than magnitude is provided by the acceleration? Therefore, the capability to explain

the similarity in addition to similarity score is important in applications such as

intelligent tutoring systems because this empowers the inner loop to improve the

micro-adaptivity by providing relevant diagnostic feedback to the student.

Our work is motivated by our interest to improve the overall learning

experience of the students with the conversational intelligent tutoring systems by

seeking solutions to the challenges described above.

1.2 Goal

Our work is aimed at improving online Intelligent Tutoring Systems. Towards

meeting this goal, we describe various methods and approaches to improving the

assessment of student responses (with and without contextual information) and,

providing interpretable textual similarity capability for giving appropriate and

relevant feedback. We also describe our approach to identify and understand

effective pedagogical strategies employed by successful tutors that lead to learning

gains.

1.3 Research Questions

The key research questions we target to answer in this research work are outlined

below.

� How to identify and understand effective tutorial strategies employed by

successful tutors that yield tutoring sessions with learning gains?

� How to improve generic sentence similarity methods for assessing short texts?

� How to improve automated assessment of open-ended student answers in

tutorial dialogue using contextual information?

� How to interpret the predicted similarity score and provide subsequent

diagnostic feedback in tutorial dialogue contexts?

6

� How to automatically extract student mental model representations from

tutorial dialogues in the form of entity-relations graphs or conceptual maps

and then use them for assessing student performance?

1.4 Summary of Primary Contributions

We describe the contributions of our dissertation work below.

In Chapter 2, we describe our supervised approach to map tutor-tutee

utterances in tutorial sessions onto actions by classifying them into dialogue acts,

dialogue sub-acts and dialogue modes. We then analyze sequences of tutor and tutee

actions to identify the most interesting and useful patterns associated with effective

tutorial sessions, i.e., sessions in which there is evidence of tutee learning gains.

In Chapter 3, we present our various methods to measure the similarity

between short sentences including our novel approach based on Gaussian Mixture

Model to measure short textual similarity. We also describe our different Support

Vector Regression (SVR) models which were top performing systems for Semantic

Textual Similarity in Semantic Evaluation (SemEval) in different years. SemEval is

an ongoing series of evaluations of computational semantic analysis systems. Our

initial SVR models (Banjade, Niraula, et al., 2015; Banjade, Maharjan, Gautam, &

Rus, 2016) used multiple features including multi-level alignment and vector-based

compositional semantic similarity measures. In addition to the above features, our

recent SVR model (Maharjan, Banjade, Gautam, Tamang, & Rus, 2017) includes

sentence-level embeddings and Gaussian Mixture Model similarity.

In Chapter 4, we present our approach to assessing open-ended student

answers in context. Evaluating student answers in context is particularly important

in an Intelligent Tutoring System like DeepTutor (Maharjan, Banjade, & Rus,

2017), where student answers vary significantly in their explicit content and writing

style. We describe our probabilistic Gaussian Mixture Models (GMMs) and Long

7

Short Term Memory (LSTM) models to assess student answers which takes context

into account.

In Chapter 5, we present our SemAligner tool which can be useful for

explaining or interpreting the similarity score between two texts by identifying

chunks and aligning them across the two texts indicating the semantic relation and

similarity score of each alignment. We use chunk alignment types :- EQUI

(semantically equivalent), OPPO (opposite in meaning), SPE (one chunk is more

specific than other), SIMI (similar meanings, but not EQUI, OPPO, SPE), REL

(related meanings, but not SIMI, EQUI, OPPO, SPE), and NOALI (has no

corresponding chunk in the other sentence). The relatedness/similarity scores are

assigned in the range of 0 to 5.

Next, we describe our novel concept map-based method in Chapter 6 that

can both assess and interpret the student answers in tutorial dialogues. In this

approach, we automatically extract concepts and relations from the student

responses to build a concept map for each student for a given problem. The concept

map would serve as a representation of the mental model of the student

understanding of the problem and target domain. Once we have the concept map

for the student, we assess the student knowledge by comparing the student concept

map with the ideal concept map for the problem created by Subject Matter Experts

(SMEs).

We use concept maps for both evaluating and explaining the degree of

correctness of the student answers. We derive a concept map for the current student

answer and compare it against the corresponding concept map for the ideal answer

to determine the degree of correctness. For example, we can find out that the

student answer is missing the direction concept from the expected answer for the

question asked in Table 1.1 and therefore, we can provide appropriate feedback and

plan the next dialogue moves for the missing concept.

8

Chapter 2

Discovering Effective Tutorial Strategies Employed by Professional

Tutors

One of the key research questions in the tutoring community is:What effective

tutorial strategies are employed by expert tutors that induce learning gains? The

task is very challenging, as average human tutors rarely employ sophisticated

tutoring strategies (Graesser et al., 2009). Therefore, there is a need to discover and

understand tutoring strategies that are either manifested by expert tutors, as

opposed to average human tutors, or are motivated by pedagogical theory.

In the pedagogical theory approach (Aleven et al., 2001; Rus, Banjade,

Niraula, Gire, & Franceschetti, 2017), sound pedagogical strategies based on theory

are typically implemented in an intelligent tutoring system (Rus, DMello, et al.,

2013) and are validated through controlled experiments. The other is a data-driven

approach, which we adopt here, to discover strategies from expert tutors by mining

existing tutoring data collected from online human tutoring services (Boyer et al.,

2011; Cade et al., 2008; Rus, Maharjan, & Banjade, 2015; Ohlsson et al., 2007).

However, understanding the effective strategies by studying the strategies

used by the expert tutors is a hard problem because what characterizes tutoring

expertise is an open question (Rus, Maharjan, & Banjade, 2015). A tutor who

employs sound strategies may appear less expert when working with students having

low abilities or lacking in motivation. On the other hand, an average tutor may seem

expert if he only works with highly able and motivated students. Also, Ohlsson and

colleagues (Ohlsson et al., 2007) reported in their study that the number of years of

tutoring experience and pay scale, which are typically used as proxies for expertise,

of the tutors do not impact the average learning gains. It should be noted that

Ohlsson and colleagues used a small number of tutors in their study.

9

Consequently, we distinguish in our work between effective tutoring (the kind

that induces learning gains) and expert tutoring (do the right thing, e.g., following

sound pedagogical standards). It should be noted that this distinction is similar to

research work in teacher expertise (Berliner, 2001) that distinguishes between good

versus successful teachers: good teachers are those whose classroom performance

meets professional teaching standards, whereas successful teachers are those whose

students achieve set learning goals. It is beyond the scope of this paper to fully

address the topic of tutoring expertise. Instead, we focus on effective tutoring by

identifying effective tutors which in turn are identified by identifying effective

tutorial sessions.

Once effective sessions are identified, we need to characterize and explore

tutors’ actions. For this, we map the dialogue-based interactions, which are streams

of utterances, into streams of actions (dialogue acts) based on the

language-as-action theory (Austin, 1975; Searle, 1969) (described in Section 2.2)

using a predefined dialogue taxonomy (described in Section 2.3). Once tutorial

sessions were mapped onto sequences of dialogue acts and dialogue modes, we

attempted to identify patterns of actions that are associated with learning gains.

We inferred different patterns over the tutor-tutee actions sequences through

tutorial session analysis (Rus, Maharjan, Lasang, et al., 2017). We describe our

approach for identifying patterns in effective and ineffective tutorial sessions in

Section 2.4. We analyzed what do good human tutors do in such good sessions. We

also compared the profiles (distributions of dialogue acts/dialogue modes) for

effective versus less effective sessions to understand and characterize effective human

tutoring. Moreover, we also investigated what effective strategies, i.e. sequences of

tutor actions, can be discovered in good tutoring sessions but not in bad tutoring

sessions. In this work, we also report our findings with respect to dialogue-act,

sub-act and dialogue-mode classification (see Section 2.6.2).

10

2.1 Related Work

Discovering the structure of tutorial dialogues and tutors’ strategies has been one of

the main goals of the intelligent tutoring research community for quite some time.

For instance, Graesser, Person, and Magliano (1995) explored collaborative dialogue

patterns in tutorial interactions and proposed a five-step general structure of

collaborative problem-solving during tutoring.

Over the last decade, the problem has been better formalized and also

investigated more systematically using more rigorous analysis methods (Cade et al.,

2008; Boyer et al., 2011). For example, tutoring sessions are segmented into

individual tutor and tutee actions and statistical analysis and artificial intelligence

methods are used to infer patterns over the tutor-tutees action sequences. The

patterns are interpreted as tutorial strategies or tactics which can offer both insights

into what tutors and students do and guidance on how to develop more effective

intelligent tutors that implement these strategies automatically. Our work

contributes to this area of research by exploring tutors’ actions by doing a tutorial

data analysis at scale, i.e., using a big collection of tutorial data.

2.2 Language as Action

The actions of speakers can be represented by dialogue acts inspired from the

language-as-action theory (Austin, 1975; Searle, 1969) which states that when we

say something we do something.

An utterance can be thought of as serving an action. For example, a simple

utterance of ‘Hello!’ represents an expression of a greeting action. ‘Could you please

pass me the book?’ serves a request action. A dialogue act may have some finer

subtleties, and at the lower level, the utterance can be labeled with a dialogue act

and sub-act combination. For example, the tutor utterance (T1) in the Table 2.1:

“There is an useful idea called ‘conservation of energy”’ can be categorized as an

Assertion dialogue act, i.e. the utterance is making an assertion about the

11

Table 2.1: A snippet of tutorial dialogue between student and tutor labeled with
dialogue acts and modes. PK refers to Prior Knowledge.

Speaker Act Sub Act Mode Utterance

Tutor Assertion Concept Telling There is an useful idea called
’conservation of energy’

Student Assertion PK: Positive Telling Yes. I know about that too.

“conservation of energy” which is a Concept sub-act. Similarly, the subsequent

student utterance (S1): “Yes. I know about that too.” represents an Assertion

dialogue act initiated by the student having some prior knowledge on the concept.

Therefore, it has sub-act label ‘PriorKnowledge: Positive’. Similarly, all the

dialogue utterances in a dialogue interaction can be labeled with corresponding

dialogue acts and sub-acts.

We then further group these dialogue acts and sub acts into higher concepts

called dialogue modes. For example, the utterances T1 (Assertion: Concept) and S1

(Assertion:Prior Knowledge:Positive) are part of chunks of actions related with the

dialogue mode Telling. Therefore, a dialogue mode serves a particular task-related

or pedagogical goal. To conclude, we map tutorial sessions consisting of streams of

utterances into streams of dialogue acts and dialogue modes.

2.3 Dialogue Taxonomy

The current coding taxonomy is adapted to our context from an earlier taxonomy

built over a large corpus of online tutoring sessions conducted by human tutors in

the domains of Algebra and Physics (Morrison et al., 2014). It should be noted that

the dialogue acts and subacts were defined and refined to minimize overlap between

categories and maximize the coverage of distinct acts. It is more granular than

previous schemes such as the one used by Boyer and colleagues (Boyer et al., 2011).

There are 17 top level expert-defined dialogue act categories: Answer, Assertion,

Clarification, Confirmation, Correction, Directive, Explanation, Expressive, Hint,

LineCheck, Offer, Promise, Prompt, Question, Reminder, Request and Suggestion.

12

The Prompt and Hint are two additional pedagogical categories included in the

current taxonomy. Each dialogue act category may have 4 to 22 subcategories or

sub-acts. For example, we distinguish Assertions that reference aspects of the

tutorial process itself (Assertion:Process); domain concepts (Assertion:Concept), or

the the use of lower-level mathematical calculations (Assertion:Calculation). The

taxonomy identifies 129 distinct dialogue act and sub-act combinations. Further, we

have a set of 17 different dialogue modes defined by the experts as: Assessment,

Closing, Fading, ITSupport, Metacognition, MethodID, Modeling, OffTopic, Opening,

ProblemID, ProcessNegotiation,RapportBuilding, RoadMap, SenseMaking,

Scaffolding, SessionSummary and Telling.

The set of 17 expert-defined modes used by the SMEs to manually label the

data is shown below. A detailed description of the dialogue modes is available

(Morrison et al., 2014).

� Assessment : A mode in which the tutor “assesses the student’s level of

understanding to determine a suitable starting point.”

� Closing : A mode in which the tutor moves to close out the session, often

ending in an exchange of farewells, and the tutor’s reminder to complete a

satisfaction survey.

� Fading : A mode in which the student is working on the problem successfully,

with only occasional contributions from the tutor, such as in the form of

positive confirmation or praise.

� ITSupport : A mode in which the conversation is about IT related issues.

� Metacognition: A mode in which the tutor makes assertions to help the

student think about the problem-solving process at a “meta” level, e.g., the

importance of perseverance, checking for careless errors, etc.

13

� MethodID : A mode during which the tutor attempts to determine if there is a

particular method the student needs to use to solve the problem.

� Modeling : A mode in which the tutor is showing the student how to solve a

problem, such as by completing one or more of the steps herself.

� Off Topic: A mode in which the students engages the tutor in an off-topic

conversation.

� Opening : The opening mode of the session (e.g., greetings, asking for help).

� ProblemID : A mode in which the tutor seeks to “identify and achieve a clear

understanding of the student’s needs/expectations.”

� Process Negotiation: A mode in which the two conversational partners

negotiate aspects of the tutorial process itself such as whether there is time to

work on another problem, etc.

� Rapport Building : A mode in which the tutor or tutee or both intend

primarily to build rapport, e.g., expressions of praise, apologies, affect queries

(How are you this evening?).

� RoadMap: A mode during which the tutor lays out the “game plan” for

solving the problem.

� Sensemaking : A mode in which the tutor is helping the student gain

conceptual understanding as opposed to procedural accuracy, e.g., explaining

why a particular problem-solving step is appropriate in a particular

circumstance.

� Session Summary : A mode in which the tutor reviews the session, with an

emphasis on what the student might have or ought to have learned.

14

� Scaffolding: A mode in which the student is doing most of the work and the

tutor making frequent contributions of assistance.

� Telling : A mode in which the tutor asserts and explains, with relatively few

student contributions mostly in the form of confirmations of understanding.

2.4 Identifying Patterns in Effective Tutorial Sessions

We identify effective tutorial sessions by using both expert human judgments

and objective learning gain measures. Our research corpus consists of

dialogue-based tutorial sessions involving interactions between professional tutors

and learners from an online provider of human tutoring services. There are no pre-

and post-tests for these chat-based tutorial sessions to infer learning gains. For

annotated corpus, the annotators rated the annotated tutorial sessions with the

scores for evidence of learning (EL) and evidence of soundness (ES). We use an

average of EL and ES to measure the quality of tutorial sessions. We also use pre-

and post-tutoring measures of mastery of target topics to derive the learning gains

by aligning the human tutoring data with sessions offered by Carnegie Learning’s

Cognitive Tutor (Ritter, Anderson, Koedinger, & Corbett, 2007). Students in our

sessions are college-level, adult students who are required to interact with Cognitive

Tutor and also have the option to ask for help from a human tutor. It is important

to note that most students do not ask for help from a human tutor (Ritter, Fancsali,

Yudelson, Rus, & Berman, 2016) which may imply a self-selection bias in our

student population in the sense that it might consist of students that have higher

meta-cognitive skills, e.g., they self-assess their knowledge and affective states and

decide to ask for more help if needed, or prefer social interactions or appreciate

affective support from a knowledgeable other human being. The results we present

here should be interpreted with this important aspect of our data in mind.

Once effective sessions are identified, we need to characterize and explore

tutors’ actions. For this, we map the dialogue-based interactions, which are streams

15

of utterances, into streams of actions (dialogue acts) based on the

language-as-action theory (Austin, 1975; Searle, 1969) (described in Section 2.2)

using a predefined dialogue taxonomy (described in Section 2.3). We adopted a

supervised machine learning method to automate the mapping of each utterance

into a dialogue act and sub-act label (Rus, Maharjan, & Banjade, 2017; Rus et al.,

2016). Further, we applied a supervised approach to labeling dialogue modes using

a sequence labeling framework based on Conditional Random Fields (Rus, Niraula,

Maharjan, & Banjade, 2015). A dialogue mode is a chunk of actions associated with

general conversational segments and is related to a task or pedagogical goal. For

instance, during a learner-tutor interaction, there might be a segment of interactions

where the tutor would be exemplifying and explaining (modeling) the application of

certain concepts. We call such as segment Modeling mode.

Once tutorial sessions were mapped onto sequences of dialogue acts and

dialogue modes, we attempted to identify patterns of actions that are associated

with learning gains. We inferred different patterns over the tutor-tutee actions

sequences through tutorial session analysis (Rus, Maharjan, Lasang, et al., 2017).

As Rus and colleagues (Rus, Conley, & Graesser, 2014) noted, there could be only

one tutoring strategy which is to make the learner apply effective learning strategies

which, in turn, implies that we need to also analyze what tutees do in response to

tutors’ actions. We analyzed and explored different patterns in terms of dialogue

acts and modes to understand human tutoring sessions. We investigated the typical

dialogue act and mode profiles of an effective tutoring session. We also analyzed

what do good human tutors do in such good sessions. We also compared these

profiles for effective versus less effective sessions to understand and characterize

effective human tutoring. Moreover, we also investigated to see what effective

strategies, i.e. sequences of tutor actions can be discovered in good tutoring sessions

but not in bad tutoring sessions. These patterns or tutorial strategies can offer

16

insights into what strategies tutors and learners employ and therefore offer guidance

on how to develop more effective intelligent tutoring systems (ITSs). For instance,

strategies used by effective human tutors, once discovered, can be implemented in

ITSs that could re-enact these strategies systematically thus leading to effective

ITSs which in turn would lead to an improved educational ecosystem.

Next, we describe a set of different features used to develop classifiers for

automatically tagging utterances in tutorial sessions for dialogue acts, sub-acts and

modes.

2.5 Feature Selection

Representing an utterance by a set of features is a non-trivial task. The standard

approach for selecting features is to consider a rich set of features including n-grams,

POS and lemma and, then applying some feature selection methods to avoid

over-fitting. However, firstly it is not clear whether there is a need for so many

features to solve the dialogue classification problem. Second, it is difficult to

interpret how individual features contribute to a classification task. Therefore, we

use few intuitive and meaningful features to represent a dialogue utterance in our

supervised approach to classifying dialogue utterances as dialogue act, sub-act, and

mode labels. Our experiments are meant to validate our selection of features.

We selected these features based on the assumption that humans infer

speakers’ intention after hearing only a few of the leading words of an utterance

(Moldovan, Rus, & Graesser, 2011). One argument in favor of this assumption is

the evidence that hearers start responding immediately (within milliseconds) or

sometimes before speakers finish their utterances (Martin & Jurafsky, 2000).

Intuitively, the first few words of a dialogue utterance are very informative of

that utterance’s dialogue act. For instance, Questions usually begin with a

Wh-word while dialogue acts such as Answers contain a semantic equivalent of yes

or no among the first words, and Greetings use a relatively small bag of words and

17

Id Feature Description

F1 first token
F2 second token
F3 third token
F4 last token
F5 utterance length
F6 dialogue act
F7 dialogue act - subact
F8 bigrams of F1-F2 and F2-F3
F9 trigram of F1-F2-F3
F10 {F1, F2, F3, F4} of last 2 utterances
F11 {F1, F2, F3, F4} of next 2 utterances
F12 F6 of last utterance
F13 F6s of last 2 and next 2 utterances
F14 F7 of last utterance
F15 F7 of last 2 and next 2 utterances
F16 dialogue mode of last utterance

Table 2.2: Features

expressions. In the case of other dialogue act categories, distinguishing the dialogue

act after just the first few words is not trivial, but possible. It should be noted that

in typed dialogue, which is less expressive than spoken dialogue, some information,

such as intonation is lost. We should also recognize that the indicators allowing

humans to classify dialogue acts also include the expectations created by previous

dialogue acts. For instance, after a first greeting, another greeting, that replies to

the first one, is more likely. Therefore, our primary feature set consists of first

token, second token, third token, last token and utterance length to represent a

dialogue utterance.

We summarize all the features used in our experiments in Table 2.2.

Dialogue act is the first step towards classifying utterances in a tutorial session. So,

we used utterance level primary features (F1-5) and their contextual derivatives

such as bigrams of F1-F2 and F2-F3 (features F7 and F8), trigram of F1-F2-F3

(feature F9), {F1, F2, F3, F4} of previous two and next two utterances (features

F10 and F11) for dialogue act classification. For next dialogue act - subact

18

Fig. 2.1: Tutorial Data Annotation.

classification, we used additional richer features at dialogue act levels such as

current dialogue act (F6) and dialogue acts of the last two and next two utterances

(F13). Finally, our CRF based dialogue mode labeler used even richer features at

dialogue act and dialogue act-subact levels, e.g. F12, F13, F14, F15 in Table 2.2.

It should be noted that we experimented with other features such as the

speaker (student vs. tutor), the position of the utterance in the dialogue, e.g., an

utterance at the beginning of a session is more likely a greeting, the previous

dialogue act. However, these features didn’t improve model performance.

2.6 Experiments and Results

2.6.1 Data

A large corpus of about 19K tutorial sessions between professional human tutors

and actual college-level, adult students was collected via an online human tutoring

19

service. Students taking two college-level developmental mathematics courses

(pre-Algebra and Algebra) were offered these online human tutoring services at no

cost. The same students had access to computer-based tutoring sessions through

Adaptive Math Practice, a variant of Carnegie Learning’ Cognitive Tutor. A subset

of 500 tutorial sessions containing 31,299 utterances was randomly selected from

this large corpus for annotation with the requirement that a quarter of these 500

sessions would be from students who enrolled in one of the Algebra courses (Math

208), another quarter from the other course (Math 209), and half of the sessions

would involve students who attended both courses.

Data Annotation Process: Figure 2.1 shows the process of annotating the

randomly selected 500 tutorial sessions. The sessions were manually labeled by a

team of 6 subject matter experts (SMEs), e.g., teachers that teach the target topics.

They were trained on the taxonomy of dialogue acts, sub-acts, and modes. Each

session was manually tagged by two independent annotators without looking at each

other’s tags to eliminate the labeling bias problem using web-based transcript

annotation software. The tags of the two independent annotators were

double-checked by a verifier who resolved discrepancies in tags if any. The verifier

also happens to be the designer of our dialogue taxonomy. The average

inter-annotator agreement for the two independent annotators is summarized in

Table 2.3.

Based on the assumption that tutors often switch from one particular

instructional strategy (dialogue mode) to another strategy during tutoring, the

annotators labeled only the utterances where a switch in strategy occurred. For

instance, they annotated an utterance with the dialogue mode label of

ProblemIdentification where a switch occurred from, say, an Opening to the

ProblemIdentification mode. So, it should be noted that the dialogue mode

20

Annotation Agreement (%) Kappa

Act 77 0.72
Act-subact 62 0.60
Mode 44 0.37
Mode∗ 53.8 0.48
Mode∗∗ 64.3 0.60

Table 2.3: Average Inter Annotator Agreement Between Two Independent
Annotators. Mode∗ and Mode∗∗ represent dialogue mode agreement between verifier

and first annotator and, verifier and second annotator respectively.

agreement above refers to mode-switches. In our context, dialogue mode should be

interpreted as dialogue mode-switch throughout the paper.

When we looked at the confusion matrix, the most confusing modes for

annotators were Fading, Scaffolding, ProcessNegotiation and ProblemIdentification.

They confused Scaffolding with Fading 16%, Fading with Scaffolding 28%,

ProblemIdentification with ProcessNegotiation 17% and ProcessNegotiation with

ProblemIdentification with ProcessNegotiation 15% of the time. However, the

tagging discrepancies were resolved by the verifier. The mode agreement between

verifier and first annotator and verifier and second annotator were (53.8%, kappa =

0.48) and (64.3%, kappa = 0.60).

2.6.2 Dialogue Classification

We built different classifiers based on a supervised machine learning approach for

predicting the dialogue act, sub-act and dialogue mode labels. We used the above

500 annotated tutorial transcripts for training our classifiers and evaluated their

performance in terms of accuracy and Cohen’s kappa relative to the final tag

adjudicated by the verifier using a 10-fold cross-validation approach.

Dialogue Act Classification: For dialogue act classification, we describe

two of our best classifiers. We trained a Hidden Markov Model (HMM) in which we

assumed the dialogue acts as the hidden states generating the observations, i.e.

dialogue utterances in temporal space. We represented the dialogue utterance by

21

Classifier Accuracy (%) Kappa

HMM 67.9 0.59
CRF 74.3 0.67

Table 2.4: Performance of dialogue act classifiers

Classifier Accuracy (%) Kappa

CRF 51.2 0.49
Liblinear 53.47 0.67
CRF-2∗ 65 0.63

Table 2.5: Performance of dialogue act - subact classifiers. CRF-2 uses gold dialogue
acts to analyze impact of noisy predicted acts.

the set of F1-5 features in Table 2.2. Finally, we used the trained HMM to predict

dialog act labels by finding the most probable sequence of dialogue acts (hidden

states) given a sequence of utterances in a tutorial session. In our second approach,

we used discriminative Conditional Random Fields (CRF) to tackle the dialogue act

classification as a sequence labeling task. CRFs do not suffer from the label bias

problem like Maximum Entropy Markov Models (MEMMs). Also, unlike HMM, the

CRF model may account for the full context of a set of observations using features

of various levels of granularity. We used F1-5 and F8-12 as features for our CRF

based dialogue act classifier.

Dialogue Act-Subact Classification: We predicted dialogue act-subact

labels in two steps. We first used a CRF-based dialog act classifier (described

above) to predict dialogue acts for given utterances. Then, we used CRF subact

classifier to predict the subsequent subact label using utterance features and

predicted dialogue acts. Our subact classifier used F6, F13 and F14 in addition to

F1-5, F8-11 as features. Due to cascaded design, our dialogue act-subact CRF

model performance may suffer in the case predicted dialogue act is incorrect. Next,

we built a flat dialogue act-subact classifier using a liblinear kernel with logistic loss

function using F1-5 as features.

Dialog Mode Labeling: We labeled dialogue modes by considering it as

22

Classifier Accuracy (%) Kappa

CRF 51.7 0.48

Table 2.6: Performance of dialogue mode classifier

both classification and sequence labeling tasks using CRFs. In this case, we used

current dialogue act (F6), current act-subact (F7), dialogue acts and act-subacts of

previous two and next two utterances (F13, F15) and dialogue mode of the previous

utterance (F16) as features to build our CRF model.

Results: Table 2.4 shows the performance of our dialogue act classifiers.

The CRF based dialogue act classifier outperforms its HMM counterpart and yields

the best accuracy of 74.3% with a kappa of 0.67. Also, the performance of our CRF

classifier is close to the inter-rater agreement for the dialogue acts (see Table 2.3).

For dialogue act-subact classification, the Liblinear model slightly outperforms the

CRF classifier as shown in Table 2.5 but it is not close to inter-annotator agreement

value. The CRF classifier might have suffered due to noisy predicted dialogue acts.

We validated this assumption by building another CRF model (CRF2 in Table 2.5)

where we provided true dialogue act values for features F6 and F13. The CRF2

model resulted in 65% accuracy with a kappa of 0.63 which is even better than the

inter-rater agreement for dialogue act - subact labeling. Our dialogue mode classifier

yielded an accuracy of 51.7% and kappa=0.48. Interestingly, the accuracy and

kappa for the dialogue mode labeling are better than the human inter-annotator

agreement (see Table 2.3). This is explained by the fact that our learning method

captures well the final labels assigned by the final verifier and therefore agrees more

with the final labels than the two independent annotators.

2.6.3 Tutorial Session Analysis

We performed a number of analyses of tutorial sessions to understand the general

structure of such sessions and identifying patterns of actions that are linked to

23

Fig. 2.2: Distribution of human ratings of Evidence of Learning (EL) and Evidence
of Soundness (ES).

learning gains. We used two measures to represent the learning gain: a human

judgment measure and a computer-generated measure.

2.6.4 Analysis using human judgment measure of learning gain

We first used human judgment measures to identify effective and ineffective sessions.

The SMEs rated each tutorial session using a 1-5 scale (5 being the highest/best

score) along the two dimensions of evidence of learning (EL) and evidence of

soundness (ES). The EL and ES were found to be highly correlated with a Pearson

coefficient of 0.7. However, 55 sessions annotated in the training phase of the

annotation did not have these ratings. In addition to this, 40 out of 445 annotated

sessions did not have rating information of EL. Figure 2.2 shows the distribution of

the ratings of EL and ES given by the annotators. We see that most annotated

sessions are dominantly good sessions having both EL and ES rated ≥ 4. On the

other hand, about 12% sessions were bad sessions (EL and ES rated ≤ 2).

24

Fig. 2.3: Distribution of dialogue act profile of top versus bottom 10% sessions. a
show the profile for tutors only while b shows the profile for both tutors and

students.

We used both EL and ES measures to identify effective and ineffective

sessions. There might be sessions in which students might not learn much despite

the best application of pedagogically sound tactics. On the other hand, a

high-ability student might learn even if the tutor is not applying accepted

pedagogically sound strategies. Therefore, we consider an average of the learning

and soundness scores to capture these different situations and generate a final score

the captures the overall quality of the tutorial sessions.

Profile comparison analysis: As a first analysis, we conducted a

comparison of the distributions of dialogue acts for top 10% sessions versus bottom

10% sessions when ranked based on the holistic score, i.e., the average EL and ES

ratings. We compared distributions of dialogue acts (dialogue act profiles) for the

tutors only and for both tutors and students (Figure 2.3 a and b), respectively.

We found that tutors in good sessions generate, on average, more Expressives

(22.2% vs 16.5%, p-value < 0.001) and Prompts (14.3% vs 12.3%, p-value = 0.15)

and less Requests (11.8% vs 16.3%, p-value = 0.002) than those in the bottom 10%

25

Fig. 2.4: Distribution of mode switch profile of top versus bottom 10% sessions. a
show the profile for tutors only while b shows the profile for both tutors and

students.

sessions. Even when considering the dialogue act profile for students and tutors

together, there are relatively more Expressives (23.3% vs 16.7%, p-value < 0.001)

and less Requests (12.9% vs 15.1%, p-value = 0.051) acts in the top 10% sessions

than in the bottom 10% sessions.

Similarly, we investigated the dialogue mode switch profiles for top 10% good

sessions against bottom 10% bad sessions as shown in Figure 2.4. The mode profile

revealed that there are relatively more Fading (13.4% vs 5.2%, p-value < 0.001),

Scaffolding (16.6% vs 12.2%, p-value = 0.066) and RoadMap (10.5% vs 6.6%,

p-value = 0.047) modes initiated, on average, by the tutors in the top 10% sessions.

On the other hand, there are relatively less ProcessNegotiation (12.3% vs 17.4%,

p-value = 0.028), ITSupport (0.5% vs 3.2%, p-value < 0.001), and ProblemID (7.3%

vs 13.6%, p-value = 0.001) modes initiated, on average, by tutors in the good

sessions. These observations are true even when we look at the mode switch profile

across both tutors and students (figure not shown due to space limitations) i.e.

there are relatively more Scaffolding(19.3% vs 12.6%, p-value = 0.002), Fading

26

Dialogue Mode Symbol

Assessment A
Closing C
Fading F
ITSupport I
Metacognition M
MethodID E
Modeling D
Opening O
ProblemID P
ProcessNegotiation N
RapportBuilding B
RoadMap R
Scaffolding S
SenseMaking K
SessionSummary Y
Telling T

Table 2.7: Mapping of dialogue modes to symbols.

(12.6% vs 4.3%, p-value = 0.001) and RoadMap (8.6% vs 5.6%, p-value = 0.056)

and less ProcessNegotiation (11.1% vs 18.3%, p-value < 0.001), ITSupport (1.1% vs

5.8%, p-value < 0.001) and ProblemID (9.2% vs 15.0%, p-value = 0.002) in the top

10% sessions than in the bottom 10% sessions.

Sequence logo analysis : Sequence logos are an efficient visualization tool

for representing distributions of various observations over discrete time. For

instance, they are used in biomedical research for visually representing sequences of

genes. In our work, we used sequence logos to investigate the profile of dialogue

modes in temporal space, i.e., as they unfold across throughout a dialogue session.

The sequence logo regards each dialogue session as a discrete sequence of dialogue

modes and then determines the dominant mode at each discrete moment in the

sequence. The dialogue mode at the top of a stack of modes at each discrete

moment of the dialogue is the most frequent mode at that moment. Furthermore,

the height of each letter in a stack represents the amount of information contained.

The bigger the letter/mode at a particular discrete time the more certain the

27

Fig. 2.5: Dialogue mode sequence logo for top 10% sessions up to average mode
switch length of 21.

dominance of the corresponding mode is. For instance, at the discrete time 1 in the

sequence logo shown in Figure 2.5 the dominant mode is Opening.

Figure 2.5 and Figure 2.6 show the sequence logo for the top 10% and

bottom 10% sessions, respectively. We show the sequence logo diagram for the

average mode switch length (21 for top 10% sessions and 11 for bottom 10%

sessions). That is, we considered only those sessions having a number of mode

switches greater or equal to the average mode switch length. The sessions with a

larger number of mode switches were truncated to the average mode switch length.

From the sequence logos thus generated, we can infer the most certain

sequence of dialogue modes in a typical human tutoring session which would be the

sequence of the most certain dialogue modes at each discrete moment. The

dominant sequence of modes is O, P, N, P, S, S, S, D, S, S, K, S, S, R, S, S, S, S, F,

28

Fig. 2.6: Dialogue mode sequence logo for bottom 10% sessions up to average mode
switch length of 11.

S and S for the top sessions as illustrated in Figure 2.5. On the other hand, the

bottom sessions (Figure 2.6) are characterized by the following dominant sequence

of modes/logos: O, P, P, N, S, N, P, S, S, N and T. In both figures, the symbols

represent the dialogue modes as shown in Table 2.7.

The sequence logos reinforce the observations inferred from the profile

comparison analysis. Scaffolding is the most frequent dominant mode in the

dominant sequence for the top 10% sessions. Moreover, the dominant sequence for

the top 10% contains Modeling, RoadMap and Fading modes that are absent in the

dominant sequence for the bottom 10% sessions. Also, Fading and RoadMap appear

as the second most dominant modes in two or three different time instants next to

Scaffolding.

On the other hand, the dominant sequence for the bottom 10% sessions

comparatively contains more ProcessNegotiation and ProblemIdentification modes

than in the dominant sequence for the top 10% sessions. Another interesting

observation is that the bottom 10% sessions are significantly shorter than top 10%

sessions in terms of the average number of mode-switches (21 for top 10% sessions

and 11 for bottom 10% sessions). All these observed patterns provide further

evidence reported by previous studies that good tutors quickly identify gaps in

29

SN Subsequence p-value Freq-bottom Freq-top

1 (T-Expressive)-(T-Expressive) 0.0003 0.55 0.94
2 (T-Assertion)-(T-Expressive) 0.0003 0.61 0.97
3 (S-Expressive)-(T-Prompt)-

(T-Expressive) 0.0005 0.16 0.66
4 (S-Assertion)-(T-Expressive)-

(T-Expressive) 0.0010 0.29 0.77
5 (T-Assertion)-(S-Expressive)-

(T-Expressive) 0.0043 0.27 0.73
6 (S-Expressive)-(T-Expressive) 0.0051 0.63 0.96
7 (S-Expressive)-(T-Expressive)-

(T-Expressive) 0.0101 0.18 0.63
8 (S-Expressive)-(S-Expressive) 0.0103 0.41 0.83
9 (S-Assertion)-(T-Expressive)-

(T-Prompt) 0.0271 0.27 0.71
10 (T-Prompt)-(T-Expressive)-

(S-Expressive) 0.0638 0.16 0.58
11 (S-Assertion)-(T-Expressive) 0.0658 0.67 0.96
12 (T-Expressive)-(S-Expressive)-

(T-Expressive) 0.1017 0.39 0.78

Table 2.8: Top 12 discriminant speaker differentiated act subsequences.

tutees’ knowledge and focus on encouraging the tutees, through the use of

Expressives and Scaffolding, to solve the target problem by providing more targeted

collaborative support.

Discriminant Sub-sequence analysis: Further, we investigated

distinctive sub-sequences of dialogue acts and modes that are associated with

effective and less effective sessions. In order to do this, we categorized all human

annotated sessions having ES and EL scores ≤ 2 as ineffective, and all sessions rated

with ES = 5 and EL ≥ 4 as good or effective sessions. Here, we used this

categorization instead of top 10% vs. bottom 10% to include additional good and

bad sessions that might have been excluded because of the restriction on the

number of sessions imposed by the latter criteria. Using more good and bad sessions

allows us to generate a large number of different sub-sequences for the analysis.

We then conducted sequence pattern mining using Traminer package in R.

30

The Traminer algorithm first finds the most frequent sub-sequences by counting

their distinct occurrences and then applies a Chi-squared test (Bonferroni-adjusted)

to identify sub-sequences that are statistically more (or less) frequent in each group.

We used a p-value < 0.4 threshold instead of typical 0.05 or 0.1 value because this

gave us a sufficient number of likely distinctive sub-sequences of modes which we

used for deriving a tutorial Markov process which we describe later. However, for

our discriminant sub-sequence analysis, we made the inferences/conclusions using

only sub-sequences with p-value ≤ 0.1 threshold. Therefore, our conclusions would

not change from the conclusions derived from such analysis done at the 0.1

significance threshold.

We used dialogue acts, act-subacts and mode-switches as observations. We

also granularized the observations further by adding speaker information. Here, we

report the most interesting sub-sequences discovered with this analysis. It should be

noted that a sub-sequence is not necessarily a contiguous sequence of observation,

however, the order of the observations is preserved. For example,

(Assertion)-(Expressive) is a valid sub-sequence of dialogue acts formed from the

(Assertion)-(Request)-(Expressive) contiguous sequence fragment. We generated

sub-sequences up to length 7 from all annotated tutorial sessions.

The discriminant sub-sequences thus obtained (as shown in Table 2.8)

further support the observations derived earlier based on the dialogue act profile

comparison which indicated that good, i.e. effective, tutors use more Expressive and

Prompts. That is, more prompting of students and more feedback through

Expressives are signatures of effective sessions. We notice that all discriminant

sub-sequences of acts contain Expressive acts initiated by either tutors or students.

The good tutors often prompt students to acknowledge that they are following their

tutoring or to elicit further answers or reasoning from the students. The

discriminant sub-sequence analysis for act-subacts in Table 2.9 provide further

31

insights. Tutors’ expressions of praise (T-Expressive-Positive) and farewell

(T-Expressive-Farewell) and students expressing thanks (S-Expressive-Thanks) are

highly predictive of effective sessions. The tutors often praise students to keep them

engaged in the task and when students provide correct answers. The tutees

expressing thanks (S-Expressing-Thanks) might suggest that the tutees are satisfied

with the tutoring. Moreover, the tutor expressing farewell indicates that the

tutoring session ends on a positive note. Sessions with proper closings might also

suggest that both the student and the tutor are satisfied with the tutorial session.

The discriminant subsequent analysis for modes (Table 2.10) reveals

interesting pedagogical patterns as well. Consistent with observations from the

sequence logo analyses (Figure 2.6 and Figure 2.5) and the dialogue act and mode

profile comparison, good tutorial sessions have Scaffolding and Fading as the

dominant strategies i.e. the good tutors do more Scaffolding and Fading to

encourage students to solve the problem by themselves, with minimal support. The

sub-sequences S-S, F, S-F, F-F are very strong indicators of good sessions

(p-value<0.05) while F-S, F-F-S, S-F-S also fairly strongly indicate sessions of top

quality. Another interesting observation is that the Closing mode (p-value=0.0475)

is also a very strong indicator of top sessions. Moreover, the Fading-Closing

(p-value=0.002) sub-sequence is even more predictive than the Closing mode alone.

We also observe that switching to Scaffolding or Fading modes after

ProblemIdentification indicates effective tutoring as evidenced by the sub-sequences

O-P-F (p-value=0.1764), P-F (p-value=0.0198) and P-S-S (p-value=0.0362).

Tutorial Markov Process: We used discriminant mode sub-sequences

generated above to generate a Markov process for effective tutorial sessions. We first

created the state transition matrix as follows.

We ignored sub-sequences of unit length as they don’t indicate an observed

transition. For sub-sequences spanning more than two states, we split it into

32

SN Subsequence p-value Freq-bottom Freq-top

1 (T-Expressive-Positive) 0.0001 0.21 0.72
2 (S-Expressive-Thanks) 0.0108 0.37 0.79
3 (T-Expressive-Farewell) 0.0171 0.27 0.70
4 (T-Prompt-Question) 0.1584 0.15 0.55
5 (S-Assertion-Calculation)-

(T-Assertion-Calculation) 0.1950 0.17 0.56

Table 2.9: Top 5 discriminant speaker differentiated act-subact subsequences.

Fig. 2.7: Tutorial Markov Process for effective tutorial sessions.

multiple bi-gram sub-sequences, i.e., sub-sequences involving two consecutive states.

For example, we obtained the bigram sub-sequences O-P and P-F from the O-P-F

sub-sequence.

We also discarded self-transition paths since we consider modes as the states.

It should be noted that modes are actually mode switches in our case since the

subject matter experts (SMEs) annotated data only at utterances where mode

switches occurred. For instance, they annotated an utterance with the dialogue

mode label of ProblemIdentification where a switch occurred from, say, an Opening

33

SN Subsequence p-value Freq-bottom Freq-top

1 F-C 0.0002 0.137 0.638
2 S-S 0.0008 0.314 0.775
3 F 0.0009 0.451 0.871
4 S-F 0.0055 0.333 0.767
5 F-F 0.0132 0.176 0.612
6 P-F 0.0198 0.333 0.75
7 P-S-S 0.0362 0.176 0.598
8 C 0.0475 0.529 0.879
9 F-B 0.0511 0.078 0.4741
10 F-N 0.0643 0.333 0.732
11 F-S 0.0667 0.294 0.698
12 F-N-C 0.0676 0.117 0.517
13 F-F-S 0.0780 0.078 0.465
14 P-F-S 0.1039 0.117 0.508
15 F-S-F 0.13811 0.137 0.526
16 S-C 0.1467 0.235 0.629
17 O-P-F 0.1764 0.159 0.543
18 B 0.1788 0.353 0.733
19 F-S-C 0.1845 0.019 0.362
20 S-F-S 0.2003 0.216 0.603
21 S-B 0.2302&0.117 0.491
22 F-S-N 0.2607 0.157 0.534
23 B-C 0.3723 0.157 0.526

Table 2.10: Discriminant mode subsequences. Symbols in subsequences represent
dialog modes as described in Table 2.7.

to the ProblemIdentification mode. Therefore, we considered the transition path

P-S but not S-S in the P-S-S sub-sequence.

We then computed the confidence score of an edge or path as the difference

of 1 and the p-value of the sub-sequence the path belongs to. For example, for

O-P-F (0.18), the confidence score of paths O-P and P-F is 1-0.18 = 0.82. We

weighted an edge as the cumulative sum of its confidence scores from all the

sub-sequences where the path is present. For example, path P-F is present in

sub-sequences P-F (0.02) and O-P-F (0.18) sub-sequences. So, the weight of the

path P-F is: 0.98 + 0.82 = 1.8. Finally, we normalized the weight of each path A-B

by dividing it by the sum total of the weights of all possible transitions from A. For

34

example, the weight of the path P-F is normalized by dividing it by the sum total of

weights of all the transitions from P state.

Once the state transition matrix was identified, we generated a tutorial

Markov process as shown in Figure 2.7, where the states are dialogue modes, and

transitions are generated using only the discriminant sub-sequences of modes. In the

Figure 2.7, each path has been labeled with the corresponding transition

probabilities.

This Markov representation reveals that any sequence of modes generated by

the Markov process and which starts with an Opening and ends with a Closing

state is likely to have a large number of cyclical Scaffolding - Fading patterns. This

result partly supports theoretical expert tutoring models based on the

modeling-scaffolding-fading paradigm (Rogoff & Lave, 1984). The high occurrences

of these modes provide evidence that effective tutors do engage students more and

provide help only when needed. Cade et al. (Cade et al., 2008) also found that

Scaffolding was a highly occurring mode in expert tutoring. They found a relatively

low occurrence of the Fading mode, which they suggested might be explained by

time constraints, i.e., the tutoring session prevented the tutors from spending too

much time in the Fading mode. It should also be noted that their data were related

to both Math and Science subjects while our data was related to Math only.

The Markov process also resembles Graesser’s (Graesser et al., 1995) 5-step

dialogue framework, which captures the tutorial phases prevalent in one-on-one

tutoring: i) Tutor asks question, ii) Student answers question, iii) Tutor gives short

feedback, iv)Tutor and student collaboratively improve the quality of the answer, v)

Tutor assesses student’s understanding. One probable effective tutorial path from

the Markov process, which might be comparable to Graesser’s framework, is

Opening - ProblemId - Fading - Scaffolding - Fading - ProcessNegotiation - Closing.

35

Indeed, the sub-path ProblemId - Fading - Scaffolding - Fading - ProcessNegotiation

resembles Graesser’s 5-step framework.

The first 3 phases in Graesser’s framework don’t align with the initial modes

of the suggested learning path. This might be because of the difference in the

tutoring environment. Graesser assumed tutor-driven sessions, which start by a

tutor first asking a question or presenting a problem to be solved followed by a

student answer, etc. In our case, the sessions are initiated by students who are

seeking help from the tutors on specific problems. The tutor works together with

the student to understand the problem (ProblemId). Then, the tutor fades, allowing

the student to work on the problem by herself (Fading). The tutor may switch

between Scaffolding and Fading to provide help (Scaffolding), only when needed. In

this sense, the last two elements in Graesser’s framework can be considered to be

aligned with the Scaffolding - Fading pattern.

The additional benefit of this Markov process representation is that it

suggests multiple possible paths or meta-strategies that can lead to learning gains.

2.6.5 Analysis using computer measure of learning gain

After using human-rated measures of learning gains, we used a measure generated

by Cognitive Tutor called the number of assists per minute to measure learning

gain. The number of assists measures the level of help a student needs while

learning with the help of Cognitive Tutor. We obtained the level of help a student

needed in the Cognitive Tutor session right before the human tutor session as well

as the level of help needed in the Cognitive Tutor sessions right after the human

tutor session. A drop in the level of help needed which we refer now onwards by the

term net assists per minute, is considered as evidence of progress or learning gains.

We considered both human-tagged and machine-tagged sessions and used net assists

per minute to conduct the following tutorial analyses.

Profile comparison analysis: We compared the profiles of the top 25%

36

Fig. 2.8: Dialogue mode profiles of top versus bottom 25% sessions for tutors only.

versus the bottom 25% sessions in terms of learning gains. Figure 2.8 shows an

example comparison of two dialogue mode profiles corresponding to top 25% versus

bottom 25% of sessions when decreasingly ranked based on learning gains measured

as the number of assists per minute. A closer analysis of the two profiles revealed

that in the top sessions there are relatively more Modeling, Telling and Scaffolding

modes triggered by tutors on average. In the bottom sessions, there are relatively

more ITSupport, ProblemId and ProcessNegotiation modes initiated by tutors.

Similarly, Figure 2.9 shows the dialogue mode profiles of the top 25% vs. bottom

25% where we account for both tutors and students. The profile shows that the top

sessions are characterized by relatively more Scaffolding and less ProcessNegotiation.

Sequence logo analysis : We also conducted a sequence logo analysis for

the top 25% and bottom 25% of the sessions based on net assists per minute. In this

case, we show the sequence logo by using the tutorial sessions that have a number of

37

Fig. 2.9: Dialogue mode profiles of top versus bottom 25% sessions including both
tutor and student initiated modes.

mode switches exactly equal to average mode switch length (20 for top 25%

sessions and 19 for bottom 25% sessions). The dominant sequence of modes/logos is

O, P, N, S, S, S, R, S, T, S, T, S, S, S, T, N, S, B, N, C for the top sessions as

illustrated in Figure 2.10. On the other hand, the bottom sessions (Figure 2.11) are

characterized by the following dominant sequence of modes/logos: O, P, N, N, N, N,

K, S, S, T, S, K, S, T, K, N, K, N, C. In both figures, the symbols represent: O -

Opening, P - Problem Identification, N - ProcessNegotiation, K - Sensemaking, S -

Scaffolding, T - Telling, F - Fading, B - RapportBuilding and C - Closing.

Interestingly, Scaffolding is the most frequent in the top sessions while

ProcessNegotiotion is the most frequent dominant dialogue mode in the bottom

sessions. This observation is consistent with sequence logo analysis using human

judged session quality scores i.e., an average of EL and ES.

38

Fig. 2.10: Dialogue mode sequence logo for top 25% sessions of average length 20.

2.7 Conclusion

In this chapter, we presented our supervised approach to mapping the

dialogue-based tutorial sessions onto dialogue acts, sub-acts and modes. We used

both expert human judgments and an objective learning gains measure derived from

students’ interaction with a computer tutor. We presented our various analytic

approaches such as profile comparison, sequence logo, discriminant sub-sequence

mining, and Markov analysis to identify effective tutorial strategies.

We found that the effective tutorial sessions are characterized by more

Scaffolding and Fading modes on average when compared to ineffective sessions.

Furthermore, the most effective sessions almost always end properly, i.e., with a

Closing mode. On the other hand, the bottom ineffective sessions have, on average,

more ProcessNegotiation and ProblemIdentification. At dialogue act level, tutors in

top sessions use more expressives and prompt students more, on average, than those

in the bottom sessions.

We also found that any possible sequence of dialogue modes derived from

39

Fig. 2.11: Dialogue mode sequence logo for bottom 25% sessions of average length
19.

inferred Markov process which characterizes an effective tutorial session is most

likely to have more Scaffolding and Fading modes. Further, the inferred Markov

process suggests a new model for student-initiated tutorial sessions as opposed to

tutor-driven sessions, which were modeled in the past.

Our future work is to expand our understanding of the effective strategies for

effective tutorial sessions while accounting for other factors such as students’ prior

knowledge.

40

Chapter 3

Assessing Semantic Textual Similarity

One of the research questions we address in this work is to improve the quality of

student answer assessment. Automatically assessing student answer requires an

understanding of the meaning of the text. The task is one of the hardest problems

in the Natural Language Processing field since it requires a large amount of world

knowledge, domain knowledge, contextual knowledge, and linguistic knowledge as

well as reasoning mechanisms to infer over these vast collections of knowledge to

correctly assess the semantics (or meaning) of the text. For example, the sentence

“I saw her duck” has many possible meanings. One interpretation is that “I saw a

duck that belonged to her.” Another possible meaning is: “I saw her squatting down

to avoid something.” The sentence can also mean “I cut her duck with a saw.” To

correctly interpret its meaning, more information such as context, linguistic, etc. is

required.

As such, the pragmatic approach to understanding the meaning of the text is

semantic similarity. The task of semantic similarity is to measure how similar two

texts are with a similarity score. In this work, we present our semantic similarity

approach to improving the quality of student answer assessment. The student

answers are usually short, spanning one or two sentences. We apply a similarity

score scale that ranges from 0 (no relation) to 5 (semantic equivalence). Examples

of pairs of sentences with different human-rated similarity scores and their

interpretations based on this [0,5] scale is presented in Table 3.1.

Sentence-to-sentence similarity is one of the important semantic similarity

tasks and has received an increasing amount of attention in recent years. Semantic

textual similarity has a wide range of applications, such as text summarization

(Steinberger & Jezek, 2004), plagiarism detection (Potthast et al., 2012), automated

41

Table 3.1: Interpretation of similarity score (SS) with corresponding example
sentence pairs (Agirre et al., 2015).

SS Sentence Pair with Interpretation

5 The two sentences are completely equivalent in meaning.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

4 The two sentences are mostly equivalent, but some unimportant details
differ.
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010.

3 The two sentences are roughly equivalent, but some important information
differs/missing.
John said he is considered a witness but not a suspect.
”He is not a suspect anymore.” John said.

2 The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

1 The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

0 The two sentences are on different topics.
John went horse back riding at dawn with a whole group of friends.

Sunrise at dawn is a magnificent view to take in if you wake up
early enough for it.

answer assessment (Graesser, Penumatsa, Ventura, Cai, & Hu, 2007; Mohler &

Mihalcea, 2009), question answering (Tapeh & Rahgozar, 2008), machine

translation (Papineni, Roukos, Ward, & Zhu, 2002), dialog and conversational

systems (Rus, Niraula, & Banjade, 2015). Therefore, many Semantic Evaluations

(SemEval) tasks for measuring semantic textual similarity (STS) between two

sentences have been carried out (Agirre, Diab, Cer, & Gonzalez-Agirre, 2012; Agirre,

Cer, Diab, Gonzalez-Agirre, & Guo, 2013; Agirre et al., 2014, 2015; Agirre, Banea,

et al., 2016; Cer et al., 2017). We have participated in the SemEval shared tasks for

measuring semantic textual similarity in the last three years, 2015, 2016 and 2017.

We developed STS system called NeRoSim (Banjade, Niraula, et al., 2015)

and DTSim (Banjade, Maharjan, Gautam, & Rus, 2016) for measuring sentence

42

similarity in the SemEval 2015 and 2016 competitions respectively. The NeRoSim

system (Banjade, Niraula, et al., 2015) was ranked 4th best team in the SemEval

2015 competition but with no significant difference with the results of top

performing systems (Agirre et al., 2015). The DTSim system (Banjade, Maharjan,

Gautam, & Rus, 2016) was one of the top performing systems that correlated up to

0.83 for some datasets in the SemEval 2016 test dataset (Agirre, Banea, et al., 2016).

Recently, we developed a system called DT TEAM (Maharjan, Banjade,

Gautam, et al., 2017) which was placed second in the SemEval 2017 challenge for

English - Track 5 (Cer et al., 2017). The correlation between our system’s output

and human judgments was 0.8536 and almost as good as the best performing

system which was at 0.8547 correlation. Our system also performed well (correlation

= 0.792) when evaluated with a separate STS benchmark dataset (Cer et al., 2017;

Maharjan, Banjade, Gautam, et al., 2017).

The outline of this chapter is as follows. Next, we discuss on related work

(Section 3.1) followed by Preprocessing (Section 3.2) and Approach (Section 3.3).

Then, we discuss our various DT TEAM models and their results in the Experiment

and Results (Section 3.4).

3.1 Related Work

Many research works have been conducted to measure the similarity between two

sentences. Most methods for computing sentence similarity exploit word-to-word

similarity measures or word/phrase vector representations. We discuss below

word-to-word similarity and sentence-to-sentence similarity techniques.

3.1.1 Word-to-word Similarity

There are many different methods to measure the word-to-word similarity. Such

methods can be broadly grouped under two categories based on the resources used.

The first group of methods consists of knowledge-based methods which exploit

structured semantic networks or ontologies such as WordNet (Miller, 1995).

43

Wordnet groups content words (nouns, verbs, adjectives, and verbs) with the same

meaning that express a distinct concept into sets called synsets. The synsets are

linked to other synsets by means of a limited number of conceptual relations such as

hypernymy (super-subordinate relation, i.e., car is a hypernym of Honda),

hyponymy (ISA relation, i.e., Honda is a hyponym of car), meronymy (a part-whole

relationship, i.e., wheel is a meronymy of car), antonymy (semantically opposite

relation, i.e., lack and abundance are antonyms) and synonymy (semantically

equivalent relation, i.e., lack and scarcity are synonyms). Many methods based on

Wordnet have been developed to compute similarity between two words. Some

methods exploit distance-based measures on the network’s path (Leacock &

Chodorow, 1998; Ho Lee, Ho Kim, & Joon Lee, 1993), some methods further

account for the Information Content of the lowest common subsumer in the

hierarchy (Jiang & Conrath, 1997; Lin et al., 1998) and some methods make use of

WorNet gloss (a brief definitions of a concept) overlap (Pedersen, Patwardhan, &

Michelizzi, 2004) for computing the word-to-word similarity.

The other group of methods consists of corpus-based methods that learn

vector representation of words by exploiting the word associations or word

co-occurrences from a large collection of texts such as Wikipedia or Google news in

an unsupervised manner. These methods are also known as distributional or

distributed methods. Once the vector representations are learned, the similarity

between two words can be obtained by computing the cosine of their vectors. Some

methods are purely algebraic such as Latent Semantic Analysis (Landauer, Foltz, &

Laham, 1998) and Hyperspace Analogue to Language (Burgess & Lund, 1995) which

represent words with low dimensional vectors by utilizing low-rank approximations.

Stefănescu, Banjade, and Rus (2014) developed LSA representations of words from

the whole Wikipedia article. Bengio, Ducharme, Vincent, and Jauvin (2003) and

Collobert et al. (2011) obtained vector representations of words by using deep

44

neural networks. Further, Mikolov, Chen, Corrado, and Dean (2013) developed a

single hidden layer neural network for learning word representations based on two

models: continuous bag of words (CBOW) and skip gram models. Pennington,

Socher, and Manning (2014) learned word representations by training on aggregated

global word-word co-occurrence statistics from a corpus. Further, a lexical

paraphrase database known as PPDB (Ganitkevitch, Van Durme, & Callison-Burch,

2013; Pavlick, Rastogi, Ganitkevitch, Van Durme, & Callison-Burch, 2015) has been

developed containing more than 8 million lexical paraphrase pairs. Each paraphrase

pair is scored with a similarity score computed as the cosine of their context vectors.

The context vector is a set of contextual features that a word/phrase occurs in such

as n-grams seen to the left and right of the phrase.

Moreover, different ensemble word similarity approaches have been developed

to measure word-to-word similarity (Jiang & Conrath, 1997; Li, Bandar, & McLean,

2003). Banjade, Maharjan, Niraula, Rus, and Gautam (2015) combined various

knowledge-based and corpus-based methods using a regression model to measure

word similarity. Similarly, (Niraula, Gautam, Banjade, Maharjan, & Rus, 2015)

combined different vector representations for measuring word similarity.

3.1.2 Sentence-to-Sentence Similarity

The basic approach to measure sentence similarity is a simple word overlap measure

which computes the similarity between the two sentences as the proportion of words

that appear in the two sentences normalized by the sentence length. Another

variant of word overlap measure is the Jaccard coefficient which computes the

sentence similarity score as ratio of the size of the intersection of the words in the

two sentences to the union of the words in the two sentences. The approach is

further improved by considering lemmatization, stop-word removal, and

part-of-speech categories. However, this approach ignores the relationship between

the two words if they are not lexically identical. The words might be related to each

45

Fig. 3.1: General Pipeline of DT TEAM System.

other with various semantic relations such as synonymy, hypernymy, antonymy etc.

Moreover, words co-occurring frequently should be more similar than words that

co-occur with less frequency. Therefore, many approaches that utilize word-to-word

similarity have been developed that improved the similarity of the texts. Fernando

and Stevenson (2008) used various WordNet-based word similarity measures to

compute the sentence similarity while Mihalcea, Corley, Strapparava, et al. (2006)

used both corpus-based and knowledge-based word-to-word similarity measures for

computing sentence similarity.

The most popular approach is the alignment approach where words/phrases

are aligned across the two sentences, and then, the sentence similarity score is

computed by computing the similarity scores between the aligned pairs. The

alignment approach is intuitive as high similarity score indicates the alignment of

many highly semantically similary words. BLEU which is a commonly used measure

in machine translation (Papineni et al., 2002) is based on word/phrase

alignment. Rus and Lintean (2012) applied greedy and optimal word alignment

methods with WordNet and LSA based word-to-word similarity measures. Another

method aligned the sentences at the chunk level and computed sentence similarity

by utilizing chunk similarity scores (Ştefănescu, Banjade, & Rus, 2014). Banjade,

Maharjan, Gautam, and Rus (2016) computed sentence similarity by aligning the

chunks across the two sentences by various semantic relations and semantic scores.

The alignment-based methods have proved to be better at measuring semantic

textual similarity (Agirre et al., 2015; Agirre, Banea, et al., 2016; Banjade,

Maharjan, Gautam, & Rus, 2016; Sultan, Bethard, & Sumner, 2015).

46

Another approach is to learn the vector representation for sentences directly

and compute the cosine score to measure the sentence similarity. However, learning

meaningful sentence representations directly is difficult due to the sparseness

problem. Therefore, the common approach is to learn sentence representations by

composing the word vectors. A simple composition method is to simply add the

vectors of the words in a sentence and then compute cosine between the resultant

vectors to measure sentence similarity. A variant of algebraic resultant vector

representation adds the words weighted by their parts-of-speech

categories (Maharjan, Banjade, Gautam, et al., 2017).

Recently, many deep neural network-based composition methods have been

developed which learn the sentence representations from the word/phrase

representations using recursive networks (Socher et al., 2013), recurrent neural

networks (Hochreiter & Schmidhuber, 1997), convolutional networks (Kalchbrenner,

Grefenstette, & Blunsom, 2014) and recursive-convolutional methods (Zhao, Lu, &

Poupart, 2015). Microsoft recently developed Sent2Vec tool that used both Deep

Structured Semantic Model (DSSM) network (Huang et al., 2013) and DSSM with

convolutional-pooling (CDSSM) network (Shen, He, Gao, Deng, & Mesnil, 2014;

Gao, Deng, Gamon, He, & Pantel, 2014) to generate the continuous vector

representations for sentences. Further, Kiros et al. (2015) used RNN GRU encoder -

RNN decoder model for learning generic sentence representations.

Moreover, there are machine learning methods that combine various features

such as n-grams, word overlap, sentence similarity scores computed using different

methods, etc. for measuring sentence similarity (Banjade, Niraula, et al., 2015;

Maharjan, Banjade, Gautam, et al., 2017). There are also ensemble methods that

incorporate various feature engineered systems including deep learning

models (Tian, Zhou, Lan, & Wu, 2017). These ensemble systems and featured

engineered systems have proved to be top performing systems in recent STS

47

competitions (Agirre, Banea, et al., 2016; Cer et al., 2017). The ECNU system (Tian

et al., 2017) which was ranked first overall in the STS 2017 competition (Cer et al.,

2017) was an ensemble system while our DT TEAM was a feature engineered

system that ranked second in STS 2017 challenge for the English track.

We describe our DT TEAM system in this chapter. The general pipeline of

the system is shown in Figure 3.1. We describe the preprocessing component in the

next section.

3.2 Preprocessing

The preprocessing steps were same as our DTSim system (Banjade, Maharjan,

Gautam, & Rus, 2016). We first removed hyphens in the hyphenated words except

when they were composite verbs (e.g., video-gamed) or started with co-, pre-, meta-,

multi-, re-, pro-, al-, anti-, ex-, and non- prefixes. Then, we applied tokenization,

lemmatization, POS-tagging, name-entity recognition using Standford CoreNLP

Toolkit (Manning et al., 2014). We also marked the word tokens if they are

stop-words or not. Further, we created normalization look-up resources to normalize

words to a single representation. For example, we normalized all occurrences of pc,

pct, % to pc). We also created chunks using our own Conditional Random Fields

(CRF) based chunking tool (Maharjan, Banjade, Niraula, & Rus, 2016). The

chunking tool is described in detail in the next Chapter 5.

3.3 Approach

Our DT TEAM (Maharjan, Banjade, Gautam, et al., 2017) is a feature engineered

system that includes deep learning signals using sentence embeddings from DSSM,

CDSSM and skip-thought models. Our system includes three different models:

Support Vector Regression (SVR), Linear Regression (LR) and Gradient Boosting

Regressor (GBR) models. The engineered features include similarity scores

calculated using word and chunk alignments, unigram overlap, a fraction of

unaligned words, difference in word counts by type (all, adj, adverbs, nouns, verbs),

48

and min to max ratios of words by type. We next discuss how different features

were generated and used in developing different models in our system.

3.3.1 Feature Generation

We generated various features including similarity scores generated using different

methods. We describe next the word-to-word and sentence-to-sentence similarity

methods used to generate the features.

Word Similarity Methods

We used word2vec (Mikolov et al., 2013)1 vectorial word representation, PPDB

database (Pavlick et al., 2015)2, and WordNet (Miller, 1995) to compute similarity

between words. As described in (Banjade, Maharjan, Gautam, & Rus, 2016), we

used the following Equation 3.1 to compute word similarity score.

sim(w1, w2,m) =



1, if w1 and w2 are synonyms

0, if w1 and w2 are antonyms

ppdb(w1, w2), if m = ppdb

cosine(x1, x2), otherwise

(3.1)

where m ε {ppdb, word2vec} word representation model set, x1 and x2 are vector

representations of words w1 and w2 respectively. We check if w1 and w2 have

synonymy or antonymy relations or not using WordNet.

Sentence Similarity Methods

Word Alignment Method: We lemmatized all content words and aligned them

optimally using the Hungarian algorithm (Kuhn, 1955) implemented in the

SEMILAR Toolkit (Rus, Lintean, Banjade, Niraula, & Stefanescu, 2013). The

process is the same as finding the maximum weight matching in a weighted bipartite

graph. The nodes are words, and the weights are the similarity scores between the

1http://code.google.com/p/word2vec/
2http://www.cis.upenn.edu/ ccb/ppdb/

49

Table 3.2: Example of chunk alignment between two short text with semantic labels
and scores.

Example text pairs (plain)
S1: Bangladesh building disaster death toll passes 500
S2: Bangladesh building collapse: death toll climbs to 580

Example text pairs (chunked)
S1: [Bangladesh building disaster][death toll][passes][500]
S2: [Bangladesh building collapse][:][death toll][climbs][to 580]

Alignment Output
1 2 3 ⇔ 1 2 3 //EQUI //5.0 // Bangladesh building disaster ⇔
Bangladesh building collapse
4 5 ⇔ 5 6 // EQUI // 5.0 // death toll ⇔ death toll
7 ⇔ 8 9 // SIMI // 3.0 // 500 ⇔ to 580
6 ⇔ 0 // NOALI // 0 // passes ⇔ -not aligned-
0 ⇔ 4 // NOALI // 0 // -not aligned- ⇔ :
0 ⇔ 7 // NOALI // 0 // -not aligned- ⇔ climbs

word pairs computed as described in § 3.3.1. In order to avoid noisy alignments, we

reset the similarity score below 0.5 (empirically set threshold) to 0. The similarity

score was computed as the sum of the scores for all optimally aligned word-pairs

(OAs) divided by the total length of the given sentence pair (S1, S2) as shown in

Equation 3.2.

sim(S1, S2) = 2 ∗
∑

(w1,w2)εOA
sim(w1, w2)

|S1|+ |S2|
(3.2)

Interpretable Similarity Method: We aligned chunks across sentence-pairs and

labeled the aligned chunks with semantic score and semantic relations (Banjade,

Niraula, et al., 2015; Maharjan et al., 2016). A chunk is a syntactically meaningful

unit which typically consists of a single content word surrounded by a group of

function words (Abney, 1991). Agirre et al. (2015) introduced a set of semantic

relation types: EQUI (chunks are semantically equivalent), OPPO (chunks are

opposite in meaning), SPE1/SPE2 (the chunk in the first/second sentence is more

specific than the chunk in the second/first sentence), SIMI (chunks are similar but

not EQUI, OPPO or SPE), REL (chunks are related but not EQUI, OPPO, SPE or

SIMI), ALIC (a chunk is not aligned to any other chunk due to 1:1 alignment

50

restriction) and NOALIC (the chunk is unrelated and has no alignment). Table 3.2

shows an example of such alignment.

We used the Equation 3.3 as described by Banjade, Maharjan, Gautam, and

Rus (2016) to compute the sentence similarity based on the set of semantically

aligned chunked pairs (SA). sim(c1, c2) is the similarity score between the chunks c1

and c2.

sim(S1, S2) =

∑
(c1,c2)εSA

sim(c1, c2)

5 ∗ (Total # alignments including NOALI)
(3.3)

Gaussian Mixture Model Method: The Gaussian Mixture Model (GMM) is

widely used for soft clustering in an unsupervised manner. In our GMM approach,

we assumed that a sentence pair might belong to any of the semantic clusters, i.e.,

semantic class levels [0, 5]. We represented the sentence pair as a feature vector

consisting of feature sets {7, 8, 9, 10, 14} from Section 3.3.2 and modeled the

semantic class levels as multivariate Gaussian densities of feature vectors. We first

initialized the GMM parameters in a supervised manner since we have semantic

class labels for the training data. We then used Expectation Maximization (EM)

algorithm (Dempster, Laird, & Rubin, 1977) for estimating the GMM parameters.

We used the trained GMM to compute membership weights to each of these

semantic levels for a given sentence pair. Finally, the GMM score (similarity score)

is computed using Equation 3.4 and Equation 3.5. x is a feature vector representing

a sentence pair. i represents a semantic class label. N(x|µi,
∑

i) is a multivariate

Gaussian density function for semantic class label i.

mem wti = wiN(x|µi,
∑
i

), i ∈ [0, 5] (3.4)

gmm score =
5∑
i=0

mem wti ∗ i (3.5)

51

Compositional Sentence Vector Method: We used both Deep Structured

Semantic Model (Huang et al., 2013) and DSSM with convolutional-pooling (Shen

et al., 2014; Gao et al., 2014) in the Sent2vec tool3 to generate the continuous

vector representations for given texts. We then computed the similarity score as the

cosine similarity of their representations.

Tuned Sentence Representation Based Method: We first obtained the

continuous vector representations VA and VB for sentence pair A and B using the

Sent2Vec DSSM or CDSSM models or skip-thought model4 (Zhu et al., 2015; Kiros

et al., 2015). Inspired by Tai, Socher, and Manning (2015), we then represented the

sentence pairs by the features formed by concatenating element-wise dot product

VA.VB and absolute difference |VA − VB|. We used these features in our logistic

regression model which produces the output p̂θ. Then, we predicted the similarity

between the texts in the target pair as ŷ = rT p̂θ, where rT = {1, 2, 3, 4, 5} is the

ordinal scale of similarity. To enforce that ŷ is close to the gold rating y, we encoded

y as a sparse target distribution p such that y = rTp as:

pi =


y − byc, i = byc+ 1

byc − y + 1, i = byc

0, otherwise

(3.6)

where 1 ≤ i ≤ 5 and, byc is floor operation. For instance, given y = 3.2, its

sparse vector representation p derived from the Equation 3.6 is [0 0 0.8 0.2 0]. For

building logistic model, we used training data set from our previous DTSim system

(Banjade, Maharjan, Gautam, & Rus, 2016) and used image test data from

STS-2014 and STS-2015 as validation data set.

Similarity Vector Method: We generated a vocabulary V of unique words from

3https://www.microsoft.com/en-us/download/details.aspx?id=52365
4https://github.com/ryankiros/skip-thoughts

52

the given sentence pair (A,B). Then, we generated sentence vectors as in the

followings: VA = (w1a, w2a, ..wna) and VB = (w1b, w2b, ...wnb), where n = |V | and

wia = 1, if wordi at position i in V has a synonym in sentence A. Otherwise, wia is

the maximum similarity between wordi and any of the words in A, computed as:

wia = max
j=|A|
j=1 sim(wj, wordi). The sim(wj, wordi) is the cosine similarity score

computed using the word2vec model. Similarly, we compute VB from sentence B.

Weighted Resultant Vector Method: We combined word2vec word

representations to obtain sentence level representations through vector algebra. We

weighted the word vectors corresponding to content words. We generated resultant

vector for text A as RA =
∑i=|A|

i=1 θi ∗ wordi, where the weight θi for wordi was

chosen as wordi ∈ {noun = 1.0, verb = 1.0, adj = 0.2, adv = 0.4, others (e.g.

number, which has CD POS tag) = 1.0}.

Similarly, we computed resultant vector RB for text B. We varied the weights

from 0 to 1 for each class of words and obtained the best result with the above set

of weights on the training data. We then calculated a similarity score as the cosine

of RA and RB. Finally, we penalized the similarity score by the unalignment score

which we describe next.

Penalization: We applied the following two penalization strategies to adjust the

sentence-to-sentence similarity score.

Penalizing by Crossing Score: Crossing measures the spread of the

distance between the aligned words in a given sentence pair. In most cases, sentence

pairs with higher degree of similarity have aligned words in same position or its

neighborhood. We define crossing score crs by Equation 3.7

crs =

∑
wi∈A, wj∈B, aligned(wi,wj)

|i− j|
max(|A|, |B|) ∗ (#alignments)

(3.7)

where aligned(wi, wj) refers to word wi at index i in A and wj at index j in

53

B are aligned. Then, the similarity score was reset to 0.3 if crs > 0.7. The threshold

0.7 was empirically set based on evaluations using the training data.

Penalizing by Unalignment Score: We define unalignment score similar

to word alignment score but this time the score is calculated using the unaligned

words in both A and B as:

unalign score =
|A|+ |B| − 2 ∗ (#alignments)

|A|+ |B|
(3.8)

Then, the similarity score was penalized by using the Equation 3.9. The

weight 0.4 in the equation was empirically chosen.

score∗ = (1− 0.4 ∗ unalign score) ∗ score (3.9)

3.3.2 Feature Selection

We generated and experimented with many features. We describe here only those

features used directly or indirectly by our three runs submitted in the SemEval 2017

STS task for the English track. We describe the three runs in Section 3.4. We used

word2vec representation and WordNet antonym and synonym relations for word

similarity unless anything else is mentioned specifically.

1. {w2v wa, ppdb wa, ppdb wa pen ua}: similarity scores generated using word

alignment based methods (pen ua for scores penalized by unalignment score).

2. {gmm}: sentence similarity score computed by using Gaussian Mixture Model

method.

3. {dssm, cdssm}: similarity scores computed by generating sentence vector

representations using both DSSM and CDSSM models.

4. {dssm lr, skipthought lr}: similarity scores using tuned sentence

54

representation based method. We used sentence representations from DSSM

and skip-thought models.

5. {sim vec}: score using similarity vector method.

6. {res vec}: score using the weighted resultant vector method .

7. {interpretable}: score calculated using interpretable similarity method.

8. {noun wa, verb wa, adj wa, adv wa}: Noun-Noun, Adjective-Adjective,

Adverb-Adverb, and Verb-Verb alignment scores using word2vec for word

similarity.

9. {noun verb mult}: multiplication of Noun-Noun similarity scores and

Verb-Verb similarity scores.

10. {abs diff t}: absolute difference as |Cta−Ctb|
Cta+Ctb

where Cta and Cta are the counts

of tokens of type t ∈ {all tokens, adjectives, adverbs, nouns, and verbs} in

sentence A and B respectively.

11. {overlap pen}: unigram overlap between text A and B with synonym check

given by: score = 2∗overlap count
|A|+|B| . Then penalized by both crossing and

unalignment score.

12. {noali}: number of NOALI semantic chunk relations in aligning chunks

between texts relative to the total number of alignments.

13. {align, unalign}: fraction of aligned/non-aligned words in the sentence pair.

14. {mmr t}: min to max ratio as Ct1

Ct2
where Ct1 and Ct2 are the counts of type

t ∈ {all, adjectives, adverbs, nouns, and verbs} for shorter text 1 and longer

text 2, respectively.

55

Table 3.3: Summary of training data.

Data set Count Release time

Deft-news 299 STS2014-Test
Images 749 STS2014-Test
Images 750 STS2015-Test
Headlines 742 STS2015-Test
Answer-forums 375 STS2015-Test
Answer-students 750 STS2015-Test
Belief 375 STS2015-Test
Headlines 244 STS2016-Test
Plagiarism 230 STS2016-Test
Total 4514

3.4 Experiment and Results

3.4.1 Datasets

Training Data

We used a subset of the data released in previous STS competitions from the year

2014 to 2015 (see Table 3.3) for developing various models. The training dataset

consists of expert annotated sentence pair instances from diverse data sources such

as Images, Answer-forums, Belief, Headlines, Plagiarism, and Deft-news.

Test Data

The evaluation consisted of 250 sentence pairs from the Stanford Natural Language

Inference data (Bowman, Angeli, Potts, & Manning, 2015).

STS Benchmark Data

The STS benchmark data (Cer et al., 2017) was released by the STS 2017 task

organizers to provide a standard benchmark to compare among STS systems in

future years. The data consisted of 8,628 sentence pairs carefully selected from the

English datasets, namely, news headlines, image captions, and forum, used in

previous STS tasks between 2012 and 2017. The benchmark data is divided into

three subsets: Train, Dev and Test datasets. The distribution of the benchmark

data is shown in Table 3.4.

56

Table 3.4: Distribution of STS benchmark data according to different genres and
data partitions.

Genre Train Dev Test Total
news 3299 500 500 4299
caption 2000 625 525 3250
forum 450 375 254 1079
total 5749 1500 1379 8628

Table 3.5: Detailed breakdown of STS benchmark data by original names and task
years of the datasets.

Genre File Year Train Dev Test

news MSRpar 12 1000 250 250
news headlines 13/6 1999 250 250
news deft-news 14 300 0 0
captions MSRvid 12 1000 250 250
captions images 14/5 1000 250 250
captions track5.en-en 17 0 125 125
forum deft-forum 14 450 0 0
forum ans-forums 15 0 375 0
forum ans-ans 16 0 0 254

The benchmark Train set can be used for training the model while the Dev

set can be used for tuning the parameters of the model. The Test set is provided for

evaluating the performance of the model. The detailed breakdown of the STS

benchmark data by original names and task years of the datasets is provided in

Table 3.5.

3.4.2 Models and Runs

Using the combination of features described in Section 3.3.2, we built three different

models corresponding to the three runs (R1-3) submitted.

R1. Linear SVM Regression model (SVR; ε = 0.1, C = 1.0) with a set of 7

features: overlap pen, ppdb wa pen ua, dssm, dssm lr, noali, abs diff all tkns,

mmr all tkns.

R2. Linear regression model (LR; default weka settings) with a set of 8

features: dssm, cdssm, gmm, res vec, skipthought lr, sim vec, aligned, noun wa.

57

Table 3.6: Results of our submitted runs on test data (1st is the best result among
the participants).

R1 R2 R3 Baseline 1st

0.8536 0.8360 0.8329 0.7278 0.8547

R3. Gradient boosted regression model (GBR; estimators = 1000,

max depth = 3) which includes 3 additional features: w2v wa, ppdb wa, overlap to

feature set used in Run 2.

We used the SVR and LR implementations in Weka 3.6.8. We used the GBR

model using sklearn python library. We evaluated our models on training data using

10-fold cross-validation. The correlation scores in the training data were 0.797,

0.816 and 0.845 for R1, R2, and R3, respectively.

3.4.3 Results and Discussions

Table 3.6 presents the correlation (r) of our system outputs with human ratings in

the evaluation test data for the STS 2017 English task. The correlation scores of all

three runs are 0.83 or above, on par with top performing systems. There were 76

different runs submitted by more than 30 different teams for STS shared task on the

English track. All of our systems outperformed the baseline by more than 10 pts.

The baseline is the cosine of binary sentence vectors with each dimension

representing whether an individual word appears in a sentence. Our R1 system is at

par with the 1st ranked system differing by a very small margin of 0.009 (<0.2 pt).

The difference is statistically insignificant.

Figure 3.7 presents the graph showing R1 system output against human

judgments (gold scores). It shows that our system predicts relatively better for

similarity scores between 3 to 5 while the system slightly overshoots the prediction

for the gold ratings in the range of 0 to 2. In general, it can be seen that our system

works well across all similarity levels.

Feature correlation analysis: We also performed feature correlation

58

Fig. 3.2: R1 system output in evaluation data plotted against human judgments (in
ascending order).

Table 3.7: A set of highly correlated features with gold scores in test data.

dssm (0.8254), ppdb wa pen ua (0.8273),
ppdb wa (0.8139), cdssm (0.8013),
dssm lr (0.8135), overlap (0.8048)

analysis with the gold ratings in the test data. Our 11 features correlated 0.75 or

above when compared with gold scores in test data. In Table 3.7, we list only those

features having correlations of 0.8 or above. Similarity scores computed using word

alignment and compositional sentence vector methods were the best predictive

features.

Performance against difficult English sentence pairs: Table 3.8

illustrates the difficult English sentence pairs selected by STS 2017 task

organizers (Cer et al., 2017). The organizers selected these sentence pairs

59

Table 3.8: Difficult English sentence pairs (Cer et al., 2017).

Id Pairs

SP-1 There is a cook preparing food.
A cook is making food.

SP-2 The man is in a deserted field.
The man is outside in the field.

SP-3 A girl in water without goggles or a swimming cap.
A girl in water, with goggles and swimming cap.

SP-4 A man is carrying a canoe with a dog.
A dog is carrying a man in a canoe.

SP-5 There is a young girl.
There is a young boy with the woman.

SP-6 The kids are at the theater watching a movie.
it is picture day for the boys

considering five different challenging issues for semantic similarity: word sense

disambiguation, negation, compositional meaning, semantic blending and attribute

importance. For example, they selected first and last sentence pair examples i.e.

SP-1 and SP-6 in the Table 3.8 to highlight the issue with the word sense

disambiguation, where “making” and “preparing” have the same meaning in the

context of “food”, while “picture” and “movie” are not similar when picture is

followed by “day”. The sentence pairs SP-3 and SP-4 were selected for negation and

compositional meaning aspects, respectively.

Table 3.9 shows the performance of the DT TEAM system and other top

performing systems against these difficult English pair sentences. We notice that our

DT TEAM system also suffers from these issues, particularly negation and semantic

blending. The system pumps the semantic score for example sentence pairs SP-3

(negation example) and SP-5 (semantic blending example) by above 1.5 correlation

points. However, our system scores, overall, are closer to human scores (correlation

= 0.72) as compared against scores assigned by other top performing systems.

Performance on STS benchmark data: We trained our three runs with

the benchmark training data under identical settings. We used benchmark

60

Table 3.9: Performances of top performing STS systems against difficult English
sentence pairs (Cer et al., 2017).

Pairs Human DT Team ECNU BIT FCICU ITNLP-AiKF

SP-1 5.0 4.1 4.1 3.7 3.9 4.5
SP-2 4.0 3.0 3.1 3.6 3.1 2.8
SP-3 3.0 4.8 4.6 4.0 4.7 0.1
SP-4 1.8 3.2 4.7 4.9 5.0 4.6
SP-5 1.0 2.6 3.3 3.9 1.9 3.1
SP-6 0.2 1.0 2.3 2.0 0.8 1.7

Table 3.10: Performances of participating STS systems on STS benchmark data
(Cer et al., 2017).

System Dev Test

ECNU 84.7 81.0
BIT 82.9 80.9
DT TEAM 83.0 79.2
UdL 72.4 79.0
HCTI 83.4 18.4
RTM 73.2 70.6
SEF@UHH 61.6 59.2

development data only for generating features using the tuned sentence

representation-based method (as validation dataset). The correlation scores for R1,

R2 and R3 systems were:

In Dev: 0.800, 0.822, 0.830 and

In Test: 0.755, 0.787, 0.792

All of our runs outperformed best baseline benchmark system (Dev = 0.77,

Test = 0.72). Interestingly, R3 was the best performing while R1 was the least

performing among the three. The reason might be that R3 generalized better with

the largest number of features among the three (#features: 7, 8 and 11 for R1, R2

and R3 respectively). Table 3.10 shows the best output of the DT TEAM system

along with the best outputs of other participating systems in STS2017 on STS

benchmark data.

61

3.5 Conclusion

We described our DT Team system that participated in SemEval-2017 Task 1 for

English track. We developed three different feature-engineered systems using SVM

regression, Linear regression and Gradient Boosted regression models for predicting

textual semantic similarity. Overall, the outputs of our models highly correlate

(correlation up to 0.85 in STS 2017 test data and up to 0.792 on benchmark data)

with human ratings. Indeed, our methods yielded highly competitive results.

However, there is still room for improvement as evidenced by the performance of

our system against the difficult English pair examples. In particular, we can explore

features that can account for semantics issues such as negation, semantic blending,

and compositional meaning aspects.

62

Chapter 4

Assessing Student Answers in Tutorial Dialogue Context

Automatically assessing open-ended short student responses is an extremely

challenging task as students can express their responses in numerous ways owing to

different individual styles and varied cognitive abilities and knowledge levels.

Table 4.1 shows four answers, articulated by four different college students, to a

question asked by the state-of-the-art intelligent tutoring system (ITS) Deep-Tutor

(Rus, DMello, et al., 2013; Rus, Niraula, & Banjade, 2015). It should be noted that

all four student answers in Table 4.1 are correct answers to the Tutor Question. As

can be seen from the table, some students write full sentences (student answer A4),

some others write concise answers (A3), and yet other students write elaborate

answers that include more concepts than are needed (A1).

The widely adopted and scalable approach to assessing such open-ended

student responses is the semantic similarity in which a score is computed between a

target student answer and an expert-provided reference answer (Mohler, Bunescu, &

Mihalcea, 2011; Banjade, Maharjan, Niraula, Gautam, et al., 2016). If the student

answer has a high semantic similarity score to the reference answer, we infer that

the student answer is correct. A low semantic similarity score implies the student

response is incorrect. There are two major weaknesses of such semantic similarity

approaches. First, contextual information, even when available, is typically ignored.

Second, because such approaches rely primarily on the explicit information present

in the student response, when student responses vary in the level of explicit

information, which is typically the case as shown in Table 4.1, the semantic

similarity scores between student response and the reference answer vary widely

even within the same category of responses, e.g. correct student responses. We

elaborate on these two key observations next.

63

Table 4.1: An example of a problem and student answers to a tutor question.
Context is needed to assess answers A1-A3 properly.

Description

Problem description:
While speeding up, a large truck pushes a small compact car.
Tutor question:
How do the magnitudes of forces they exert on each other compare?
Reference answer:
The forces from the truck and car are equal and opposite.
Student answers:
A1. The magnitudes of the forces are equal and opposite to each other due to
Newtons third law of motion.
A2. they are equal and opposite in direction
A3. equal and opposite
A4. the truck applies an equal and opposite force to the car.

For example, while the student response A4 can be handled by comparing it

to a reference answer, the other student responses in Table 4.1 require more than a

reference answer to be properly assessed. For instance, the noun “forces” in student

answer A1 refers to the forces that the truck and the car apply on each other.

However, the truck and car need to be inferred from the context as they are not

explicitly mentioned in the student response A1. A semantic similarity approach

that simply compares A1 with the reference answer would assign a low similarity

score to this student response because important concepts in the reference answer

(truck and car) are missing, i.e., not explicitly mentioned in the student response

A1.

The role of context to correctly interpret a short student response in tutorial

dialogues is also illustrated by answer A2 in Table 4.1. In this case, the pronoun

“they” is referring to the amounts of forces exerted by the car and truck on each

other. Pronouns, such as they, he, she, and it, are frequently employed by students

in tutorial dialogues. A key finding that informed our work was reported by Niraula

et al. (2014), who analyzed conversational tutorial logs, and showed that 68% of the

pronouns used by students were referring to entities in the previous dialogue turn or

64

the problem description. Based on this finding, we consider as context in our work

only the problem description and the previous tutor utterance as opposed to the full

tutorial dialogue history, which would make the task computationally even harder.

Answer A3 in Table 4.1 is also challenging to assess with a semantic

similarity approach that only considers the reference answer. The challenge spawns

from the fact that A3 is elliptical, i.e., it is in the form of an incomplete sentence

whose missing parts are implied by the context. Without considering context, a

typical semantic similarity approach would assign a low similarity score to such

elliptical responses even if they are correct responses.

Though there have been many approaches proposed to the task of

automatically assessing freely generated student answers (see Section 4.1),

interestingly there are not many works that consider context when evaluating such

student answers.

One approach to account for context when assessing student answers is to

consider only new content/concepts in student answers that are not

present/mentioned in the previous context similar to Bailey and Meurers (2008).

That is, if the student response repeats the concepts mentioned in the question, no

new information is provided. Such concepts are ignored in their approach. For

example, the concepts of force from the truck and force from the car are less

important when assessing the student answers in Table 4.1 because these concepts

are mentioned in the previous context, i.e., question and the problem description.

Pronouns in student answers usually co-refer to words in context and therefore can

be considered as given information when assessing student answers. In conclusion,

this Bailey and Meurers (2008) approach can implicitly handle, by simply ignoring,

both co-referring pronouns and ellipses (see. A2, A3 in Table 4.1) as given concepts

implied by context are ignored.

Nevertheless, given concepts in student answers can be useful as they

65

indicate the relevancy of the student answers to the question and the broader

context, which also includes the problem description. The better approach, as

argued by Banjade, Maharjan, Niraula, Gautam, et al. (2016), is to assign less

weight (instead of completely ignoring them by assigning a zero weight) to given

concepts in the student answers. This would provide non-zero scores to heavily

context-dependent answers while still giving lower scores to responses having fewer

new concepts compared to responses rich in new concepts. In one of our approaches,

we apply this basic idea to compute word weighted lexical and alignment similarity

scores and used them as features in addition to various context aware count features

in a Gaussian Mixture Model (McLachlan & Peel, 2004) model.

In the second approach, we present an LSTM-based network approach for

handling student answers in context. Specifically, we handle context inherently by

utilizing LSTM layers (Hochreiter & Schmidhuber, 1997) to capture long-term

dependencies between a target student answer to be assessed and the previous

context in which that answer was generated by the student.

4.1 Related Work

The WebLAS system (Bachman et al., 2002) assessed short answer for questions in

a language learning task by matching student answers against regular expressions of

the corresponding reference answers. The C-Rater (Leacock & Chodorow, 2003)

system normalized concepts in student answers by handling various linguistic

variations and then assessed the student answers by looking at the number of

concepts that match concepts within the reference answer. The Intelligent

Assessment Technologies system (Mitchell, Russell, Broomhead, & Aldridge, 2002)

and Oxford system (Pulman & Sukkarieh, 2005) matched manually created

information extraction templates corresponding to questions against student

responses. The Atenea system (Pérez et al., 2005) used Latent Semantic

Analysis (Landauer et al., 1998) and n-gram overlap for assessment.

66

The Content Assessment Module (Bailey & Meurers, 2008) system aligned

concepts in student responses with concepts in the target responses at token, chunk

and relation levels. Finally, the aligned and unaligned concepts were used to develop

a classifier to evaluate the student answers. Nielsen, Ward, and Martin (2009)

mapped reference responses and student responses into meaningful parts called

facets. The facets were then aligned and annotated with five different semantic

labels and used with a machine learning approach to make answer assessment

decisions. Mohler et al. (2011) aligned student answers and reference answers using

subgraphs of the dependency structures for answer assessment. Most of the works

presented above, including the recent Semantic Textual Similarity (STS) shared

tasks (Agirre et al., 2015; Agirre, Banea, et al., 2016; Cer et al., 2017), focus on

comparing student answers against reference answers in isolation. They do not

consider the broader context (e.g., question, problem description) in which the

student response was generated. One of just a few previous works that used context

in their assessment is an approach by Bailey and Meurers (2008), as already

mentioned. They used question text as the context for implicit pronoun resolution

and distinguished between new concepts and given concepts. They assessed student

answers against target answers based on the alignment of new concepts alone.

Given concepts were discarded, as explained earlier. In our approach, we do not

discard the given concepts.

One of the reasons that explains the lack of research on assessing short

answers in context may also be attributed to a lack of appropriately annotated

datasets that consider contextual information. Banjade, Maharjan, Niraula,

Gautam, et al. (2016) recently released the DT-Grade dataset that was annotated

with contextual information. They defined four qualitative levels of correctness:

Correct, Correct-but-incomplete, Contradictory, and Incorrect. They also presented a

baseline model for assessing students answers that accounts for context by giving a

67

non-zero, albeit small, weight to given words, i.e., words in the student answer that

are mentioned in the previous utterance. New words in the student answer are given

a large weight when computing the similarity score between the student answer and

the reference answer. Their baseline model used a single similarity feature (F7 in

Table 4.2) and built a logistic classifier to predict the correctness label.

In our work, we used a variety of similarity features computed using a

context-based word weighting approach. We also used features that rely on

context-based counts in conjunction with the GMM model to perform soft

clustering that can account for variability in the student answers for each of the four

answer correctness levels in the DT-Grade dataset. GMM is also useful to

understand how different features are interacting and contributing to predicting

student answer correctness labels.

Next, we developed an LSTM approach to assess free short answers in

tutorial dialogue contexts. In the LSTM approach, we handled context inherently

by utilizing LSTM layers (Hochreiter & Schmidhuber, 1997) to capture long-term

dependencies between a target student answer to be assessed and the previous

context in which the student-generated that answer. A major advantage of the

LSTM method is that it does not require any feature engineering, and it performs

on par and even slightly better than the GMM method.

4.2 Approach

We present two different approaches to assessing student answers in context below.

4.2.1 Gaussian Mixture Model

Our approach using the Gaussian Mixture Model is based on the observation that

similarity scores between student answers and the reference answers vary greatly for

each of the four correctness levels in the DT-Grade dataset: Correct,

Correct-but-incomplete, Contradictory, and Incorrect. To illustrate our point, we

focus on the correct student answers shown in Table 4.1.

68

The number of new and given concepts vary across the four student answers

in Table 4.1, as explained next. We define new and given concepts relative to the

reference answer and the given context (the question and problem description). The

number of new and given concepts for the complete answer A4, the elliptical answer

A3, the pronoun referring answer A2 and the answer containing extra information

A1 are: (3 new, 3 given), (2, 0), (3, 0) and (6, 2). This wide range of the number of

new and given concepts for the correct answers also holds for student answers

marked with other correctness labels, e.g., contradictory. The semantic similarity

scores for student answers also vary greatly for each of the correctness labels due to

the diversity of student answering “styles”, as explained earlier: some students rely

heavily on context and provide short responses while others write well-formed full

sentences. Further, while incorrect student answers in the DT-Grade dataset usually

have low similarity scores against reference answers, in some cases they have high

semantic similarity scores. For instance, the reference answer “Newton’s first law of

motion” and the corresponding incorrect student answer “Newtons second law of

motion” have a high similarity score. Therefore, we modeled the correctness levels

as multivariate Gaussian densities of feature vectors, where features are different

counts of new and given concepts and sentence similarity scores (see Section 4.2.1

for detail).

Our Gaussian Mixture Model is a probabilistic model represented as a

weighted sum of M mixture components in the following equation.

p(x|λ) =
i=1∑
M

wiN(x|µi,
∑
i

) (4.1)

where x is a d-dimensional continuous feature vector, wi are mixture

component weights, and N(x|µi,
∑

i) are multivariate normal distributions

69

Table 4.2: Features used in model development.

FN Features

Count (CNT) Features
F1 Unique content word count in reference answer
F2 Unique content word count in student answer
F31 Percentage of Unique content word count in reference answer
F4 Percentage of Unique content word count in student answer
F5 Common content word count in reference answer
F6 Common content word count in student answer

Alignment (ALGN) Features
F7 word2vec (Mikolov et al., 2013) similarity score
F8 GloVe (Pennington et al., 2014) similarity score
F9 LSA wiki (Stefănescu et al., 2014) similarity score

Lexical (LEX) Features
F10 Lexical Overlap similarity score
F11 Vector Cosine similarity score

representing the component Gaussian densities with mean vector µi and covariance

matrix
∑

i for i = 1, ...,M .

In our GMM model, we model the four correctness levels as multivariate

Gaussian densities of feature vectors. The feature vector contains the features

described next.

Features: Our context-based features can be grouped into three groups,

Count Features, Alignment Features, and Lexical Features.

Count Features: We consider only content words for the count features.

We adopt a more meaningful terminology and refer to new content words in

student/reference responses as “unique” and to content words that were

provided/given in the previous context as “common” (they are common in the

student/reference answer and the context). We generated six count features, F1-F6

in Table 4.2.

Alignment Features: We computed alignment-based similarity scores

(F7-9 in Table 4.2) using Equation 4.2 based on a word weighting approach that

accounts for context as described in (Banjade, Maharjan, Niraula, Gautam, et al.,

70

2016). The “unique” words in student answers and reference answers are given full

weight (weight=1.0). “Common” words are given less weights compared to

“unique” words.

sim(A,R) = 2 ∗
∑

(a,r)εOAwa ∗ wr ∗ sim(a, r)∑
aεAwa +

∑
rεR wr

(4.2)

where OA is optimal alignment of words between A and R obtained using

Hungarian algorithm as described in Rus and Lintean (2012). A/R refers to the

student/reference answer, respectively, and a/r is a token in the corresponding

answer. Sim(a, r) is the cosine similarity score between A and R. The weights

0wa ≤ 1and0 ≤ wr ≤ 1 refer to the weight of a word in A and R, respectively. We

empirically set the word weights wa and wr as described in the Experiments and

Results section.

A lexical overlap score (F10 in Table 4.2) was computed as the percentage

of word overlap in the student and reference answers (Equation 4.3). WordNet was

employed to normalize variation due to synonyms.

sim(A,R) = 2 ∗
∑

aεA,rεR wa ∗ wr ∗ sim(a, r)∑
aεAwa +

∑
rεR wr

(4.3)

A vector cosine score (F11) was computed as cosine similarity between

vector representations of the student and reference answers. We represented the

student and reference answers as vectors: VA = (w1a, w2a, w3a...wna) and

VR = (w1r, w2r, w3r...wnr), where each wordi in vocabulary voc represents a

dimension of the vector. The voc is constructed from the unique words in student

and reference answers. VA/VR vector is generated by empirically setting the value of

71

Fig. 4.1: LSTM model architecture with tri-letter word encodings.

the weights wia/r from 0 to 1.

wia/r =


0 if wordi is not in A/R,

1 if wordi is in A/R but not in context,

wia/r if wordi is in both A/R and context

(4.4)

4.2.2 The LSTM Approach

Figure 4.1 illustrates our approach based on an LSTM network architecture. To

describe the network, we use lowercase bold letters such as x to denote column

vectors and uppercase letters such as W to denote matrices.

We generate a tri-letter vocabulary (size 1,147) from all the words in the

DT-Grade dataset (see Section 4.3.3) and use the vocabulary to encode the words as

vectors (Huang et al., 2013). For example, we padded words such as “car” on both

sides with a word boundary symbol “#” resulting in the following token “#car#”

72

from which we then generated the following tri-letters “#ca”, “car” and “ar#”. We

generated a tri-letter vocabulary of size 1,147.

The input consists of the extended student answer which is the result of

concatenating the previous context, i.e., the related problem description and the

previous tutor question, to the student answer. For example, an extended answer

based on the student answer A1 in Table 4.1 will be [PD, TQ, A1] : “While speeding

up, a large truck pushes a small compact car. How do the magnitudes of forces they

exert on each other compare? They are equal and opposite in direction”. The second

input is the expert provided reference answer RA: “The forces from the truck and

car are equal and opposite.”. The input is a sequence of words which are represented

as word vectors. In both figures, X = [x1,x2, ...,xn] and X ′ = [x’1,x’2, ...,x’n′]

represent the sequential inputs [PD,TQ,SA] and RA, respectively, where xi and x′i

indicate the word vector representations for words wi and w′i, respectively. n and n′

refer to the length of the sequence X and X ′. It should be noted that not extending

the expert provided reference answers with contextual information was a conscious

design decision - these answers are typically self-contained, i.e. they do not require

an expansion to recover implied information. Further, the network consists of two

LSTM components corresponding to the two sequential inputs. The first LSTM

component generates an embedded representation output hn at time step n (end of

sequence X) while the other LSTM component generates an embedded

representation h’n′ at time step n′ (end of sequence X’). We generated an embedded

representation of both the extended student answer and the expert provided

reference answer [hn,h’n′] by concatenating both LSTM outputs. This embedding is

then fed to a dense softmax layer via a dropout layer to produce an output

classification vector y which represents the correctness class for the given student

answer instance. A dropout is a popular technique to regularize deep

networks (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) where

73

neurons, i.e., network cell units, are randomly dropped during network training.

The student answers in our case can fall into one of the following correctness classes:

correct, partially correct, incorrect or contradictory.

4.3 Experiments and Results

We experimented with both GMM and LSTM approach and evaluated their

performance using the DT-Grade dataset. If there were more than one reference

answers to a question, we chose the one with the highest similarity score to the

target student answer.

4.3.1 Data

DT-Grade (Banjade, Maharjan, Niraula, Gautam, et al., 2016) consists of 900

student responses gathered from an experiment with the DeepTutor intelligent

tutoring system (Rus, DMello, et al., 2013; Rus, Niraula, & Banjade, 2015). The

student answers were extracted from logged tutorial interactions between 40 junior

level college students and the DeepTutor system while solving conceptual physics

problems. The student answers are annotated with one of the following correctness

labels.

� Correct (C): The student answer is correct in context. Extra information, if

any, in the answer is not contradicting with the reference answer.

� Correct-but-incomplete (CBI): The student answer covers the expected

concepts in the refer-ence answer only partially and contains no incorrect

parts.

� Contradictory (CNTR): Student answer is opposite or contrasting to reference

answer. For example,“equal”,“less”, and “greater” are contradictory to each

other.

� Incorrect (IC): If none of the above labels apply, the student answer is deemed

incorrect. Contradictory is a subset of Incorrect category

74

Table 4.3: Performances of different GMM models. Baseline model M0 is a logistic
model presented by Banjade, Maharjan, Niraula, Gautam, et al. (2016). U-CNT

refers to Unique Counts. M14∗ model was developed using instances not requiring
contextual information alone and evaluated on instances requiring contextual
information. LSTM∗ refers to our LSTM approach (Maharjan et al., 2018).

Model Features F A(%) K

M0 Baseline - 49.33 0.22
M1 CNT only (F1-6) 0.433 44.40 0.21
M2 ALGN only (F7-9) 0.454 52.10 0.27
M3 LEX only(F10-11) 0.421 51.20 0.25
M4 CNT + ALGN (F1-6, F7-9) 0.555 55.60 0.37
M5 CNT + LEX (F1 6, F10-11) 0.545 54.40 0.35
M6 ALGN + LEX (F7-11) 0.498 51.90 0.30
M7 All features (F1-11) 0.560 55.80 0.37
M8 M1 + M2 + M3 ensemble 0.506 54.60 0.31
M9 U-CNTs only (F1 4) 0.401 45.40 0.20
M10 U-CNT + LEX (F1-4, F10-11) 0.563 56.80 0.37
M11 U-CNT + ALGN (F1-4, F7-9) 0.568 57.4 0.39
M12 All excluding common Counts (F1-4, F7-11) 0.58 58.2 0.40
M13 M9 + M2 + M3 ensemble 0.500 55.3 0.32
M14∗ Same as M12 0.545 54.8 0.34
LSTM∗ - 0.62 62.22 0.45

In addition to the annotation for correctness, the student answers were also

annotated for: (a) whether contextual information was helpful to interpret the

student answer correctly, and (b) whether the student response contains extra

information, i.e., not mentioned in the ideal answer. The DT-Grade dataset

contains about 25% of student answers that require contextual information to assess

them properly.

4.3.2 GMM based Experiments and Results

We developed different GMM models with different combinations of features. We

used the Expectation Maximization (EM) algorithm (Dempster et al., 1977) for

estimating the GMM parameters. We followed a 10-fold cross validation

methodology for model evaluation except for M14 model. We report F-measure (F),

Accuracy (A), and Kappa (K) as performance metrics.

75

Context based word weighting: Both context based lexical and

alignment methods rely on word weights, which need to be inferred, to compute

similarity scores. If we give a full weight of 1 to each word in the student answer

and the reference answer, we assume both unique and common (i.e., also present in

context) words are equally important. If we set a weight of 0, say for the

common/given words, we are completely discarding the common/given words. To

find the best word weights, a grid search process was run in which we computed

similarity scores by varying the weight value from 0 to 1 in increments of 0.1. We

then created different logistic classifiers using each of the similarity scores alone and

observed the classification accuracies while changing the weights. All the alignment

based and lexical based similarity features (F7-11) performed best or close when we

set the word weight to 0.4. Therefore, we computed these scores with the word

weight set to 0.4 when using them as features for GMM models.

Table 4.3 shows that model M2 using alignment-features outperformed the

count-features only model M1 and the lexical-overlap-feature model M3 across all

performance metrics. The M2 model also outperformed the baseline model

(Banjade, Maharjan, Niraula, Gautam, et al., 2016) which uses an alignment score

computed using the word2vec word representation (Mikolov et al., 2013).

If we look at the combination of feature groups, the count features are

significantly complimenting lexical or alignment features. Though the improvement

in terms of accuracy of models M4/M5 over M2 model was a 2-3%, the gain in

terms of the F-measure was about 0.1 (10% increase), which is significant. The

all-feature model M7 was the best performing model across all three performance

metrics while the ensemble classifier M8 outperformed the basic classifiers M1, M2

and M3, but lagged behind the all-feature model M7.

The common content features are implicitly captured by the unique content

word proportion features (correlation (F3, F5) = -0.51, correlation (F4, F6) =

76

-0.58). Therefore, we also explored different combinations of features excluding the

common count features. Interestingly, all types of combinations consistently

outperformed their counterparts that included common count features (see M10 vs

M5, M11 vs M4, M12 vs M7 and M13 vs M8 in Table 4.3).

The best of all was the M12 model which included all the features except the

common count features with an F-measure of 0.58 and accuracy of 58.2% (kappa =

0.4). Also, the performance of the M14 model built using data not requiring

contexts and tested on the 25% instances that require contextual information is

comparable to M12 performance.

Interpreting the results based on GMM feature analysis: We analyze

how various features contribute to the predictive power of our approach. This

information can be helpful in interpreting the output and in finding irrelevant

features which do not contribute significantly to the overall performance of our

approach. We can easily perform such a feature analysis with a probabilistic GMM

model by computing the membership weights for each of the student answer

reference answer pairs/instances with respect to each of the four correctness

classes/levels using the all-feature M7 model. Then, we perform a Pearson

correlation analysis to find the features that highly correlate with the GMM weights

for each of the four correctness levels as shown in Table 4.4.

Table 4.4 provides interesting insights. First, it supports our intuitions

related to answers belonging to the different correctness labels. For example, the

similarity features (F7-11) highly positively correlate with Correct labels and highly

negatively correlate with Incorrect labels. Also, the negative correlation between

unique count features (F1-4) and the Contradictory label weights indicates that

instances annotated contradictory have relatively fewer unique content words in the

student and reference answers.

Table 4.4 also indicates that students are more likely to provide more new

77

Table 4.4: Correlation analysis between various features and GMM weights for
correctness labels (CNT Contradictory, C - Correct, CBI Correct-but-incomplete,
IC - Incorrect) computed using model M7. F1-F11 are the features from Table 4.2.

Moderate or higher correlation scores are marked as bold.

CNTR C CBI IC

F1 -0.265 -0.222 0.539 -0.028
F2 -0.322 0.240 0.033 -0.13
F3 -0.306 -0.096 0.419 -0.056
F4 -0.441 0.213 0.007 0.0007
F5 0.049 -0.161 0.046 0.131
F6 0.14 -0.031 -0.024 -0.026
F7 -0.298 0.700 -0.030 -0.665
F8 -0.318 0.635 -0.009 -0.590
F9 -0.357 0.637 -0.005 -0.572
F10 -0.073 0.541 0.142 -0.758
F11 -0.196 0.513 0.090 -0.600

content when they are correct than incorrect (see the correlation between F2 and

F4). Similarly, the high correlation for the unique content words in reference

answers (F1 and F3) indicates that the instances where there are a higher number

of unique counts in the reference answer, the students are more likely to provide

partially correct answers. Intuitively, this makes sense as the presence of more

unique words in reference answers indicates the question is asking the student to

cover many concepts in his response.

Second, the feature analysis in Table 4.4 provides insights and explains the

performance of the different GMM models. The alignment features (F7-9) correlate

reasonably or highly for more correctness levels than it is the case for the count

features (F1-6) and lexical features (F10-11). This supports the fact that Model M2

is performing better than models M1 and M3. Another interesting observation is

the fact that lexical and alignment features are useful for predicting if the student

answers are contradictory, correct or incorrect. They are not as good at predicting

partially correct answers. On the other hand, the count features contribute towards

predicting all correctness labels except the Incorrect label. This can explain why the

78

Table 4.5: Performance of The LSTM Models. Accuracy values are in percentage
followed by Kappa values in brackets.

Model F-score Accuracy
Logistic Model (Banjade et al., 2016) - 49.33(0.22)

GMM Model (Maharjan, Banjade, & Rus, 2017) 0.58 58.2(0.40)
NN 1 (50 LSTM cells, Tri-letter word encodings) 0.53 53.3(0.33)
NN 2 (100 LSTM cells, Tri-letter word encodings) 0.55 55.4(0.36)

NN 3 (50 LSTM cells, Pretrained GloVe embeddings) 0.6 60.11(0.42)
NN 4 (100 LSTM cells, Pretrained GloVe embeddings) 0.62 62.22(0.45)

combination of count features with lexical/alignment features worked better than

combining lexical with alignment features (see M4/M5 vs. M6 in Table 4.3).

4.3.3 LSTM based Experiments and Results

We experimented with four different types of neural networks by varying the

number of LSTM cell units and type of word vector representation (see Table 4.5).

We used a batch (number of samples per gradient update) of size 30 and a dropout

rate of 0.5 (fraction of the input units to drop) empirically. We used a 10-fold cross

validation methodology for evaluating trained networks.

The results shown in Table 4.5 indicate that increasing the number of LSTM

cell units while keeping other factors constant improved the performance of the

underlying model, in general (NN 1 vs NN 2, NN 3 vs NN 4). The reason might be

that an increased number of LSTM cell units yielded better embedded

representations for the sequential inputs. However, determining the optimal number

of LSTM cell units is an open question and therefore selecting the number of LSTM

cell units is mostly empirically driven. Next, we found that using pre-trained GloVe

embeddings over tri-letter encodings improved the network performance (NN 1 vs

NN 3, NN 2 vs NN 4). This result suggests that using pre-trained word embeddings

such as GloVe to represent words is useful. Such word embeddings are typically

developed from a large corpus of text and therefore can better represent word

semantics than simple word-based or tri-letter based one-hot encodings.

79

Furthermore, using pre-trained models fits the now well-adopted approach to

training deep neural network architectures: pre-training. That is, pre-training is

used as a successful way to avoid the vanishing gradient problem (the gradients

become smaller and smaller as they are back-propagated which prevents the weights

of the earlier layers from updating during training) and improve the performance of

deep neural networks.

We also note that all our neural networks performed better than a logistic

model based on a single sentence similarity computed using a word alignment

method which weights words based on context (Banjade, Niraula, et al., 2015).

None of our networks using tri-letter word encodings outperformed the GMM based

method (Maharjan, Banjade, & Rus, 2017). On the other hand, NN 3 and NN 4

with pre-trained GloVe word embeddings did outperform the state-of-the-art

methods on the DTGrade dataset. The best model NN 4 yielded an average

F1-score of 0.62 and an average accuracy of 62.2% and a kappa of 0.45. A larger

training dataset may lead to better results for both the tri-letter models and the

GloVe models.

4.4 Conclusion

We presented a probabilistic Gaussian Mixture model using multiple context-aware

features based on counts, and word weighted lexical and alignment similarity scores

to assess the student answers in context and general. Our best performing model

achieved significant improvement of 9% in terms of accuracy and almost twice the

kappa value over a baseline system. Additionally, we showed how the GMM model

might help to understand how different features are contributing to the overall

answer assessment performance.

Next, we presented a novel deep learning approach using LSTM to assess free

student answers in tutorial dialogues by taking context into account. The approach

outperforms state-of-the-art methods evaluated on the DTGrade dataset. Our

80

approach is particularly useful because student answers can vary significantly in the

level of explicit information they contain. Additionally, it does not require the

tedious task of manually crafting features.

There is room for improvement of our approaches. We can explore more

distinctive context-based features for our GMM method. Also, we can further our

investigation of using deep neural networks for assessing students’ freely generated

responses. Eventually, we plan to combine the proposed solutions with an

alignment-based solution such that besides a holistic outcome such as Incorrect or

Contradictory we also generate an explanation for the decision which would enable

dynamic and automatic generation of personalized hints.

81

Chapter 5

SemAligner: A Tool for Interpreting Semantic Textual Similarity

The Semantic Textual Similarity (STS) competitions have been held since 2012 to

improve methods for measuring semantic textual similarity (Agirre et al., 2012,

2013, 2014, 2015; Agirre, Banea, et al., 2016; Cer et al., 2017). As such, the STS

systems have greatly improved in recent years on predicting similarity score for a

given pair of short texts. The state-of-the-art STS systems (Maharjan, Banjade,

Gautam, et al., 2017; Tian et al., 2017) give correlation above 0.85 on STS 2017

evaluation data while they give correlation above 0.8 on the STS benchmark

data (Cer et al., 2017).

However, these systems do not explain why the two texts are similar, related

or unrelated. For example, consider a question asked by DeepTutor, its expected

answer and one of the student responses to the question asked by the system as

shown in the Table 5.1.

Any top performing STS system would give a similarity score of 3 meaning

that the student answer is missing some important information. However, it does

not explain which information is missing. If there existed explanatory functionality

that could explain the student is missing information on direction, we could use this

diagnostic information to generate a follow-up question by the tutor as: What other

information than magnitude is provided by the acceleration? Such explanatory layer

would make a big difference in many Natural Language Processing (NLP)

applications such as intelligent tutoring system (Graesser et al., 2005; Rus, Niraula,

& Banjade, 2015) and student answer evaluation (Rus & Graesser, 2006; Nielsen et

al., 2009).

One approach towards providing an explanatory layer to STS systems is to

align the chunks in a given pair of texts and label them with semantic relation types

82

Table 5.1: A sample question and answer between student and DeepTutor with the
ideal expected answer.

Description

Question: Because it is a vector, acceleration provides what
two types of information?
Student Answer: Acceleration gives magnitude
Expected Answer: Acceleration provides magnitude and direction.

and scores as proposed in the pilot interpretable Semantic Textual Similarity (iSTS)

task (Agirre et al., 2015). A chunk is a syntactically meaningful unit which typically

consists of a single content word surrounded by a group of function words (Abney,

1991). Agirre et al. (2015) introduced a set of semantic relation types: EQUI

(chunks are semantically equivalent), OPPO (chunks are opposite in meaning),

SPE1/SPE2 (the chunk in the first/second sentence is more specific than the chunk

in the second/first sentence), SIMI (chunks are similar but not EQUI, OPPO or

SPE), REL (chunks are related but not EQUI, OPPO, SPE or SIMI), ALIC (a

chunk is not aligned to any other chunk due to 1:1 alignment restriction) and

NOALIC (the chunk is unrelated and has no alignment).

The iSTS tasks were organized in 2015 and 2016 (Agirre et al., 2015; Agirre,

Gonzalez-Agirre, et al., 2016) to foster research towards improving interpretable

STS systems. We participated in the tasks in both years. Our interpretable systems

(Banjade, Niraula, et al., 2015; Banjade, Maharjan, Niraula, & Rus, 2016) were top

performing systems. The interpretable DTSim system (Banjade, Maharjan, Niraula,

& Rus, 2016) was a slightly improved version of our earlier system

NeRoSim (Banjade, Niraula, et al., 2015) since the system supported many to many

alignments. The interpretable DTSim system exploited the functionality of the

SemAligner tool (Maharjan et al., 2016) to handle both chunked or plain text-pairs

as input.

We describe our SemAligner tool in this chapter which can align textual

83

chunks in a given pair of texts (chunked or plain texts). The SemAligner also

assigns semantic relation types and semantic similarity scores to the aligned chunks;

thus, the proposed SemAligner tool creates a new category of natural language

processing tools called semantic aligners.

We originally developed SemAligner based on the NeRoSim

system (Banjade, Niraula, et al., 2015). However, NeRoSim system can handle only

gold chunks of the given text-pairs; the task organizers provided these chunks. In

addition to the chunked texts, the SemAligner tool can handle plain texts by

automatically chunking them using two powerful automated chunkers, namely

Extended Open-NLP (EONLP) chunker and CRF-based chunker (Section 5.2.1).

Our experiments, described later, show that the performance of the tool in both

system-generated and gold chunk categories is better or competitive to other

systems.

5.1 Related Work

Most semantic similarity methods are geared towards quantifying the similarity

between a pair of texts. Works towards interpreting similarity, i.e., justifying why

the two texts are similar or dissimilar, are limited but gaining momentum as

described next.

Brockett (2007) annotated datasets to indicate alignment of words and

phrases. Other related works are word or phrase-based alignment models for

statistical machine translation (Och & Ney, 2004) and word alignment tools. A

most recently released tool is the monolingual word-aligner (Sultan, Bethard, &

Sumner, 2014) which works at word level but lacks capabilities to assign semantic

relation types. In the area of student answer assessment, Nielsen et al. (2009)

aligned facets/words in student response with concepts in the reference answer for

textual entailment. All these previous works focused primarily on the alignment

task without attempting to label the semantic relations among the aligned tokens.

84

The first attempt to assign semantic labels to aligned tokens is by Rus et al. (2012)

who aligned words using greedy and optimal strategies and presented a method to

annotate texts with semantic relations such as IDENTICAL and RELATED at the

word level. More recently, the already mentioned iSTS tasks in SemEval 2015 and

SemEval 2016 (Agirre et al., 2015; Agirre, Gonzalez-Agirre, et al., 2016) focused on

labeling aligned chunks with different semantic relation types and semantic

similarity scores thereby providing an explanatory layer to the core semantic

similarity task. Our SemAligner tool makes contributions toward the development

of such powerful, interpretable STS and other NLP systems.

5.2 The SemAligner tool

Figure 5.1 shows the system pipeline of the SemAligner tool. The tool can take

chunked or plain text-pairs as input. If the input text-pairs are in plain text format,

the tool runs the Chunker component to identify and create chunks. The user can

configure the choice of the chunker, either EO-NLP or CRF chunker (Section 5.2.1),

in the application configuration file. It should be noted that before performing

chunk alignment, the SemAligner preprocesses the text-pairs by performing

stopword marking (stopwords are marked to differentiate them from content-words;

some rules use this information), lemmatization, POS tagging and Named-Entity

recognition using the Stanford CoreNLP Toolkit (Manning et al., 2014).

5.2.1 Chunker

We developed a Conditional Random Field (CRF)1 based chunker using both

CoNLL-20002 shared task training and test data. This data consists of Wall Street

Journal corpus: sections 15-18 as training data (211,727 tokens) and section 20 as

test data (47,377 tokens). A CRF is a probabilistic graphical model which is often

used for labeling sequential data. For chunking task, we generated features such as

previous and next words from the current word, current word itself, current word

1https://taku910.github.io/crfpp/
2https://www.clips.uantwerpen.be/conll2000/chunking/

85

Fig. 5.1: System pipeline of SemAligner tool.

POS tag, previous and next word POS tags and their different combinations as

described in Sha and Pereira (2003) for building the CRF model.

Table 5.3 illustrates the gold chunks and chunks generated by our CRF

chunker for a sentence. We evaluated the chunking accuracy of the CRF chunker by

comparing it against the gold chunks of iSTS 2015 data: the training and test data

set each consist of 375 pairs of Images annotation data and 378 pairs of Headlines

texts. This chunker yielded the highest average accuracies on both the training and

test datasets compared to other chunkers (Table 5.2). The accuracies on the

training dataset were 86.20% and 68.34% at chunk and sentence level, respectively.

For the test dataset, the accuracies were 86.81% and 69% at chunk and sentence

level, respectively. We also chunked the input texts using the Open-NLP3 chunking

library (O-NLP). The results are presented in Table 5.2. The average (of Images

and Headlines data) accuracies were 53.04% at chunk level and a modest 9.27% at

sentence level for the training dataset. It yielded similar results on test data.

Given the modest performance of the O-NLP chunker, we analyzed its output

(i.e. chunks) and added the following rules to merge some of the chunks which

resulted in chunks that make more sense and led to significantly better performance.

3http://opennlp.apache.org/cgi-bin/download.cgi

86

Table 5.2: Comparison of chunking accuracies of the various chunkers at chunk level
(CL) and sentence level (SL) using gold chunks from the iSTS task 2015 data.

DataSet Chunker CL (%) SL (%)

Training Data

Headlines
O-NLP 53.74 13.49
EO-NLP 80.67 59.39
CRF 82.60 62.56

Images
O-NLP 52.35 5.06
EO-NLP 89.13 72.66
CRF 89.74 74.13

Test Data

Headlines
O-NLP 53.88 16.13
EO-NLP 80.96 60.18
CRF 83.32 63.23

Images
O-NLP 52.71 5.33
EO-NLP 89.30 72.13
CRF 90.29 74.93

Table 5.3: A sentence from Headlines training data chunked by our CRF chunker.

Description

Text: China stocks close higher after economic meeting
Gold Chunk: [China stocks] [close] [higher] [after economic meeting]
Predicted: [China stocks] [close higher] [after economic meeting]

(a) PP +NP ⇒ PP

(b) V P + PRT ⇒ V P

(c) NP + CC +NP ⇒ NP

For example, EO-NLP chunker merges chunks [on] and [Friday] to form

single PP chunk [on Friday] using rule (a). The Extended Open-NLP chunker

(EO-NLP) reported 84.9% chunk level and 66.02% sentence level accuracies,

respectively, on average on the training dataset. The accuracy of the test data was

comparable at 85.13% chunk level and 66.15% sentence level.

Both the EO-NLP and CRF chunkers are available as part of the SemAligner

tool.

87

5.2.2 Alignment System

Once the chunks are preprocessed, the SemAligner runs Semantic Rule Engine (a

set of rules) to align chunks and detect the semantic relation labels. We discuss the

rules only briefly here since they are explained in detail in Banjade, Niraula, et al.

(2015). There is a subset of alignment rules for each semantic relation type. There

are 5 EQUI rules, 1 OPPO rule, 3 SPE rules, 5 SIMI rules, 1 ALIC rule, and 1

NOALIC rule. The rules are applied only when certain conditions are met. While

aligning chunks, these rules are applied in the following order of precedence:

NOALIC, EQUI, OPPO, SPE, SIMI, REL, and ALIC. Also, there is a precedence of

rules within each relation type. For example, the rule Both chunks have same tokens

(E.g. to compete ⇔ To Compete) is always applied first before other EQUI rules.

Our SemAligner tool relies on synonym, antonym and hypernym relations to

align the chunks and therefore use several lookup files to determine these

word-to-word semantic relations. All these lookup resources were created using

WordNet (Miller, 1995). There are also rules that use the similarity score between

two chunks for determining the alignment. Word to word similarity measures are

used to measure chunk to chunk similarity using optimal alignment as described

in Ştefănescu et al. (2014). Currently, we use cosine of vectors using the word2vec

model (Mikolov et al., 2013) as the word-to-word similarity measure as illustrated

by the following rule, if Both chunks have an equal number of content words and

sim-Mikolov(C1, C2) > 0.6, label as EQUI. The similarity threshold 0.6 was

selected empirically after trying with thresholds varying from 0.4 to 0.9. This rule

marks the following two chunks in Indonesia boat sinking and in Indonesia boat

capsizes as EQUI.

A chunk can have only one alignment and once aligned, it is not considered

for further alignment. However, it should be noted that our DTSim

system (Banjade, Maharjan, Niraula, & Rus, 2016) supports many to many

88

Table 5.4: SemAligner output for a given text-pair.

Example text pairs (plain)
S1: Bangladesh building disaster death toll passes 500
S2: Bangladesh building collapse: death toll climbs to 580

Example text pairs (chunked)
S1: [Bangladesh building disaster][death toll][passes][500]
S2: [Bangladesh building collapse][:][death toll][climbs][to 580]

Alignment Output
1 2 3 ⇔ 1 2 3 //EQUI //5.0 // Bangladesh building disaster ⇔
Bangladesh building collapse
4 5 ⇔ 5 6 // EQUI // 5.0 // death toll ⇔ death toll
7 ⇔ 8 9 // SIMI // 3.0 // 500 ⇔ to 580
6 ⇔ 0 // NOALI // 0 // passes ⇔ -not aligned-
0 ⇔ 4 // NOALI // 0 // -not aligned- ⇔ :
0 ⇔ 7 // NOALI // 0 // -not aligned- ⇔ climbs

alignments which we do not discuss DTSim system in this chapter. Any chunk left

unpaired after applying the full set of rules is assigned the NOALIC semantic

relation. Once all the chunks in the text pairs have been labeled with semantic

relations, the Semantic Score scores the alignment based on the assigned semantic

relation. Any chunk with NOALIC semantic relation is scored 0. The aligned

chunks with EQUI, OPPO, SPE, and ALIC are invariably scored 5, 4, 4 and 0

respectively. The SIMI and REL aligned chunks may have scores between 2 and 4

depending upon the rule being applied. For example, the rule Each chunk has a

token of DATE/TIME type assigns a score of 3 to the following alignment: on

Friday ⇔ on Wednesday.

5.2.3 Alignment Output

Given an example sentence pair S1: Bangladesh building disaster death toll passes

500 and S2: Bangladesh building collapse: death toll climbs to 580 as input in plain

text or chunked form, Table 5.4 shows the alignment output of the SemAligner tool.

The SemAligner outputs an alignment in the following format: S1-chunk id

⇔ S2-chunk id // chunk relation type // chunk score // S1 chunk ⇔ S2 chunk.

89

Table 5.5: F1 scores on gold and system chunked Headlines and Images training
data of iSTS 2015 shared task.

Alignment Type Score Alignment + Score

Headline , gold chunks
0.884 0.639 0.787 0.613

Image , gold chunks
0.885 0.688 0.800 0.654

Headline , system chunks
0.821 0.546 0.715 0.523

Image , system chunks
0.841 0.629 0.755 0.599

Unaligned chunks are identified with a 0 position index while aligned chunks are

identified as a sequence of token positions in the input sentences.

5.2.4 Alignment System Evaluation

The rules of the SemAligner tool were developed using the training data of the iSTS

2015 shared task. Table 5.5 reports the F1 scores on the training data.

We evaluated the performance of the SemAligner against the gold chunked

test data consisting of 378 instances of Headlines and 375 instances of Images

datasets used in the iSTS 2015 shared task. The system chunks were created using

our CRF chunker described in Section 5.2.1. The results are presented in Table 5.6.

Our tool performs very well for both gold and system chunks. Our system

performs better or competitively in all metric categories versus the best F1 scores

(Melamed, 1998) obtained for each metric category among participating systems in

the shared task. The SemAligner tool provides the best performance scores

(highlighted) across all performance metrics (A, T, S, T+S) in the Headlines

dataset with system chunks. For gold chunks in the Headlines dataset, our system

performance scores are competitive to the best performance scores across all

metrics. Also, the performance scores in the Image dataset (both gold and system

chunks) are comparable to the best performance scores of the participating systems

in the iSTS 2015 task. Interestingly, the performance of our tool using its own

90

Table 5.6: F1 scores on gold and system chunked Images and Headlines test data.
MaxScore is the best score for each metric given by any of the participating systems

in the iSTS 2015 shared task.

System Alignment Type Score Alignment + Score

Headline , gold chunks
Baseline 0.844 0.555 0.755 0.555
SemAligner 0.897 0.666 0.815 0.642
MaxScore 0.898 0.666 0.826 0.642

Image , gold chunks
Baseline 0.838 0.432 0.721 0.432
SemAligner 0.883 0.603 0.783 0.575
MaxScore 0.887 0.614 0.796 0.596

Headline , system chunks
Baseline 0.670 0.457 0.606 0.4571
SemAligner 0.826 0.564 0.736 0.543
MaxScore 0.782 0.515 0.702 0.509

Image , system chunks
Baseline 0.706 0.369 0.609 0.36
SemAligner 0.852 0.568 0.749 0.539
MaxScore 0.835 0.576 0.751 0.564

chunks (system chunks) is comparable to the results obtained on the gold chunks,

showing the general usability of our tool.

Our final goal is to develop a reliable interpretable layer for automated

student assessment in the intelligent tutoring systems. Such a system would be

useful for improving the tutee learning experience of our DeepTutor system, an ITS

for tutoring students on Conceptual Physics. For example, while assessing one of the

students answers to a question asked by DeepTutor in Table 5.1, the interpretable

system would align the chunks and labeled them with semantic relations as:

1 ⇔ 1 // EQUI // 5.0 // Acceleration ⇔ Acceleration

2 ⇔ 2 // EQUI // 5.0 // gives ⇔ provides

3 ⇔ 3 4 5 // SPE2 // 3.0 // magnitude ⇔ magnitude and direction

The above alignment result can be used to infer that the student answer is

incomplete and missing the concept direction. As such, the DeepTutor may

91

subsequently provide feedback to the student such as “Right. In addition to

magnitude, what other information is provided by acceleration?”

However, there is still further room for improvements in our SemAligner tool,

even though the tool is a top-performing system against iSTS 2015 dataset. For

example, the tool has outstanding accuracy in aligning chunks (above 0.88 F-score

in gold chunks and above 0.82 F-score for system chunks); but the system F-score

for semantic relations labeling at best is 0.66 F-score for Headlines gold chunks.

Another thing to consider is that the tool is assessed on Headlines and

Images datasets only. It does not use any student answers data for developing the

iSTS model. Agirre, Gonzalez-Agirre, et al. (2016) recently released 344 annotated

examples from the student answers dataset in iSTS 2016 task. We plan to utilize

this data in our future versions of SemAligner tool.

5.3 Conclusion

We introduced a competitive and freely available chunk alignment tool, i.e.,

SemAligner that can identify semantic relations between the aligned chunks as well

as compute semantic similarity scores between the chunks. It is freely available for

research purposes at the SEMILAR - The Semantic Similarity Toolkits website4.

The tool can be very useful for building an explanatory (or interpretable) layer for

many NLP applications.

The SemAligner is customizable and extendible through a number of options

that allow the user to configure the behavior of the tool. This Java-based tool can

be used as a standalone application or as a library.

As discussed, the SemAligner provides better or comparable performance for

both gold and system generated chunked text-pairs. However, there is room for

improvement in the tool. Improving the ability of the system to assign

better/classify semantic relation types is our next work for the future. We also plan

4http://www.semanticsimilarity.org/

92

to utilize the recently released annotated examples for Student answers data. The

improved tool will relax the current 1:1 alignment restriction, remove ALIC relation

and allow multiple alignments between the chunks.

93

Chapter 6

A Concept Map based Assessment of Free Student Answers in Tutorial

Dialogues

In Chapter4, we discussed how typical Semantic Textual Similarity (STS)

approaches don’t have interpretable functionality to explain the degree of similarity

between two texts. We also presented an interpretable approach which aligns the

chunks in a given pair of texts and labels them with semantic relation types and

scores as proposed in the pilot interpretable Semantic Textual Similarity (iSTS)

task (Agirre et al., 2015). The set of semantic relation types used were: EQUI

(chunks are semantically equivalent), OPPO (chunks are opposite in meaning),

SPE1/SPE2 (the chunk in the first/second sentence is more specific than the chunk

in the second/first sentence), SIMI (chunks are similar but not EQUI, OPPO or

SPE), REL (chunks are related but not EQUI, OPPO, SPE or SIMI), ALIC (a

chunk is not aligned to any other chunk due to 1:1 alignment restriction) and

NOALIC (the chunk is unrelated and has no alignment). However, the iSTS

approach is just an added layer on the top of a standard STS method for

interpreting the similarity score.

Moreover, neither an iSTS nor a standard STS system typically considers

contextual information when computing a similarity score. In dialogue-based ITSs,

it has been shown, based on an analysis of conversational tutorial logs, that

contextual information is important to assess student responses (Niraula et al.,

2014). They reported that 68% of pronouns in student responses were referring to

entities in the previous dialogue turn or the problem description. For instance, the

student answer to the tutor question in the Table 6.1 might be elliptical:

”magnitude and direction” or containing a pronoun referring to entities mentioned

earlier in the previous dialogue turn: ”it gives magnitude and direction.” A typical

94

Table 6.1: A sample question and answer between student and DeepTutor with the
ideal expected answer.

Description

Question: Because it is a vector, acceleration provides what
two types of information?
Student Answer: Acceleration gives magnitude
Expected Answer: Acceleration provides magnitude and direction.

Fig. 6.1: A concept map based student answer assessment approach.

STS system might fail to deem such student answers as correct. Using an iSTS

system, we might determine that both ”acceleration” and ”provides” in the ideal

answer (expectation) are missing from/unaligned with the first student answer while

”acceleration” is missing from/unaligned with the second student response.

However, both these answers are semantically equivalent if taking context into

account, i.e., the tutor question.

To address these issues, we propose a novel concept map-based approach to

both better assess and interpret student free-response answers as shown in

Figure 6.1. A concept map is a graphical representation of knowledge where

concepts are labeled nodes and relationships between the concepts are the directed

labeled edges of the graph. A concept map can be associative with no hierarchy, i.e.,

the concept map is a semantic network of concepts and their interrelations (Deese,

1966). Since the concept map derived from student free responses in the domain of

Newtonian Physics, where our experimental data comes from, is typically

95

Fig. 6.2: A snippet of an XML representation of an instructional task in DeepTutor.

associative, we consider associative concept maps in our work. However, it should

be noted that a concept map can also be hierarchical (Novak & Musonda, 1991)

where the most general concepts are at the top.

In our approach to assessing students’ natural language responses, we build

an ideal concept map to represent an instructional task, say a Physics problem,

based on the set of ideal steps (expectations) in the solution provided by domain

experts. Figure 6.2 illustrates a snippet of an XML representation of an

instructional task related with Newton’s first law of motion in DeepTutor. The

ProblemDescription describes the current problem. The ExpectedAnswers lists the

expert-provided answers (ideal answers) for the task. It should be noted that the

ExpectedAnswer elements having identical Id values are paraphrases of each other.

96

Fig. 6.3: An ideal concept map representation for the task shown in Figure 6.2.

The MisconceptionList lists possible misconceptions a student might have in

relation to the task.

We build an ideal concept map for the problem by extracting the concepts

and relationships between them from the text in the ProblemDescription,

ExpectedAnswers, and MisconceptionList elements. The resulting concept map is

shown in Figure 6.3. Similarly, we create a concept map for a student based on their

responses to the task related questions. The concept map thus created can be

considered a representation of the student’s mental model of his understanding of

the current task and target domain. The student answers may be either right or

wrong which implies that parts of their concept map or graph may be correct and

97

Fig. 6.4: A comparison of an ideal concept map (a) and computer-generated concept
map (b) for the ideal answer: “When velocity is constant, the acceleration is zero;

therefore the sum of the forces will equal zero”.

parts of it may be incorrect. For example, in Table 6.1, the concept map for the

expectation would be a part of an ideal concept map for the task whereas the

concept map derived for the corresponding student answer would be part of a

student concept map (knowledge graph) for the task. By comparing the two, we can

determine which tuples (a triplet consisting of two concepts and their relationship)

are matched or unmatched.

Using concepts maps for assessment leads to an important shift in the

granularity of assessment. That is, breaking down an expectation into one or more

tuples (a triplet consisting of two concepts and their relationship) essentially means

that the unit of analysis shifts from a full sentence, i.e., an expectation, to tuples.

Ideally, a concept map with a single tuple, (acceleration, gives, magnitude), is

extracted from the student response in Table 6.1. For assessment purpose, we

consider a tuple to be either neutral or learning depending upon its pedagogical

value. For example, the Expectation in Table 6.1 is represented by two learning

tuples (acceleration, provides, magnitude) and (acceleration, provides, direction).

We may also have a composite tuple (acceleration, provides, magnitude and

direction) that covers both learning tuples. Similarly, the equivalent expectation:

”Because it is a vector, acceleration provides magnitude and direction” can be

98

represented by the above two learning tuples and one neutral tuple (acceleration, is,

a vector). The notion of neutral and learning tuple is useful when assessing correct

student responses that have extra information/concepts relative to the expert

provided ideal answers. In fact, a good portion of student responses may contain

such extra information. Banjade, Maharjan, Niraula, Gautam, et al. (2016) found

that 11% of student answers contain such additional, learning-neutral information.

The advantages of using finer grain learning components in the form of

tuples are many. First, we can track students’ knowledge at a finer grain level

leading to more subtle differences among different knowledge states. Unlike in

binary assessment, the concept map approach allows tracking how much of a given

expectation is covered by student response. For example, if we assess the student

answer against the ideal answer in Table 6.1, we can conclude that the student has

mastered 50% of the expectation. Second, we can give proper credit to student

answers based on the percentage of the learning tuples covered. Lastly, by

comparing the two maps (student’s vs. expert’s), we can determine missing or

incorrect tuples from student answers. This finer grain assessment enables adaptive

interactive learning systems to provide better feedback and to better plan the next

move, e.g., providing hints about the missing learning components.

It should be noted that we first automatically extract student concept maps

from their responses and then we compare them to expert-provided concept maps

derived from expert-provided ideal student answer. Therefore, in this paper, we first

focus on automating and developing accurate solutions for the automated extraction

of concept maps from student-generated answers. Then, we propose a novel concept

map-based approach which accounts for context and jointly functions as an STS

and iSTS system.

99

6.1 Related Work

Concept maps were first proposed by Novak and Musonda (1991) to represent

knowledge of science for identifying learning specific changes in children. The

concept maps were developed based on the learning psychology of Ausubel (1963)

whose fundamental idea was that people learn new concepts and propositions by

asking questions and getting clarification of relationships between old concepts and

new concepts and between old propositions and new propositions.

Concept maps have been used for many purposes. They have been used for

checking students’ knowledge on a topic e.g. CMap Tools (Cañas et al., 2004) and

for collaborative learning of a topic (Martinez Maldonado, Kay, Yacef, &

Schwendimann, 2012). Also, they have been used as instructional tools for

meaningful learning, i.e., linking new information with already known

information (All, Huycke, & Fisher, 2003; Horton et al., 1993; Wallace & Mintzes,

1990; Novak, Bob Gowin, & Johansen, 1983; Schmid & Telaro, 1990). Some ITSs

use them as instructional tools to scaffold the learning process (Olney et al., 2012).

Concept maps have also been used for assessment. For example, students

might be asked to fill in a skeleton map (Anderson & Huang, 1989), to construct a

concept map (Roth & Roychoudhury, 1993; Wu, Hwang, Milrad, Ke, & Huang,

2012), or to write an essay (Lomask, Baron, Greig, & Harrison, 1992). Recently, Wu

et al. (2012) developed a method that evaluates student concept maps on-the-fly

and provides real-time feedback by comparing them with the expert’s concept map.

Also, the COMPASS (Gouli, Gogoulou, Papanikolaou, & Grigoriadou, 2004)

system provides individualized feedback based on the diagnostic assessment of the

learner’s concept map against an ideal concept map.

From a task perspective, our assessment approach is similar to the concept

map-based assessment approach of Lomask et al. (1992), with some differences. In

their work, students wrote essays on two central topics in biology and then trained

100

teachers derived concept maps from the essays. No hierarchical structure was

assumed. Similarly, in our approach, we do not assume any hierarchy. However, we

automatically extract concepts maps from student-generated responses during

problem-solving tutorial interactions with a dialogue-based intelligent tutoring

system. In our case, the target domain is conceptual Newtonian Physics. Finally, we

assess their correctness by comparing them against the corresponding ideal concept

maps.

Nielsen and colleagues (Nielsen et al., 2009) decomposed the reference answer

into fine-grained facets derived from the dependency parse and assessed the student

response in terms of the number of facets and semantic relationships covered by the

student response. However, they didn’t explicitly mark which facets correspond to

which parts of the student response. Our approach is different in that first we use

tuples with open relations and secondly, we match corresponding tuples in both

ideal and student answers. On the other hand, there are many similarities between

our representation and C-rater approach for assessing short-answers (Leacock &

Chodorow, 2003). In the C-rater approach, the ideal and student answers were

represented as a set of normalized tuples, also known as the canonical

representation. Each ideal answer was manually represented by the SMEs with

essential points in canonical form (learning tuples) where they also mark the key

phrases/words in these tuples. Our approach varies from C-rater in that the SMEs

create the ideal concept map from the whole task or problem rather than ideal

answer only. Therefore, the student answer can be assessed by making use of the

richer context, i.e, the tuples representing the problem description, task

misconceptions, and tutor question. Moreover, the SMEs describe the ideal answers

with not only essential or learning tuples but also neutral and somewhat

pedagogically related tuples.

We use information extraction techniques to automatically extract concept

101

maps. TextRunner (Yates et al., 2007) and ReVerb (Fader, Soderland, & Etzioni,

2011) uses syntactic POS tag patterns for extracting entity-relation structures, i.e.,

tuples in the form of (conceptA, relation, conceptB). The CREATE

system (Bhattarai & Rus, 2013) generates open-relation tuples by combining the

ReVerb system approach and iterative pattern and tuple-based extraction.

Similarly, the Ollie system (Mausam, Schmitz, Soderland, Bart, & Etzioni, 2012)

exploits learned dependency patterns to extract the tuples. The Stanford OpenIE

system (Angeli, Johnson Premkumar, & Manning, 2015) first generates shorter

entailed clauses from given texts using a clause splitter model and a natural logic

inference system and then applies a small set of patterns to extract the tuples.

These systems are geared towards building knowledge bases through open tuple

extraction with a focus on extracting factual tuples from professionally written

texts. As such, these systems do not produce desirable tuples for student assessment

task. To address this drawback, we propose a novel open tuple extraction method,

DT-OpenIE, which is more suited for the assessment task

We also incorporate context when using concept maps for assessment. There

have been recent attempts that consider contextual information for assessing two

short text pairs. Bailey and Meurers (2008) resolved pronouns implicitly by

distinguishing between new and given concepts based on the context, i.e., a previous

question. On the other hand, Banjade, Maharjan, Niraula, Gautam, et al. (2016)

accounted for context by giving less weights to words already mentioned in the

context. Maharjan, Banjade, and Rus (2017) handled context by using

context-based count features and word-weighted similarity scores. Recently, an

LSTM model has been proposed for assessing student answers in context (Maharjan

et al., 2018). We combine the approaches of both Bailey and Meurers (2008) and

(Banjade, Maharjan, Niraula, Gautam, et al., 2016) for implicitly resolving

pronouns and ellipsis at the tuple level.

102

6.2 Concept Map based Approach

Using concept maps for knowledge representation is grounded on a key assumption

in most cognitive theories: “the knowledge within a content domain is well structured

and organized around central concepts”. Glaser and Bassok (1989) defined

competence in a domain as “well-structured knowledge”. Therefore, as students

acquire expertise in a domain, their knowledge becomes increasingly interconnected

and resembles the subject-matter expert’s representation of the domain (Glaser &

Bassok, 1989; Royer, Cisero, & Carlo, 1993). Our approach is based on those

theories and (Figure 6.1) consists of three steps which we describe next.

6.2.1 Creation of Ideal Concept Maps

Currently, in dialogue-based ITSs, the subject-matter experts (SMEs) create ideal

answers in the form of a set of logical steps or expectations for each instructional

tasks. Unlike student concept maps, we don’t generate ideal concept maps

automatically because we want ideal concept maps to be accurate representations of

instructional tasks completely covering all the concepts mentioned therein.

However, the automated process might generate a concept map with some incorrect

tuples and, missing some important concepts due to several issues such as POS

tagging error, co-references etc. On the other hand, generating ideal concepts

manually requires a large effort. So, we take a hybrid approach where we first

generate the skeletal ideal maps using a syntactic pattern-based method (Fader et

al., 2011) that maps ideal solutions from sets of expectations to concepts maps and

then ask the SMEs to curate those automatically generated concept maps. An

annotation guidelines manual was created for this purpose which experts used to

correct the concept maps. We describe the step in detail in Section 6.3.2.

6.2.2 Automated Extraction of Student Concept Maps

This step extracts concept maps from student-generated answers automatically.

There are several existing open information extraction (IE) tools that could be used

103

including the state-of-the-art Ollie (Mausam et al., 2012) and Stanford

OpenIE (Angeli et al., 2015) systems. However, these systems focus on solving the

Knowledge Base Problem (KBP) and as such tuples produced by these systems are

not suited for the task of student answer assessment.

The Stanford OpenIE tool ignores shorter clauses not entailed from the

original text. For example, given the text: “If the acceleration of a system is zero,

the net force is zero.”, no tuples are extracted. Another issue with the tool is that

its natural logic inference system tends to over-produce tuples from the text. For

example, for the text “the frictional force cancels normal force”, the desirable tuple

output is (frictional force, cancels, normal force); however, the tool also generates

(frictional force, cancels, force), (force,cancels,normal force) and

(force,cancels,force) which are all misleading for assessment. On the other hand, the

Ollie system might retrieve false tuples sometimes. For example, the system

retrieves the incorrect tuple (the desk, increase its speed as, the net force) and

misses (net force, is anymore, not zero) when processing the following text: “The

desk increases its speed as the net force is not zero anymore”. Also, it fails to

extract any tuple from the simpler text “Mover’s push equals friction.”

Because of these concerns, we developed a new extraction method which

exploits the strengths of these two systems. Figure 6.4 b) shows a concept map

generated by our extraction system. We assessed the quality of the tuples extracted

by our method using three performance metrics, accuracy, coverage, and pedagogy

following the approach by Olney, Cade, and Williams (2011). We found that the

concept maps generated by our method were significantly better than those

generated by the Stanford OpenIE or Ollie system for all of the three metrics (see

Section 6.3.3 for detail). We describe our tuple extraction approach next.

Clause Segmentation Model: A clause is a text segment containing a

subject and a predicate. It constitutes a meaningful unit, which ideally is a

104

System P R F

CM03 87.99 81.01 84.36
CMPR02 90.18 78.11 83.71
CM01 84.82 78.85 81.73
MP01 (Molina & Pla, 2001) 70.85 70.51 70.68
DT-CS 81.21 74.25 77.57

Table 6.2: Results of different systems on CoNLL-2001 shared task test data.
CM03 (Carreras & Marquez, 2004), CMPR02 (Carreras et al., 2002),

CM01 (Carreras & Màrquez, 2001). P = Precision, R = recall, F= F-measure.

1. more force is being applied
2. since more force is being applied
3. the speed of the desk will increase
4. the speed of the desk will increase since more
force is being applied

Table 6.3: An optimal clause split generated from text: the speed of the desk will
increase since more force is being applied.

proposition. Similar to Stanford OpenIE, we extract shorter clauses from a given

text and consider them candidates for tuple extraction. However, we do not use the

entailment restriction or the natural logic inference system while extracting shorter

clauses because of the issues discussed above.

We developed our model using the CoNLL-2001 shared task data for clause

identification (Sang & Déjean, 2001). We followed the approach of Carreras and

colleagues (Carreras & Màrquez, 2001) to build our clause segmentation model.

First, we developed models to detect clause start and end boundaries and then a

clause identification model that classifies whether a given clause candidate is a

clause or not based on a confidence score. We extract clause candidates C(i,j) such

that j > i, wordi ∈ S,wordj ∈ E from the text, where the wordi ∈ S indicates the

word at position i is tagged with a clause start label S while the wordj ∈ E means

that the word at j is tagged with a clause end label E.

We evaluated the clause candidates based on confidence scores to produce a

clause split from the text. A clause split is a list of consistent clauses in which

105

Extraction Input Pattern

(velocity, increase,NONE)
NP + VP
e.g. velocity increases.

(IMPERSONAL,impress,you)
To-clause e.g. He has
ability to impress you.

(IMPERSONAL,is,no force)
NP1 + VP + NP2,
NP1 ∈ EX tag e.g.
There is no force.

(1st Law,says,COMPLEX)

Attribution relation e.g.
1st Law says that the
object moves with a
constant velocity

(Push,equals,friction)
NP1 + VP + NP2,
NP1 /∈ EX tag e.g.
Push equals friction

Table 6.4: A list of DT patterns for tuple extraction.

clauses are either nested or not overlapping. We produced a clause split from texts

using both a greedy approach (Carreras & Màrquez, 2001) and an optimal

approach (Carreras et al., 2002). In the greedy approach, given an input list of

clause candidates, the clause candidate with the highest confidence score is selected

first and added to a clause split output and, all other clause candidates that are

inconsistent with it are removed. This step is then repeated until the input list is

empty. In the optimal approach, we applied a dynamic programming approach to

select the optimal clause split with the highest sum aggregate of confidence scores

out of all possible clause split outputs.

We used a liblinear classifier for learning with a large number of features. We

used all but Sentence Pattern features from Carreras’ (Carreras & Màrquez, 2001)

as they were found to be not discriminating enough for our liblinear model. Besides

these features, we used some additional context features in our models. We also

used some post-processing rules to correct the label predicted by clause start and

end classifiers.

Table 6.2 provides the performance of our clause segmentation model

106

(DT-CS) using the optimal approach on the CoNLL-2001 shared task test data.

Our system results are comparable to the top performing systems (CM01, CMPR02,

and CM03). More importantly, our system extracts clauses which are reasonably

suited for the student answer assessment task. Table 6.3 shows the clause split

output for an example text using the optimal approach.

DT Patterns: We pass the output of the clause segmentation model

through the Ollie system to generate candidate tuples. However, there are certain

sentence structures which are not captured by the Ollie system that could have

pedagogical value. Therefore, we applied a set of patterns to extract tuples from

such sentence forms as listed in the Table 6.4. We used the special keywords

IMPERSONAL and NONE to indicate the absence of first and second arguments,

respectively. We used the COMPLEX keyword to denote entities which are clauses.

For example, we used NP + VP pattern to extract the tuple (velocity, increase,

NONE) from the clause velocity increases. We used the special keyword NONE to

indicate the absence of the second argument. In the case where no concept map is

extracted from the text T, we extract the tuple as (T, NONE, NONE), where we

consider the whole text as a complex first argument.

6.2.3 Assessment System

The Assessment System consists of two steps, namely, i) tuple filtering and ii) tuple

assessment.

Tuple Filtering: Bailey and Meurers (2008) implicitly resolved co-references

by ignoring words that are already known, i.e., words already mentioned in the

context. However, if a student answer repeats known words/concepts, it doesn’t

necessarily mean that they are repeating the same information because they may

use the same concepts for making different propositions. However, if a tuple in a

student concept map is repeated, we can assert that the student is simply repeating

the given information with high confidence because a tuple is a higher-level

107

construct that itself represents a proposition showing the relationship between two

or more concepts. We exploit this inherent characteristic of the tuple to filter out

redundant or known tuples such that the resulting student concept map contains

only tuples which are most likely to carry new information or propositions.

In our approach, we consider the tuples coming from the problem description

(global context) and tutor question (local context) as externally known information.

We consider neutral tuples in the ideal concept map to be redundant as they don’t

cover pedagogical aspects of the target ideal answer. Therefore, if a tuple in a

student concept map matches with a tuple from any of these sources, we filter out

the matching tuple. For filtering purpose, we match tuples using the M1 and M2

tuple matching methods described below without incorporating context.

Contradictory Tuple: We consider two tuples as contradictory if they are

opposite or contrasting to each other. For example, we consider (tension, is equal

to, gravity) and (tension, is greater than, gravity) as contradictory tuples. However,

we don’t consider (Newton’s first law, is, relevant) and (Newton’s second law, is,

relevant) as contradictory. They are related, but in the context of answer

evaluation, we consider such tuples as disjoint tuples. In our work, if two words are

in an antonymy relation in WordNet (Miller, 1995) or they match any of the sixteen

rules for antonym pairs (Mohammad, Dorr, & Hirst, 2008), we consider them

contradictory. We also created a domain specific antonym lookup table to address

certain contrasting concepts. For example, we consider ”equal”, ”less” and

”greater” to be contradictory to each other. Similarly, we created a domain disjoint

lookup list where we consider concepts such as ”first” and ”second” to be disjoint.

We also filter out contradictory and disjoint tuples from the student concept maps.

Tuple Assessment: We assess the filtered student concept maps against

corresponding ideal concept maps. We only assess if the learning tuples

(corresponding to learning components) in the ideal concept map are

108

covered/matched by tuples in the student concept map. We describe our tuple

matching approach below.

Given a pair of tuples, (T1, T2), where T1 = (e1, r1, e2), T2 = (e1′ , r1′ , e2′), T1

is a tuple from ideal concept map and T2 is a tuple from student concept map, we

consider T1 is semantically equivalent to T2 using following three methods.

1. Matching by element-by-element (M1): If e1 matches e1′ , r1 matches r1′ and e2

matches e2′ . We consider e1 matches e1′ if the set of words formed from e1 is

equal to the set of words formed from e1′ . Similarly, we define the matches

function for element pairs (r1, r1′) and (e2, e2′).

2. Matching by bag-of-words (M2): If the set of words formed from T1 is equal to

the set of words formed from T2.

3. Matching by best similarity score (M3): If similarity score sim(T1, T2) > 0.55,

where T2 is the tuple in the student concept map that has the maximum

similarity score with T1. 0.55 is empirically set threshold.

Incorporating Context: The filtering step discards tuples in the student

answers which are deprived of new information. However, the remaining tuples with

new information might also need context to match them properly. For example, we

need context to accurately assess elliptical student response: ”magnitude and

direction” or student response containing pronoun: ”it gives magnitude and

direction” with the expectation in Table 6.1. In such cases, we attempt to match

the tuples by incorporating context using the following two strategies. For the M1

and M2 methods, we account for context by considering only new concepts in

student answers that were not mentioned in the previous context (Bailey &

Meurers, 2008). That is, if the student response repeats the concepts mentioned in

the tutor question, we ignore those concepts. We do the same for repeated concepts

in the ideal answer. Specifically, we use the set of words Q from the tutor question

109

as context for matching element pairs (E1, E2), where

(E1, E2) ∈ {(e1, e1′), (r1, r1′), (e2, e2′), (T1, T2)}. We consider E1 to be semantically

equivalent to E2 under the following two cases.

1. if the set of words formed from E1 is a proper subset of the set of words formed

from E2 and the set of unmatched words from E2 − E1 is a subset of set Q.

2. if the set of words formed from E2 is a proper subset of the set of words formed

from E1 and the set of unmatched words from E1 − E2 is a subset of set Q.

On the other hand, in the case of the M3 matching method, we follow a word

weighting approach based on context where we don’t completely discard the words

in the student tuple or ideal answer tuple that are also present in context. Instead,

we give less weight to such words (Banjade, Maharjan, Niraula, Gautam, et al.,

2016). Specifically, we give full weight of 1 to new concepts/words and 0.4

(empirically set) to repeated concepts. Subsequently, we compute an

alignment-based similarity score between the two tuples as:

sim(T1, T2) = 2 ∗
∑

(r,a)∈OAwrwasim(r, a)∑
r∈T1 wr +

∑
a∈T2 wa

(6.1)

, where OA is optimal alignment of words between T1 and T2 such that a ∈ T2 and

r ∈ T1, using Hungarian algorithm as described in Rus and Lintean (2012). The

0 ≤ wr ≤ 1 and 0 ≤ wa ≤ 1 refer to weight of the words in T1 and T2 respectively.

The strictness of matching relaxes as we go from the M1 to the M3 method.

Therefore, we preferentially match learning tuples in the ideal concept map against

the student concept in the following order: M1, M2 and M3.

6.3 Experiment and Results

First, we evaluated the performance of our novel automated tuple extraction

system, DT-OpenIE, for automatically extracting concept maps from student

110

Fig. 6.5: Annotating data for binary classification. TupleIds 2 6 and 2 7 consist of
expectation id 2 concatenated with synsetIds 6 and 7 respectively.

Data # sessions # instances
Training 21 1296
Test 20 1296

Table 6.5: Summary of Data

responses. Then, we evaluated our concept map-based approach against both binary

and multi-level classification tasks. Our evaluation data is described next.

6.3.1 Data

To evaluate the concept map approach, we used student answer data from logged

interactions of 41 high school students with the DeepTutor ITS (Rus, Niraula, &

Banjade, 2015). During the summer of 2014, high-school students participated in an

experiment on which they were given 9 different Physics problems to solve. The

experiment produced 370 tutorial interactions in total (one student performed a

task twice).

6.3.2 Ideal Concept Maps

Two subject-matter-experts (SMEs) manually created ideal concept maps for all 9

tasks in the data. They were provided with a reference guide for creating the ideal

concept map. For each instructional task, annotators were provided with an XML

file containing a skeletal concept map that needed to be checked. The map was

automatically generated by using syntactic patterns (Fader et al., 2011). The

annotators updated the concept maps by deleting invalid tuples, modifying tuples

and by adding missing tuples.

111

completely(1) concept map is completely correct.
mostly(2) at least half of concept map is correct.
slightly(3) at least one extracted tuple is correct.
inaccurate(4) none of the extractions are correct.

Table 6.6: An ordinal scale with four values for rating an extracted concept map of
an ideal student answer along the metric accuracy.

Measure Stanford Ollie DT-OpenIE

Accuracy 2.71 (1.24) 2.19 (1.35) 1.89 (1.10)
Coverage 2.63 (1.28) 2.38 (1.27) 1.69 (1.12)
Pedagogy 2.52 (1.40) 2.41 (1.44) 1.70 (1.24)

Table 6.7: Mean ratings for concept maps of ideal student answers generated by
different open information extraction methods. The standard deviations are

provided in bracket alongside means.

While creating concept maps, the annotators also annotated the tuples with

a rich set of attributes. For example, we set symmetric attribute to T if the first

and second arguments of a tuple are interchangeable without changing its meaning,

e.g., (only force, is, gravity) is a symmetric tuple. Similarly, we assigned tuples

covering identical concepts with the same id (synsetId). As described earlier, we

also differentiated between learning and neutral tuples depending on their

pedagogical importance. We assign a weight 0 to neutral tuples. In case of learning

tuples, if the expected answer has n unique learning tuples, we assign each of these

tuples weight of 1/n (we consider only tuples with different ids as unique). These

annotations are useful to handle variations in student answers as described in

Section 6.2.3. Figure 6.4 a) shows a final human generated ideal concept map for

one expectation. The annotators also set the watch attribute in their comments to

flag their tuples for review later. After creating three concept maps, the SMEs met

and compared their maps to resolve any discrepancies. A refined annotation guide

was created which was then followed for the whole data annotation.

112

6.3.3 Automated Tuple Quality Evaluation

In order to assess the quality of the extracted tuples by different automated

methods, we automatically extracted concept maps for 133 ideal student answers

from the nine tasks using Stanford OpenIE, Ollie and DT-OpenIE extraction

method. Then, we asked the two annotators (SMEs) to rate the generated concept

maps against the ideal/gold standard concept maps. Figure 6.4 shows a comparison

of an automatically generated concept map for an ideal student answer against its

gold standard concept map.

The annotators rated the automatically generated concept maps along three

dimensions, i) accuracy, ii) coverage and iii) pedagogy following the approach

adopted by Olney and colleagues (Olney et al., 2011). In other words, the

annotators rated the degree of correctness, completeness, and pedagogical value of

the extracted tuples in the concept maps while comparing against the gold standard

concept maps. We provided the annotators with an annotation guideline for the

annotation. The annotators met after annotating two tasks for comparing each

other annotations to resolve discrepancies if any. The guidelines were updated

accordingly and used for annotating the whole data.

We used an ordinal scale of 4 values for the ratings. The Table 6.6 describes

our ordinal scale for the accuracy measure.We used Cronbach’s α to measure

inter-rater reliability because of the ordinal ratings. The Cronbach’s α were 0.991,

0.993 and 0.997 for accuracy, coverage, and pedagogy, respectively, which indicated

a highly significant inter-annotator agreement. Another inter-annotator agreement

measure, Pearson correlation, also yielded higher coefficient values of above 0.9 at

significance level < 0.001.

Results and Discussions: Table 6.7 shows the mean and standard

deviations of the ratings for each of the quality measures. The mean ratings for the

concept maps generated by Stanford OpenIE were 2.71, 2.63 and 2.52 for accuracy,

113

coverage, and pedagogy, respectively. The Ollie system-generated concept maps

were slightly better with relatively lower mean ratings of 2.19, 2.38 and 2.41 for

accuracy, coverage, and pedagogy, respectively. Our DT-OpenIE concept maps were

the best in terms of their mean quality ratings with the scores of 1.89, 1.69 and

1.70, respectively. We performed a paired t-test significance analysis between the

different extraction methods for each of the quality measures. We found that our

DT-OpenIE ratings were significantly better. Compared against the Stanford

OpenIE, the significances were all p < 0.001 for accuracy, coverage, and pedagogy,

respectively. Similarly, the significances were p = 0.004, p < 0.001, and p < 0.001

when comparing mean accuracy, coverage, and pedagogical values of DT-OpenIE

extractions against Ollies’.

We also found that accuracy, coverage, and pedagogy are significantly

correlated with each other (0.85 for accuracy vs coverage, 0.8 for accuracy vs

pedagogy, and 0.92 for coverage vs pedagogy).

The results are promising - the concept maps generated by our method, on

an average, fall between complete and mostly accurate for all of the three quality

scales. One case where the system fails to generate tuples is a list-type student

response such as: ”Force of gravity and normal force”. For concept map based

assessment, we extracted tuples from such text as (force of gravity and normal force,

NONE, NONE).

6.3.4 Binary Classification Task

First, we experimented with a binary classification task in which we assess whether

a particular student answer is correct or incorrect. The 41 student session data were

randomly divided into training and test sets as summarized in Table 6.5.

Figure 6.5 shows an annotation example for the binary classification task.

The annotators judged which of the targeted learning tuples are covered/uncovered

by the student answer. If a tuple is covered, its tupleId is recorded in the T group.

114

System F-score Accuracy
Training Data

WA-Sim 0.739 73.8(0.43)
WA-Sim-C 0.756 77.2(0.45)
Concept Map 0.783 78(0.53)

Test Data
WA-Sim 0.742 74.6(0.39)
WA-Sim-C 0.752 77.2(0.40)
Concept Map 0.802 79.9(0.55)

Table 6.8: Results of different methods for binary classification. WA-Sim and
WA-Sim-C are optimal word alignment-based STS system without context (Rus &

Lintean, 2012) and with context (Banjade, Maharjan, Niraula, Gautam, et al., 2016)
respectively. The value inside the bracket alongside the accuracy is Cohen’s Kappa.

Data # instances F-score Accuracy
Training 2408 0.769 76.8(0.53)
Test 2360 0.778 77.7(0.54)

Table 6.9: Performance of concept map based approach at the tuple level.

On the other hand, if it is uncovered, its tupleId is recorded in the F group.

Similarly, judges annotated full expectations as covered or uncovered by recording

its expectationId either under T or F group, respectively. An expectation is covered

if its all learning tuples are covered. In Figure 6.5, the student answer covers both

learning tuples 2 6:(velocity,be,constant) and 2 7:(sum of force,equal,zero) and

therefore the student answer covers the whole expectation shown in Figure 6.4.

We ran our assessment method (Section 6.2.3) against both training and test

data. For comparison, we also derived results by applying the word alignment-based

sentence similarity method with context (Banjade, Maharjan, Niraula, Gautam, et

al., 2016) and without context (Rus & Lintean, 2012). Specifically, in the case of the

context agnostic method, we first computed the similarity score by giving full

weight of 1 to each word in the student and reference answer using Equation 6.1.

For the context-based approach, we applied the same equation such that the words

115

System F-score Accuracy
Logistic Model - 49.3(0.22)
GMM Model 0.58 58.2(0.40)
LSTM Model 0.62 62.2(0.45)
Concept Map 0.59 59.3(0.41)

Table 6.10: Performance on Multi-level classification task: Comparison of concept
map approach against Logistic Model (Banjade, Maharjan, Niraula, Gautam, et al.,
2016), GMM Model (Maharjan, Banjade, & Rus, 2017) and LSTM Model (Maharjan
et al., 2018). The value inside the bracket alongside the accuracy is Cohen’s Kappa.

in the student answer or reference answer that are also present in the context, i.e.,

problem description and tutor question, are given lower weights.

Results and Discussions: Table 6.8 shows the performance of our concept

map approach for the binary classification task. The Table 6.9 shows that our

system does a better job at identifying whether a learning tuple is covered or not by

the student concept map.

The above result implies that we can detect most of the missing learning

tuples from the student answer. For example, we can detect that the missing tuple

is (acceleration, provides, direction) from the student answer provided in Table 6.1.

Therefore, our assessment method, if incorporated in adaptive learning systems, can

enable such systems to provide more targeted relevant feedback to students and also

provide useful information for planning system’s next move targeting the missing

learning components. This targeted, adaptive feedback based on individual student

performance could significantly improve the effectiveness of adaptive learning

systems. Moreover, the results suggest that our system might work well for

multi-level classification tasks as well.

6.3.5 Multi-level Classification Task

In this task, we classify the student answers into one of four correctness classes:

correct, correct-but-incomplete, contradictory or incorrect. We used the DT-Grade

data annotated with these four correctness classes for evaluating our approach. The

116

DT-Grade (Banjade, Maharjan, Niraula, Gautam, et al., 2016) dataset consists of

900 student responses sampled from logged data recorded during the same

experiment with the DeepTutor system as described above.

We adapted our approach for multi-level classification task by using a simple

classification rule as follows. If the student concept map covers all learning tuples,

we classify the student answer as correct. If at least one of the learning tuples is

covered, then student answer is classified as correct-but-incomplete. If no learning

tuples are covered, and a contradictory tuple is present in the student concept map,

we classify the instance as contradictory. If none of the above conditions satisfy, we

classify the student answer as incorrect.

Results and Discussions: Table 6.10 shows the performance of our

approach for the multi-level classification task. We note that our approach

performed slightly lower than the state-of-the-art LSTM model (Maharjan et al.,

2018) but performs better than other models such as logistic model (Banjade,

Maharjan, Niraula, Gautam, et al., 2016) and the GMM based method (Maharjan,

Banjade, & Rus, 2017).

It is evident that if we further improve the quality of extracted student

concept maps, our system would perform better at tuple level which in turn would

lead to better performance at both binary and multi-level classification tasks. We

note that improper tuples might be extracted in some situations due to

POS-tagging errors. For example, increases was tagged as a noun in the text “The

net forces increases and can no longer be zero” which resulted in improper tuple

extraction (the net force increase and, can no longer be, zero). Another issue was

that the desirable student concept map was not extracted from complex elliptical

student response such as “The force of the man pushing the box and the force of

friction acting on the box” to the tutor question: “What forces balance each

other?”. Though we handle co-reference implicitly at present incorporating explicit

117

co-reference resolution during tuple extraction step might further improve the

performance.

6.4 Conclusion

We presented a novel automated concept map extraction method and system, called

DT-OpenIE. The experiments indicate that the generated tuples are significantly

better in quality than those extracted by the state-of-the-art open information

extraction tools such as Stanford OpenIE and Ollie systems.

We also presented in this paper a novel concept map-based approach to

assess student answers in tutorial dialogues. The approach takes context into

account and implicitly handles linguistic phenomena such as ellipsis and pronouns

for assessing student concept map against the ideal concept map. We combined the

approaches of both Bailey and Meurers (2008) and Banjade, Maharjan, Niraula,

Gautam, et al. (2016) for implicitly resolving pronouns and ellipsis at the tuple level.

We use tuples as the unit of learning to track students’ knowledge at a finer

grain level which enables us to better assess student answers rather than just

classifying them as correct or incorrect. Moreover, our approach can easily detect

missing learning components in student answers which can be used for dynamic and

automatic generation of personalized of next moves such as hints. As such, adaptive

tutoring systems can provide targeted adaptive feedback and scaffolding in the form

of hints to the students based on their individual performance.

Our future work is to improve the concept map-based approach further.

Second, we plan to exploit concept maps for dynamically providing diagnostic

feedback in an automated tutoring environment and study its impact on tutoring

effectiveness, i.e., on the ability of the tutoring system to induce learning gains for

the learners.

118

Chapter 7

Conclusion and Future Work

In this dissertation, we presented our work to address research problems related to

dialogue-based intelligent tutoring systems. In particular, we presented various

methods and approaches to identifying effective tutorial strategies, evaluating the

semantic similarity between two texts in general, and assessing student answers in

tutorial dialogues. We summarize the major findings, conclusion and future work

for each of the research questions below.

1. How to identify and understand effective tutorial strategies

employed by successful tutors that yield tutoring sessions with

learning gains?

To identify effective tutorial strategies employed by professional tutors, we

described our supervised approach to mapping tutor-tutee utterances in

tutorial sessions onto actions by classifying them into dialogue acts, dialogue

sub-acts and dialogue modes. We presented our various analytic approaches

such as profile comparison, sequence logo, discriminant sub-sequence mining,

and Markov analysis to identify effective tutorial strategies. We found that

the effective tutorial sessions are characterized by more Scaffolding and Fading

modes on average when compared to ineffective sessions. Furthermore, the

most effective sessions almost always end properly, i.e., with a Closing mode.

On the other hand, the bottom ineffective sessions have, on average, more

ProcessNegotiation and ProblemIdentification. At dialogue act level, tutors in

top sessions use more expressives and prompt students more, on average, than

those in the bottom sessions. We also found that any possible sequence of

dialogue modes derived from a Markov process which characterizes an effective

tutorial session is most likely to have more Scaffolding and Fading modes.

119

Further, the inferred Markov process suggests a new model for

student-initiated tutorial sessions as opposed to tutor-driven sessions, which

were modeled in the past.

Future Work: Our research focused on the patterns of tutorial strategies

which distinguish good human tutors (or good tutoring sessions) from bad

human tutors (or bad tutoring sessions). We did not study how tutoring

strategies in good and bad sessions vary with different tutors (e.g. age, gender,

years of tutoring experience, pay scale, etc.) as we didn’t have sufficient

amount of such data. It might be an interesting area of research to identify

the patterns of strategies accounting for various factors of human tutors.

Further, we can expand the understanding of the effective strategies by

accounting for student’s prior knowledge as well.

2. How to improve generic sentence similarity methods for assessing

short texts?

For the semantic evaluation problem, we presented our generic semantic

similarity approach to improve measuring the similarity between two short

texts in English. In particular, we described our DT Team system that

participated in SemEval-2017 Task 1 for English track. We developed three

different feature-engineered systems using SVM regression, Linear regression

and Gradient Boosted regression models for predicting textual semantic

similarity. Overall, the outputs of our models highly correlate (correlation up

to 0.85 in STS 2017 test data and up to 0.792 on benchmark data) with

human ratings. Indeed, our methods yielded highly competitive results.

Future Work: Our DT TEAM system scores were closer to human scores (in

terms of correlation) among the other top performing STS systems against the

difficult English pair sentences selected by SemEval 2017 STS Task 1

120

organizers. However, our system also suffers from challenging issues for

semantic similarity. In particular, we can further improve the Semantic

Textual Similarity (STS) method by handling challenging semantic issues such

as negation, semantic blending, and compositional meaning aspects.

3. How to improve automated assessment of open-ended student

answers in tutorial dialogue using contextual information?

Evaluating student answers in context is particularly important in

conversational tutoring environments such as DeepTutor. Therefore, we

proposed two different approaches for assessing open-ended student answers in

tutorial dialogue context. We first described our probabilistic Gaussian

Mixture Model (GMM) model for assessing student answers. Our GMM

model used multiple context-aware counts, word weighted lexical similarity

scores, and word weighted alignment similarity scores as the features to assess

the student answers. Our GMM model outperformed the baseline system by

more than 10% in accuracy with F-score of 0.58. As such, the GMM approach

is useful for capturing the variance in the student answers in the level of

explicit information they contain. Next, we presented our LSTM approach to

assess student answers in tutorial dialogues. We built LSTM models using

pre-trained GloVe word embeddings (Pennington et al., 2014) and tri-letter

encodings. Our LSTM model which used pre-trained GloVE embedding

yielded the best performance on the DTGrade dataset and even outperformed

the GMM method. This result suggests that our LSTM models capture the

context required for assessing student answers in tutorial dialogues. Also, the

pre-trained word embeddings such as GloVe which are typically developed

from a large corpus of text can better represent word semantics than simple

word-based or tri-letter based one-hot encodings. Another advantage of the

121

LSTM approach is that it does not use any domain-specific manually crafted

features.

Future Work: We can explore more distinctive context-based features to

improve the performance of the GMM model for assessing freely generated

student answers in tutorial dialogues. Similarly, further investigation of using

deep neural networks for assessing such student responses might be a

promising future direction. For instance, we augmented student answer only

with context in our work with the assumption that its reference answer is

typically self-contained, i.e, context is not required to understand its true

meaning. Therefore, a strand of future work might explore how an LSTM

model performs when both student and ideal answer are augmented with

context. Further, developing a joint inference model such as Markov Logic

Network that incorporates different linguistic phenomena might also be a

direction for future work.

4. How to interpret the predicted similarity score and provide

subsequent diagnostic feedback in tutorial dialogue contexts?

For the interpretable similarity task, we presented our SemAligner tool based

on a set of rules and lexical resources for explaining the similarity between two

texts. The SemAligner identifies chunks and aligns them across the two texts

indicating semantic relation and similarity score of each alignment. Our

system provides better or comparable performance than the top performing

system when evaluated on the iSTS 2015 shared task test data for both gold

and system generated chunked text-pairs. Therefore, a rule-based system

might be an effective approach for the interpretable semantic similarity task.

Future Work: Our SemAligner tool performs highly at correctly aligning the

chunk pairs across the two texts. However, the performance of the system is

122

comparatively lower in assigning correct semantic relation labels for the

aligned chunks. Therefore, we can greatly improve the performance of the

system by improving the classification of semantic relation labels. Towards

this end, we can explore more effective rules for classifying the semantic

relation types between the aligned chunks to better explain the semantic

similarity between the two texts. Another approach might be exploring a

hybrid approach where we use rule-based method for correctly aligning the

chunks and then, train a machine learning (ML) based classifier for predicting

semantic relation labels for the aligned chunks. Further, we can combine

GMM/LSTM solutions with an interpretable similarity solution, e.g.,

SemAligner, such that besides a holistic outcome such as Incorrect or

Contradictory we also generate an explanation for the decision which would

enable dynamic and automatic generation of personalized hints.

5. How to automatically extract student mental model representations

from tutorial dialogues in the form of entity-relations graphs or

conceptual maps and then use them for assessing student

performance?

We presented our concept map approach where we automatically extracted

concepts and relations from the student responses to build a concept map for

each student for a given problem. The concept map is a representation of the

mental model of the student understanding of the problem and target domain.

Once we have the concept map for the student, we assessed the student

knowledge by comparing the student concept map with the ideal concept map

for the problem created by Subject Matter Experts (SMEs). Our concept map

approach performed slightly better than the GMM approach but lagged

behind the LSTM approach when evaluated on the DT-Grade dataset. It

suggests that shifting the granularity of assessment from sentence to

123

finer-grained tuple level is useful for assessment. Further, we showed how the

fine-grained representation of ideal answer and student answer at tuple level

might be leveraged to detect missing learning components in student answers

which can be used for dynamic and automatic generation of personalized

hints. As such, adaptive tutoring systems can provide targeted adaptive

feedback and scaffolding in the form of hints to the students based on their

individual performance.

Future Work: Typically, a concept map represents things that are always

true rather than true in the moment or under some conditions. However, in

the case of conversational ITSs where a student interacts with the computer

tutor during problem-solving, we encounter many cases where things are true

only at certain instants, or under particular conditions. For example, given the

statement “If the net force is zero, the meteor moves with constant velocity”,

“(meteor, moves with, constant velocity)” is true only if the net force is zero.

Similarly, given the statement “A meteor is at rest. A rocket pushes the

meteor with constant force, The rocket moves with constant acceleration”, the

tuple “(meteor, is at, rest)” valid at some instant t1 is no longer true at

another instant t2 after a rocket pushes it with constant force, i.e., “(meteor,

moves with, constant force)” becomes true at t2. Currently, we don’t model for

temporal information and conditional dependence in our concept map

representation. In future work, we can augment concept maps by adding such

temporal and conditional dependence information. Another strand of future

work might be improving the quality of the tuples extracted by the automated

tuple extraction method by accounting for additional factors such as explicit

co-reference resolution. Moreover, we can explore machine learning approach

instead of rule-based with concept maps for student answer assessment.

124

References

Abney, S. P. (1991). Parsing by chunks. In Principle-based parsing (pp. 257–278).

Springer.

Agirre, E., Banea, C., Cardie, C., Cer, D. M., Diab, M. T., Gonzalez-Agirre, A., . . .

Wiebe, J. (2014). Semeval-2014 task 10: Multilingual semantic textual

similarity. In Proceedings of the 8th international workshop on semantic

evaluation (semeval 2014) (pp. 81–91).

Agirre, E., Banea, C., Cardie, C., Cer, D. M., Diab, M. T., Gonzalez-Agirre, A., . . .

others (2015). Semeval-2015 task 2: Semantic textual similarity, english,

spanish and pilot on interpretability. In Proceedings of the 9th international

workshop on semantic evaluation (semeval 2015) (pp. 252–263).

Agirre, E., Banea, C., Cer, D. M., Diab, M. T., Gonzalez-Agirre, A., Mihalcea, R.,

. . . Wiebe, J. (2016). Semeval-2016 task 1: Semantic textual similarity,

monolingual and cross-lingual evaluation. In Proceedings of the 10th

international workshop on semantic evaluation (semeval-2016) (pp. 497–511).

Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., & Guo, W. (2013). * sem 2013

shared task: Semantic textual similarity. In Second joint conference on lexical

and computational semantics (* sem), volume 1: Proceedings of the main

conference and the shared task: Semantic textual similarity.

Agirre, E., Diab, M., Cer, D., & Gonzalez-Agirre, A. (2012). Semeval-2012 task 6:

A pilot on semantic textual similarity. In Proceedings of the first joint

conference on lexical and computational semantics-volume 1: Proceedings of

the main conference and the shared task, and volume 2: Proceedings of the

sixth international workshop on semantic evaluation (pp. 385–393).

Agirre, E., Gonzalez-Agirre, A., Lopez-Gazpio, I., Maritxalar, M., Rigau, G., &

Uria, L. (2016). Semeval-2016 task 2: Interpretable semantic textual

similarity. In Semeval-2016 task 2: Interpretable semantic textual similarity.

125

semeval-2016. 10th international workshop on semantic evaluation; 2016 jun

16-17; san diego, ca. stroudsburg (pa): Acl; 2016. p. 512-24. (pp. 512–524).

Aleven, V., Popescu, O., & Koedinger, K. R. (2001). Towards tutorial dialog to

support self-explanation: Adding natural language understanding to a

cognitive tutor. In Proceedings of artificial intelligence in education (pp.

246–255).

All, A. C., Huycke, L. I., & Fisher, M. J. (2003). Instructional tools for nursing

education: Concept maps. Nursing Education Perspectives , 24 (6), 311–317.

Anderson, T. H., & Huang, S.-c. C. (1989). On using concept maps to assess the

comprehension effects of reading expository text. Center for the Study of

Reading Technical Report; no. 483 .

Angeli, G., Johnson Premkumar, M. J., & Manning, C. D. (2015). Leveraging

linguistic structure for open domain information extraction. In Proceedings of

the 53rd annual meeting of the association for computational linguistics and

the 7th international joint conference on natural language processing (volume

1: Long papers) (pp. 344–354). Association for Computational Linguistics.

Retrieved from http://aclweb.org/anthology/P15-1034

Austin, J. L. (1975). How to do things with words. Oxford university press.

Ausubel, D. P. (1963). The psychology of meaningful verbal learning.

Bachman, L. F., Carr, N., Kamei, G., Kim, M., Pan, M. J., Salvador, C., & Sawaki,

Y. (2002). A reliable approach to automatic assessment of short answer free

responses. In Proceedings of the 19th international conference on

computational linguistics-volume 2 (pp. 1–4).

Bailey, S., & Meurers, D. (2008). Diagnosing meaning errors in short answers to

reading comprehension questions. In Proceedings of the third workshop on

innovative use of nlp for building educational applications (pp. 107–115).

Banjade, R., Maharjan, N., Gautam, D., & Rus, V. (2016). Dtsim at semeval-2016

126

task 1: Semantic similarity model including multi-level alignment and

vector-based compositional semantics. In Proceedings of the 10th international

workshop on semantic evaluation (semeval-2016) (pp. 640–644).

Banjade, R., Maharjan, N., Niraula, N. B., Gautam, D., Samei, B., & Rus, V.

(2016). Evaluation dataset (dt-grade) and word weighting approach towards

constructed short answers assessment in tutorial dialogue context. In

Proceedings of the 11th workshop on innovative use of nlp for building

educational applications (pp. 182–187).

Banjade, R., Maharjan, N., Niraula, N. B., & Rus, V. (2016). Dtsim at semeval-2016

task 2: Interpreting similarity of texts based on automated chunking, chunk

alignment and semantic relation prediction. In Proceedings of the 10th

international workshop on semantic evaluation (semeval-2016) (pp. 809–813).

Banjade, R., Maharjan, N., Niraula, N. B., Rus, V., & Gautam, D. (2015). Lemon

and tea are not similar: Measuring word-to-word similarity by combining

different methods. In International conference on intelligent text processing

and computational linguistics (pp. 335–346).

Banjade, R., Niraula, N. B., Maharjan, N., Rus, V., Stefanescu, D., Lintean, M. C.,

& Gautam, D. (2015). Nerosim: A system for measuring and interpreting

semantic textual similarity. In Proceedings of the 9th international workshop

on semantic evaluation (semeval 2015) (pp. 164–171).

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic

language model. Journal of Machine Learning Research, 3 (Feb), 1137–1155.

Berliner, D. C. (2001). Learning about and learning from expert teachers.

International Journal of Educational Research, 35 (5), 463–482.

Bhattarai, A., & Rus, V. (2013). Towards a structured representation of generic

cconcepts and relations in large text corpora. In Proceedings of the

international conference recent advances in natural language processing ranlp

127

2013 (pp. 65–73).

Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. (2015). A large annotated

corpus for learning natural language inference. arXiv preprint

arXiv:1508.05326 .

Boyer, K. E., Phillips, R., Ingram, A., Ha, E. Y., Wallis, M., Vouk, M., & Lester, J.

(2011). Investigating the relationship between dialogue structure and tutoring

effectiveness: a hidden markov modeling approach. International Journal of

Artificial Intelligence in Education, 21 (1-2), 65–81.

Brockett, C. (2007). Aligning the rte 2006 corpus. Microsoft Research.

Burgess, C., & Lund, K. (1995). Hyperspace analog to language (hal): A general

model of semantic representation. In Proceedings of the annual meeting of the

psychonomic society (Vol. 12, pp. 177–210).

Cade, W. L., Copeland, J. L., Person, N. K., & DMello, S. K. (2008). Dialogue

modes in expert tutoring. In International conference on intelligent tutoring

systems (pp. 470–479).

Cañas, A. J., Hill, G., Carff, R., Suri, N., Lott, J., Gómez, G., . . . Carvajal, R.

(2004). Cmaptools: A knowledge modeling and sharing environment.

Carreras, X., & Màrquez, L. (2001). Boosting trees for clause splitting. In

Proceedings of the 2001 workshop on computational natural language

learning-volume 7 (p. 26).

Carreras, X., & Marquez, L. (2004). Phrase recognition by filtering and ranking

with perceptrons. Recent Advances in Natural Language Processing III:

Selected Papers from RANLP 2003 , 260 , 205.

Carreras, X., Màrquez, L., Punyakanok, V., & Roth, D. (2002). Learning and

inference for clause identification. In European conference on machine learning

(pp. 35–47).

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., & Specia, L. (2017). Semeval-2017

128

task 1: Semantic textual similarity multilingual and cross-lingual focused

evaluation. In Proceedings of the 11th international workshop on semantic

evaluation (semeval-2017) (pp. 1–14).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P.

(2011). Natural language processing (almost) from scratch. Journal of

Machine Learning Research, 12 (Aug), 2493–2537.

Deese, J. (1966). The structure of associations in language and thought. Johns

Hopkins University Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 1–38.

Evens, M. W., Chang, R.-C., Lee, Y. H., Shim, L. S., Woo, C. W., Zhang, Y., . . .

Rovick, A. A. (1997). Circsim-tutor: An intelligent tutoring system using

natural language dialogue. In Proceedings of the fifth conference on applied

natural language processing: Descriptions of system demonstrations and videos

(pp. 13–14).

Fader, A., Soderland, S., & Etzioni, O. (2011). Identifying relations for open

information extraction. In Proceedings of the conference on empirical methods

in natural language processing (pp. 1535–1545).

Fernando, S., & Stevenson, M. (2008). A semantic similarity approach to

paraphrase detection. In Proceedings of the 11th annual research colloquium of

the uk special interest group for computational linguistics (pp. 45–52).

Ganitkevitch, J., Van Durme, B., & Callison-Burch, C. (2013). Ppdb: The

paraphrase database. In Proceedings of the 2013 conference of the north

american chapter of the association for computational linguistics: Human

language technologies (pp. 758–764).

Gao, J., Deng, L., Gamon, M., He, X., & Pantel, P. (2014, June 13). Modeling

129

interestingness with deep neural networks. Google Patents. (US Patent App.

14/304,863)

Gertner, A. S., & VanLehn, K. (2000). Andes: A coached problem solving

environment for physics. In International conference on intelligent tutoring

systems (pp. 133–142).

Glaser, R., & Bassok, M. (1989). Learning theory and the study of instruction.

Annual Review of Psychology , 40 (1), 631–666.

Gouli, E., Gogoulou, A., Papanikolaou, K., & Grigoriadou, M. (2004). Compass:

An adaptive web-based concept map assessment tool.

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. M. (2005). Autotutor:

An intelligent tutoring system with mixed-initiative dialogue. IEEE

Transactions on Education, 48 (4), 612–618.

Graesser, A. C., DMello, S., & Person, N. (2009). Meta-knowledge in tutoring.

Handbook of Metacognition in Education, 361.

Graesser, A. C., Penumatsa, P., Ventura, M., Cai, Z., & Hu, X. (2007). Using lsa in

autotutor: Learning through mixed initiative dialogue in natural language.

Handbook of Latent Semantic Analysis , 243–262.

Graesser, A. C., Person, N. K., & Magliano, J. P. (1995). Collaborative dialogue

patterns in naturalistic one-to-one tutoring. Applied Cognitive Psychology ,

9 (6), 495–522.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9 (8), 1735–1780.

Ho Lee, J., Ho Kim, M., & Joon Lee, Y. (1993). Information retrieval based on

conceptual distance in is-a hierarchies. Journal of Documentation, 49 (2),

188–207.

Horton, P. B., McConney, A. A., Gallo, M., Woods, A. L., Senn, G. J., & Hamelin,

D. (1993). An investigation of the effectiveness of concept mapping as an

130

instructional tool. Science Education, 77 (1), 95–111.

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. (2013). Learning

deep structured semantic models for web search using clickthrough data. In

Proceedings of the 22nd acm international conference on conference on

information & knowledge management (pp. 2333–2338).

Jiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus

statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008 .

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural

network for modelling sentences. arXiv preprint arXiv:1404.2188 .

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., &

Fidler, S. (2015). Skip-thought vectors. In Advances in neural information

processing systems (pp. 3294–3302).

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval

Research Logistics (NRL), 2 (1-2), 83–97.

Kulik, J. A., & Fletcher, J. (2016). Effectiveness of intelligent tutoring systems: a

meta-analytic review. Review of Educational Research, 86 (1), 42–78.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent

semantic analysis. Discourse Processes , 25 (2-3), 259–284.

Leacock, C., & Chodorow, M. (1998). Combining local context and wordnet

similarity for word sense identification. WordNet: An Electronic Lexical

Database, 49 (2), 265–283.

Leacock, C., & Chodorow, M. (2003). C-rater: Automated scoring of short-answer

questions. Computers and the Humanities , 37 (4), 389–405.

Li, Y., Bandar, Z. A., & McLean, D. (2003). An approach for measuring semantic

similarity between words using multiple information sources. IEEE

Transactions on Knowledge and Data Engineering , 15 (4), 871–882.

Lin, D., et al. (1998). An information-theoretic definition of similarity. In Icml

131

(Vol. 98, pp. 296–304).

Lomask, M., Baron, J., Greig, J., & Harrison, C. (1992). Connmap: Connecticuts

use of concept mapping to assess the structure of students knowledge of

science. In Annual meeting of the national association of research in science

teaching, cambridge, ma (pp. 21–25).

Maharjan, N., Banjade, R., Gautam, D., Tamang, L. J., & Rus, V. (2017). Dt team

at semeval-2017 task 1: Semantic similarity using alignments, sentence-level

embeddings and gaussian mixture model output. In Proceedings of the 11th

international workshop on semantic evaluation (semeval-2017) (pp. 120–124).

Maharjan, N., Banjade, R., Niraula, N. B., & Rus, V. (2016). Semaligner: A

method and tool for aligning chunks with semantic relation types and

semantic similarity scores. CRF , 82 , 62–56.

Maharjan, N., Banjade, R., & Rus, V. (2017). Automated assessment of open-ended

student answers in tutorial dialogues using gaussian mixture models. In

Proceedings of the thirtieth international florida artificial intelligence research

society conference (98-103).

Maharjan, N., Gautam, D., & Rus, V. (2018). Assessing free student answers in

tutorial dialogues using lstm models. In International conference on artificial

intelligence in education (pp. 193–198).

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & McClosky,

D. (2014). The stanford corenlp natural language processing toolkit. In

Proceedings of 52nd annual meeting of the association for computational

linguistics: System demonstrations (pp. 55–60).

Martin, J. H., & Jurafsky, D. (2000). Speech and language processing. International

Edition, 710 .

Martinez Maldonado, R., Kay, J., Yacef, K., & Schwendimann, B. (2012). An

interactive teachers dashboard for monitoring groups in a multi-tabletop

132

learning environment. In International conference on intelligent tutoring

systems (pp. 482–492).

Mausam, Schmitz, M., Soderland, S., Bart, R., & Etzioni, O. (2012). Open language

learning for information extraction. In Proceedings of the 2012 joint conference

on empirical methods in natural language processing and computational

natural language learning (pp. 523–534). Association for Computational

Linguistics. Retrieved from http://aclweb.org/anthology/D12-1048

McLachlan, G., & Peel, D. (2004). Finite mixture models. John Wiley & Sons.

McNamara, D. S., Levinstein, I. B., & Boonthum, C. (2004). istart: Interactive

strategy training for active reading and thinking. Behavior Research Methods ,

36 (2), 222–233.

McNamara, D. S., Raine, R., Roscoe, R., Crossley, S. A., Jackson, G. T., Dai, J., . . .

others (2012). The writing-pal: Natural language algorithms to support

intelligent tutoring on writing strategies. In Applied natural language

processing: Identification, investigation and resolution (pp. 298–311). IGI

Global.

Melamed, I. D. (1998). Manual annotation of translational equivalence: The blinker

project. arXiv preprint cmp-lg/9805005 .

Mihalcea, R., Corley, C., Strapparava, C., et al. (2006). Corpus-based and

knowledge-based measures of text semantic similarity. In Aaai (Vol. 6, pp.

775–780).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781 .

Miller, G. A. (1995). Wordnet: A lexical database for english. Communications of

the ACM , 38 (11), 39–41.

Mitchell, T., Russell, T., Broomhead, P., & Aldridge, N. (2002). Towards robust

computerised marking of free-text responses.

133

Mohammad, S., Dorr, B., & Hirst, G. (2008). Computing word-pair antonymy. In

Proceedings of the 2008 conference on empirical methods in natural language

processing (pp. 982–991). Association for Computational Linguistics.

Retrieved from http://aclweb.org/anthology/D08-1103

Mohler, M., Bunescu, R., & Mihalcea, R. (2011). Learning to grade short answer

questions using semantic similarity measures and dependency graph

alignments. In Proceedings of the 49th annual meeting of the association for

computational linguistics: Human language technologies-volume 1 (pp.

752–762).

Mohler, M., & Mihalcea, R. (2009). Text-to-text semantic similarity for automatic

short answer grading. In Proceedings of the 12th conference of the european

chapter of the association for computational linguistics (pp. 567–575).

Moldovan, C., Rus, V., & Graesser, A. C. (2011). Automated speech act

classification for online chat. MAICS , 710 , 23–29.

Molina, A., & Pla, F. (2001). Clause detection using hmm. In Proceedings of the

2001 workshop on computational natural language learning-volume 7 (p. 25).

Morrison, D., Nye, B., Samei, B., Datla, V. V., Kelly, C., & Rus, V. (2014).

Building an intelligent pal from the tutor. com session database phase 1: Data

mining. In Educational data mining 2014.

Nielsen, R. D., Ward, W., & Martin, J. H. (2009). Recognizing entailment in

intelligent tutoring systems. Natural Language Engineering , 15 (4), 479–501.

Niraula, N. B., Gautam, D., Banjade, R., Maharjan, N., & Rus, V. (2015).

Combining word representations for measuring word relatedness and

similarity. In The twenty-eighth international flairs conference (pp. 199–204).

Niraula, N. B., Rus, V., Banjade, R., Stefanescu, D., Baggett, W., & Morgan, B.

(2014). The dare corpus: A resource for anaphora resolution in dialogue based

intelligent tutoring systems. In Lrec (pp. 3199–3203).

134

Novak, J. D., Bob Gowin, D., & Johansen, G. T. (1983). The use of concept

mapping and knowledge vee mapping with junior high school science students.

Science Education, 67 (5), 625–645.

Novak, J. D., & Musonda, D. (1991). A twelve-year longitudinal study of science

concept learning. American Educational Research Journal , 28 (1), 117–153.

Och, F. J., & Ney, H. (2004). The alignment template approach to statistical

machine translation. Computational linguistics , 30 (4), 417–449.

Ohlsson, S., Di Eugenio, B., Chow, B., Fossati, D., Lu, X., & Kershaw, T. C.

(2007). Beyond the code-and-count analysis of tutoring dialogues. Artificial

Intelligence in Education: Building Technology Rich Learning Contexts That

Work , 158 , 349.

Olney, A. M., Cade, W. L., & Williams, C. (2011). Generating concept map

exercises from textbooks. In Proceedings of the 6th workshop on innovative use

of nlp for building educational applications (pp. 111–119).

Olney, A. M., D’Mello, S. K., Person, N. K., Cade, W. L., Hays, P., Williams, C.,

. . . Graesser, A. C. (2012). Guru: A computer tutor that models expert

human tutors. In International conference on intelligent tutoring systems (pp.

256–261).

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th

annual meeting on association for computational linguistics (pp. 311–318).

Pavlick, E., Rastogi, P., Ganitkevitch, J., Van Durme, B., & Callison-Burch, C.

(2015). Ppdb 2.0: Better paraphrase ranking, fine-grained entailment

relations, word embeddings, and style classification.

Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). Wordnet:: Similarity-

measuring the relatedness of concepts. In Demonstration papers at hlt-naacl

2004 (pp. 38–41).

135

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (emnlp) (pp. 1532–1543).

Pérez, D., Gliozzo, A. M., Strapparava, C., Alfonseca, E., Rodriguez, P., & Magnini,

B. (2005). Automatic assessment of students’ free-text answers underpinned

by the combination of a bleu-inspired algorithm and latent semantic analysis.

In Flairs conference (pp. 358–363).

Potthast, M., Hagen, M., Gollub, T., Tippmann, M., Kiesel, J., Rosso, P., . . . Stein,

B. (2012). Overview of the 4th international competition on plagiarism

detection. In Clef 2012 evaluation labs and workshop working notes papers.

Pulman, S. G., & Sukkarieh, J. Z. (2005). Automatic short answer marking. In

Proceedings of the second workshop on building educational applications using

nlp (pp. 9–16).

Ritter, S., Anderson, J. R., Koedinger, K. R., & Corbett, A. (2007). Cognitive

tutor: Applied research in mathematics education. Psychonomic Bulletin &

Review , 14 (2), 249–255.

Ritter, S., Fancsali, S., Yudelson, M., Rus, V., & Berman, S. (2016). Toward

intelligent instructional handoffs between humans and machines. In Workshop

on machine learning for education, the thirtieth conference on neural

information processing systems (nips).

Rogoff, B. E., & Lave, J. E. (1984). Everyday cognition: Its development in social

context. Harvard University Press.

Roth, W.-M., & Roychoudhury, A. (1993). The concept map as a tool for the

collaborative construction of knowledge: A microanalysis of high school

physics students. Journal of Research in Science Teaching , 30 (5), 503–534.

Rowe, J., Mott, B., McQuiggan, S., Robison, J., Lee, S., & Lester, J. (2009).

Crystal island: A narrative-centered learning environment for eighth grade

136

microbiology. In Workshop on intelligent educational games at the 14th

international conference on artificial intelligence in education, brighton, uk

(pp. 11–20).

Royer, J. M., Cisero, C. A., & Carlo, M. S. (1993). Techniques and procedures for

assessing cognitive skills. Review of Educational Research, 63 (2), 201–243.

Rus, V., Banjade, R., Maharjan, N., Morrison, D., Ritter, S., & Yudelson, M.

(2016). Preliminary results on dialogue act classification in chat-based online

tutorial dialogues. In Proceedings of the 9th international conference on

educational data mining (pp. 630–631).

Rus, V., Banjade, R., Niraula, N., Gire, E., & Franceschetti, D. (2017). A study on

two hint-level policies in conversational intelligent tutoring systems. In

Innovations in smart learning (pp. 171–181). Springer.

Rus, V., Conley, M., & Graesser, A. (2014). The dendrogram model of instruction:

On instructional strategies and their implementation in deeptutor. Design

Recommendations for Intelligent Tutoring Systems , 311.

Rus, V., DMello, S., Hu, X., & Graesser, A. (2013). Recent advances in

conversational intelligent tutoring systems. AI magazine, 34 (3), 42–54.

Rus, V., & Graesser, A. C. (2006). Deeper natural language processing for

evaluating student answers in intelligent tutoring systems. In Proceedings of

the national conference on artificial intelligence (Vol. 21, p. 1495).

Rus, V., & Lintean, M. (2012). A comparison of greedy and optimal assessment of

natural language student input using word-to-word similarity metrics. In

Proceedings of the seventh workshop on building educational applications using

nlp (pp. 157–162).

Rus, V., Lintean, M., Moldovan, C., Baggett, W., Niraula, N., & Morgan, B.

(2012). The similar corpus: A resource to foster the qualitative understanding

of semantic similarity of texts. In Semantic relations ii: Enhancing resources

137

and applications, the 8th language resources and evaluation conference (lrec

2012), may (pp. 23–25).

Rus, V., Lintean, M. C., Banjade, R., Niraula, N. B., & Stefanescu, D. (2013).

Semilar: The semantic similarity toolkit. In Proceedings of the 51st annual

meeting of the association for computational linguistics: System

demonstrations (pp. 163–168).

Rus, V., Maharjan, N., & Banjade, R. (2015). Unsupervised discovery of tutorial

dialogue modes in human-to-human tutorial data. In Proceedings of the third

annual gift users symposium (pp. 63–80).

Rus, V., Maharjan, N., & Banjade, R. (2017). Dialogue act classification in

human-to-human tutorial dialogues. In Innovations in smart learning (pp.

183–186). Springer.

Rus, V., Maharjan, N., Lasang, T., Yudelson, M., Berman, S., Stephen, F., &

Ritter, S. (2017). An analysis of human tutors actions in tutorial dialogues. In

Proceedings of the thirtieth international florida artificial intelligence research

society conference.

Rus, V., Niraula, N. B., & Banjade, R. (2015). Deeptutor: An effective, online

intelligent tutoring system that promotes deep learning. In Twenty-ninth aaai

conference on artificial intelligence (pp. 4294–4295).

Rus, V., Niraula, N. B., Maharjan, N., & Banjade, R. (2015). Automated labelling

of dialogue modes in tutorial dialogues. In The twenty-eighth international

flairs conference.

Sang, E. F., & Déjean, H. (2001). Introduction to the conll-2001 shared task:

Clause identification. arXiv preprint cs/0107016 .

Schmid, R. F., & Telaro, G. (1990). Concept mapping as an instructional strategy

for high school biology. The Journal of Educational Research, 84 (2), 78–85.

Searle, J. (1969). Speech acts. Cambridge: Cambridge University Press.

138

Shen, Y., He, X., Gao, J., Deng, L., & Mesnil, G. (2014). A latent semantic model

with convolutional-pooling structure for information retrieval. In Proceedings

of the 23rd acm international conference on conference on information and

knowledge management (pp. 101–110).

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C.

(2013). Recursive deep models for semantic compositionality over a sentiment

treebank. In Proceedings of the 2013 conference on empirical methods in

natural language processing (pp. 1631–1642).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15 (1), 1929–1958.

Stefănescu, D., Banjade, R., & Rus, V. (2014). Latent semantic analysis models on

wikipedia and tasa. In Language resources evaluation conference (lrec).

Ştefănescu, D., Banjade, R., & Rus, V. (2014). A sentence similarity method based

on chunking and information content. In International conference on

intelligent text processing and computational linguistics (pp. 442–453).

Steinberger, J., & Jezek, K. (2004). Using latent semantic analysis in text

summarization and summary evaluation. In Proc. isim04 (pp. 93–100).

Sultan, M. A., Bethard, S., & Sumner, T. (2014). Back to basics for monolingual

alignment: Exploiting word similarity and contextual evidence. Transactions

of the Association for Computational Linguistics , 2 , 219–230.

Sultan, M. A., Bethard, S., & Sumner, T. (2015). Dls @ cu: Sentence similarity from

word alignment and semantic vector composition. In Proceedings of the 9th

international workshop on semantic evaluation (semeval 2015) (pp. 148–153).

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations

from tree-structured long short-term memory networks. arXiv preprint

arXiv:1503.00075 .

139

Tapeh, A. G., & Rahgozar, M. (2008). A knowledge-based question answering

system for b2c ecommerce. Knowledge-Based Systems , 21 (8), 946–950.

Tian, J., Zhou, Z., Lan, M., & Wu, Y. (2017). Ecnu at semeval-2017 task 1:

Leverage kernel-based traditional nlp features and neural networks to build a

universal model for multilingual and cross-lingual semantic textual similarity.

In Proceedings of the 11th international workshop on semantic evaluation

(semeval-2017) (pp. 191–197).

Vanlehn, K. (2006). The behavior of tutoring systems. International Journal of

Artificial Intelligence in Education, 16 (3), 227–265.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent

tutoring systems, and other tutoring systems. Educational Psychologist ,

46 (4), 197–221.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A. M., & Rosé,

C. P. (2007). When are tutorial dialogues more effective than reading?

Cognitive Science, 31 (1), 3–62.

Wallace, J. D., & Mintzes, J. J. (1990). The concept map as a research tool:

Exploring conceptual change in biology. Journal of Research in Science

Teaching , 27 (10), 1033–1052.

Wu, P. H., Hwang, G.-J., Milrad, M., Ke, H.-R., & Huang, Y.-M. (2012). An

innovative concept map approach for improving students’ learning

performance with an instant feedback mechanism. British Journal of

Educational Technology , 43 (2), 217–232.

Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., & Soderland, S.

(2007). Textrunner: open information extraction on the web. In Proceedings

of human language technologies: The annual conference of the north american

chapter of the association for computational linguistics: Demonstrations (pp.

25–26).

140

Zhao, H., Lu, Z., & Poupart, P. (2015). Self-adaptive hierarchical sentence model.

In Twenty-fourth international joint conference on artificial intelligence.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., &

Fidler, S. (2015). Aligning books and movies: Towards story-like visual

explanations by watching movies and reading books. In Proceedings of the ieee

international conference on computer vision (pp. 19–27).

141

	Deeper Understanding of Tutorial Dialogues and Student Assessment
	Recommended Citation

	tmp.1685112842.pdf.q4dBG

