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Abstract

We consider 2- or 3-dimensional Navier-Stokes equations defined on a bounded domain Ω subject

to an external force, assumed to cause instability. We then seek to uniformly stabilize such N-S

system, in the vicinity of an unstable equilibrium solution, in Lq-based Sobolev and Besov spaces,

by finite dimensional feedback controls. This work is divided in to two parts. In Part I, the finite

dimensional feedback controls are localized on an arbitrarily small open interior subdomain ω of Ω.

Instead, in Part II seeks tangential boundary feedback stabilizing controls. It provides a solution to

the following recognized open problem in the theory of uniform stabilization of d-dimensional Navier-

Stokes equations in the vicinity of an unstable equilibrium solution, by means of tangential boundary

localized feedback controls: can these stabilizing controls be asserted to be finite dimensional also

in the physical dimension d = 3? To achieve the desired finite dimensionality result of the feedback

tangential boundary controls, it was then necessary to abandon the Hilbert-Sobolev functional setting

of past literature and replace it with an appropriate Lq-based/Besov setting with tight parameters

related to the physical dimension d, where the compatibility conditions are not recognized. This result

is also a new contribution to the area of maximal regularity with inhomogeneous boundary feedback.
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1 Part I: Using finitely many tangential, boundary, localized, feed-

back controls also in dimension d = 3.

Abstract

We consider 2- or 3-dimensional Navier-Stokes equations defined on a bounded domain Ω, with no-

slip boundary conditions and subject to an external force, assumed to cause instability. We then

seek to uniformly stabilize such N-S system, in the vicinity of an unstable equilibrium solution, in

Lq-based Sobolev and Besov spaces, by finite dimensional feedback controls. In this Part I, the

feedback controls are localized on an arbitrarily small open interior subdomain ω of Ω. The present

treatment much improves and simplifies at both conceptual and computational level, the solution

of the present stabilization problem, given in the more restrictive Hilbert space setting in [B-T.1].

Moreover, such treatment, sets the foundation for the authors’ subsequent Part II, which solves

in the affirmative a presently open problem: whether uniform stabilization is possible by localized

tangential boundary feedback controls, which-in addition-are finite dimensional, also for dim Ω = 3.

2 Introduction

2.1 Controlled Dynamic Navier-Stokes Equations

Let, at first, Ω be an open connected bounded domain in Rd, d = 2, 3 with sufficiently smooth boundary

Γ = ∂Ω. More specific requirements will be given below. Let ω be an arbitrarily small open smooth

subset of the interior Ω, ω ⊂ Ω, of positive measure. Let m denote the characteristic function of ω:

m(ω) ≡ 1, m(Ω\ω) ≡ 0. Consider the following controlled Navier-Stokes Equations with non-slip

Dirichlet boundary conditions, where Q = (0,∞)× Ω, Σ = (0,∞)× Γ:

yt(t, x)− ν∆y(t, x) + (y · ∇)y +∇π(t, x) = m(x)u(t, x) + f(x) in Q (2.1a)

div y = 0 in Q (2.1b)

y = 0 on Σ (2.1c)

y(0, x) = y0(x) in Ω (2.1d)

Notation: As already done in the literature, for the sake of simplicity, we shall adopt the same

notation for function spaces of scalar functions and function spaces of vector valued functions. Thus,

for instance, for the vector valued (d-valued) velocity field y or external force f , we shall simply
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write say y, f ∈ Lq(Ω) rather than y, f ∈ (Lq(Ω))d or y, f ∈ Lq(Ω). This choice is unlikely to

generate confusion. By way of orientation, we state at the outset two main points. For the linearized

w-problem (2.13) below, the corresponding well-posedness and global feedback uniform stabilization

result, Theorem 3.2, holds in general for 1 < q < ∞. Instead, the final, main well-posedness and

feedback uniform, local stabilization result, Theorem 3.5, for the original nonlinear problem (3.27) or

(3.28) will require q > 3, see (8.16), in the d = 3-case, hence 1 < p <
6

5
, and q > 2, in the d = 2-case,

hence 1 < p < 4
3 ; see (2.16). Let u ∈ Lp(0, T ;Lq(Ω)) be the control input and y = (y1, . . . , yd) be

the corresponding state (velocity) of the system. Let ν > 0 be the viscosity coefficient. The function

v(t, x) = m(x)u(t, x) can be viewed as an interior controller with support in Qω = (0,∞) × ω. The

initial condition y0 and the body force f ∈ Lq(Ω) are given. The scalar function π is the unknown

pressure.

2.2 Stationary Navier-Stokes equations

The following result represents our basic starting point.

Theorem 2.1. Consider the following steady-state Navier-Stokes equations in Ω

−ν∆ye + (ye.∇)ye +∇πe = f in Ω (2.2a)

div ye = 0 in Ω (2.2b)

ye = 0 on Γ (2.2c)

Let 1 < q <∞. For any f ∈ Lq(Ω) there exits a solution (not necessarily unique) (ye, πe) ∈ (W 2,q(Ω)∩

W 1,q
0 (Ω))× (W 1,q(Ω)/R).

For the Hilbert case q = 2, see [C-F, Thm 7.3 p 59] . For the general case 1 < q < ∞, see [A-R,

Thm 5.iii p 58].

Remark 2.1. It is well-known [Lad], [Li], [Te] that the stationary solution is unique when “the data

is small enough, or the viscosity is large enough” [Te, p 157; Chapt 2] that is, if the ratio ‖f‖/ν2 is

smaller than some constant that depends only on Ω [FT, p 121]. When non-uniqueness occurs, the

stationary solutions depend on a finite number of parameters [FT, Theorem 2.1, p 121] asymptotically

in the time dependent case.
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Remark 2.2. The case where f(x) in (2.1a) is replaced by ∇g(x) is noted in the literature as arising

in certain physical situations, where f is a conservative vector field. The analysis of this relevant case

is postponed to Remark 2.4, at the end of Section 2.

2.3 Main goal of the present paper

For a given external force f , if the Reynolds number 1
ν is sufficiently large, then the steady state

solution ye in (2.2) becomes unstable (in a quantitative sense to be made more precise in Section 3.2

below) and turbulence occurs.

The main goal of the present paper is then - at first qualitatively - to feedback stabilize the non-linear

N-S model (2.1) subject to rough (non-smooth) initial condition y0, in the vicinity of an (unstable)

equilibrium solution ye in (2.2). Thus this paper pertains to the general context of “turbulence

suppression or attenuation” in fluids. The general topic of turbulence suppression (or attenuation) in

fluids has been the object of many studies over the years, mostly in the engineering literature through

experimental studies and via numerical simulation and under different geometrical and dynamical

settings. The references cited in the present paper by necessity refer mostly to the mathematical

literature, and most specifically on the localized interior control setting of problem (2.1). A more

precise description thereof is as follows: establish interior localized exponential stabilization of problem

(2.1) near an unstable equilibrium solution by means of a finite dimensional localized, spectral-based

feedback control, in the important case of initial conditions y0 of low regularity, as technically expressed

by y0 being in suitable Lq/Besov space with tight indices. In particular, local exponential stability for

the velocity field y near an equilibrium solution ye will be achieved in the topology of the Besov space

B
2−2/p
q,p (Ω), 1 < p <

2q

2q − 1
; q > d, d = 2, 3. (2.3)

In such setting, the compatibility conditions on the boundary of the initial conditions are not recog-

nized. This feature is precisely our key objective within the stabilization problem. The fundamental

reason is that such feature will play a critical role in the successor paper [L-P-T] in showing that:

local tangential boundary feedback stabilization near an unstable equilibrium solution with finitely

many controls is possible also in dimension d = 3, thus solving in the affirmative a recognized open

problem in the stabilization area. This point will be more appropriately expanded in Section 2.6 below.
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The successor [L-P-T] to the present work will extensively review the literature as it pertains to

the boundary stabilization case, particularly with tangential control action. Accordingly, below we

shall review the present study mostly in comparison with the prior solution of the localized interior

stabilization in the Hilbert-based treatment of [B-T.1] and textbook versions thereof.

2.4 Qualitative Orientation

2.4.1 On the local, interior, feedback stabilization problem: Past Literature

We start with an unstable steady state solution ye, given an external force f , and a sufficiently large

Reynold number 1
ν , as described in Section 2.3. We then seek a finite-dimensional interior localized

feedback control u, such that the corresponding N-S problem is well-posed in a suitable function space

setting and its solution y in (2.1) is locally exponentially stable near the equilibrium solution ye, in

a suitably corresponding norm. This problem was originally posed and solved in the Hilbert space

setting in [B-T.1, Theorem 2.2 p 1449] by means of a finite dimensional Riccati-based feedback control

u, where exponential decay is obtained in the D(A
1/4)-topology. Here A is the positive self-adjoint

Stokes operator in (2.17) with q = 2 in the space H with L2(Ω)-topology. See (2.6) below. A similar

exponential decay result, in the same D(A
1/4)-topology, is given in [B-L-T.3, Thm 5.1, p 42], this time

by means of a finite-dimensional, spectral-based feedback control u.

Regarding the solution given in these references, we point out (at present) two defining, linked char-

acteristics of their finite dimensional treatment:

(i) The number of stabilizing (localized) controls for the (complex-valued) nonlinear dynamics (2.1)

is N = sup{Ni; i = 1, . . . ,M}, that is, the max of the algebraic multiplicity of the M distinct

unstable eigenvalues λi, see (3.2), of the projected Oseen operator AuN in (3.5).

(ii) in the fully general case, the algebraic (Kalman rank) conditions for controllability under which

the finite dimensional feedback control is explicitly constructed involve the Grahm-Schmidt or-

thogonalization of the generalized eigenfunctions of the adjoint (AuN )∗, making the test difficult

to verify. Only in the case where the restriction AuN in (3.5) of the Oseen operator A in (2.10)

is semisimple (algebraic and geometric multiplicity of the unstable eigenvalues coincide), are the

4



controllability tests given in terms of eigenfunctions of (AuN )∗.

2.4.2 Additional goals of the present paper as definite improvements over the literature

We list these main additional goals of the present work aimed at markedly improving both the results

and the approach of the basic reference [B-T.1]. They are:

(i) With reference to part (i) in Section 2.4.1, our next goal is to obtain (in the general case of

Theorem 5.1) that the number of stabilizing controls needed for the (complex valued version of

the) dynamics (2.1) is K = sup{`i; i = 1, . . . ,M}, where `i is the geometric multiplicity of the

M distinct unstable eigenvalues λi in (3.2). This is a notable reduction in the number of needed

controls over the max algebraic multiplicity N in (i) of Section 2.4.1.

(ii) Intimately linked to goal (i) is the next goal to obtain the controllability Kalman rank condition

be expressed in terms of only the eigenfunctions - not the generalized eigenfunctions - of the

adjoint (AuN )∗

(iii) An important additional goal is to simplify and make more transparent the well-posedness and

local stabilization arguments for the non-linear problem, in particular through a direct analysis

of the nonlinear operator Nq in (2.11) called B in [B-T.1], not its approximation sequence Bε

as in [B-T.1, Section 4, p1480]. More precisely, unlike [B-T.1], the present paper carries out an

analysis of the critical issues based on the maximal regularity property of the linearized feedback

operator AF (= AF,q) in (7.1). This point also is further expanded in Section 2.6 below.

(iv) A final goal - in line with goal (iii) above - is to obtain corresponding results for the pressure π

in (2.1a), as part of the same maximal regularity property of the linearized feedback operator

AF (= AF,q) in (7.1), not through ad-hoc subsequent argument as in [B-T.1, Theorem 2.3, p1450]

2.5 What is the motivation for seeking interior localized feedback exponential

stabilization of problem (2.1) in the topology of the Besov space in (2.3)?

Obtaining the resulting stabilization in a non-Hilbertian setting may be of theoretical interest in

itself in line with recent developments in parabolic equations . However, our main motivation for the

present study is another. The present paper intends to test Lq/Besov spaces techniques initially in the

5



interior localized feedback stabilization problem (2.1). The true aim is however, to export them with

serious additional technical difficulties, to solve the presently recognized open problem of the local

feedback exponential stabilization of the N-S equations with finite-dimensional feedback tangential

boundary controllers in the case of dimension d = 3. In fact, present state-of-the-art has succeeded

[L-T.2], [L-T.3] in establishing local exponential stabilization (asymptotic turbulence suppression) by

means of finite-dimensional tangential feedback boundary control in the Hilbert setting and with no

assumptions whatsoever on the Oseen operator in two cases:

(i) when the dimension d = 2,

(ii) when the dimension d = 3 but the initial condition y0 in (2.1.d) is compactly supported.

In the general d = 3 case, the non-linearity of the N-S problem forces a Hilbert space setting with

a high-topology H
1/2+ε(Ω) for the initial conditions, whereby the compatibility conditions on the

boundary kick in. These then cannot allow the stabilizing feedback control to be finite-dimensional

in general. More precisely, even at the level of the linearized boundary problem for d = 3, open loop

exponential stabilization [B-L-T.3, Proposition 3.7.1 Remark 3.7.1], [L-T.2, Proposition 2.5, eq (2.48)]

provide a boundary control consisting of a finite-dimensional term plus the term e−2γ1t((I.C.)|Γ), with

γ1 > 0 preassigned, which spoils the finite-dimensionality, unless the initial condition is compactly

supported. These limitations are in subsequent literature. In contrast, the Besov space in (2.3) above,

which is “close” to the space Lq(Ω), q > 3, has the key, fundamental advantage of not recognizing

the boundary conditions. In fact, the critical role of L3(Ω) (for d = 3) has been recognized as in the

well-posedness of the (uncontrolled) 3 − d Navier-Stokes equations [J-S]. That is why this paper is

interested in a stabilization result in such a space in d = 3, at first in the case of interior localized

control.

2.6 Comparison with the prior work [B-T.1], once the present treatment is spe-

cialized to the Hilbert setting (q = 2)

A comparison with the prior 2004-work [B-T.1] carried out in the Hilbert setting is in order.

Orientation Even when specialized to the Hilbert space setting (q = 2), the present treatment offers

distinct, notable advantages both conceptual and computational over [B-T.1]. These include not
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only definitely simpler and more direct arguments but also transparent simplifications in the actual

construction of the finitely many stabilizing controllers. Qualitative details are given below. The main

conceptual approach and the final results of the present paper are (when specialized to the Hilbert set-

ting) qualitatively in line with those in [B-T.1]: local uniform stabilization of the non-linear y-problem

(2.1) near an unstable equilibrium solution ye by means of finitely many, arbitrarily localized controllers

is based on the corresponding result on (global) uniform stabilization of the linearized w-system (2.13).

This in turn rests on the space decomposition technique introduced in [RT.1] for parabolic problems

(and also for differentiable semigroups): its foundational starting point is the controllability of the

finite dimensional unstable projected system wN in (3.8a). However, in the implementation of these

two fundamental phases, linear analysis - in particular, its finite dimensional wN component - and

nonlinear analysis, the present paper provides a much more attractive, more powerful and mature

treatment. We mention the most relevant new features. They are:

1. finite dimensional analysis leading, through a much more simplified and more direct approach, to

a lower (optimal) number of feedback controls

2. infinite dimensional analysis on the nonlinear effects (the operator Nq in (2.11)) handled by critical

and clean use of maximal regularity of the linearized feedback operator AF (≡ AF,q) in (7.1), rather

than by the approximation argument as in [B-T.1]. This refers to both y and π.

These two points are explained below.

1. Stabilization of the linearized w-problem (2.13). The key foundational algebraic test for

controllability of the finite dimensional wN -system (3.8a) on the finite dimensional unstable sub-

space W u
N is much simplified, sharper and leads, in principle, to checkable conditions and to

an implementable procedure to obtain constructively the finite dimensional stabilizing vectors

uk ∈ W u
N , pk ∈ (W u

N )∗. In fact, the present treatment shows that (for the complexified version

of the N-S) the required number of feedback stabilizing controllers is K = sup{`i, i = 1, . . . ,M},

the max of the geometric multiplicity `i of the M distinct unstable eigenvalues λi of the Oseen

operator A; not the larger sup{Ni, i = 1, . . . ,M}, the max of the algebraic multiplicity of its

distinct unstable eigenvalues, as in [B-T.1], [B-L-T.1], [B-L-T.3]. Let alone N =

M∑
i=1

Ni = dim
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W u
N (dimension of the generalized eigenspace of the unstable eigenvalues) as in the treatment of

[B-T.1, assumption K.2 p 123], where, in addition, the simplifying assumption that algebraic and

geometric multiplicities coincide for the unstable eigenvalues. Moreover, the entire analysis of the

present paper rests only on the (true) eigenvectors corresponding to the unstable eigenvalues of the

adjoint operator in (4.1); not only under the Finite Dimensional Spectral Condition (semisimplic-

ity) as in [B-T.1] where W u
N has a basis of such (true) eigenvectors, but also in the most general

case where the projected Oseen operator AuN is in Jordan form, and hence the basis on W u
N consists

instead of all generalized eigenvectors corresponding to the unstable eigenvalues. As first noted

in [L-T.2] in the study of tangential boundary stabilization of the NS equations, even in the gen-

eral case possessing only a basis of generalized eigenfunctions arising from the Jordan form, the

final test for controllability involves only the true eigenfunctions of the adjoint operator: the alge-

braic test (5.13), (5.14) for controllability in the general case is exactly the same as the algebraic

test (4.18) in the semisimple (diagonalizable) FDSA-case; and only the true eigenfunctions count.

This justifies why the number K of (complex valued) stabilizing controllers as in Theorem 3.1 is

equal to the supremum of the geometric multiplicity of the unstable eigenvalues, not the supremum

of their larger algebraic multiplicity as in past references [B-T.1], [B-L-T.1], [B-L-T.3], [?], as noted

above. Moreover, in [B-T.1] the procedure for testing controllability in the general case was much

more cumbersome and far less implementable: the original basis of generalized eigenfunctions of

the adjoint operator in the general case was transformed into an orthonormal basis of W u
N via the

Schmidt orthogonalization process, and the test for the finite dimensional controllability was then

based on such transformed, and thus in principle difficult to check, orthogonalized system: a much

more complicated test than the one using just the true eigenfunctions as in (5.13).

2. Local Stabilization of the nonlinear translated z-equation (2.7) near the origin, hence of

the original y-equation (2.1) near an equilibrium solution ye. Treatment of the nonlinearity

in the present work is much more transparent and direct than the one performed in [B-T.1]. Here

the analysis is directly in terms of the nonlinear operator Nq in (2.11) and makes use of maximal

regularity properties of the linearized feedback operator AF (≡ AF,q) in (7.1) (maximal regularity is

equivalent to analyticity of the semigroup in the Hilbert setting). In contrast, in [B-T.1] with q = 2,

an approximation argument of the nonlinear operator N , denoted by B, was used, by introducing a
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sequence of approximating operators Bε thereof [B-T.1, Section 4, p1480]. A critical step in [B-T.1]

is that the nonlinearity B (or its approximation) be controlled by the topology of the A
3/4-power;

and this in turn is achieved by using an optimal control approach with A
3/4-penalization of the

solution via Riccati equations. There is no need of this in the present treatment (the analysis of

the optimization problem and Riccati equation in a non-Hilbert setting is not the right tool). We

likewise note that our present treatment of the passage from the w-linearized problem (3.16) to

the fully non-linear z-system (3.20) is also different from the one employed in [B-L-T.1], [L-T.3]

which was also direct in terms of the nonlinear operator N . It was however not maximal regularity

- based as in the present paper.

3. Well-posedness of the pressure π for the original y-problem in the feedback form as in

(3.22) in the vicinity of the equilibrium pressure πe in (2.2a). The well-posedness result

Theorem 26.2 on the pressure π of the original y-problem on feedback form as given by (3.26),

(3.27) is the Lq/Besov space counterpart of the Hilbert (L2)-version given by [B-T.1, Theorem 2.3

p1450]. The present proof is much more direct as, again, is based on maximal regularity properties.

In contrast, the proof in [B-T.1, p 1484] is based on the approximation of the original problem.

2.7 Helmholtz decomposition

A first difficulty one faces in extending the local exponential stabilization result for the interior localized

problem (2.1) from the Hilbert-space setting in [B-T.1], [B-L-T.1] to the Lq setting is the question

of the existence of a Helmholtz (Leray) projection for the domain Ω in Rd. More precisely: Given

an open set Ω ⊂ Rd, the Helmholtz decomposition answers the question as to whether Lq(Ω) can be

decomposed into a direct sum of the solenoidal vector space Lqσ(Ω) and the space Gq(Ω) of gradient

fields. Here,

Lqσ(Ω) = {y ∈ C∞c (Ω) : div y = 0 in Ω}‖·‖q

= {g ∈ Lq(Ω) : div g = 0; g · ν = 0 on ∂Ω},

for any locally Lipschitz domain Ω ⊂ Rd, d ≥ 2 [Ga.3, p 119]

Gq(Ω) = {y ∈ Lq(Ω) : y = ∇p, p ∈W 1,q
loc (Ω)} where 1 ≤ q <∞.

(2.4)

Both of these are closed subspaces of Lq.
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Definition 2.1. Let 1 < q <∞ and Ω ⊂ Rn be an open set. We say that the Helmholtz decomposition

for Lq(Ω) exists whenever Lq(Ω) can be decomposed into the direct sum (non-orthogonal)

Lq(Ω) = Lqσ(Ω)⊕Gq(Ω). (2.5)

The unique linear, bounded and idempotent (i.e. P 2
q = Pq) projection operator Pq : Lq(Ω) −→ Lqσ(Ω)

having Lqσ(Ω) as its range and Gq(Ω) as its null space is called the Helmholtz projection. Additional

information is given in Appendix A.

This is an important property in order to handle the incompressibility condition div y ≡ 0. For in-

stance, if such decomposition exists, the Stokes equation (say the linear version of (2.1) with control

u ≡ 0) can be formulated as an equation in the Lq setting. Here below we collect a subset of known

results about Helmholtz decomposition. We refer to [H-S, Section 2.2], in particular to the comprehen-

sive Theorem 2.2.5 in this reference, which collects domains for which the Helmholtz decomposition is

known to exist. These include the following cases:

(i) any open set Ω ⊂ Rd for q = 2, i.e. with respect to the space L2(Ω); more precisely, for q = 2,

we obtain the well-known orthogonal decomposition (in the standard notation, where ν =unit

outward normal vector on Γ) [C-F, Prop 1.9, p 8]

L2(Ω) = H ⊕H⊥ (2.6a)

H = {φ ∈ L2(Ω) : div φ ≡ 0 in Ω; φ · ν ≡ 0 on Γ} (2.6b)

H⊥ = {ψ ∈ L2(Ω) : ψ = ∇h, h ∈ H1(Ω)}; (2.6c)

(ii) a bounded C1-domain in Rd [F-M-M], 1 < q <∞ [Ga.3, Theorem 1.1 p 107, Theorem 1.2 p 114]

for C2-boundary

(iii) a bounded Lipschitz domain Ω ⊂ Rd (d = 3) and for 3
2 − ε < q < 3 + ε sharp range [F-M-M];

(iv) a bounded convex domain Ω ⊂ Rd, d ≥ 2, 1 < q <∞ [F-M-M].

On the other hand, on the negative side, it is known that there exist domains Ω ⊂ Rd such that the

Helmholtz decomposition does not hold for some q 6= 2 [M-S].
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Assumption (H-D) Henceforth in this paper, we assume that the bounded domain Ω ⊂ Rd under

consideration admits a Helmholtz decomposition for the values of q, 1 < q < ∞, here considered at

first, for the linearized problem (2.13) below. The final result Theorem 3.5 for the non-linear problem

(2.1) will require q > d, see (9.16), in the case of interest d = 2, 3.

2.8 Translated nonlinear Navier-Stokes z-problem: reduction to zero equilibrium

We return to Theorem 2.1 which provides an equilibrium pair {ye, πe}. Then, as in [B-T.1], [B-L-T.1],

[L-T.2] we translate by {ye, pe} the original N-S problem (2.1). Thus we introduce new variables

z = y − ye, χ = π − πe (2.7a)

and obtain the translated problem

zt − ν∆z + (ye · ∇)z + (z · ∇)ye + (z · ∇)z +∇χ = mu in Q (2.7b)

div z = 0 in Q (2.7c)

z = 0 on Σ (2.7d)

z(0, x) = y0(x)− ye(x) on Ω (2.7e)

We shall accordingly study the local null feedback stabilization of the z-problem (2.7), that is, feedback

stabilization in a neighborhood of the origin. As usual, we next apply the projection Pq below (2.5)

to the translated N-S problem (2.7) to eliminate the pressure χ. We thus proceed to obtain the

corresponding abstract setting for the problem (2.7) as in [B-T.1] except in the Lq-setting rather than

in the L2-setting as in this reference. Note that Pqzt = zt, since z ∈ Lqσ(Ω) in (2.4).

2.9 Abstract nonlinear translated model

First, for 1 < q < ∞ fixed, the Stokes operator Aq in Lqσ(Ω) with Dirichlet boundary conditions is

defined by [G-G-H.1, p 1404], [H-S, p 1]

Aqz = −Pq∆z, D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω). (2.8)

The operator Aq has a compact inverse A−1
q on Lqσ(Ω), hence Aq has a compact resolvent on Lqσ(Ω).

Next, we introduce the first order operator Ao,q,

Ao,qz = Pq[(ye . ∇)z + (z . ∇)ye], D(Ao,q) = D(A
1/2
q ) ⊂ Lqσ(Ω). (2.9)
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where the D(A
1/2
q ) is defined explicitly in (2.22) below. Thus, Ao,qA

−1/2
q is a bounded operator on

Lqσ(Ω), and thus Ao,q is bounded on D(A
1/2
q )

‖Ao,qf‖ =
∥∥∥Ao,qA−1/2

q A−
1/2

q Aqf
∥∥∥ ≤ Cq ∥∥∥A1/2

q f
∥∥∥ , f ∈ D(A

1/2
q ).

This leads to the definition of the Oseen operator

Aq = −(νAq +Ao,q), D(Aq) = D(Aq) ⊂ Lqσ(Ω). (2.10)

Finally, we define the projection of the nonlinear portion of the static operator in (2.7b)

Nq(z) = Pq[(z · ∇)z], D(Nq) = W 1,q(Ω) ∩ L∞(Ω) ∩ Lqσ(Ω). (2.11)

[As shown in (9.16) in the analysis of the non-linear problem, at the end we shall use W 1,q(Ω) ⊂ L∞(Ω)

for q > dim Ω = 3 [Kes, Theorem 2.4.4, p74, requiring C1 boundary.]]

Thus, the Navier-Stokes translated problem (2.7), after application of the Helmholtz projector Pq in

Definition 2.1 and use of (2.8)-(2.11), can be rewritten as the following abstract equation in Lqσ(Ω):

dz

dt
+ νAqz +Ao,qz + Pq[(z · ∇)z] = Pq(mu) or

dz

dt
−Aqz +Nqz = Pq(mu) in Lqσ(Ω) (2.12a)

 z(x, 0) = z0(x) = y0(x)− ye in Lqσ(Ω). (2.12b)

2.10 The linearized problem of the translated model

Next, still for 1 < q <∞, we consider the following linearized system of the translated model (2.7) or

(2.12):

dw

dt
+ νAqw +Ao,qw = Pq(mu) or

dw

dt
−Aqw = Pq(mu) in Lqσ(Ω) (2.13a)

 w0(x) = y0(x)− ye in Lqσ(Ω). (2.13b)

2.11 Some auxiliary results for problem (2.13): analytic semigroup generation,

maximal regularity, domains of fractional powers

In this subsection we collect some known results to be used in the sequel.
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(a) Definition of Besov spaces Bs
q,p on domains of class C1 as real interpolation of Sobolev

spaces: Let m be a positive integer, m ∈ N, 0 < s < m, 1 ≤ q < ∞, 1 ≤ p ≤ ∞, then we define

[G-G-H.1, p 1398]

Bs
q,p(Ω) = (Lq(Ω),Wm,q(Ω)) s

m
,p (2.14a)

This definition does not depend on m ∈ N [Wahl, p xx]. This clearly gives

Wm,q(Ω) ⊂ Bs
q,p(Ω) ⊂ Lq(Ω) and ‖y‖Lq(Ω) ≤ C ‖y‖Bsq,p(Ω) . (2.14b)

We shall be particularly interested in the following special real interpolation space of the Lq and

W 2,q spaces
(
m = 2, s = 2− 2

p

)
:

B
2− 2

p
q,p (Ω) =

(
Lq(Ω),W 2,q(Ω)

)
1− 1

p
,p
. (2.15)

Our interest in (2.15) is due to the following characterization [Amann.2, Thm 3.4], [G-G-H.1, p

1399]: if Aq denotes the Stokes operator introduced in (2.8), then(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g|Γ = 0
}

if
1

q
< 2− 2

p
< 2 (2.16a)(

Lqσ(Ω),D(Aq)
)

1− 1
p
,p

=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g · ν|Γ = 0
}
≡ B̃2−2/p

q,p (Ω) (2.16b)

if 0 < 2− 2

p
<

1

q
; or 1 < p <

2q

2q − 1
.

Notice that, in (2.16b), the condition g · ν|Γ = 0 is an intrinsic condition of the space Lqσ(Ω) in

(2.4), not an extra boundary condition as g|Γ = 0 in (2.16a).

Remark 2.3. In the analysis of well-posedness and stabilization of the nonlinear N-S problem

(2.1), with control u in feedback form - such as the non linear translated feedback problem (3.20)

= (9.1)- we shall need to impose the constrain q > 3, see Eq (9.16), to obtain the embedding

W 1,q ↪→ L∞(Ω) in our case of interest d = 3, as already noted below (2.11). What is then the

allowable range of the parameter p in such case q > 3? The intended goal of the present paper is

to obtain the sought-after stabilization result in a function space, such as a B
2−2/p
q,p (Ω)-space, that

does not recognize boundary conditions of the I.C. Thus, we need to avoid the case in (2.16a),

as this implies a Dirichlet homogeneous B.C. Instead, we need to fit into the case (2.16b). We

shall then impose the condition 2 − 2

p
<

1

q
<

1

3
and then obtain that p must satisfy p <

6

5
.
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Moreover, analyticity and maximal regularity of the Stokes problem will require p > 1. Thus, in

conclusion, the allowed range of the parameters p, q under which we shall solve the well-posedness

and stabilization problem of the nonlinear N-S feedback system (3.20) = (9.1) for d = 3, in the

space B̃
2−2/p
q,p (Ω) which - as intended - does not recognize boundary conditions is: q > 3, 1 < p <

6

5
.

See Theorems 3.3 through 3.5.

(b) The Stokes and Oseen operators generate a strongly continuous analytic semigroup

on Lqσ(Ω), 1 < q <∞.

Theorem 2.2. Let d ≥ 2, 1 < q <∞ and let Ω be a bounded domain in Rd of class C3. Then

(i) the Stokes operator −Aq = Pq∆ in (2.8), repeated here as

−Aqψ = Pq∆ψ, ψ ∈ D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω) (2.17)

generates a s.c analytic semigroup e−Aqt on Lqσ(Ω). See [Gi.1] and the review paper [H-S,

Theorem 2.8.5 p 17].

(ii) The Oseen operator Aq in (2.10)

Aq = −(νAq +Ao,q), D(Aq) = D(Aq) ⊂ Lqσ(Ω) (2.18)

generates a s.c analytic semigroup eAqt on Lqσ(Ω). This follows as Ao,q is relatively bounded

with respect to A
1/2
q , defined in (2.22), see below (2.9): thus a standard theorem on pertur-

bation of an analytic semigroup generator applies [Pazy, Corollary 2.4, p 81].

(iii)

0 ∈ ρ(Aq) = the resolvent set of the Stokes operator Aq (2.19a){
A−1
q : Lqσ(Ω) −→ Lqσ(Ω) is compact (2.19b)

(iv) The s.c. analytic Stokes semigroup e−Aqt is uniformly stable on Lqσ(Ω): there exist constants

M ≥ 1, δ > 0 (possibly depending on q) such that∥∥e−Aqt∥∥L(Lqσ(Ω))
≤Me−δt, t > 0. (2.20)

(c) Domains of fractional powers, D(Aαq ), 0 < α < 1 of the Stokes operator Aq on Lqσ(Ω), 1 <

q <∞,
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Theorem 2.3. For the domains of fractional powers D(Aαq ), 0 < α < 1, of the Stokes operator Aq

in (2.8) = (2.17), the following complex interpolation relation holds true [Gi.2] and [H-S, Theorem

2.8.5, p 18]

[D(Aq), L
q
σ(Ω)]1−α = D(Aαq ), 0 < α < 1, 1 < q <∞; (2.21)

in particular

[D(Aq), L
q
σ(Ω)] 1

2
= D(A

1/2
q ) ≡W 1,q

0 (Ω) ∩ Lqσ(Ω). (2.22)

Thus, on the space D(A
1/2
q ), the norms

‖∇ · ‖Lq(Ω) and ‖ ‖Lq(Ω) (2.23)

are equivalent via Poincaré inequality.

(d) The Stokes operator −Aq and the Oseen operator Aq, 1 < q <∞ generate s.c. analytic

semigroups on the Besov space(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g|Γ = 0
}

if
1

q
< 2− 2

p
< 2; (2.24a)(

Lqσ(Ω),D(Aq)
)

1− 1
p
,p

=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g · ν|Γ = 0
}
≡ B̃2−2/p

q,p (Ω) (2.24b)

if 0 < 2− 2

p
<

1

q
.

Theorem 2.2 states that the Stokes operator −Aq generates a s.c analytic semigroup on the space

Lqσ(Ω), 1 < q < ∞, hence on the space D(Aq) in (2.17), with norm ‖ · ‖D(Aq)
= ‖Aq · ‖Lqσ(Ω) as

0 ∈ ρ(Aq). Then, one obtains that the Stokes operator −Aq generates a s.c. analytic semigroup

on the real interpolation spaces in (2.24). Next, the Oseen operator A = −(νAq + Ao,q) likewise

generates a s.c. analytic semigroup eAqt on Lqσ(Ω) since Ao,q is relatively bounded w.r.t. A
1/2
q , as

Ao,qA
−1/2
q is bounded on Lqσ(Ω). Moreover Aq generates a s.c. analytic semigroup on D(Aq) =

D(Aq) (equivalent norms). Hence Aq generates a s.c. analytic semigroup on the real interpolation

space of (2.24). Here below, however, we shall formally state the result only in the case 2−2/p <
1/q.

i.e. 1 < p < 2q/2q−1, in the space B̃
2−2/p
q,p (Ω), as this does not contain B.C. The objective of the

present paper is precisely to obtain stabilization results on spaces that do not recognize B.C.

Theorem 2.4. Let 1 < q <∞, 1 < p < 2q/2q−1
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(i) The Stokes operator −Aq in (2.17) generates a s.c analytic semigroup e−Aqt on the space

B̃
2−2/p
q,p (Ω) defined in (2.16) = (2.24) which moreover is uniformly stable, as in (2.20),∥∥e−Aqt∥∥

L
(
B̃

2−2/p
q,p (Ω)

) ≤Me−δt, t > 0. (2.25)

(ii) The Oseen operator Aq in (2.18) generates a s.c. analytic semigroup eAqt on the space

B̃
2−2/p
q,p (Ω) in (2.16) = (2.24).

(e) Space of maximal Lp regularity on Lqσ(Ω) of the Stokes operator −Aq, 1 < p < ∞, 1 <

q <∞ up to T =∞. We return to the dynamic Stokes problem in {ϕ(t, x), π(t, x)}

ϕt −∆ϕ+∇π = F in (0, T ]× Ω ≡ Q (2.26a)

div ϕ ≡ 0 in Q (2.26b)

 ϕ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ (2.26c)

ϕ|t=0 = ϕ0 in Ω, (2.26d)

rewritten in abstract form, after applying the Helmholtz projection Pq to (2.26a) and recalling Aq

in (2.17) as

ϕ′ +Aqϕ = Fσ ≡ PqF, ϕ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

(2.27)

Next, we introduce the space of maximal regularity for {ϕ,ϕ′} as [H-S, p 2; Theorem 2.8.5.iii, p

17], [G-G-H.1, p 1404-5], with T up to ∞:

XT
p,q,σ = Lp(0, T ;D(Aq)) ∩W 1,p(0, T ;Lqσ(Ω)) (2.28)

(recall (2.8) for D(Aq)) and the corresponding space for the pressure as

Y T
p,q = Lp(0, T ; Ŵ 1,q(Ω)), Ŵ 1,q(Ω) = W 1,q(Ω)/R. (2.29)

The following embedding, also called trace theorem, holds true [Amann.2, Theorem 4.10.2, p 180,

BUC for T =∞], [P-S].

XT
p,q,σ ⊂ XT

p,q ≡ Lp(0, T ;W 2,q(Ω)) ∩W 1,p(0, T ;Lq(Ω)) ↪→ C
(

[0, T ];B
2−2/p
q,p (Ω)

)
. (2.30)

For a function g such that div g ≡ 0, g|Γ = 0 we have g ∈ XT
p,q ⇐⇒ g ∈ XT

p,q,σ, by (2.4).

The solution of Eq(2.27) is

ϕ(t) = e−Aqtϕ0 +

∫ t

0
e−Aq(t−s)Fσ(τ)dτ. (2.31)
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The following is the celebrated result on maximal regularity on Lqσ(Ω) of the Stokes problem due

originally to Solonnikov [Sol.2] reported in [H-S, Theorem 2.8.5.(iii) and Theorem 2.10.1 p24 for

ϕ0 = 0], [Saa], [G-G-H.1, Proposition 4.1 , p 1405].

Theorem 2.5. Let 1 < p, q <∞, T ≤ ∞. With reference to problem (2.26) = (2.27), assume

Fσ ∈ Lp(0, T ;Lqσ(Ω)), ϕ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
. (2.32)

Then there exists a unique solution ϕ ∈ XT
p,q,σ, π ∈ Y T

p,q to the dynamic Stokes problem (2.26) or

(2.27), continuously on the data: there exist constants C0, C1 independent of T, Fσ, ϕ0 such that

via (2.30)

C0 ‖ϕ‖
C
(

[0,T ];B
2−2/p
q,p (Ω)

) ≤ ‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q

≡
∥∥ϕ′∥∥

Lp(0,T ;Lqσ(Ω))
+ ‖Aqϕ‖Lp(0,T ;Lqσ(Ω)) + ‖π‖Y Tp,q

≤ C1

{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖(Lqσ(Ω),D(Aq)

)
1− 1

p ,p

}
.

(2.33)

In particular,

(i) With reference to the variation of parameters formula (2.31) of problem (2.27) arising from

the Stokes problem (2.26), we have recalling (2.28): the map

Fσ −→
∫ t

0
e−Aq(t−τ)Fσ(τ)dτ : continuous (2.34)

Lp(0, T ;Lqσ(Ω)) −→ XT
p,q,σ ≡ Lp(0, T ;D(Aq)) ∩W 1,p(0, T ;Lqσ(Ω)) (2.35)

(ii) The s.c. analytic semigroup e−Aqt generated by the Stokes operator −Aq (see (2.17)) on the

space
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

(see statement below (2.24)) satisfies

e−Aqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
−→ XT

p,q,σ ≡ Lp(0, T ;D(Aq))∩W 1,p(0, T ;Lqσ(Ω))

(2.36a)

In particular via (2.24b), for future use, for 1 < q < ∞, 1 < p < 2q
2q−1 , the s.c. analytic

semigroup e−Aqt on the space B̃
2−2/p
q,p (Ω), satisfies

e−Aqt : continuous B̃
2−2/p
q,p (Ω) −→ XT

p,q,σ. (2.36b)
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(iii) Moreover, for future use, for 1 < q <∞, 1 < p < 2q
2q−1 , then (2.33) specializes to

‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q ≤ C
{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖

B̃
2−2/p
q,p (Ω)

}
. (2.37)

(f) Maximal Lp regularity on Lqσ(Ω) of the Oseen operator Aq, 1 < p <∞, 1 < q <∞, up to

T <∞. We next transfer the maximal regularity of the Stokes operator (−Aq) on Lqσ(Ω)-asserted

in Theorem 2.5 into the maximal regularity of the Oseen operator Aq = −νAq − Ao,q in (2.18)

exactly on the same space XT
p,q,σ defined in (2.28), however only up to T <∞.

Thus, consider the dynamic Oseen problem in {ψ(t, x), π(t, x)} with equilibrium solution ye, see

(2.2):

ψt −∆ψ + Le(ψ) +∇π = F in (0, T ]× Ω ≡ Q (2.38a)

div ψ ≡ 0 in Q (2.38b)

 ψ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ (2.38c)

ψ|t=0 = ψ0 in Ω, (2.38d)

Le(ψ) = (ye.∇)ψ + (ψ.∇)ye (2.39)

rewritten in abstract form, after applying the Helmholtz projector Pq to (2.38a) and recalling Aq

in (2.18), as

ψt = Aqψ + PqF = −νAqψ −Ao,qψ + Fσ, ψ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

(2.40)

whose solution is

ψ(t) = eAqtψ0 +

∫ t

0
eAq(t−τ)Fσ(τ)dτ. (2.41)

ψ(t) = e−νAqtψ0 +

∫ t

0
e−νAq(t−τ)Fσ(τ)dτ −

∫ t

0
e−νAq(t−τ)Ao,qψ(τ)dτ. (2.42)

Theorem 2.6. Let 1 < p, q <∞, 0 < T <∞. Assume (as in (2.32))

Fσ ∈ Lp
(
0, T ;Lqσ(Ω)

)
, ψ0 ∈

(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

(2.43)

where D(Aq) = D(Aq), see (2.18). Then there exists a unique solution ψ ∈ XT
p,q,σ, π ∈ Y T

p,q of

the dynamic Oseen problem (2.38), continuously on the data: that is, there exist constants C0, C1
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independent of Fσ, ψ0 such that

C0 ‖ϕ‖
C
(

[0,T ];B
2−2/p
q,p (Ω)

) ≤ ‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q

≡
∥∥ϕ′∥∥

Lp(0,T ;Lq(Ω))
+ ‖Aqϕ‖Lp(0,T ;Lq(Ω)) + ‖π‖Y Tp,q (2.44)

≤ CT
{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖(Lqσ(Ω),D(Aq)

)
1− 1

p ,p

}
(2.45)

where T <∞. Equivalently, for 1 < p, q <∞

i. The map

Fσ −→
∫ t

0
eAq(t−τ)Fσ(τ)dτ : continuous

Lp(0, T ;Lqσ(Ω)) −→ Lp
(
0, T ;D(Aq) = D(Aq)

) (2.46)

where then automatically, see (2.40)

Lp(0, T ;Lqσ(Ω)) −→W 1,p(0, T ;Lqσ(Ω)) (2.47)

and ultimately

Lp(0, T ;Lqσ(Ω)) −→ XT
p,q,σ ≡ Lp

(
0, T ;D(Aq)

)
∩W 1,p(0, T ;Lqσ(Ω)). (2.48)

ii. The s.c. analytic semigroup eAqt generated by the Oseen operator Aq (see (2.18)) on the space(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

satisfies for 1 < p, q <∞

eAqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
−→ Lp

(
0, T ;D(Aq) = D(Aq)

)
(2.49)

and hence automatically by (2.28)

eAqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
−→ XT

p,q,σ. (2.50)

In particular, for future use, for 1 < q < ∞, 1 < p < 2q
2q−1 , we have that the s.c. analytic

semigroup eAqt on the space B̃
2−2/p
q,p (Ω), satisfies

eAqt : continuous B̃
2−2/p
q,p (Ω) −→ Lp

(
0, T ;D(Aq) = D(Aq)

)
, T <∞. (2.51)

and hence automatically

eAqt : continuous B̃
2−2/p
q,p (Ω) −→ XT

p,q,σ, T <∞. (2.52)
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A proof is given in Appendix B.

Remark 2.4. The literature reports physical situations where the volumetric force f is actually

replaced by ∇g(x); that is, f is a conservative vector field. Thus, returning to Eq (2.2a) with f(x)

replaced now by ∇g(x) we see that a solution of such stationary problem is ye = 0, πe = g, hence

Le(·) ≡ 0 by (2.39). Returning to Eq (2.1a) with f replaced by ∇g(x) and applying to the resulting

equation the projection operator Pq, one obtains in this case the projected equation

yt − νPq∆y + Pq
[
(y · ∇)y

]
= Pq(mu) in Q. (2.53)

This, along with the solenoidal and boundary conditions (2.1b), (2.1c), yields the corresponding ab-

stract form recalling also (2.11)

yt + νAqy +Nqy = Pq(mu) in Lqσ(Ω). (2.54)

Then y-problem (2.54) is the same as the z-problem (2.12a), except without the Oseen term Ao,q. The

linearized version of problem (2.54) is then

ηt + νAqη = Pq(mu) in Lqσ(Ω), (2.55)

which is the same as the w-problem (2.13a), except without the Oseen term Ao,q. The s.c. analytic

semigroup e−νAqt driving the linear equation (2.55) is uniformly stable in Lqσ(Ω), see (2.20), as well

as in B̃
2−2/p
q,p (Ω), see (2.25). Then, in the case of the present Remark, the present paper may be used

to enhance at will the uniform stability of the corresponding problem with u given in feedback form

as in the RHS of Eq (3.20) as to obtain a decay rate much bigger than the original δ > 0 in (2.20) or

(2.25). Thus there is no need to perform the translation y −→ z of Section 2.8, when f in (2.2a) is

replaced by ∇g(x); i.e. ye = 0 in this case. The important relevance of the present Remark will be

pointed out in the follow-out paper [L-P-T] where only finitely many localized tangential boundary

feedback controls will be employed to the so far open case dim Ω = 3. The corresponding required

“unique continuation property” holds true for the Stokes problem (ye = 0), see [RT.3], [RT.4].
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3 Main results

3.1 Orientation

All the main results of this paper, Theorems 3.1 through 3.5, are stated (at first) in the complex state

space setting Lqσ(Ω) + iLqσ(Ω). Thus, the finitely many stabilizing feedback vectors pk, uk constructed

in the subsequent proofs belong to the complex finite dimensional unstable subspace (W u
N )∗ and W u

N

respectively. The question then arises as to transfer back these results into the original real setting.

This issue was resolved in [B-T.1]. Here, such translation, taken from [B-T.1], from the results in the

complex setting (Theorems 3.1 through 3.5) into corresponding results in the original real setting is

given in Section 3.7.

Step 1: First, we will show in Theorem 3.2 that the linearized Navier-Stokes problem wt = Aqw +

Pq(mu) in (2.13) can be uniformly (exponentially) stabilized in the basic space Lqσ(Ω), 1 < q < ∞ in

fact, in the space D(Aθq), 0 ≤ θ ≤ 1, or
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

, in particular B̃
2−2/p
q,p (Ω) by means of an

explicitly constructed, finite dimensional spectral-based feedback controller mu, localized on ω, whose

structure is given in (3.16).

Step 2: Next, we proceed to the non-linear translated Navier-Stokes z-problem (2.12) with a control

u having the same structure as the finite-dimensional, spectral based stabilizing control used in the

linearized problem (2.13). This strategy leads to the non-linear feedback z-problem (3.20). We then

establish two results for problem (3.20):

(i) The first, Theorem 3.3, is that problem (3.20) is locally well-posed, i.e. for small initial data

z0, in the desired space B̃
2−2/p
q,p (Ω). It will require the constraint q > 3, see (9.16), to obtain

W 1,q(Ω) ↪→ L∞(Ω) for d = 3. In achieving this result, we must factor in what is the deliberate,

sought-after goal of the present paper: that is, to obtain (well-posedness and) uniform stabilization

of the original non-linear problem (2.1) near an equilibrium solution, in a function space that does

not recognize boundary conditions. This is the space B̃
2−2/p
q,p (Ω) having only the boundary condition

g · ν|Γ = 0 inherited from the basic Lqσ(Ω)-space, see (2.16b) and statement below it. In contrast,

we deliberately exclude then the space in (2.16a), p > 2q/2q−1, having an explicit additional B.C. In
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conclusion, for the nonlinear problem, we need to work with the space B̃
2−2/p
q,p (Ω) in (2.16b), and this

requires for d = 3 the range q > 3, 1 < p < 2q/2q−1, that is 1 < p < 6/5 where the boundary condi-

tions are not recognized. In this case the space B̃
2−2/p
q,p (Ω) =

(
Lqσ(Ω),D(Aq)

)
1−1/p,p

with index 1− 1/p

close to zero is “close” to the space Lq(Ω), for q > 3. Accordingly, with reference to the feedback

z-problem (3.20), we take z0 ∈ B̃
2−2/p
q,p (Ω), q > 3, 1 < p < 6/5 sufficiently small, and show that (3.20) is

well-posed in the function space X∞p,q,σ in (2.28). To this end, we use critically the maximal regularity

result Theorem 8.1. This is Theorem 2.3.ii.

(ii) Second, we address the stabilization problem and show that such Navier-Stokes feedback problem

(3.20) is, in fact, locally exponentially stabilizable in a neighborhood of the zero equilibrium solution

in the state space B̃
2−2/p
q,p (Ω). This is Theorem 3.4.

Such results, Theorem 3.3 and the Theorem 3.4 for the translated Navier-Stokes z-problem (3.20) in

feedback form then at once translate into counterpart results of local well-posedness and local interior

stabilization of the original y-problem (2.1) in a neighborhood of the equilibrium solution ye, with an

explicit finite dimensional feedback control localized on ω whose structure is given in (3.28b). Thus

Theorem 3.5 gives the main result of the present paper.

3.2 Introducing the problem of feedback stabilization of the linearized w-problem

(2.13) on the complexified Lqσ(Ω) space.

Preliminaries: In this subsection we take q fixed, 1 < q <∞ throughout. Accordingly, to streamline

the notation in the preceding setting of Section 1, we shall drop the dependence on q of all relevant

quantities and thus write P,A,Ao,A instead of Pq, Aq, Ao,q,Aq. We return to the linearized system

(2.13).

Moreover, as in [B-T.1], [B-L-T.1], we shall henceforth let Lqσ(Ω) denote the complexified space Lqσ(Ω)+

iLqσ(Ω), whereby then we consider the extension of the linearized problem (2.13) to such complexified

space. Thus, henceforth, w will mean w + iw̃, u will mean u+ iũ, w0 will mean w0 + iw̃0:

dw

dt
+ νAw +A0w = P (mu), or

dw

dt
−Aw = P (mu), w(0) = w0 on Lqσ(Ω). (3.1)
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As noted in Theorem 1.2(iii), the Oseen operator A has compact resolvent on Lqσ(Ω). It follows that

A has a discreet point spectrum σ(A) = σp(A) consisting of isolated eigenvalues {λj}∞j=1, which are

repeated according to their (finite) algebraic multiplicity `j . However, since A generates a C0 analytic

semigroup on Lqσ(Ω), its eigenvalues {λj}∞j=1 lie in a triangular sector of a well-known type.

The case of interest in stabilization occurs where A has a finite number, say N , of eigenvalues

λ1, λ2, λ3, . . . , λN on a complex half plane {λ ∈ C : Re λ ≥ 0} which we then order according to

their real parts, so that

. . . ≤ Re λN+1 < 0 ≤ Re λN ≤ . . . ≤ Re λ1, (3.2)

each λi, i = 1, . . . , N , being an unstable eigenvalue repeated according to its geometric multiplicity `i.

Let M denote the number of distinct unstable eigenvalues λj of A, so that `i is equal to the dimension

of the eigenspace corresponding to λi. Instead, N =
M∑
i=1

Ni is the sum of the corresponding algebraic

multiplicity Ni of λi, where Ni is the dimension of the corresponding generalized eigenspace.

There are results in the literature [J-T] that quantify the number of unstable eigenvalues in terms of

the system parameters. Denote by PN and P ∗N the projections given explicitly by [K-1, p 178], [B-T.1],

[B-L-T.1]

PN = − 1

2πi

∫
Γ

(λI −A)−1 dλ : Lqσ(Ω) onto W u
N (3.3a)

P ∗N = − 1

2πi

∫
Γ̄

(λI −A∗)−1 dλ : (Lqσ(Ω))∗ onto (W u
N )∗ ⊂ Lq′σ (Ω), (3.3b)

by (A.2c), where Γ (respectively, its conjugate counterpart Γ̄) is a smooth closed curve that separates

the unstable spectrum from the stable spectrum of A (respectively, A∗). As in [B-L-T.1, Sect 3.4,

p 37], following [RT.1],we decompose the space Lqσ(Ω) into the sum of two complementary subspaces

(not necessarily orthogonal):

Lqσ(Ω) = W u
N ⊕W s

N ; W u
N ≡ PNLqσ(Ω); W s

N ≡ (I − PN )Lqσ(Ω); dim W u
N = N (3.4)

where each of the spaces W u
N and W s

N (which depend on q, but we suppress such dependence) is

invariant under A (= Aq), and let
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AuN = PNA = A|Wu
N

; AsN = (I − PN )A = A|W s
N

(3.5)

be the restrictions of A to W u
N and W s

N respectively. The original point spectrum (eigenvalues) {λj}∞j=1

of A is then split into two sets

σ(AuN ) = {λj}Nj=1; σ(AsN ) = {λj}∞j=N+1, (3.6)

and W u
N is the generalized eigenspace of AuN in (3.1). The system (3.1) on Lqσ(Ω) can accordingly be

decomposed as

w = wN + ζN , wN = PNw, ζN = (I − PN )w. (3.7)

After applying PN and (I − PN ) (which commute with A) on (3.1), we obtain via (3.5)

on W u
N : w′N −AuNwN = PNP (mu); wN (0) = PNw0 (3.8a)

on W s
N : ζ ′N −AsNζN = (I − PN )P (mu); ζN (0) = (I − PN )w0 (3.8b)

respectively.

Main Result: We may now state the main feedback stabilization result of the linearized problem

(2.13) (=(3.1)) on the complexified space Lqσ(Ω)). The proof is constructive. How to construct the

finitely many stabilizing vectors will be established in the proof.

We anticipate the fact (noted in (4.2) and (4.0)) below that, for 1 < p, q <∞:

W u
N = space of generalized

eigenfunctions of Aq(= AuN )

corresponding to its distinct

unstable eigenvalues

⊂


(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p[

D(Aq), L
q
σ(Ω)

]
1−α = D(Aαq ), 0 ≤ α ≤ 1

⊂ Lqσ(Ω). (3.9)
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3.3 Uniform (exponential) stabilization of the linear finite-dimensional wN -problem

(3.8a) in the space W u
N by means of a finite-dimensional, explicit, spectral

based feedback control localized on ω.

Theorem 3.1. Let λ1, ., λi, ., λM be the unstable distinct eigenvalues of the Oseen operator A(= Aq)

(see (2.10)) with geometric multiplicity `i and set K = sup {`j ; j = 1, . . . ,M}. Let ω be an arbitrarily

small open portion of the interior with sufficiently smooth boundary ∂ω. Then: Given γ > 0 arbitrarily

large, one can construct suitable interior vectors [u1, . . . , uK ] in the smooth subspace W u
N of Lqσ(ω), 1 <

q <∞, and accordingly obtain a K-dimensional interior controller u = uN acting on ω, of the form

u =

K∑
k=1

µk(t)uk, uk ∈W u
N ⊂ Lqσ(Ω), µk(t) = scalar, (3.10)

such that, once inserted in the finite dimensional projected wN -system in (3.8), yields the system

w′N −AuNwN = PNP

(
m

(
K∑
k=1

µk(t)uk

))
. (3.11)

whose solution then satisfies the estimate

‖wN (t)‖Lqσ(Ω) + ‖uN (t)‖Lqσ(ω) ≤ Cγe
−γt ‖PNw0‖Lqσ(Ω) , t ≥ 0. (3.12)

In (3.12) we may replace the Lqσ(Ω)-norm, 1 < q <∞, alternatively either with the
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

norm, 1 < q < ∞; or else with the
[
D(Aq), L

q
σ(Ω)

]
1−α = D(Aαq )-norm, 0 ≤ α ≤ 1, 1 < q < ∞. In

particular, we also have

‖wN (t)‖
B̃

2−2/p
q,p (Ω)

+ ‖uN (t)‖
B̃

2−2/p
q,p (Ω)

≤ Cγe−γt ‖PNw0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0, (3.13)

in the B̃
2−2/p
q,p (Ω)-norm, 1 < q <∞, p < 2q/2q−1.

[Estimate (3.13) will be invoked in the nonlinear stabilization proof of Section 10]

Moreover, the above control u = uN =

K∑
k=1

µk(t)uk, the terms uk ∈ W u
N , in (3.10) can be chosen in

feedback form: that is, of the form µk(t) = (wN (t), pk)ω for suitable vectors pk ∈ (W u
N )∗ ⊂ Lq

′
σ (Ω)

depending on γ. Here and henceforth (v1, v2)ω =

∫
ω
v1 · v̄2 dω, v1 ∈ W u

N ⊂ Lqσ(Ω), v2 ∈ (W u
N )∗ ⊂
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Lq
′
σ (Ω). In conclusion, wN in (3.11) satisfying (3.12),(3.13) is the solution of the following equation

on W u
N (see (3.8)):

w′N −AuNwN = PNP

(
m

(
K∑
k=1

(wN (t), pk)ωuk

))
, uk ∈W u

N ⊂ Lqσ(Ω), pk ∈ (W u
N )∗ ⊂ Lq′σ (Ω), (3.14a)

rewritten as

w′N = ĀuwN , wN (t) = eĀ
utPNw0, wN (0) = PNw0. (3.14b)

A proof of Theorem 3.1 is given in Section 6.

3.4 Global well-posedness and uniform exponential stabilization on the linearized

w-problem (3.1) in various Lqσ(Ω)-based spaces, by means of the same feedback

control obtained for the wN -problem in Section 3.3

Again, 1 < q <∞ throughout this section.

Theorem 3.2. With reference to the unstable, possibly repeated, eigenvalues {λ}Nj=1 in (3.2), M of

which are distinct, let ε > 0 and set γ0 = |Re λN+1| − ε. Then the same K-dimensional feedback

controller

u = uN =

K∑
k=1

(wN (t), pk)ωuk, uk ∈W u
N ⊂ Lqσ(Ω), pk ∈ (W u

N )∗ ⊂ Lq′σ (Ω), (3.15)

constructed in Theorem 3.1, (3.14a) and yielding estimate (3.12), (3.13) for the finite-dimensional

projected wN -system (3.8), once inserted, this time in the full linearized w-problem (3.1), yields the

linearized feedback dynamics (wN = PNw):

dw

dt
= Aw + P

(
m

(
K∑
k=1

(PNw, pk)ωuk

))
≡ AFw (3.16)

where AF is the generator of a s.c. analytic semigroup in the space Lqσ(Ω). Here, A = Aq, P =

Pq, AF = AF,qMoreover, such dynamics w in (3.16) (equivalently, such generator AF in (3.16)) is

uniformly stable in the space Lqσ(Ω):

∥∥∥eAF tw0

∥∥∥
Lqσ(Ω)

= ‖w(t;w0)‖Lqσ(Ω) ≤ Cγ0e
−γ0t ‖w0‖Lqσ(Ω) , t ≥ 0 (3.17)

or for 0 < θ < 1 and δ > 0 arbitrarily small
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Cγ0,θe
−γ0t

∥∥∥Aθq w0

∥∥∥
Lqσ(Ω)

, t ≥ 0, w0 ∈ D(Aθq) (3.18a)∥∥Aθq eAF tw0

∥∥
Lqσ(Ω)

=
∥∥Aθq w(t;w0)

∥∥
Lqσ(Ω)

≤

Cγ0,θ,δe
−γ0t ‖w0‖Lqσ(Ω) , t ≥ δ > 0 (3.18b)

As in the case of Theorem 3.1, we may replace the Lqσ(Ω)-norm in (3.17), 1 < q < ∞, with the(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

-norm, 1 < p, q <∞; in particular, with the B̃
2−2/p
q,p (Ω)-norm

∥∥∥eAF tw0

∥∥∥
B̃

2−2/p
q,p (Ω)

= ‖w(t;w0)‖
B̃

2−2/p
q,p (Ω)

≤ Cγ0e
−γ0t ‖w0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0

1 < q <∞, 1 < p <
2q

2q − 1
.

(3.19)

A proof of Theorem 3.2 is given in Section 7.

3.5 Local well-posedness and uniform (exponential) null stabilization of the trans-

lated nonlinear z-problem (2.7) or (2.12) by means of a finite dimensional

explicit, spectral based feedback control localized on ω

Starting with the present section, the nonlinearity of problem (2.1) will impose for d = 3 the require-

ment q > 3, see (9.16) below. As our deliberate goal is to obtain the stabilization result in the space

B̃
2−2/p
q,p (Ω) which does not recognize boundary conditions, then the limitation p < 2q/2q−1 of this space

applies. In conclusion, our well-posedness and stabilization results will hold under the restriction

q > 3, 1 < p < 6/5 for d = 3, and q > 2, 1 < p < 4/3 for d = 2.

Theorem 3.3. For d = 3, let 1 < p < 6/5 and q > 3, while for d = 2, let 1 < p < 4/3 and q > 2.

Consider the nonlinear z-problem (2.12) in the following feedback form.

dz

dt
−Aqz +Nqz = Pq

(
m

(
K∑
k=1

(PNz, pk)ωuk

))
(3.20)

i.e. subject to a feedback control of the same structure as in the linear w-dynamics (3.16), Here pk, uk

are the same vectors as constructed in Theorem 3.1, and appearing in (3.14) or (3.16). There exists

a positive constant ρ > 0 such that, if the initial condition z0 satisfies

‖z0‖
B̃

2−2/p
q,p (Ω)

< ρ, (3.21)
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then problem (3.20) defines a unique solution z in the space (see (2.28), (2.30))

z ∈ X∞p,q,σ ≡ Lp(0,∞;D(Aq)) ∩W 1,p(0,∞;Lqσ(Ω)) (3.22)

↪→ C([0,∞); B̃
2−2/p
q,p (Ω)) (3.23)

where D(Aq) is topologically W 2,q(Ω) ∩ Lqσ(Ω), see (2.8).

A proof of Theorem 3.3 is given in Section 9.

Theorem 3.4. In the situation of Theorem 3.3, we have that such solution is uniformly stable on the

space B̃
2−2/p
q,p (Ω): there exist constants γ̃ > 0,Mγ̃ ≥ 1, such that said solution satisfies

‖z(t; z0)‖
B̃

2−2/p
q,p (Ω)

≤Mγ̃e
−γ̃t ‖z0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0. (3.24)

A proof of Theorem 3.4 is given in Section 10. It will be critically based on the maximal regularity of

the semigroup eAF t giving the solution of the feedback w-problem (3.16), AF = AF,q . Remark 10.1,

at the end of Section 10, will provide insight on the relationship between γ̃ in the nonlinear case in

(3.24) and γ0 in the corresponding linear case in (3.17).

3.6 Local well-posedness and uniform (exponential) stabilization of the original

nonlinear y-problem (2.1) in a neighborhood of an equilibrium solution ye,

by means of a finite dimensional explicit, spectral based feedback control

localized on ω

The result of this subsection is an immediate corollary of section 3.5.

Theorem 3.5. Let 1 < p < 6/5, q > 3, d = 3; and 1 < p < 4/3, q > 2, d = 2. Consider the original

N-S problem (2.1). Let ye be a given equilibrium solution as guaranteed by Theorem 2.1 for the steady

state problem (2.2). For a constant ρ > 0, let the initial condition y0 in (2.1d) be in B̃
2−2/p
q,p (Ω) and

satisfy

Vρ ≡
{
y0 ∈ B̃

2−2/p
q,p (Ω) : ‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

≤ ρ
}
, ρ > 0. (3.25)

If ρ > 0 is sufficiently small, then

(i) for each y0 ∈ Vρ, there exists an interior finite dimensional feedback controller

u = F (y − ye) =
K∑
k=1

(PN (y − ye), pk)ωuk (3.26)
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that is, of the same structure as in the translated N-S z-problem (3.20), with the same vectors

pk, uk in (3.14) or (3.16), such that the closed loop problem corresponding to (2.1)

yt − ν∆y + (y · ∇)y +∇π = m(F (y − ye)) + f(x) in Q (3.27a)

div y = 0 in Q (3.27b)

 y = 0 on Σ (3.27c)

y|t=0 = y0 in Ω (3.27d)

rewritten abstractly after application of the Helmholtz projection Pq as

yt + νAqy +Nqy = Pq

[
m
(
F (y − ye)

)
+ f(x)

]
(3.28a)

= Pq

[
m

( K∑
k=1

(
PN (y − ye), pk

)
ω
uk

)
+ f(x)

]
(3.28b)

y(0) = y0 ∈ B̃
2−2/p
q,p (Ω) (3.28c)

has a unique solution y ∈ C
(
[0,∞); B̃

2−2/p
q,p (Ω)

)
.

(ii) Moreover, such solution exponentially stabilizes the equilibrium solution ye in the space B̃
2−2/p
q,p (Ω):

there exist constants γ̃ > 0 and Mγ̃ ≥ 1 such that said solution satisfies

‖y(t)− ye‖
B̃

2−2/p
q,p (Ω)

≤Mγ̃e
−γ̃t ‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0, y0 ∈ Vρ. (3.29)

Once the neighborhood Vρ is obtained to ensure the well-posedness, then the values of Mγ̃ and

γ̃ do not depend on Vρ and γ̃ can be made arbitrarily large through a suitable selection of the

feedback operator F .

See Remark 10.1 comparing γ̃ in (3.29) with γ0 in (3.17).

3.7 Results on the real space setting

Here we shall complement the results of Theorems 3.1 through 3.5 by giving their version in the real

space setting. We shall quote from [B-T.1]. In the complexified setting Lqσ(Ω) + iLqσ(Ω) we have that

the complex unstable subspace W u
N is,

W u
N = W 1

N + iW 2
N (3.30)

= space of generalized eigenfunctions {φj}Nj=1 of the operator Aq(= Auq ) corresponding to

its N unstable eigenvalues. (3.31)
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Set φj = φ1
j + iφ2

j with φ1
j , φ

2
j real. Then:

W 1
N = Re W u

N = span{φ1
j}Nj=1; W 2

N = Im W u
N = span{φ2

j}Nj=1. (3.32)

The stabilizing vectors pk, uk, k = 1, . . . ,K are complex valued and belong to W u
N .

The complex-valued uniformly stable linear w-system in (3.16) with K complex valued stabilizing

vectors admits the following real-valued uniformly stable counterpart

dw

dt
= Aqw + Pq

(
m

(
K∑
k=1

Re (wN (t), pk)ω Re uk −
K∑
k=1

Im (wN (t), pk)ω Im uk

))
(3.33)

with 2K ≤ N real stabilizing vectors, see [B-T.1, Eq 3.52a, p 1472].If K = sup {`i, i = 1, . . . ,M} is

achieved for a real eigenvalue λi (respectively, a complex eigenvalue λi), then the effective number of

stabilizing controllers is K ≤ N , as the generalized functions are then real, since ye is real; respec-

tively, 2K ≤ N , for, in this case, the complex conjugate eigenvalue λ̄j contributes an equal number of

components in terms of generalized eigenfunctions φλ̄j = φ̄λj . In all cases, the actual (effective) upper

bound 2K is 2K ≤ N . For instance, if all unstable eigenvalues were real and simple then K = 1, and

only one stabilizing controller is actually needed.

Similarly, the complex-valued locally (near ye) uniformly stable nonlinear y-system (3.28) with K

complex-valued stabilizing vectors admits the following real-valued locally uniformly stable counterpart

dy

dt
− νAqy +Nqy = Pq

(
m

(
K∑
k=1

Re (y − ye, pk)ω Re uk −
K∑
k=1

Im (y − ye, pk)ω Im uk

))
(3.34)

with 2K ≤ N real stabilizing vectors, see [B-L-T.1, p 43].
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4 Algebraic rank condition for the wN-dynamics in (3.8a) under the

(preliminary) Finite-Dimensional Spectral Assumption (FDSA)

Preliminaries: For i = 1, . . . ,M , we now denote by {ϕij}`ij=1, {ϕ∗ij}
`i
j=1 the normalized linearly

independent eigenfunctions (on Lqσ(Ω) and (Lqσ(Ω))′ = Lq
′
σ (Ω), respectively 1/q + 1/q′ = 1 invoking

property (A.2b) of Appendix A ) corresponding to the unstable distinct eigenvalues λ1, . . . , λM of A

and λ̄1, . . . , λ̄M of A∗, respectively:

Aφij = λiφij ∈ D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω) ∈ Lq(Ω) (4.1a)

A∗φ∗ij = λ̄iφ
∗
ij ∈ D(A∗q) = W 2,q′(Ω) ∩W 1,q′

0 (Ω) ∩ Lq′σ (Ω) ∈ Lq′(Ω) (4.1b)

FDSA: We henceforth assume in this section that for each of the distinct eigenvalues λ1, . . . , λM of A,

algebraic and geometric multiplicity coincide:

W u
N,i ≡ PN,iLqσ(Ω) = span{ϕij}`ij=1; (W u

N,i)
∗ ≡ P ∗N,i(Lqσ(Ω))∗ = span{ϕ∗ij}

`i
j=1; (4.2)

Here PN,i, P
∗
N,i are the projections corresponding to the eigenvalues λi and λ̄i, respectively. For

instance, PN,i is given by an integral such as the one on the RHS of (3.3a), where now Γ is a closed

smooth curve encircling the eigenvalue λi and no other. Similarly P ∗N,i. The space W u
N,i = range of

PN,i is the algebraic eigenspace of the eigenvalues λi, and `i = dim W u
N,i is the algebraic multiplicity

of λi, so that `1 + `2 + · · ·+ `M = N . As a consequence of the FSDA, we obtain

W u
N ≡ PNLqσ(Ω) = span{ϕij}M `i

i=1,j=1; (W u
N )∗ ≡ P ∗N (Lqσ(Ω))∗ = span{ϕ∗ij}

M `i
i=1,j=1; (4.3)

Without the FDSA, W u
N is the span of the generalized eigenfunctions of A, corresponding to its

unstable distinct eigenvalues {λj}Mj=1; and similarly for (W u
N )∗ (see the subsequent section). In other

words, the FDSA says that the restriction AuN in (3.5) is diagonalizable or that AuN is semisimple on

W u
N in the terminology of [K-1, p 43]. Under the FDSA, any vector w ∈ W u

N admits the following

unique expansion [K-1, p 12, Eq (2.16)], [B-T.1, p 1453], in terms of the basis {ϕij}M `i
i=1,j=1 in Lqσ(Ω)

and its adjoint basis [K-1, p 12] {ϕ∗ij}
M `i
i=1,j=1 in (Lqσ(Ω))∗:

31



W u
N 3 w =

M,`i∑
i,j

(w, φ∗ij)φij ; (φij , φ
∗
hk) =


1 if i = h, j = k

0 otherwise

(4.4)

that is, the system consisting of {φij} and {φ∗ij}, i = 1, . . . ,M, j = 1, . . . , `i, can be chosen to form

bi-orthogonal sequences. Here ( , ) denotes the scalar product between W u
N and (W u

N )∗ [K-1, p 12]. i.e.

ultimately, the duality pairing in Ω between Lqσ(Ω) and (Lqσ(Ω))∗. Next, we return to the wN -dynamics

in (3.8a), rewritten here for convenience

on W u
N : w′N −AuNwN = PNP (mu); wN (0) = PNw0 (4.5)

The term PNP (mu) expressed in terms of adjoint bases. Next, let mu ∈ Lq(ω) where q > 1.

Here below we compute the RHS of the term PNP (mu) via the adjoint bases expansion in (4.4), where

we notice that P ∗P ∗Nφ
∗
ij = φ∗ij because φ∗ij ∈ D(A∗), so that φ∗ij is invariant under the projections P ∗

and P ∗N . With (f, g)ω =

∫
ω
fḡ dω, we obtain

W u
N 3 PNP (mu) =

M,`i∑
i,j=1

(PNP (mu), φ∗ij)φij =

M,`i∑
i,j=1

(mu, φ∗ij)φij =

M,`i∑
i,j=1

(u, φ∗ij)ωφij , (4.6)

so that the dynamics (4.5) on W u
N becomes

on W u
N : w′N −AuNwN =

M,`i∑
i,j=1

(u, φ∗ij)ωφij . (4.7)

Selection of the scalar interior control function u in finite dimensional separated form

(with respect to K coordinates) Next, we select the control u of the form given in (3.10)

u =

K∑
k=1

µk(t)uk, uk ∈W u
N ⊂ Lqσ(Ω), µk(t) = scalar (4.8)

so that the term in (4.6) in W u
N specializes to

W u
N 3 PNP (mu) =

M,`i∑
i,j=1

{
K∑
k=1

(uk, φ
∗
ij)ωµk(t)

}
φij . (4.9)

Substituting (4.9) on the RHS of (4.5), we finally obtain
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on W u
N : w′N −AuNwN =

M,`i∑
i,j=1

{
K∑
k=1

(uk, φ
∗
ij)ωµk(t)

}
φij . (4.10)

The dynamics (4.10) in coordinate form on W u
N . Our next goal is to express the finite dimen-

sional dynamics (4.10) on the N -dimensional space W u
N in a component-wise form. To this end, we

introduce the following ordered bases βi and β of length `i and N respectively:

βi = [φi1, . . . , φi`i ] : basis on W u
N,i

β = β1 ∪ β2 ∪ · · · ∪ βM = [φ11, . . . , φ1`1 , φ21, . . . , φ2`2 , . . . , φM1, . . . , φM`M ] : basis on W u
N .

(4.11)

Thus, we can represent the N -dimensional vector wN ∈W u
N as column vector ŵN = [wN ]β as,

wN =

M,`i∑
i,j=1

wijNφij ; and set ŵN = col[w1,1
N , . . . , w1,`1

N , . . . , wi,1N , . . . , w
i,`i
N , . . . , wM,1

N , . . . , wM,`M
N ]. (4.12)

Remark 4.1. The eigenfunction φij belongs to Lqσ(Ω) as well as to D(Aq) = D(Aq). Thus, by

real/complex interpolation, see (2.16)/(2.21) they also belong to
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

as well as to[
D(Aq), L

q
σ(Ω)

]
1−α = D(Aαq ), 0 ≤ α ≤ 1; in particular, φij ∈ B̃

2−2/p
q,p (Ω). See (B.11) or (B.12) in

Appendix B. Thus, exponential decay in CN of the CN -vector ŵN translates at once into exponen-

tial decay with the same rate in any of the spaces Lqσ(Ω),
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
,D(Aαq ), in particular,

B̃
2−2/p
q,p (Ω) for the vector wN , views as a vector on any one of these spaces. This remark applies to

wN (t) and uN (t) in Theorem 3.1, Eqts (3.12), (3.13) as well as Theorem 3.2, Eqts (3.17)- (3.19).

Lemma 4.1. In CN , with respect to the ordered basis β : {ϕij}M `i
i=1,j=1 of normalized eigenfunctions

of AuN , we may rewrite system (4.10) = (4.12) = (3.8a) as

(ŵN )′ − ΛŵN = Uµ̂K (4.13)

where

Λ =


λ1I1 0

λ2I2

. . .

0 λMIM

 : N ×N, Ii : `i × `i identity (4.14)
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Ui =


(u1, φ

∗
i1)ω . . . (uK , φ

∗
i1)ω

(u1, φ
∗
i2)ω . . . (uK , φ

∗
i2)ω

...
. . .

...

(u1, φ
∗
i`i

)ω . . . (uK , φ
∗
i`i

)ω

 : `i ×K; U =


U1

U2

...

UM

 : N ×K; µ̂K =


µ1

µ2

...

µK

 : K × 1; (4.15)

where (f, g)ω =

∫
ω
fḡ dω and we take K ≥ `i, i = 1, . . . ,M . Thus (4.13) gives the dynamics on W u

N

as a linear N -dimensional ordinary differential equation in coordinate form in CN .

Proof. Recalling the basis βi and the definitions of Ui in (4.15), we can rewrite the term in (4.9) with

respect to this basis as

[PNP (mu)]βi = Uiµ̂K : `i × 1; (4.16)

Then with respect to the basis β in (4.11) and recalling the definition U in (4.15), we can rewrite the

term (4.9) with respect to this basis as

[PNP (mu)]β =


U1

U2

...

UM

 µ̂K =


U1µ̂K

U2µ̂K
...

UM µ̂K

 = Uµ̂K : N × 1 (4.17)

Finally, clearly AuN becomes the diagonal matrix Λ in (4.14) with respect to the basis β, recalling its

eigenvalues in (4.1).

The following is the main result of the present section.

Theorem 4.2. Assume the FDSA. It is possible to select vectors u1, . . . , uK ∈ Lqσ(ω), q > 1,K =

sup {`i : i = 1, . . . ,M}, such that the matrix Ui of size `i ×K in (4.15) satisfies

rank[Ui] = full = `i or rank


(u1, φ

∗
i1)ω . . . (uK , φ

∗
i1)ω

(u1, φ
∗
i2)ω . . . (uK , φ

∗
i2)ω

...
...

(u1, φ
∗
i`i

)ω . . . (uK , φ
∗
i`i

)ω

 = `i; `i ×K for each i = 1, . . . ,M.

(4.18)
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Proof. Step 1. By selection, see (4.1) and statement preceding it, the set of vectors φ∗i1, . . . , φ
∗
i`i

is

linearly independent in Lq
′
σ (Ω), q′ is the Hölder conjugate of q, 1/q + 1/q′ = 1, for each i = 1, . . . ,M .

Next, if the set of vectors {φ∗i1, . . . , φ∗i`i} were linearly independent in Lq
′
σ (Ω), i = 1, . . . ,M , the desired

conclusion (4.18) for the matrix Ui to be full rank, would follow for infinitely many choices of the

vectors u1, . . . , uK ∈ Lqσ(Ω).

Claim: The set {φ∗i1, . . . , φ∗i`i} is linearly independent on Lq
′
σ (ω), for each i = 1, . . . ,M .

The proof will critically depend on a unique continuation result [RT.3] see also [B-T.1, Lemma 3.7

p1466]. By contradiction, let us assume that the vectors {φ∗i1, . . . , φ∗i`i} ∈ L
q′
σ (Ω) are instead linearly

dependent, so that

φ∗i`i =

`i−1∑
j=1

αjφ
∗
i`j

in Lq
′
σ (Ω) (4.19)

with constants αj not all zero. We shall then conclude by [B-T.1, Lemma 3.7] and [RT.3] below, that

in fact φ∗i`i ≡ 0 on all of Ω as well, thereby making the system {φ∗ij , j = 1, . . . , `i} linearly dependent

on Ω, a contradiction. To this end, define the following function (depending on i) in Lq
′
σ (Ω)

φ∗ =

[
`i−1∑
j=1

αjφ
∗
i`j
− φ∗i`i

]
∈ Lq′σ (Ω), i = 1, . . . ,M. (4.20)

As each φ∗ij is an eigenvalue of A∗ (or (AuN )∗) corresponding to the eigenvalue λ̄i, see (4.1), so is the

linear combination φ∗. This property, along with (4.19) yields that φ∗ satisfies the following eigenvalue

problem for the operator A∗ (or (AuN )∗):

A∗φ∗ = λ̄φ∗, div φ∗ = 0 in Ω; φ∗ = 0 in ω, by (4.19). (4.21)

But the linear combination φ∗ in (4.20) of the eigenfunctions φ∗ij ∈ D(A∗) satisfies itself the

Dirichlet B.C φ∗|∂Ω = 0. Thus the explicit PDE version of problem (4.21) is
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−ν∆φ∗ − (Le)
∗φ∗ +∇p∗ = λ̄iφ

∗ in Ω; (4.22a)
 div φ∗ = 0 in Ω; (4.22b)

φ∗|∂Ω = 0; φ∗ = 0 in ω; (4.22c)

φ∗ ∈ D(A∗); (Le)
∗φ∗ = (ye.∇)φ∗ + (φ∗.∇)∗ye, (4.23)

where (f.∇)∗ye is a d-vector whose ith component is
d∑
j=1

(Diyej )fj [B-L-T.1, p 55].

Step 2. The critical point is now that the over-determined problem (4.22) implies the following unique

continuation result.

φ∗ = 0 in Lq
′
σ (Ω); or by (4.20) φ∗i`i = α1φ

∗
i1 + α2φ

∗
i2 + · · ·+ α`i−1φ

∗
i`i−1 in Lq

′
σ (Ω) (4.24)

i.e. the set {φ∗i1, . . . , φ∗i`i} in linearly dependent on Lq
′
σ (Ω). But this is false, by the very selection of

such eigenvectors, see (4.1) and statement preceding it. Thus, the condition (4.24) cannot hold.

The required unique continuation result is established in [B-T.1, Lemma 3.7] or [RT.3]. The original

proof is done in the Hilbert setting but we may invoke the same result because φ∗ has more regularity

and integrability than required since φ∗ is an eigenfunction of A∗. Thus the claim is established. In

conclusion: it is possible to select, in infinitely many ways, interior functions u1, . . . , uK ∈ Lqσ(Ω) such

that the algebraic full rank condition (4.18) holds true for each i = 1, . . . ,M .
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5 Algebraic rank conditions for the dynamics wN in (3.8a) in the

general case

In the present section we dispense with the FDSA (4.2). More precisely, we shall obtain Theorem 3.1

without assuming the FDSA (4.2). Thus now

W u
N = space of generalized eigenfunctions of Aq(= AuN )

corresponding to its distinct unstable eigenvalues.
(4.0)

Warning : In this section (only) we shall denote by `i the geometric multiplicity of the eigenvalue λi

and by Ni its algebraic multiplicity.

Step 1: To treat this computationally more complicated case we shall, essentially invoke the classical

result on controllability of a finite-dimensional, time-invariant system {A,B},A : N × N,B : N × p

where A is given in Jordan form J . Let again λ1, λ2, . . . , λM be the distinct eigenvalues of A = J .

Let Ai denote all the Jordan blocks associated with the eigenvalue λi; let `i be the number of Jordan

blocks of A (i.e the number of linearly independent eigenvectors associated with the eigenvalue λi).

Let Aij be jth Jordan block in Ai corresponding to a Jordan cycle of length N i
j . That is:

A = diag{A1,A2, . . . ,AM}; Ai = diag{Ai1,Ai2, . . . ,Ai`i} (5.1)

Partition the matrix B accordingly:

A
(N×N)

=


A1 0

A2

. . .

0 AM

 ; B
(N×p)

=


B1

B2

...

BM

 (5.2)

Ai
(Ni×Ni)

=


Ai1 0

Ai2
. . .

0 Ai`i

 ; Bi
(Ni×p)

=


Bi1

Bi2
...

Bi`i

 (5.3)
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Aij
(N i

j×N i
j)

=


λi 1 0

λi 1

. . . 1

0 λi

 ; Bij
(N i

j×p)
=


b1ij

b2ij
...

bLij

 (5.4)

If Eλi and Kλi denote the eigenspace and the generalized eigenspace associated with the eigenvalue

λi, i = 1, . . . ,M , then dim Eλi = `i = # of Jordan blocks in Ai, dim Kλi = Ni, N
i
j = length of jth-cycle

associated with λi; j = 1, . . . , `i. We have dim W u
N = N =

M∑
i=1

Ni =

M∑
i=1

`i∑
j=1

N i
j . In (5.4), the last row

of Bij is denoted by bLij . The following result is classical [Chen.2, p 165].

Theorem 5.1. [L-T.2, Theorem 3.1] The pair {J,B}, J : N×N , Jordan form, B : N×p is controllable

if and only if, for each i = 1, . . . ,M (that is for each distinct eigenvalue) the rows of the `i× p matrix

constructed with all “last” rows bLi1, . . . , bLi`i

BLi =


BLi1

BLi2
...

BLi`i

 : `i × p (5.5)

are linearly independent (on the field of complex numbers). [A direct proof uses Hautus criterion for

controllability [Chen.2]]

We next apply the above Theorem 5.1 to the wN -problem (3.8a) and (4.5). To this end, we select

a Jordan basis βi for the operator (AuN )i on W u
N,i given by

Jordan Basis:

βi =
{
e1

1(λi), e
1
2(λi), . . . , e

1
N i

1
(λi)

...e2
1(λi), e

2
2(λi), . . . , e

2
N i

2
(λi)

... . . .
...e`i1 (λi), e

`i
2 (λi), . . . , e

`i
N i
`i

(λi)
}

(5.6a)

Here the first vectors of each cycle: e1
1(λi), e

2
1(λi), . . . , e

`i
1 (λi) are eigenvectors of (AuN )i corresponding

to the eigenvalue λi, while the remaining vectors in βi are corresponding generalized eigenvectors.

Thus, in the notation (4.1), we have

φi1 = e1
1(λi); φi2 = e2

1(λi); . . . ; φi`i = e`i1 (λi) (5.6b)
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Next, we can choose a bi-orthogonal basis β∗i of ((AuN )∗)i corresponding to its eigenvalue λ̄i given by

Bi-orthogonal Basis:

β∗i =
{

Φ1
1(λ̄i),Φ

1
2(λ̄i), . . . ,Φ

1
N i

1
(λ̄i)

...Φ2
1(λ̄i),Φ

2
2(λ̄i), . . . ,Φ

2
N i

2
(λ̄i)

... . . .
...Φ`i

1 (λ̄i),Φ
`i
2 (λ̄i), . . . ,Φ

`i
N i
`i

(λ̄i)
}

(5.7a)

Thus, in the notation (4.1), we have

φ∗i1 = Φ1
1(λ̄i); φ

∗
i2 = Φ2

1(λ̄i); . . . ; φ
∗
i`i

= Φ`i
1 (λ̄i) (5.7b)

In the bi-orthogonality relationship between the vectors in (5.6) and those in (5.7), the first eigen-

vector e1
1(λi) of the first cycle in βi is associated with the last generalized eigenvector Φ1

N i
1
(λ̄i) of the

first cycle in β∗i ; etc, the last generalized eigenvector e1
N i

1
(λi) of the first cycle in βi is associated with

the first eigenvector Φ1
1(λ̄i) of the first cycle in β∗i ; etc.

e1
1(λi) e1

2(λi) · · · e1
N i

1
(λi)

Φ1
1(λ̄i) Φ1

2(λ̄i) · · · Φ1
N i

1
(λ̄i)

, · · ·

(5.8)

Figure 1: Relation between the generalized eigenvectors of AuN and (AuN )∗

Thus, if f ∈W u
N,i, the following expression holds true:

f = (f,Φ1
N i

1
(λ̄i))e

1
1(λi) + · · ·+ (f,Φ1

1(λ̄i))e
1
N i

1
(λi)

+ · · ·+ (f,Φ`i
N i
`i

(λ̄i))e
`i
1 (λi) + · · ·+ (f,Φ`i

1 (λ̄i))e
`i
N i
`i

(λi). (5.9)

This expansion is the counterpart of

`i∑
j=1

(w, φ∗ij)φij ∈ W u
N,i in (4.4) under the FDSA. Next, we apply

(5.9) to f = PNP (mu). More specifically, we shall write the vector representation of PNP (mu) with

respect to the basis βi in (5.6a), and moreover, in line with Theorem 5.1, we shall explicitly note only
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the coordinates corresponding to the vectors e1
N i

1
(λi), e

2
N i

2
(λi), . . . , e

`i
N i
`i

(λi), each being the last vector

of each cycle in (5.6a).

[PNP (mu)]βi =



×××(
u,Φ1

1(λ̄i)
)
ω

. . . . . . . . . . . . .

×××(
u,Φ2

1(λ̄i)
)
ω

. . . . . . . . . . . . .

×××(
u,Φ`i

1 (λ̄i)
)
ω



←− last row of the 1st cycle

←− last row of the 2nd cycle

←− last row of the `thi cycle

(5.10)

The symbol ××× corresponds to terms which we do not care about. In fact, to exemplify, since

P ∗P ∗NΦ1
1(λ̄i) = Φ1

1(λ̄i) see above (4.6)

(
PNP (mu),Φ1

1(λ̄i)
)

Ω
=
(
mu,Φ1

1(λ̄i)
)

Ω
=
(
u,Φ1

1(λ̄i)
)
ω

(5.11)

This is the relevant counterpart of expansion PNP (mu) =

M,`i∑
i,j=1

(u,Φ∗ij)ωΦij in (4.6) under the

FDSA. Notice that (5.10) involves only the eigenvectors Φ1
1(λ̄i),Φ

2
1(λ̄i), . . . ,Φ

`i
1 (λ̄i) of (AuN )∗ corre-

sponding to the eigenvalue λ̄i. Next, recalling (3.10): u =

K∑
k=1

µk(t)uk, we obtain that the correspond-

ing counterpart of (4.15) is

Ui =



× × ×

(u1,Φ
1
1)ω (u2,Φ

1
1)ω . . . (uK ,Φ

1
1)ω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

× × ×

(u1,Φ
2
1)ω (u2,Φ

2
1)ω . . . (uK ,Φ

2
1)ω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

× × ×

(u1,Φ
`i
1 )ω (u2,Φ

`i
1 )ω . . . (uK ,Φ

`i
1 )ω



←− row bLi1(u)

←− row bLi2(u)

←− row bLi`i(u)

(5.12)
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Again, the relevant rows exhibited in (5.12) correspond to the last rows of each Jordan sub-block

{Ai1,Ai2, . . . ,Ai`i} in (5.3). In (5.12) we have displayed only such relevant rows: bLi1, bLi2, . . . , bLi`i

According to Theorem 5.1, the test for controllability as applied to the system (4.5), i.e to the pair

{AuN , B}, B = col [B1, B2, . . . , BM ], is

rank



row bLi1 of Bi

row bLi2 of Bi

...

row bLi`i of Bi


= rank



(
u1,Φ

1
1

(
λ̄i
))
ω

. . .
(
uK ,Φ

1
1

(
λ̄i
))
ω(

u1,Φ
2
1

(
λ̄i
))
ω

. . .
(
uK ,Φ

2
1

(
λ̄i
))
ω

...
...(

u1,Φ
`i
1

(
λ̄i
))
ω

. . .
(
uK ,Φ

`i
1

(
λ̄i
))
ω


= `i (5.13)

i = 1, . . . ,M . But this is exactly the test obtained in (4.18) via the identification in (5.7b):

φ∗i1 = Φ1
1(λ̄i), φ

∗
i2 = Φ2

1(λ̄i), . . . , φ
∗
i`i

= Φ`i
1 (λ̄i) (5.14)

involving only eigenvectors, not generalized eigenvectors. Thus the remainder of the proof in section

3 past (4.18) applies and shows Theorem ?? without the FDSA. We have

Theorem 5.2. With reference to Ui in (5.12), it is possible to select interior vectors u1, . . . , uK ∈

W u
N ⊂ Lqσ(Ω), K = sup {`i : i = 1, . . . ,M}, such that the algebraic conditions (5.13) hold true,

i = 1, . . . ,M .

We close this section by writing down the counterpart of the expansion (4.10) for the wN -dynamics

in terms of the basis β = β1 ∪ β2 ∪ · · · ∪ βM , see (4.11), (5.6a), (5.9) of the generalized eigenvectors in

the present general case.

on W u
N : w′N −AuNwN

=

M∑
i=1

{
K∑
k=1

[
(uk,Φ

1
N i

1
(λ̄i))ωµk(t)

]
e1

1(λi) + · · ·+ · · ·+
K∑
k=1

[
(uk,Φ

1
1(λ̄i))ωµk(t)

]
e1
N i

1
(λi)

+ · · ·+ . . .

+
K∑
k=1

[
(uk,Φ

`i
N i
`i

(λ̄i))ωµk(t)

]
e`i1 (λi) + · · ·+ · · ·+

K∑
k=1

[
(uk,Φ

`i
1 (λ̄i))ωµk(t)

]
e`i
N i
`i

(λi)

}
(5.15)
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6 Proof of Theorem 3.1: arbitrary decay rate of the wN-dynamics

(4.5) or (5.15) (or (4.13) under the FDSA) by a suitable finite-

dimensional interior localized feedback control u

We are now in a position to obtain Theorem 3.1, which we restate for convenience. Let 1 < q <∞.

Theorem 6.1. Let λ1, . . . , λM be the unstable distinct eigenvalues of A and let ω be an arbitrar-

ily small open portion of the interior with smooth boundary ∂ω. By virtue of Theorem 5.2, pick

interior vectors [u1, . . . , uK ] in W u
N ⊂ Lqσ(Ω) such that the rank conditions (5.13) hold true, with

K = sup {`i : i = 1, . . . ,M} (respectively, Theorem 4.2 and the (same) rank conditions (4.18) under

FDSA).

Then: Given γ > 0 arbitrarily large, there exists a K-dimensional interior controller u = uN acting

on ω, of the form given by (4.8), with the vectors uk given by Theorem 5.2 via the rank conditions

(5.13), such that, once inserted in (5.15) yield the estimate

‖wN (t)‖Lqσ(Ω) + ‖uN (t)‖Lqσ(ω) ≤ Cγe
−γt ‖PNw0‖Lqσ(Ω) , t ≥ 0, (6.1a)

where the Lqσ(Ω)-norm in (6.1a) may be replaced by the
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

- norm , 1 < p, q < ∞;

in particular the B̃
2−2/p
q,p (Ω)-norm, 1 < q <∞, 1 < p <

2q

2q − 1
:

‖wN (t)‖
B̃

2−2/p
q,p (Ω)

+ ‖uN (t)‖
B̃

2−2/p
q,p (Ω)

≤ Cγe−γt ‖PNw0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0. (6.1b)

Here, wN is the solution of (5.15) (respectively (4.10) under the FDSA) , i.e., (4.5) corresponding to

the control u = uN in (4.8). Moreover, such controller u = uNcan be chosen in feedback form: that is,

with reference to the explicit expression (??) for u, of the form µk(t) = (wN (t), pk)ω for suitable vectors

pk ∈ (W u
N )∗ ⊂ Lq

′
σ (Ω) depending on γ. In conclusion, wN in (6.1) is the solution of the equation on

W u
N (see (4.5)) specialized as (5.15)

w′N −AuNwN = PNP

(
m

(
K∑
k=1

(wN (t), pk)ωuk

))
, uk ∈W u

N ⊂ Lqσ(Ω), pk ∈ (W u
N )∗ ⊂ Lq′σ (Ω) (6.2)

rewritten as

w′N = ĀuwN , wN (t) = eĀ
utPNw0, wN (0) = PNw0 (6.3)
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Proof. Step 1: Following [L-T.2] the proof consists in testing controllability of the linear, finite-

dimensional system (4.5), in short, the pair

{J,B}, B = U : N ×K,K = sup {`i; i = 1. . . . ,M} (6.4)

U = [U1, . . . , UM ]tr, Ui given by (5.12) (or by (4.15) under FDSA). J is the Jordan form of AuN with

respect to the Jordan basis β = β1∪· · ·∪βM , βi being given by (5.6a). But the rank conditions (5.13)

precisely asserts such controllability property of the pair {AuN = J,B}, in light of Theorem 5.1.

Step 2: Having established the controllability criterion for the pair {AuN = J,B} then by the well-

known Popov’s criterion in finite-dimensional theory, there exists a real feedback matrix Q = K ×N ,

such that the spectrum of the matrix (J + BQ) = (J + UQ) may be arbitrarily preassigned; in

particular, to lie in the left half-plane {λ : Re λ < −γ < −Re λN+1}, as desired. The resulting

closed-loop system

(ŵ′N )− Jŵ′N = UuN , (6.5)

is obtained with CN -vector uN = QŵN , Q being the K×N matrix with row vectors [p̂1, . . . , p̂K ], µkN =

(ŵN , p̂k) in the CN -inner product and hence decays with exponential rate

|ŵN (t)|CN ≤ Cγe
−γt |ŵN (0)|CN , t ≥ 0 (6.6)

But the N -dimensional vector wN ∈ W u
N ⊂ Lqσ(Ω) is represented by the CN -vector ŵN = [wN ]β,

where in the general case of Section 5, β is a Jordan basis of generalized eigenfunctions of Aq(= AuN )

corresponding to its M distinct unstable eigenvalues. Such basis is given by β = β1 ∪ β2 ∪ · · · ∪ βM ,

where a representative βi is given in (5.6a). The whole basis can be read off from (5.15). In the

special case of Section 4 where the FDSA holds, the basis β in W u
N is given by the eigenfunctions of

the AuN corresponding to its M distinct eigenvalues, see (4.11). But such eigenfunctions/generalized

eigenfunctions are in D(Aq), hence smooth. Thus, the exponential decay in (6.6) of the coordinate

vector ŵN in CN translates in same exponential decay of the vector wN (t) ∈W u
N not only in the Lqσ(Ω)-

norm but also in the D(Aq) = D(Aq)-norm, hence in the
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

-norm, in particular in

the B̃
2−2/p
q,p (Ω)-norm. See also Remark 4.1. Thus, returning from CN ×CN back to W u

N × (W u
N )∗, there

exist suitable p1, . . . , pK ∈ (W u
N )∗ ⊂ Lq

′
σ (Ω), such that µkN = (wk, pk), whereby the closed-loop system
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(6.2) corresponds precisely to (5.15) via PNP (mu) written in terms of the Jordan basis of eigenvectors

β in (5.6a).

Thus not only we obtain in view of (6.2), (6.3) and (6.6)

‖wN (t)‖Lqσ(Ω) =
∥∥∥eĀutPNw0

∥∥∥
Lqσ(Ω)

≤ Cγe−γt ‖PNw0‖Lqσ(Ω) , t ≥ 0, (6.7)

but also, say 1 < q <∞, 1 < p <
2q

2q − 1

‖wN (t)‖
B̃

2−2/p
q,p (Ω)

=
∥∥∥eĀutPNw0

∥∥∥
B̃

2−2/p
q,p (Ω)

≤ Cγe−γt ‖PNw0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0. (6.8)

Hence with uN = QwN , we obtain not only

‖wN (t)‖Lqσ(Ω) + ‖uN (t)‖Lqσ(ω) = ‖wN (t)‖Lqσ(Ω) + ‖QwN (t)‖Lqσ(Ω) (6.9)

≤
(
|Q|+ 1

) ∥∥∥eĀutPNw0

∥∥∥
Lqσ(Ω)

≤ Cγe−γt ‖PNw0‖Lqσ(Ω) (6.10)

but also, say

‖wN (t)‖
B̃

2−2/p
q,p (Ω)

+ ‖uN (t)‖
B̃

2−2/p
q,p (Ω)

≤ Cγe−γt ‖PNw0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0. (6.11)

Remark 6.1. Under the FDSA, checking controllability of the system (4.13) is easier. To this end,

we can pursue, as usual, two strategies.

A first strategy invokes the well-known Kalman controllability criterion by constructing the N ×KN

Kalman controllability matrix

K = [B,ΛB,Λ2B, . . . ,ΛN−1B] =


B1 J1B1 . . . JN−1

1 B1

B2 J2B2 . . . JN−1
2 B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BM JMBM . . . JN−1
M BM

 , (6.12)

B = col [B1, B2, . . . , BM ], Bi = Ui : `i × `i (6.13)

of size N ×KN, N = dim W u
N , Ji = λiIi : `i× `i, Bi = Ui : `i× `i, and requiring that it be full rank.
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rank K = full = N. (6.14)

In view of generalized Vandermond determinants, we then have

rank K = N if and only if rank Ui = `i (full) i = 1, . . . ,M, (6.15)

precisely as guaranteed by (4.18). A second strategy invokes the Hautus controllability criterion:

rank[Λ− λiI,B] = rank[Λ− λiI, U ] = N (full) (6.16)

for all unstable eigenvalues λi, 1, . . . ,M , yielding again the condition that rank [Ui] = `i, 1, . . . ,M , as

generated by (4.18)
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7 Proof of Theorem 3.2: Feedback stabilization of the original lin-

earized w-Oseen system (2.13) by a finite dimensional feedback

controller

The main result on the feedback stabilization of the linearized w-system (2.13) = (3.1) by a finite

dimensional controller is Theorem 3.2, here reformulated in part for convenience in the context of the

development of the present proof. Throughout this section 1 < q <∞.

Theorem 7.1. Let the Oseen operator A have N possibly repeated unstable eigenvalues {λj}Nj=1 of

which M are distinct. Let ε > 0 and set γ0 = |Re λN+1| − ε. Consider the setting of Theorem

6.1 so that, in particular, the feedback finite-dimensional control u = uN is given by u = uN =
K∑
k=1

(wN (t), pk)uk and satisfies estimates (6.1) with γ > 0 arbitrarily large, for vectors p1, . . . , pk ∈

(W u
N )∗ ⊂ Lq

′
σ (Ω) and vectors u1, . . . , uk ∈ W u

N ⊂ Lqσ(Ω) given by Theorem 6.1. Thus, the linearized

problem (3.1) specializes to (3.16)

dw

dt
= Aw + P

(
m

(
K∑
k=1

(wN (t), pk)ωuk

))
≡ AFw (7.1)

Here AF = AF,q is the generator of a s.c. analytic semigroup on either the space Lqσ(Ω), 1 < q <∞,

or on the space
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
, 1 < p, q < ∞, in particular on the space B̃

2−2/p
q,p (Ω), 1 < q, 1 <

p < 2q/2q−1. Moreover, such dynamics w (equivalently, generator AF ) in (7.1) is uniformly stable in

each of these spaces, say∥∥∥eAF tw0

∥∥∥
Lqσ(Ω)

= ‖w(t, w0)‖Lqσ(Ω) ≤ Cγ0e
−γ0t ‖w0‖Lqσ(Ω) , t ≥ 0. (7.2)

or say ∥∥∥eAF tw0

∥∥∥
B̃

2−2/p
q,p (Ω)

= ‖w(t, w0)‖
B̃

2−2/p
q,p (Ω)

≤ Cγ0e
−γ0t ‖w0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0. (7.3)

Proof. Step 1: According to Theorem 6.1, the finite-dimensional system wN in (3.8a) = (4.5) is uni-

formly stabilized by the finite dimensional feedback controller u = uN given in the RHS of (6.2) =

RHS of (7.1) with an arbitrary preassigned decay rate γ > 0, as given, either in the Lqσ(Ω)-norm, or

in the
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

-norm in (6.1a), or in particular, in the B̃
2−2/p
q,p (Ω)-norm as in (6.1b).
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Step 2: Next, we examine the impact of such constructive feedback control uN on the ζN -dynamics

(3.8b), whose explicit solution can be given by a variation of parameter formula,

ζN (t) = eA
s
N tζ(0) +

∫ t

0
eA

s
N (t−r)(I − PN )P (muN (r))dr. (7.4)

in the notation AsN = (I−PN )A, A = Aq, of (3.5). We now recall from Section 1.10 (d) that the Oseen

operator Aq generates a s.c. analytic semigroup not only on Lqσ(Ω) but also on
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

,

in particular on B̃
2−2/p
q,p (Ω). Hence the feedback operator AF = AF,q similarly generates a s.c. analytic

semigroup on these spaces, being a bounded perturbation of the Oseen operator A = Aq. So we

can estimate (7.4) in the norm of either of these spaces. Furthermore, the (point) spectrum of the

generator AsN on W s
N satisfies sup{Re σ(AsN )} < − |λN+1| < −γ0 by assumption. We shall carry our

the supplemental computations explicitly in the space B̃
2−2/p
q,p (Ω) for the case of greatest interest in

the nonlinear analysis of sections 9, 10. In the norm of B̃
2−2/p
q,p (Ω), we obtain from (7.4) since the

operators (I − PN ), P are bounded

‖ζN (t)‖ ≤
∥∥eAsN tζ(0)

∥∥+ C

∫ t

0

∥∥∥eAsN (t−τ)
∥∥∥ ‖uN (τ)‖ dτ (7.5)

‖ζN (t)‖
B̃

2−2/p
q,p (Ω)

≤ Ce−γ0t ‖ζ(0)‖
B̃

2−2/p
q,p (Ω)

+ C

∫ t

0
e−γ0(t−r)e−γrdr ‖PNw0‖

B̃
2−2/p
q,p (Ω)

. (7.6)

recalling estimate (3.13) or (6.11) for ‖uN‖ in the B̃
2−2/p
q,p (Ω)-norm. Since we may choose γ > γ0 by

Theorem 3.1 (or Theorem 6.1), we then obtain

‖ζN (t)‖
B̃

2−2/p
q,p (Ω)

≤ C

[
e−γ0t + e−γ0t 1− e

−(γ−γ0)t

γ − γ0

]
‖w0‖

B̃
2−2/p
q,p (Ω)

(7.7)

≤ Ce−γ0t ‖w0‖
B̃

2−2/p
q,p (Ω)

, ∀t > 0 (7.8)

Then, estimate (7.8) for ζN (t) along with estimate (3.13) = (6.11) for wN (t) with γ > γ0 yields the

desired estimate (7.3) for w = wN + ζN in the B̃
2−2/p
q,p (Ω)-norm:

‖w(t)‖
B̃

2−2/p
q,p (Ω)

≤ ‖ζN (t)‖
B̃

2−2/p
q,p (Ω)

+ ‖wN (t)‖
B̃

2−2/p
q,p (Ω)

(7.9)

≤
[
C̃γ0e

−γ0t + Cγe
−γt] ‖w0‖

B̃
2−2/p
q,p (Ω)

(7.10)

≤ Cγ0e
−γ0t ‖w0‖

B̃
2−2/p
q,p (Ω)

(7.11)
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and (7.3) is proved. Similar computations from (7.4) to (7.8) apply in the Lqσ(Ω)-norm for ζN (t), as

the Oseen operator generates a s.c. analytic semigroup on Lqσ(Ω) from Section 1.10 (d). This, coupled

with estimate (3.12) for wN (t), yields estimate (7.2) for the w = wN + ζN with Lqσ(Ω)-norm. Theorem

7.1 is established.

Remark 7.1. Computations such as those in [B-T.1, p 1473] using the analyticity of the Oseen

semigroup eAqt show the alternative estimates (3.18a-b) of Theorem 3.2.
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8 Maximal Lp regularity on Lqσ(Ω) and for T =∞ of the s.c. analytic

semigroup eAF,qt yielding uniform decay of the linearized w-problem

(3.1), once specialized as in (7.1) of Theorem 3.2 = Theorem 7.1.

In this section, we return to the w-feedback problem (7.1), wt = AF,qw, where pk, uk are the vectors

claimed and constructed in Theorem 3.1, or Theorem 3.2 (Theorem 7.1) and Remark 4.1. As stated

in Theorem 7.1, problem (7.1) defines a s.c. analytic, uniformly stable semigroup eAF,qt as in (7.2):

∥∥∥eAF,qt∥∥∥
L(·)
≤Mγ0e

−γ0t, t ≥ 0 (8.1)

where (·) denotes the space Lqσ(Ω) or else
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

, in particular B̃
2−2/p
q,p (Ω). Define the

“good” bounded operator

Gw = m

(
K∑
k=1

(PNw, pk)ωuk

)
, uk ∈W u

N ⊂ Lqσ(Ω), pk ∈ (W u
N )∗ ⊂ Lq′σ (Ω), (8.2)

By Theorem 2.6, the Oseen operator Aq enjoys maximal Lp regularity on Lqσ(Ω) up to T < ∞, see

(2.48) as well as (2.50), (2.52). Then the same property holds true up to T < ∞ for AF,q = Aq + G,

as G is a bounded operator [Dore], [K-W.2], [Weis]. We now seek to establish maximal Lp regularity

up to T =∞ of AF,q , i.e. of the following problem

wt −∆w + Le(w) +∇π = Gw + F in (0, T ]× Ω ≡ Q (8.3a)

div w ≡ 0 in Q (8.3b)

 w|Σ ≡ 0 in (0, T ]× Γ ≡ Σ (8.3c)

w|t=0 = w0 in Ω, (8.3d)

Le defined in (2.39) rewritten abstractly, upon application of the Helmholtz projection Pq to (8.3a)

and Fσ = PqF , as

wt = AF,qw + PqF = Aqw + PqGw + PqF (8.4)

= −νAqw −Ao,qw + PqGw + PqF (8.5)

Wlog, we take ν = 1 henceforth. Here we have appended a subscript “q” to the generator AF defined
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in (7.1) which we rewrite as AF,q. With Fσ = PqF its solution on Lqσ(Ω) is

w(t) = eAF,qtw0 +

∫ t

0
eAF,q(t−τ)Fσ(τ)dτ (8.6)

= e−Aqtw0 +

∫ t

0
e−Aq(t−τ)(PqG−Ao,q)w(τ)dτ +

∫ t

0
e−Aq(t−τ)Fσ(τ)dτ. (8.7)

As the present section is preparatory for the subsequent sections 9 and 10, the case of greatest interest

here is then for w0 ∈ B̃
2−2/p
q,p (Ω), i.e. 1 < q, 1 < p < 2q/2q−1. Nevertheless we shall treat the general

case 1 < p, q <∞.

Theorem 8.1. As in (2.43) of Theorem 2.6, but now with T =∞, assume

Fσ ∈ Lp(0,∞;Lqσ(Ω)), w0 ∈
(
Lqσ(Ω),D(Aq)

)
1−1/p,p

. (8.8)

Then there exists a unique solution of problem (8.3) = (8.4) = (8.5).

w ∈ X∞p,q,σ = Lp(0,∞;D(Aq)) ∩W 1,p(0,∞;Lqσ(Ω)), equivalently (8.9a){
w ∈ X∞p,q = Lp(0,∞;W 2,q(Ω)) ∩W 1,p(0,∞;Lqσ(Ω)) ↪→ C

(
0,∞;B

2−2/p
q,p (Ω)

)
(8.9b)

(recall [Amann.1, Theorem 4.10.2, p180 in BUC for T =∞] already noted in (2.30)) continuously on

the data: there exist constants C0, C1 such that

C0 ‖w‖
C
(

0,∞;B
2−2/p
q,p (Ω)

) ≤ ‖w‖X∞p,q,σ + ‖π‖Y∞p,q

≡
∥∥w′∥∥

Lp(0,∞;Lq(Ω))
+ ‖Aqw‖Lp(0,∞;Lq(Ω)) + ‖π‖Y∞p,q (8.10a)

≤ C1

{
‖Fσ‖Lp(0,∞;Lqσ(Ω)) + ‖w0‖(Lqσ(Ω),D(Aq)

)
1− 1

p ,p

}
. (8.10b)

Thus for 1 < q, 1 < p <
2q

2q − 1
, then the I.C. w0 is in B̃

2−2/p
q,p (Ω). Equivalently,

(i) The map

Fσ −→
∫ t

0
eAF,q(t−τ)Fσ(τ)dτ : continuous

Lp(0,∞;Lqσ(Ω)) −→ Lp(0,∞;D(AF,q) = D(Aq) = D(Aq)),

(8.11)

whereby then automatically

Lp(0,∞;Lqσ(Ω)) −→W 1,p(0,∞;Lqσ(Ω)) (8.12)

and ultimately

Lp(0,∞;Lqσ(Ω)) −→ X∞p,q,σ = Lp(0,∞;D(AF,q)) ∩W
1,p(0,∞;Lqσ(Ω)) (8.13)
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(ii) The s.c. analytic semigroup eAF,qt on the space
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
, 1 < p <∞, as asserted in

Theorem 7.1, in particular on the space B̃
2−2/p
q,p (Ω), 1 < q, 1 < p <

2q

2q − 1
, satisfies

eAF,qt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
−→ X∞p,q,σ (equivalently −→ X∞p,q)

in particular B̃
2−2/p
q,p (Ω) −→ X∞p,q,σ (equivalently −→ X∞p,q)

(8.14)

Proof. Part i

Orientation The proof is a suitable modification of the proof of Theorem 2.6, that is, of the maximal

regularity of the Oseen operator Aq on Lqσ(Ω), given in Appendix B. Namely, Step 1 = (B.3) of that

proof now exploits the uniform stability of eAF,qt in (7.2)=(8.1) which was not available for the Oseen

semigroup eAqt in Appendix B. Hence the convolution argument in (B.8) may now be applied up to

T =∞, see below (8.16). Next, Step 2 of the proof in (B.13)-(B.20) in Appendix B applies also in the

present proof, for T ≤ ∞, to include T = ∞, as the term −Ao,q in (B.13) is replaced in the present

proof by (PqG−Ao,q), with PqG bounded.

Step 1 : With reference to (8.6) with w0 = 0, we first establish the inequality

∫ ∞
0
‖w(t)‖p

Lqσ(Ω)
dt ≤ C

∫ ∞
0
‖Fσ(t)‖p

Lqσ(Ω)
dt (8.15)

Indeed, from (8.6), in the Lqσ(Ω)-norm, recalling (8.1)

‖w(t)‖ ≤
∫ t

0

∥∥∥eAF,q(t−τ)
∥∥∥ ‖Fσ(τ)‖ dτ

≤Mγ0

∫ t

0
e−γ0(t−τ) ‖Fσ(τ)‖ dτ ∈ Lp(0,∞) (8.16)

being the convolution of a L1(0,∞)-function with an Lp(0,∞)-function (Young’s Theorem) [Sa]. Then

(8.15) is proved.

Step 2 : Again for w0 = 0 we obtain from (8.7)

Aqw(t) = Aq

∫ t

0
e−Aq(t−τ)(PqG−Ao,q)w(τ)dτ +Aq

∫ t

0
e−Aq(t−τ)Fσ(τ)dτ (8.17)

We shall establish the following inequality∫ ∞
0
‖Aqw(t)‖p

Lqσ(Ω)
dt ≤ C

∫ ∞
0
‖w(t)‖p

Lqσ(Ω)
dt+ C

∫ ∞
0
‖Fσ(t)‖p

Lqσ(Ω)
dt (8.18)
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(Compare with (B.4), which holds true for any T ≤ ∞, including T =∞). In fact, to this end, as in

that proof, using the maximal regularity up to T = ∞ of the Stokes semigroup, as well as (8.8) for

Fσ, we estimate from (8.17)

‖Aqw‖LP (0,∞,Lqσ(Ω)) ≤ C ‖Fσ‖LP (0,∞,Lqσ(Ω)) + C ‖[G−Ao,q]w‖LP (0,∞,Lqσ(Ω)) (8.19)

≤ C
{
‖Fσ‖LP (0,∞,Lqσ(Ω)) + C ‖w‖LP (0,∞,Lqσ(Ω))

}
+ C ‖Ao,qw‖LP (0,∞,Lqσ(Ω)) ,

(8.20)

as G is bounded. Using the same interpolation argument leading to (B.20), based on the interpolation

inequality (B.11), we obtain from (8.20)

‖Aqw‖LP (0,∞,Lqσ(Ω)) ≤ C ‖Fσ‖LP (0,∞,Lqσ(Ω)) + C ‖w‖LP (0,∞,Lqσ(Ω))

+ εC ‖Aqw‖LP (0,∞,Lqσ(Ω)) + Cε ‖w‖LP (0,∞,Lqσ(Ω)) (8.21)

from which we obtain

‖Aqw‖LP (0,∞,Lqσ(Ω)) ≤
(

C

1− εC

)
‖Fσ‖LP (0,∞,Lqσ(Ω)) +

(
C + Cε
1− εC

)
‖w‖LP (0,∞,Lqσ(Ω)) (8.22)

and then estimate in (8.18) in Step 2 is established.

Step 3 : Substituting (8.15) in the RHS of (8.18) yields

‖Aqw‖LP (0,∞,Lqσ(Ω)) ≤ C ‖Fσ‖LP (0,∞,Lqσ(Ω)) (8.23)

and (8.11) is established via (8.6) with w0 = 0, and D(AF,q) = D(Aq).

Part ii

Let w0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

,
[
in particular w0 ∈ B̃

2−2/p
q,p (Ω) for 1 < q < ∞, 1 < p < 2q/2q−1

by (2.16b)
]

and consider the s.c. analytic exponentially stable semigroup eAF,qt in such space, as

guaranteed by Theorem 7.1, see (8.1):

w(t) = eAF,qtw0; wt = AF,qw = −Aqw + (PqG−Ao,q)w (8.24)

w(t) = e−Aqtw0 +

∫ t

0
e−Aq(t−τ)(PqG−Ao,q)w(τ)dτ (8.25)

Aqw(t) = Aqe
−Aqtw0 +Aq

∫ t

0
e−Aq(t−τ)(PqG−Ao,q)w(τ)dτ (8.26)
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counterpart of (B.18), that is with −Ao,q in (B.18) replaced by PqG − Ao,q now, with PqG bounded,

see (8.2).Thus essentially the same proof leading to (B.24) yields now

‖AF,qw‖LP (0,∞,Lqσ(Ω)) =
∥∥∥AF,qeAF,qtw0

∥∥∥
LP (0,∞,Lqσ(Ω))

≤ C ‖w0‖(Lqσ(Ω),D(Aq)
)

1− 1
p ,p

(8.27)

with D(AF,q) = D(Aq). Then (8.27) proves (8.14).
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9 Proof of Theorem 3.3: Well-posedness on X∞p,q of the non-linear

z-dynamics in feedback form

In this section we return to the translated non-linear z-dynamics (2.12a) and apply to it the feedback

control u =

K∑
k=1

(PNz, pk)ωuk, i.e. of the same structure as the feedback identified on the RHS of the

linearized w-dynamics (7.1), which produced the s.c. analytic, uniformly stable feedback semigroup

eAF,qt on Lqσ(Ω). Here the vectors pk ∈ (W u
N )∗, uk ∈ W u

N are precisely those identified in Theorem

6.1 = Theorem 3.1. Thus, returning to (2.12), in this section we consider the following translated

feedback non-linear problem

dz

dt
−Aqz +Nqz = Pq

(
m

(
K∑
k=1

(zN , pk)ωuk

))
; z0 = PNz(0) (9.1)

Recalling from Theorem 3.2 = Theorem 7.1, Eq (7.1) the feedback generator AF,q as well as the

bounded operator G in (8.2), we can rewrite (9.1) as

zt = AF,qz −Nqz = −(νAq +Ao,q)z + PqGz −Nqz, z(0) = z0 (9.2)

whose variation of parameters formula is

z(t) = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqz(τ)dτ. (9.3)

We already know from (7.3) that for z0 ∈ B̃
2−2/p
q,p (Ω), 1 < q <∞, 1 < p < 2q/2q−1 we have∥∥∥eAF,qtz0

∥∥∥
B̃

2−2/p
q,p (Ω)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0 (9.4)

with Mγ0 possibly depending on p, q. Maximal regularity properties corresponding to the solution

operator formula in (9.3) were established in section 8. Accordingly, for z0 ∈ B̃
2−2/p
q,p (Ω) and f ∈

X∞p,q,σ ≡ Lp(0,∞;D(AF,q))∩W 1,p(0,∞;Lqσ(Ω)), D(AF,q) = D(Aq), recall (8.11) we define the operator

F by

F(z0, f)(t) = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqf(τ)dτ (9.5)

The main result of this section is Theorem 3.3. restated as

Theorem 9.1. Let d = 2, 3, q > d and 1 < p < 2q/2q−1. There exists a positive constant r1 > 0

(identified in the proof below in (9.24)), such that if

‖z0‖
B̃

2−2/p
q,p (Ω)

< r1, (9.6)
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then the operator F in (9.5) has a unique fixed point nonlinear semigroup solution on X∞p,q,σ

F(z0, z) = z, or z(t) = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqz(τ)dτ (9.7)

which therefore is the unique solution of problem (9.2) (= (9.1)) in X∞p,q,σ.

The proof of Theorem 3.3 = Theorem 9.1 is accomplished in two steps.

Step 1:

Theorem 9.2. Let d = 2, 3, q > d and 1 < p < 2q/2q−1. There exists a positive constant r1 > 0

(identified in the proof below in (9.24)) and a subsequent constant r > 0 (identified in the proof below

in (9.22)) depending on r1 > 0 and the constant C > 0 in (9.20), such that with ‖z0‖
B̃

2−2/p
q,p (Ω)

< r1 as

in (9.6), the operator F(z0, f) maps the ball B(0, r) in X∞p,q,σ into itself.

Theorem 9.1 will follow then from Theorem 9.2 after establishing that

Step 2:

Theorem 9.3. Let d = 2, 3, q > 3 and 1 < p < 2q/2q−1. There exists a positive constant r1 > 0, such

that if ‖z0‖
B̃

2−2/p
q,p (Ω)

< r1 as in (9.6), then there exists a constant 0 < ρ0 < 1, such that the operator

F(z0, f) defines a contraction in the ball B(0, ρ0) of X∞p,q,σ

The Banach contraction principle then establishes Theorem 9.1, once we prove Theorems 9.2 and 9.3.

Proof of Theorem 9.2. Step 1 : We start from definition (9.5) of F and invoke the maximal regularity

properties (8.14) for eAF,qt and (8.13) for

∫ t

0
eAF,q(t−τ)Nqf(τ)dτ . We obtain from (9.5)

‖F(z0, f)(t)‖X∞p,q,σ ≤
∥∥∥eAF,qtz0

∥∥∥
X∞p,q,σ

+

∥∥∥∥∫ t

0
eAF,q(t−τ)Nqf(τ)dτ

∥∥∥∥
X∞p,q,σ

(9.8)

≤ C
[
‖z0‖

B̃
2−2/p
q,p (Ω)

+ ‖Nqf‖Lp(0,∞;Lqσ(Ω))

]
. (9.9)

Step 2 : By the definitionNqf = Pq[(f.∇)f ] in (2.11), we estimate ignoring ‖Pq‖ and using, sup
·

[
|g(·)|

]r
=

[sup
·

(|g(·)|)]r
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‖Nqf‖pLp(0,∞;Lqσ(Ω))
≤
∫ ∞

0
‖Pq[(f.∇)f ]‖p

Lqσ(Ω)
dt

≤
∫ ∞

0

{∫
Ω
|f(t, x)|q |∇f(t, x)|q dΩ

}p/q
dt (9.10)

≤
∫ ∞

0

{[
sup

Ω
|∇f(t, ·)|q

]1/q[ ∫
Ω
|f(t, x)|q dΩ

]1/q}p
dt (9.11)

≤
∫ ∞

0
‖∇f(t, ·)‖pL∞(Ω) ‖f(t, ·)‖p

Lqσ(Ω)
dt (9.12)

≤ sup
0≤t≤∞

‖f(t, ·)‖p
Lqσ(Ω)

∫ ∞
0
‖∇f(t, ·)‖pL∞(Ω) dt (9.13)

= ‖f‖p
L∞(0,∞;Lqσ(Ω))

‖∇f‖pLp(0,∞;L∞(Ω)) (9.14)

Step 3 : The following embeddings hold true:

(i) [G-G-H.1, Proposition 4.3, p 1406 with µ = 0, s =∞, r = q] so that the required formula reduces

to 1 ≥ 1/p, as desired

f ∈ X∞p,q,σ ↪→ f ∈ L∞(0,∞;Lqσ(Ω)) (9.15a)

so that, ‖f‖L∞(0,∞;Lqσ(Ω)) ≤ C ‖f‖X∞p,q,σ (9.15b)

(ii) [Kes, Theorem 2.4.4, p 74 requiring C1-boundary]

W 1,q(Ω) ⊂ L∞(Ω) for q > dim Ω = d, d = 2, 3, (9.16)

so that, with p > 1, q > 3:

‖∇f‖pLp(0,∞;L∞(Ω)) ≤ C ‖∇f‖
p
Lp(0,∞;W 1,q(Ω))

≤ C ‖f‖p
Lp(0,∞;W 2,q(Ω))

(9.17)

≤ C ‖f‖pX∞p,q,σ (9.18)

In going from (9.17) to (9.18) we have recalled the definition of f ∈ X∞p,q,σ in (2.28), (8.13), as f

was taken at the outset on D(AF,q) = D(Aq) ⊂ Lqσ(Ω). Then, the sought-after final estimate of the

non-linear term Nqf, f ∈ X∞p,q,σ below (9.4), is obtained from substituting (9.15b) and (9.18) into the

RHS of (9.14). We obtain

‖Nqf‖Lp(0,∞;Lqσ(Ω)) ≤ C ‖f‖
2
X∞p,q,σ

, f ∈ X∞p,q,σ. (9.19)
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Returning to (9.8), we finally, obtain by (9.19)

‖F(z0, f)‖X∞p,q,σ ≤ C
{
‖z0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖2X∞p,q,σ
}
. (9.20)

Step 4 : We now impose the restrictions on the data on the RHS of (9.20): z0 is in a ball of radius

r1 > 0 in B̃
2−2/p
q,p (Ω) and f is in a ball of radius r > 0 in X∞p,q,σ. We further demand that the final

result F(z0, f) shall lie in a ball of radius r in X∞p,q,σ. Thus we obtain from (9.20)

‖F(z0, f)‖X∞p,q,σ ≤ C
{
‖z0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖2X∞p,q,σ
}
≤ C(r1 + r2) ≤ r (9.21)

This implies

Cr2 − r + Cr1 ≤ 0 or
1−
√

1− 4C2r1

2C
≤ r ≤ 1 +

√
1− 4C2r1

2C
(9.22)

whereby {
range of values of r

}
−→ interval

[
0,

1

C

]
, as r1 ↘ 0 (9.23)

a constraint which is guaranteed by taking

r1 ≤
1

4C2
, C being the constant in (9.20). (9.24)

We have thus established that by taking r1 as in (9.24) and subsequently r as in (9.22), then the map

F(z0, f) takes:

 ball in B̃
2−2/p
q,p (Ω)

of radius r1

×
 ball in X∞p,q,σ

of radius r

 into

 ball in X∞p,q,σ

of radius r

 ,

d < q, 1 < p <
2q

2q − 1
(9.25)

This establishes Theorem 9.2.

Proof of Theorem 9.3 Step 1: For f1, f2 both in the ball of X∞p,q,σ of radius r obtained in the proof

of Theorem 9.2, we estimate from (9.5):

‖F(z0, f1)−F(z0, f2)‖X∞p,q,σ =

∥∥∥∥∫ t

0
eAF,q(t−τ)

[
Nqf1(τ)−Nqf2(τ)

]
dτ

∥∥∥∥
X∞p,q,σ

(9.26)

≤ m̃ ‖Nqf1 −Nqf2‖Lp(0,∞;Lqσ(Ω)) (9.27)

after invoking the maximal regularity property (8.13).
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Step 2: Next recalling Nqf = Pq[(f ·∇)f ] from (2.11), we estimate the RHS of (9.27). In doing so, we

add and subtract (f2 · ∇)f1, set A = (f1 · ∇)f1 − (f2 · ∇)f1, B = (f2 · ∇)f1 − (f2 · ∇)f2, and use

|A+B|q ≤ 2q
[
|A|q + |B|q

]
(∗).

[T-L.1, p 12] We obtain, again ignoring ‖Pq‖:

‖Nqf1 −Nqf2‖Lp(0,∞;Lqσ(Ω)) ≤
∫ ∞

0

{[∫
Ω
|(f1 · ∇)f1 − (f2 · ∇)f2|q dΩ

]1/q}p
dt (9.28)

=

∫ ∞
0

[ ∫
Ω
|A+B|q dΩ

]p/q
dt (9.29)

≤ 2q
∫ ∞

0

{∫
Ω

[
|A|q + |B|q

]
dΩ

}p/q
dt (9.30)

= 2q
∫ ∞

0

{[∫
Ω
|A|q dΩ +

∫
Ω
|B|q dΩ

]1/q
}p
dt (9.31)

= 2q
∫ ∞

0

{[
‖A‖qLq(Ω) + ‖B‖qLq(Ω)

]1/q
}p
dt (9.32)

( by (∗)) ≤ 2q · 21/q

∫ ∞
0

{
‖A‖Lq(Ω) + ‖B‖Lq(Ω)

}p
dt (9.33)

( by (∗)) ≤ 2p+q+
1/q

∫ ∞
0

[
‖A‖pLq(Ω) + ‖B‖pLq(Ω)

]
dt (9.34)

= 2p+q+
1/q

∫ ∞
0

[
‖((f1 − f2) · ∇)f1‖pLq(Ω)

+ ‖(f2 · ∇)(f1 − f2)‖pLq(Ω)

]
dt (9.35)

= 2p+q+
1/q

∫ ∞
0

{
‖f1 − f2‖pLq(Ω) ‖∇f1‖pLq(Ω)

+ ‖f2‖pLqσ(Ω)
‖∇(f1 − f2)‖pLq(Ω)

}
dt (9.36)

Step 3: We now notice that regarding each of the integral term in the RHS of (9.36) we are structurally

and topologically as in the RHS of (9.12), except that in (9.36) the gradient terms ∇f1,∇(f1−f2) are

penalized in the Lqσ(Ω)-norm which is dominated by the L∞(Ω)-norm, as it occurs for the gradient

term ∇f in (9.12). Thus we can apply to each integral term on the RHS of (9.36) the same argument
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as in going from (9.12) to the estimates (9.15b) and (9.18) with q > dim Ω = 3. We obtain

‖Nqf1 −Nqf2‖pLp(0,∞;Lqσ(Ω))
≤ RHS of (9.36)

see (9.14) ≤ C
{
‖f1 − f2‖pL∞(0,∞;Lqσ(Ω))

‖∇f1‖pLp(0,∞;L∞(Ω))

+ ‖f2‖pL∞(0,∞;Lqσ(Ω))
‖∇(f1 − f2)‖pLp(0,∞;L∞(Ω)

}
(9.37)

see (9.15b) and (9.18) ≤ C
{
‖f1 − f2‖pX∞p,q,σ ‖f1‖pX∞p,q,σ + ‖f2‖pX∞p,q,σ ‖f1 − f2‖pX∞p,q,σ

}
(9.38)

= C
{
‖f1 − f2‖pX∞p,q,σ

(
‖f1‖pX∞p,q,σ + ‖f2‖pX∞p,q,σ

)}
(9.39)

Finally (9.39) yields

‖Nqf1 −Nqf2‖Lp(0,∞;Lqσ(Ω)) ≤ C
1/p ‖f1 − f2‖X∞p,q,σ

(
‖f1‖pX∞p,q,σ + ‖f2‖pX∞p,q,σ

)1/p
(9.40)

(by (∗)) ≤ 2
1/pC

1/p ‖f1 − f2‖X∞p,q,σ
(
‖f1‖X∞p,q,σ + ‖f2‖X∞p,q,σ

)
(9.41)

Step 4: Using estimate (9.41) on the RHS of estimate (9.27) yields

‖F(z0, f1)−F(z0, f2)‖X∞p,q,σ ≤ Kp ‖f1 − f2‖X∞p,q,σ
(
‖f1‖X∞p,q,σ + ‖f2‖X∞p,q,σ

)
(9.42)

Kp = m̃2
1/pC

1/p (m̃ as in (9.27), C as in (9.39)). Next, pick f1, f2 in the ball of X∞p,q,σ of radius R:

‖f1‖X∞p,q,σ , ‖f2‖X∞p,q,σ ≤ R (9.43)

Then

‖F(z0, f1)−F(z0, f2)‖X∞p,q,σ ≤ ρ0 ‖f1 − f2‖X∞p,q,σ (9.44)

and F(z0, f) is a contraction on the space X∞p,q,σ as soon as

ρ0 ≡ 2KpR < 1 or R < 1/2Kp , Kp = m̃2
1/pC

1/p . (9.45)

In this case, the map F(z0, f) defined in (9.5) has a fixed point z in X∞p,q,σ

F(z0, z) = z, or z = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqz(τ)dτ (9.46)

and such fixed point z ∈ X∞p,q,σ is the unique solution of the translated non-linear equation (9.1), or

(9.2) with finite dimensional control u in feedback form, as described by the RHS of (9.1). Theorem

9.1 is proved.
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10 Proof of Theorem 3.4. Local exponential decay of the non-

linear translated z-dynamics (9.1) with finite dimensional local-

ized feedback control

In this section we return to the feedback problem (9.1) rewritten equivalently as in (9.3)

z(t) = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqz(τ)dτ. (10.1)

For z0 in a small ball of B̃
2−2/p
q,p (Ω), Theorem 9.1 provides a unique solution in a ball of X∞p,q,σ. We

recall from (7.3) = (9.4) ∥∥∥eAF,qtz0

∥∥∥
B̃

2−2/p
q,p (Ω)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0. (10.2)

Our goal now is to show that for z0 in a small ball of B̃
2−2/p
q,p (Ω), problem (10.1) satisfies the exponential

decay

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤ Ce−at ‖z0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0, for some constants, a > 0, C = Ca ≥ 1.

Step 1: Starting from (10.1) and using (10.2) we estimate

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

+ sup
0≤t≤∞

∥∥∥∥∫ t

0
eAF,q(t−τ)Nqz(τ)dτ

∥∥∥∥
B̃

2−2/p
q,p (Ω)

(10.3)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

+ C1

∥∥∥∥∫ t

0
eAF,q(t−τ)Nqz(τ)dτ

∥∥∥∥
X∞p,q,σ

(10.4)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

+ C2 ‖Nqz‖Lp(0,∞;Lqσ(Ω)) (10.5)

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

+ C3 ‖z‖2X∞p,q,σ , C3 = C2C. (10.6)

In going from (10.3) to (10.4) we have recalled the embedding X∞p,q,σ ↪→ L∞
(
0,∞; B̃

2−2/p
q,p (Ω)

)
from

(2.30). Next, in going from (10.4) to (10.5) we have used the maximal regularity property (8.13).

Finally, to go from (10.5) to (10.6) we have invoked estimate (9.19).

Step 2: We shall next establish that

‖z‖X∞p,q,σ ≤M1 ‖z0‖
B̃

2−2/p
q,p (Ω)

+K ‖z‖2X∞p,q,σ , hence ‖z‖X∞p,q,σ
(
1−K ‖z‖X∞p,q,σ

)
≤M1 ‖z0‖

B̃
2−2/p
q,p (Ω)

(10.7)
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In fact, to this end, we take the X∞p,q,σ-estimate of equation (10.1). We obtain

‖z‖X∞p,q,σ ≤
∥∥∥eAF,qtz0

∥∥∥
X∞p,q,σ

+

∥∥∥∥∫ t

0
eAF,q(t−τ)Nqz(τ)dτ

∥∥∥∥
X∞p,q,σ

(10.8)

from which then (10.7) follows by invoking the maximal regularity property (8.14) on eAF,qt as well as

the maximal regularity estimate (8.13) followed by use of of (9.19), as in going from (10.4) to (10.6)∥∥∥∥∫ t

0
eAF,q(t−τ)Nqz(τ)dτ

∥∥∥∥
X∞p,q,σ

≤ M̃ ‖Nqz‖Lp(0,∞;Lqσ(Ω)) (10.9)

≤ M̃C ‖z‖2X∞p,q,σ . (10.10)

Thus (10.7) is proved with K = M̃C where C is the same constant occurring in (9.19), hence in (9.21),

(9.22).

Step 3: The well-posedness Theorem 9.1 says that
If ‖z0‖

B̃
2−2/p
q,p (Ω)

≤ r1

for r1 sufficiently small

 =⇒

 The solution z satisfies

‖z‖X∞p,q,σ ≤ r

 (10.11)

where r satisfies the constraint (9.22) in terms of r1 and some constant C in (9.19) that occurs for

K = M̃C in (10.10). We seek to guarantee that we can obtain
‖z‖X∞p,q,σ ≤ r <

1
2K = 1

2M̃C

(
< 1

2C

)

hence 1
2 < 1−K ‖z‖X∞p,q,σ ,

(10.12)

where w.l.o.g. we can take the maximal regularity constant M̃ in (8.13) to satisfy M̃ > 1. Again,

the constant C arises from application of estimate (9.19). This is indeed possible by choosing r1 > 0

sufficiently small. In fact, as r1 ↘ 0, (9.23) shows that the interval rmin ≤ r ≤ rmax of corresponding

values of r tends to the interval

[
0,

1

C

]
. Thus (10.12) can be achieved as rmin ↘ 0: 0 < rmin < r <

1

2M̃C
<

1

2C
. Next, (10.12) implies that (10.7) holds true and yields then

‖z‖X∞p,q,σ ≤ 2M1 ‖z0‖
B̃

2−2/p
q,p (Ω)

≤ 2M1r1. (10.13)
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Substituting (10.13) in estimate (10.6) then yields with M̂ = max{Mγ0 ,M1}

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

+ 4C3M
2
1 ‖z0‖2

B̃
2−2/p
q,p (Ω)

(10.14)

= M̂

[
e−γ0t + 4M̂C3 ‖z0‖

B̃
2−2/p
q,p (Ω)

]
‖z0‖

B̃
2−2/p
q,p (Ω)

(10.15)

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤ M̂
[
e−γ0t + 4M̂C3r1

]
‖z0‖

B̃
2−2/p
q,p (Ω)

(10.16)

recalling the constant r1 > 0 in (10.11).

Step 4: Now take T sufficiently large and r1 > 0 sufficiently small such that

β ≡ M̂e−γ0T + 4M̂2C3r1 < 1 (10.17)

Then (10.15) implies by (10.17)

‖z(T )‖
B̃

2−2/p
q,p (Ω)

≤ β ‖z0‖
B̃

2−2/p
q,p (Ω)

and hence (10.18a)

‖z(nT )‖
B̃

2−2/p
q,p (Ω)

≤ β ‖z((n− 1)T )‖
B̃

2−2/p
q,p (Ω)

≤ βn ‖z0‖
B̃

2−2/p
q,p (Ω)

. (10.18b)

Since β < 1, the semigroup property of the evolution implies that there are constants Mγ̃ ≥ 1, γ̃ > 0

such that

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤Mγ̃e
−γ̃t ‖z0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0 (10.19)

This proves Theorem 3.4.

Remark 10.1. The above computations - (10.17) through (10.19) - can be used to support quali-

tatively the intuitive expectation that “the larger the decay rate γ0 in (7.3) = (9.4) = (10.2) of the

linearized feedback w-dynamics (7.1), the larger the decay rate γ̃ in (10.19) of the nonlinear feedback

z-dynamics (3.20) = (9.1); hence the larger the rate γ̃ in (3.29) of the original y-dynamics in (3.28)”.

The following considerations are somewhat qualitative. Let S(t) denote the non-linear semigroup

in the space B̃
2−2/p
q,p (Ω), with infinitesimal generator

[
AF,q − Nq

]
describing the feedback z-dynamics

(3.20)=(9.1), hence (9.2), as guaranteed by the well posedness Theorem 3.3 = Theorem 9.1. Thus,

z(t; z0) = S(t)z0 on B̃
2−2/p
q,p (Ω). By (10.17), we can rewrite (10.18a) as:

‖S(T )‖
L
(
B̃

2−2/p
q,p (Ω)

) ≤ β < 1. (10.20)
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It follows from [Bal, p 178] via the semigroup property that

− γ̃ is just below
lnβ

T
< 0. (10.21)

Pick r1 > 0 in (10.17) so small that 4M̂2C3r1 is negligible, so that β is just above M̂e−γ0T , so lnβ is

just above
[

ln M̂ − γ0T
]
, hence

lnβ

T
is just above (−γ0) +

ln M̂

T
. (10.22)

Hence, by (10.21), (10.22),

γ̃ ∼ γ0 −
ln M̂

T
(10.23)

and the larger γ0, the larger is γ̃, as desired.
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11 Well-posedness of the pressure χ for the z-problem (2.7) in feed-

back form, and of the pressure π for the y-problem (2.1) in feed-

back form (3.22) in the vicinity of the equilibrium pressure πe.

The z-problem in feedback form: We return to the translated z problem (2.7), with  Le(z) given by

(2.39)

zt − ν∆z + Le(z) + (z · ∇)z +∇χ = m(Fz) in Q (11.1a)

div z = 0 in Q (11.1b)

z = 0 on Σ (11.1c)

z(0, x) = y0(x)− ye(x) on Ω (11.1d)

with Fz given in the feedback form as in (3.20) = (9.1)

m(Fz) = m

(
K∑
k=1

(
zN , pk

)
ω
uk

)
, zN = PNz (11.1e)

for which Theorem 3.3 = Theorem 9.1 provides a local well-posedness result (3.22), (3.23) for the z

variable. We now complement such well-posedness for z with a corresponding local well-posedness

result for the pressure χ.

Theorem 11.1. Consider the setting of Theorem 3.3 = Theorem 9.1 for problem (10.1a-e). Then the

following well-posedness result for the pressure χ holds true, where we recall the spaces Y∞p,q for T =∞

and Ŵ 1,q(Ω) in (2.29) as well as the steady state pressure πe from Theorem 2.1:

‖χ‖Y∞p,q ≤ C̃ ‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1
}
. (11.2)

Proof. We first apply the full maximal-regularity (2.33) to the Stokes component of problem (11.1)

with Fq = Pq
(
mF (z)− Le(z)− (z · ∇)z

)
to obtain

‖z‖X∞p,q,σ + ‖χ‖Y∞p,q ≤ C
{
‖Pq[m(Fz)− (z · ∇)z − Le(z)]‖Lp

(
0,∞;Lqσ(Ω)

) + ‖z0‖
B̃

2−2/p
q,p (Ω)

}
≤ C

{
‖Pq[m(Fz)]‖

Lp
(

0,∞;Lqσ(Ω)
) + ‖Pq(z · ∇)z‖

Lp
(

0,∞;Lqσ(Ω)
)

+ ‖PqLe(z)‖Lp
(

0,∞;Lqσ(Ω)
) + ‖z0‖

B̃
2−2/p
q,p (Ω)

}
. (11.3)
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But Pq[mF (z)] = mF (z) as the vectors uk in the definition of F in (3.26) are uk ∈ W u
N ⊂ Lqσ(Ω).

Moreover F ∈ L(Lqσ(Ω)), we obtain

‖Pq[m(Fz)]‖
Lp
(

0,∞;Lqσ(Ω)
) ≤ C1 ‖z‖X∞p,q,σ . (11.4)

recalling the space X∞p,q,σ from (2.28). Next, recalling (9.19) for Nqz = Pq
[
(z · ∇)z

]
, see (2.11), we

obtain

‖Pq(z · ∇)z‖
Lp
(

0,∞;Lqσ(Ω)
) ≤ C2 ‖z‖2X∞p,q,σ . (11.5)

The equilibrium solution {ye, πe} is given by Theorem 2.1 as satisfying

‖ye‖W 2,q(Ω) + ‖πe‖Ŵ q,1 ≤ c ‖f‖Lq(Ω) , 1 < q <∞. (11.6)

We next estimate the term PqLe(z) = Pq[(ye · ∇)z + (z · ∇)ye] in (11.3)

‖PqLe(z)‖Lp
(

0,∞;Lqσ(Ω)
) = ‖Pq(ye.∇)z + Pq(z.∇)ye‖Lp

(
0,∞;Lqσ(Ω)

) (11.7)

≤ ‖Pq(ye.∇)z‖
Lp
(

0,∞;Lqσ(Ω)
) + ‖Pq(z.∇)ye‖Lp

(
0,∞;Lqσ(Ω)

) (11.8)

≤ ‖ye‖Lq(Ω) ‖∇z‖Lp
(

0,∞;Lqσ(Ω)
) + ‖z‖

Lp
(

0,∞;Lqσ(Ω)
) ‖∇ye‖Lq(Ω) (11.9)

≤ 2C2 ‖f‖Lq(Ω) ‖z‖Lp
(

0,∞;Lqσ(Ω)
) (11.10)

≤ C3 ‖z‖X∞p,q,σ (11.11)

with the constant C3 depending on the Lq(Ω)-norm of the datum f . Setting now C4 = C ·{C1, C2, C3}

and substituting (11.4), (11.5), (11.11) in (11.3), we obtain

‖z‖X∞p,q,σ + ‖χ‖Y∞p,q ≤ C4

{
‖z‖2X∞p,q,σ + 2 ‖z‖X∞p,q,σ + ‖z0‖

B̃
2−2/p
q,p (Ω)

}
(11.12)

Next we drop the term ‖z‖X∞p,q,σ on the left hand side of (11.12) and invoking (10.13) to estimate

‖z‖X∞p,q,σ . Thus we obtain

‖χ‖Y∞p,q ≤ C5

{
‖z0‖2

B̃
2−2/p
q,p (Ω)

+ 2 ‖z0‖
B̃

2−2/p
q,p (Ω)

+ ‖z0‖
B̃

2−2/p
q,p (Ω)

}
(11.13)

≤ C̃ ‖z0‖
B̃

2−2/p
q,p (Ω)

{
‖z0‖

B̃
2−2/p
q,p (Ω)

+ 1
}
, C̃ = 3C5 (11.14)

and (11.14) proves (11.2), as desired, recalling (2.7e).
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The y-problem in feedback form We return to the original y-problem however in feedback form as in

(3.26), (3.27), for which Theorem 2.5(i) proves a local well-posedness result. We now complement such

well-posedness result for y with the corresponding local well-posedness result for the pressure π.

Theorem 11.2. Consider the setting of Theorem 3.5 for the y-problem in (3.27). Then, the following

well-posedness result for the pressure π holds true.

‖π − πe‖Y Tp,q ≤ ‖π − πe‖Y∞p,q ≤ C̃ ‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1
}

(11.15)

≤ Ĉ
{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q(Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q(Ω) + 1
}

(11.16)

≤ Ĉ
{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖Lq(Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖Lq(Ω) + 1
}

(11.17)

‖π‖Y Tp,q ≤ Ĉ ‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1
}

+ cT
1/p ‖πe‖Ŵ 1,q(Ω)

, 0 < T <∞ (11.18)

≤ Ĉ
{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖Lq(Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖Lq(Ω) + 1
}

+ cT
1/p ‖f‖Lq(Ω) , 0 < T <∞ (11.19)

Proof. We return to the estimate (11.2) for χ and recall χ = π− πe from (2.7e) to obtain (11.15). We

next estimate y − ye by

‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

≤ C
{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q(Ω)

}
. (11.20)

which substituted in (11.15) yields (11.16). In turn, (11.16) leads to (11.17) by means of (11.6).
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Appendix A On Helmholtz Decomposition

We return to the Helmholtz decomposition in (2.4), (2.5) and provide additional information.

For M ⊂ Lq(Ω), 1 < q <∞, we denote the annihilator of M by

M⊥ =

{
f ∈ Lq′(Ω) :

∫
Ω
fg dΩ = 0, for all g ∈M

}
(A.1)

where q′ is the dual exponent of q : 1/q + 1/q′ = 1.

Proposition A.1. [H-S, Prop 2.2.2 p6], [Ga.3, Ex. 16 p115], [F-M-M]

Let Ω ⊂ Rd be an open set and let 1 < q <∞.

a) The Helmholtz decomposition exists for Lq(Ω) if and only if it exists for Lq
′
(Ω), and we have:

(adjoint of Pq) = P ∗q = Pq′ (in particular P2 is orthogonal), where Pq is viewed as a bounded

operator Lq(Ω) −→ Lq(Ω), and P ∗q = Pq′ as a bounded operator Lq
′
(Ω) −→ Lq

′
(Ω), 1/q + 1/q′ = 1.

b) Then, with reference to (2.5)[
Lqσ(Ω)

]⊥
= Gq

′
(Ω) and

[
Gq(Ω)

]⊥
= Lq

′
σ (Ω) (A.2a)

Remark A.1. Throughout the paper we shall use freely that

(
Lqσ(Ω)

)′
= Lq

′
σ (Ω),

1

q
+

1

q′
= 1 (A.2b)

Thus can be established as follows. From (2.5) write Lqσ(Ω) as a factor space Lqσ(Ω) = Lq(Ω)/Gq(Ω) ≡

X/M so that [T-L.1, p 135].

(
Lqσ(Ω)

)′
=
(
Lq(Ω)/Gq(Ω)

)′
=
(
X/M

)′
= M⊥ =

[
Gq(Ω)

]⊥
= Lq

′
σ (Ω) (A.2c)

In the last step, we have invoked (A.2a), which is also established in [Ga.3, Lemma 2.1, p 116].

Similarly (
Gq(Ω)

)′
=
(
Lq(Ω)/Lqσ(Ω)

)′
=
[
Lqσ(Ω)

]⊥
= Gq

′
(Ω) (A.2d)
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Appendix B Proof of Theorem 2.6: maximal regularity of the Oseen

operator Aq on Lqσ(Ω), 1 < p, q <∞, T <∞.

Part I: (2.46). By (2.41) with ψ0 = 0

ψ(t) =

∫ t

0
eAq(t−τ)Fσ(τ)dτ. (B.1)

where by the statement preceding Theorem 2.4∥∥∥eAq(t−τ)
∥∥∥
L(Lqσ(Ω))

≤Meb(t−τ), 0 ≤ τ ≤ t (B.2)

for M ≥ 1, b possibly depending on q.

Step 1 : We have the following estimate∫ T

0
‖ψ(t)‖p

Lqσ(Ω)
dt ≤ CT

∫ T

0
‖Fσ(t)‖p

Lqσ(Ω)
dt (B.3)

where the constant CT may depend also on p, q, b. This follows at once from the Young’s inequality

for convolutions [Sa, p26]:

‖ψ(t)‖Lqσ(Ω) ≤M
∫ t

0
eb(t−τ) ‖Fσ(τ)‖Lqσ(Ω) dτ ∈ L

p(0, T ), T <∞,

and the convolution of the Lp(0, T )-function ‖Fσ‖Lqσ(Ω) and the L1(0, T )-function ebt is in Lp(0, T ).

More elementary, one can use Hölder inequality with 1/p + 1/p̃ = 1 and obtain an explicit constant.

Step 2 : Claim: Here we shall next complement (B.3) with the estimate∫ T

0
‖Aqψ(t)‖p

Lqσ(Ω)
dt ≤ C

∫ T

0
‖ψ(t)‖p

Lqσ(Ω)
dt+ C

∫ T

0
‖Fσ(t)‖p

Lqσ(Ω)
dt (B.4)

to be shown below. Using (B.3) in (B.4) then yields∫ T

0
‖Aqψ(t)‖p

Lqσ(Ω)
dt ≤ CT

∫ T

0
‖Fσ(t)‖p

Lqσ(Ω)
dt. (B.5)

With respect to (2.41) with ψ0 = 0, then (B.5) says

Fσ ∈ Lp(0, T ;Lqσ(Ω)) −→ ψ ∈ Lp(0, T ;D(Aq) = D(Aq)) (B.6)
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while (2.40) then yields via (B.6)

Fσ ∈ Lp(0, T ;Lqσ(Ω)) −→ ψt ∈ Lp(0, T ;Lqσ(Ω)) (B.7)

continuously. Then, (B.6), (B) show is part (i) of Theorem 2.6.

Proof of (B.4): . In this step, with ψ0 = 0, we shall employ the alternative formula, via (2.42) (ν = 1,

wlog)

ψ(t) =

∫ t

0
e−Aq(t−τ)(−Ao,q)ψ(τ)dτ +

∫ t

0
e−Aq(t−τ)Fσ(τ)dτ. (B.8)

where by maximal regularity of the Stokes operator −Aq on the space Lqσ(Ω), as asserted in Theorem

2.5.ii, Eq (2.35), we have in particular

Fσ ∈ Lp(0, T ;Lqσ(Ω)) −→
∫ t

0
e−Aq(t−τ)Fσ(τ)dτ ∈ Lp(0, T ;D(Aq)) continuously. (B.9)

Regarding the first integral term in (B.8) we shall employ the (complex) interpolation formula (2.22),

and recall from (2.9) that D(Ao,q) = D(A
1/2
q ):

D(Ao,q) = D(A
1/2
q ) = [D(Aq), L

q
σ(Ω)]1/2

(B.10)

so that the interpolation inequality [Triebel, Theorem p 53, Eq(3)] with θ = 1/2 yields from (B.10)

‖a‖D(Ao,q)
= ‖a‖

D
(
A

1/2
q

) ≤ C ‖a‖1/2

D(Aq)
‖a‖

1/2

Lqσ(Ω)

≤ ε ‖a‖D(Aq)
+ Cε ‖a‖Lqσ(Ω)

(B.11)

[
Since D(A

1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) by (2.22), then for a ∈ D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω), see

(2.17), we may as well invoke the interpolation inequality for W -spaces. [Adams, Theorem 4.13, p 74]:

‖a‖
W 1,q

0 (Ω)
≤ ε ‖a‖W 2,q(Ω) + Cε ‖a‖Lqσ(Ω)

]
We return to (B.8) and obtain

Aqψ(t) = Aq

∫ t

0
e−Aq(t−τ)(−Ao,q)ψ(τ)dτ +Aq

∫ t

0
e−Aq(t−τ)Fσ(τ)dτ. (B.12)

69



Hence via the maximal regularity of the uniformly stable Stokes semigroup e−Aqt, Eq (2.35), (B.11)

yields

‖Aqψ‖Lp(0,T ;Lqσ(Ω)) ≤ C
{
‖Ao,qψ‖Lp(0,T ;Lqσ(Ω)) + ‖Fσ‖Lp(0,T ;Lqσ(Ω))

}
(B.13)

by (B.11) ≤ ε′ ‖Aqψ‖Lp(0,T ;Lqσ(Ω)) + Cε′ ‖ψ‖Lp(0,T ;Lqσ(Ω)) + C ‖Fσ‖Lp(0,T ;Lqσ(Ω)) (B.14)

ε′ = εC > 0 arbitrarily small. Hence (B.14) yields

‖Aqψ‖Lp(0,T ;Lqσ(Ω)) ≤
Cε′

1− ε′
‖ψ‖Lp(0,T ;Lqσ(Ω)) +

C

1− ε′
‖Fσ‖Lp(0,T ;Lqσ(Ω)) (B.15)

and estimate (B.4) of Step 2 is established. Part I of Theorem 2.6 is proved.

Part II: (2.49). For simplicity of notation, we shall write the proof on B̃
2−2/p
q,p (Ω) i.e. for 1 < q, p <

2q/2q−1. The proof on
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

in the other case 2q/2q−1 < p is exactly the same.

Step 1 : Let η0 ∈ B̃
2−2/p
q,p (Ω) and consider the s.c. analytic Oseen semigroup eAqt on the space

B̃
2−2/p
q,p (Ω), as asserted by Theorem 1.4.ii (take ν = 1 wlog):

η(t) = eAqtη0, or ηt = Aqη = −Aqη −Ao,qη (B.16)

Then we can rewrite η as

η(t) = e−Aqtη0 +

∫ t

0
e−Aq(t−τ)(−Ao,q)η(τ) dτ (B.17)

Aqη(t) = Aqe
−Aqtη0 +Aq

∫ t

0
e−Aq(t−τ)(−Ao,q)η(τ) dτ (B.18)

We estimate, recalling the maximal regularity (2.35), (2.36) as well as the uniform decay (2.25) of the

Stokes operator.

‖Aqη‖Lp(0,T ;Lq(Ω)) ≤ C ‖η0‖
B̃

2−2/p
q,p (Ω)

+ C ‖Ao,qη‖Lp(0,T ;Lqσ(Ω)) (B.19)

≤ C ‖η0‖
B̃

2−2/p
q,p (Ω)

+ εC̃ ‖Aqη‖Lp(0,T ;Lqσ(Ω)) + Cε ‖η‖Lp(0,T ;Lqσ(Ω)) (B.20)

after invoking, in the last step, the interpolation inequality (B.11). Thus (B.20) yields via (2.18)

‖Aqη‖Lp(0,T ;Lqσ(Ω)) = ‖Aqη‖Lp(0,T ;Lqσ(Ω))

≤ C

1− εC̃
‖η0‖

B̃
2−2/p
q,p (Ω)

+
Cε

1− εC̃
‖η‖Lp(0,T ;Lqσ(Ω)) (B.21)
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Step 2 : With η0 ∈ B̃
2−2/p
q,p (Ω), since eAqt generates a s.c (analytic) semigroup on B̃

2−2/p
q,p (Ω), Theorem

2.4.ii, we have

η(t) = eAqtη0 ∈ C
(

0, T ; B̃
2−2/p
q,p (Ω)

)
⊂ Lp

(
0, T ; B̃

2−2/p
q,p (Ω)

)
⊂ Lp

(
0, T ;Lqσ(Ω)

)
(B.22)

continuously, where in the last step, we have recalled that B̃
2−2/p
q,p (Ω) is the interpolation between

Lq(Ω) and W 2,q(Ω), see (2.16b). (B.22) says explicitly

‖η‖
Lp
(

0,T ;Lqσ(Ω))
) ≤ C ‖η0‖

B̃
2−2/p
q,p (Ω)

(B.23)

Step 3 : Substituting (B.23) in (B.21) yields

‖Aqη‖Lp
(

0,T ;Lqσ(Ω)
) ≤ C ‖η0‖

B̃
2−2/p
q,p (Ω)

(B.24)

and (2.49) is established, from which (2.50) follows at once. Thus Theorem 2.6 is proved.
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12 Part II: Using finitely many interior, localized, feedback controls

also in dimension d = 3.

Abstract

The present dissertation provides a solution to the following recognized open problem in the theory

of uniform stabilization of d-dimensional Navier-Stokes equations in the vicinity of an unstable

equilibrium solution, by means of tangential boundary localized feedback controls: can these stabi-

lizing controls be asserted to be finite dimensional also in the physical dimension d = 3? The result

is known for d = 2 and also for d = 3, however only for compactly supported initial conditions.

For physical dimension d = 3, the N-S nonlinearity forces a topological level sufficiently high as

to dictate compatibility conditions. To achieve the desired finite dimensionality result of the feed-

back tangential boundary controls, it was then necessary to abandon the Hilbert-Sobolev functional

setting of past literature and replace it with an appropriate Lq-based/Besov setting. Eventually,

well-posedness of the nonlinear N-S problem as well as its uniform stabilization are obtained in an

explicit Besov space with tight parameters related to the physical dimension d, where the com-

patibility conditions are not recognized. The proof is constructive and is “optimal” also regarding

the ”minimal” amount of tangential boundary control action needed. The new setting requires

the solution of new technical and conceptual issues. These include establishing maximal regularity

in the required Besov setting for the overall closed-loop linearized problem with feedback control

applied on the boundary. This result is also a new contribution to the area of maximal regularity.

The minimal amount of tangential boundary action is linked to the issue of unique continuation

properties of over-determined Oseen eigenproblems.
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13 Introduction

13.1 Controlled Dynamic Navier-Stokes Equations

Let Ω be an open connected bounded domain in Rd, d = 2, 3, with sufficiently smooth boundary

Γ = ∂Ω, say of class C2. More specific requirements will be given below. For purposes of illustration,

let ω be at first an arbitrary collar (layer) of the boundary Γ in the interior of Ω, ω ⊂ Ω [Fig. 1]. For

each point ξ ∈ ω, we consider the (sufficiently smooth) curve (d = 2) or surface (d = 3) Γξ, which is

the parallel translation of the boundary Γ, passing through ξ ∈ ω and lying in ω. Let τ(ξ) be a unit

tangent vector to the oriented curve Γξ at ξ, if d = 2; and let τ(ξ) = [τ1(ξ), τ2(ξ)] be an orthonormal

system of oriented tangent vectors lying on the tangent plane to the surface Γξ at ξ, if d = 3, and

obtained as isothermal parametrization via a 1-1 conformal mapping of a suitable open set in R2 with

canonical basis e1 = {1, 0}, e2 = {0, 1}. See [L-T.2, Appendix] for details and references. We shall

in particular allow and study the case where ω is a localized collar based on an arbitrarily small,

connected portion Γ̃ of the boundary Γ [Fig. 2]. Let m denote the characteristic function of the collar

set ω : m ≡ 1 in ω, m ≡ 0 in Ω/ω.

•

ω

τ(ξ)

ξ

Γξ

Γ

Fig. 1: Internal Collar ω of Full Boundary Γ

78



ω Γ̃

•

•

Fig. 2: Internal Localized Collar ω of Subportion Γ̃ of Boundary Γ

We consider the following Navier-Stokes equations perturbed by a force f and subject to the action

of a pair u, v of controls, to be described below

yt(t, x)− νo∆y(t, x) + (y · ∇)y +∇π(t, x)− (m(x)u)τ = f(x) in Q (13.1a)

div y = 0 in Q (13.1b)

y = v on Σ (13.1c)

y(0, x) = y0(x) in Ω (13.1d)

where Q = (0,∞)×Ω, Σ = (0,∞)× Γ and the constant νo > 0 is the viscosity coefficient. In (13.1c),

v is a d-dimensional tangential boundary control v · ν ≡ 0 on Γ, possibly supported on an arbitrarily

small connected part Γ̃ of the boundary, where ν is the unit outward normal to Γ. Instead, u is a

scalar (d = 2) or a two dimensional vector u = [u1, u2] (d = 3) interior “tangential” control acting in

the ‘tangential direction’ τ (that is, parallel to the boundary) in the small boundary layer ω: (mu)τ ,

where for d = 3 (Fig. 2),

(mu)τ = [(mu1)τ1 + (mu2)τ2] for short, m ≡ 1 on ω; m ≡ 0 in Ω\ω. (13.1e)

See [L-T.2, Appendix]. The scalar function π is the unknown pressure.

Orientation. The Stabilization Feedback Control Paradigm: purely boundary control

action versus arbitrarily short portion of the boundary. We insert the present encompassing
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orientation at the very outset of our treatment, even though its full content can be documented and

understood only after considerable further reading of the present paper. One may wish to refer back

to it as reading proceeds.

Case 1: tangential boundary control action on an arbitrarily small portion of the bound-

ary. First, ideally, one would like to establish uniform stabilization of the above problem (13.1) by use

of only the boundary control v (thus, with localized interior, tangential-like control u ≡ 0), subject to

two additional desirable features (regardless, at this stage, of its finite dimensionality):

(i) the boundary control v is applied only on an (arbitrarily) small portion Γ̃ of the boundary Γ,

and

(ii) such v acts only tangentially along Γ̃, so that the normal component is not needed (a sort of

minimal control action). Tangential actuation is attractive and is described as implementable in

the engineering community, by means of jets of air.

Is such idealized purely boundary, tangential control v acting only on a portion Γ̃ of the

boundary Γ a possible stabilizing control? The answer is in the negative.

As is known since the studies of boundary feedback stabilization of a parabolic equation with Dirichlet

boundary trace in the feedback loop as acting on the Neumann boundary conditions [L-T.4], a critical

potential obstruction arises already at the level of the finite-dimensional analysis: more precisely, at the

level of enforcing feedback stabilization with large decay rate of the finite-dimensional projected system

(4.8a,b) of the linearized w-problem (13.11a) (with u = 0). To achieve this requirement, one needs to

verify the algebraic Kalman (or Hautus) rank conditions, corresponding to the unstable eigenvalues

in (16.2) of the linearized Oseen operator. In the present case, these turn out to be: rank Wi = `i,

see the matrix Wi in (18.12) or (19.11), with entries restricted only on Γ̃, for each distinct unstable

eigenvalue λi, i = 1, . . . ,M in (16.2). In turn, such algebraic controllability conditions are equivalent to

the unique continuation property of the Oseen eigenproblem (D.1a,b,c) - (D.2) of Appendix F; [same

as the Oseen eigenproblem (6.36a-b-c)- (18.37), with the omission of the interior condition ϕ ·τ ≡ 0 on

ω]. Such unique continuation property with over-determined conditions ϕ|
Γ̃
≡ 0, ∂νϕ|Γ̃ ≡ 0 only on a

portion Γ̃ of the boundary Γ is false. In fact, as collected in Appendix F, reference [F-L] provides a
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simple counterexample to such unique continuation property even for the Stokes problem (ye = 0) on

the 2-dimensional half-space {(x, y) : x ∈ R+, y ∈ R}, with over-determination on the infinite bound-

ary {x = 0}. Such counterexample on the half-space can then be transformed in a counterexample of

the unique continuation property on a bounded domain Ω with over-determination on any sub-portion

of its boundary ∂Ω. Thus, stabilization (with large decay rate) of the finite dimensional projected

system (4.8a,b) - hence of the linearized w-problem (13.11a) - by means only of the boundary control

v active only on the small portion Γ̃ of the boundary Γ is not possible [and thus with localized interior,

tangent-like control u = 0 on ω, the patch supported by Γ̃].

Case 2: the necessity of complementing the localized tangential boundary control v

with a corresponding localized interior tangential-like control u. See Fig. 2. If one in-

sists on a boundary control action v active only on a portion of the boundary Γ̃, one then needs to

complement such v (as it was introduced in [L-T.2], [L-T.3]) with a localized, interior, tangential-

like control u, acting on an arbitrarily small patch ω, supported by Γ̃. This is a sort of mini-

mal extra requirement for keeping v acting only on Γ̃. The role of this additional localized inte-

rior, tangential-like control u is to guarantee that the corresponding unique continuation property

(6.36a,b,c) of Lemma 18.2, augmented with the interior condition ϕ · τ ≡ 0 on ω, now holds. In

short: the unique continuation property (D1a,b,c) =⇒ (D.2) without the extra condition ϕ · τ = 0

on ω, is false, and this is then “corrected” by falling into the unique continuation of Lemma 18.2 in

(6.36a,b,c) augmented with the interior condition ϕ · τ ≡ 0 on ω, which is true. Consequently the

correspondingly enlarged controllability matrix in (18.28b) satisfies the required Kalman rank con-

ditions. In this sense, therefore, the results of the present paper (ultimately, Theorem 17.4 yielding

null-feedback stabilization in the vicinity of the unstable origin, of the translated z-problem (13.10)) are

optimal, in terms of the smallness of the required control action for v and u. Moreover, v is shown

here for the first time to be finite dimensional also in the case d = 3. This is the key new contri-

bution of the present work (finite dimensionality of u is not an issue, see [L-T.3]).

Case 3: tangential boundary control v on the whole boundary Γ. If, on the other hand,

one insists on only exercising tangential boundary control action v - and thus dispensing altogether

with the localized, interior, tangential-like control u - then such boundary control action v will have
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to be applied, as a first step, to the entire boundary Γ. Would then be possible to establish uniform

stabilization with only a feedback control v acting tangentially on the entire boundary Γ (regardless of

its finite dimensionality)? It seems that a general definitive answer is not known at present. The ob-

struction is again the unique continuation property of the Oseen eigenproblem (corresponding to

the unstable distinct eigenvalues λi, i = 1, . . . ,M , in (16.2), with - this time - over-determination

ϕ|Γ ≡ 0, ∂νϕ|Γ ≡ 0 on the entire boundary Γ: that is Problem 3, implication (D.8) =⇒ (D.9) in

Appendix F. Only partial results are known.

a) Such required unique continuation property is true in dimension d = 2, 3, if the equilibrium solution

ye = 0 (Stokes eigenproblem) or, more generally, ye is in a sufficiently small ball of the origin in

the W 1,∞-norm. Several very different proofs are given in [RT.4] and [RT.5]: What is then the

implication, if any, on the problem of the present paper? The case ye = 0 is actually physically

quite important as it occurs for instance when the forcing function f in (13.1a) or (13.2a) is a

conservative vector field f = ∇g (say an electrostatic field): in which case a solution of problem

(1.2a,b,c) is ye = 0 and π = g, modulo constant.

b) the “good” equilibrium solutions (which yield the unique continuation property with over- deter-

mination on the entire boundary Γ) form an open set in, say, the W 1,∞ space topology: if ye is

“good” , then there is a full ball in the W 1,∞-topology that contains “good” ye [RT.4], [RT.5].

Of course, with ye = 0, the corresponding Stokes problem (which now replaces the general Oseen

problem) is already uniformly stable, with, say a decay rate − |Re(λ1)|. A most valuable varia-

tion of the problem under investigation is then: enhance the stability of the linearized (uniformly

stable) w-problem (1.11a,b,c,d) (with u = 0) from the given margin −|Re(λ1)| to an arbitrarily

preassigned decay rate −k2, by means of a tangential boundary finite dimensional feedback control

of the same form as the operator F in (17.13) as applied to the entire boundary. To this end, it

suffices to apply the procedure of the present paper to a finite dimensional projected space spanned

by the eigenvectors of the Stoke operator corresponding to its finitely many eigenvalues λi with

|Re(λi)| ≤ k2. This in turn will provide stability enhancement of the non-linear problem (13.1) in

the vicinity of ye = 0 (or small ye).

c) In the two dimensional case, d = 2, there is a genericity result [B-L] about the validity of the

unique continuation problem (D.8) =⇒ (D.9) in Appendix F with over-determination on the whole
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boundary.

d) A variation of the Oseen eigenvalue problem always satisfies a unique continuation property even

with over-determination on an arbitrarily small portion Γ̃ of the boundary Γ. This is problem 4 in

Appendix D. A proof, along more classical elliptic arguments, is given in [RT.4]. Here however the

condition ∂νϕ ≡ 0 is replaced by ∂νϕ− pν ≡ 0 on Γ and p on the boundary is unknown in general.

Application of this result to the present paper will result in substituting ∂νϕ
∗
ij |Γ̃ with ∂νϕ

∗
ij − piν|Γ̃

in the matrix Wi in (18.12) or (19.11) which then, with this modification, becomes full rank, as

desired. Thus the stabilizing control will be expressed in terms of the pressure on the boundary,

which is typically an unknown.

The stabilization problem by feedback tangential control action. For large Reynolds number

1/ν0 , the presence of the external force f in (13.1a) leads to the existence of equilibrium points {ye, πe}

in (13.2) below, which may be unstable, in a quantitative sense to be made more precise in Section 16

below, and may cause turbulence: it is therefore important to be able to suppress turbulence asymp-

totically in time by selecting a suitable feedback control action. In the present paper, in light with the

Orientation, we shall impose a pair {u, v} of controls: a tangential boundary control v(t), v · ν = 0 on

Γ, acting on the boundary Γ (and preferably in fact supported in an arbitrarily small open connected

part Γ̃ of positive measure of the boundary Γ) and an interior localized control u acting on a collar

ω supported by Γ [Fig. 1](or, respectively, by Γ̃ [Fig. 2]) in the ‘tangential’ direction τ , i.e. paral-

lel to the boundary. Thus, the function m(x)u(t, x)τ(x) can be viewed as an interior tangential-like

controller with support in Qω = (0,∞)× ω. From the engineering points of view a purely tangential

control action is desirable as such control mechanisms can be implemented by using jets of air which

are directed in a direction tangential to the motion [ ]. Moreover, in control theory, one generally seeks

a ‘minimal’ control action, and in this spirit we dispense with the ‘normal’ component.

Notation: As already done in the literature, for the sake of simplicity, we shall adopt the same nota-

tion for function spaces of scalar functions and function spaces of vector valued functions. Thus,

for instance, for the vector valued (d-valued) velocity field y or external force f , we shall sim-

ply write say y, f ∈ Lq(Ω) rather than y, f ∈ (Lq(Ω))d or y, f ∈ Lq(Ω). This choice is unlikely

to generate confusion. The initial condition y0 and the body force f ∈ Lq(Ω) are given. The
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scalar function π is the unknown pressure. By way of orientation, we state at the outset two main

points. For the linearized w-problem (13.11) below of the translated non-linear z-problem (13.10),

the final well-posedness and global uniform stabilization result, Theorem 17.2, holds in general for

1 < q < ∞. Instead, the final, main local well-posedness and uniform, local stabilization results,

near an equilibrium solution, Theorem A and Theorem B in Section 13.7 (same as Theorem 5.5 (i),

(ii) of Section 17.5), for the original nonlinear y-problem (13.1) will require q > 3, see (24.16), in the

d = 3-case, hence 1 < p < 6/5, and respectively q > 2 in the d = 2-case, hence 1 < p < 4/3, to satisfy

the requirement p < 2q/2q−1 see (13.3), or (15.3b).

13.2 Stationary Navier-Stokes equations

The following result represents our basic starting point.

Theorem 13.1. Consider the following steady-state Navier-Stokes equations in Ω

−νo∆ye + (ye.∇)ye +∇πe = f in Ω (13.2a)

div ye = 0 in Ω (13.2b)

ye = 0 on Γ (13.2c)

Let 1 < q <∞. For any f ∈ Lq(Ω) there exits a solution (not necessarily unique) (ye, πe) ∈ (W 2,q(Ω)∩

W 1,q
0 (Ω))×W 1,q(Ω).

For the Hilbert case q = 2, see [C-F, Thm 7.3 p 59] . For the general case 1 < q <∞, see [A-R, Thm

5.iii p 58].

Remark 13.1. It is well-known [Lad], [Li], [Te] that the stationary solution is unique only when “the

data is small enough, or the viscosity is large enough” [Te, p 157; Chapt 2] that is, if the ratio ‖f‖/ν2
o

is smaller than some constant that depends only on Ω [FT, p 121]. When non-uniqueness occurs, the

stationary solutions depend on a finite number of parameters [FT, Theorem 2.1, p 121] asymptotically,

in the time dependent case.

Remark 13.2. As mentioned in the Orientation, the case where f(x) in (13.1a) is replaced by ∇g(x)

is noted in the literature as arising in certain physical situations, where f is a conservative vector field.

In this case, a solution of the stationary problem (13.2) is ye ≡ 0, πe = g. The analysis of this relevant

case was indicated in the Orientation and is postponed to Remark 15.2, at the end of Section 15.
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13.3 Main goal of the present paper: solution of the presently open problem on

local uniform stabilization of the N-S equations (13.1), near an unstable

equilibrium solution ye by means of a tangential boundary, localized feed-

back control v which is finite dimensional also for d = 3 (in addition to a

corresponding control u).

In the Orientation, supplemented by Appendix F, we have seen that if v is active only on Γ̃, then a

corresponding interior, tangential-like control u is needed on a patch supported by Γ̃. We take this

fact for guaranteed henceforth. In the literature (to be reviewed below in Section 13.8) on the local

uniform feedback stabilization near an equilibrium solution ye of the N-S equations from the boundary,

a presently open problem stands prominent: can one achieve such local feedback stabilization of the

N-S equations only with finite-dimensional feedback tangential boundary controller v also in the case

d = 3?. A second subordinate open problem is: does one need also the (finite dimensional) interior

tangential-like control u?, if v is applied to the entire boundary Γ? These issues are open at present,

as discussed in the Orientation and in Appendix F. When employed, the finite-dimensionality of u is

not a problem, see [L-T.2] (and [B-T.1]).

The finite dimensionality of v: Present state-of-the-art has succeeded [L-T.2], [L-T.3] in establish-

ing local exponential stabilization (asymptotic turbulent suppression) near an equilibrium solution ye

by means of a finite-dimensional tangential feedback boundary control v, in the Hilbert setting in two

cases:

(i) when the dimension d = 2,

(ii) when the dimension d = 3 but the initial condition y0 in (13.1d) is compactly supported.

In the general d = 3 case, handling of the non-linearity of the N-S problem forces a Hilbert space

setting with a high-topology H
1/2+ε(Ω), ε > 0, whereby the compatibility conditions kick in. These

then cannot allow the stabilizing feedback control to be finite-dimensional in general. More precisely,

even at the level of establishing (global) uniform stabilization at the H
1/2+ε(Ω)-level of the linearized

w-problem (13.11) for d = 3, with a Riccati based boundary feedback control v, verification of the

preliminary finite cost condition of the optimal control problem is provided by a boundary open loop

control consisting of a finite-dimensional term plus the term e−γ1t((I.C.)|Γ), where γ1 > 0 is preas-
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signed. This spoils the finite-dimensionality, unless the initial condition is compactly supported. See

[B-L-T.3, Proposition 3.7.1 Remark 3.7.1], [L-T.2, Proposition 2.5, eq(2.48)] for such explicit open

loop boundary control and [B-L-T.1, Proposition 4.2.2(4.2.4)] for the exponential decay in H
1/2+ε(Ω).

Thus, the main goal of the present paper is to remove the deficiency noted in (ii) on the tangential

stabilizing boundary control v in the case d = 3, and thus obtain local uniform feedback stabilization

of (13.1) near an unstable equilibrium solution ye, by means of a stabilizing tangential, localized feed-

back control v in (13.1d) which is also finite dimensional in the case d = 3.

[As explained in the Orientation, it turns out that, in general, we shall also need a finite dimensional

interior tangential-like control u supported on the small collar ω of Γ̃, (mu)τ , see [Fig. 2]. The

underlying reason - the validity of a unique continuation result for a boundary over-determined Os-

een eigenvalue problem - is explained in the Orientation and in Appendix F]. To this end, we need

therefore to go beyond the Hilbert setting of [L-T.3] and thus achieve local uniform stabilization near

an equilibrium solution ye in the case d = 3 in a space enjoying the following two features: on the

one hand, it must accommodate the N-S nonlinearity for d = 3; and on the other hand, it must not

recognize the boundary conditions, in order not to be subject to compatibility conditions. Thus, the

present paper will provide a feedback stabilization pair {v, u}, in (13.1c) and in (13.1a) respectively,

both finite-dimensional also in the case d = 3 (in the case of u, this is already known [L-T.2], [B-T.1])

and spectral based, this time however within an Lq/Besov-setting. In particular, local exponential

stability for the velocity field y near an unstable equilibrium solution ye will be achieved for d = 3 in

the topology of the Besov space

B̃
2−2/p
q,p (Ω), 1 < p <

6

5
; q > 3, for dim Ω = 3. (13.3)

Such space is ‘close’ to Lq(Ω), q > 3, see (15.3b) below.

See references [J-S], [E-S-S] for the critical scale of the space L3(Ω). It was reference [L-T.2] originally

in the linearized N-S case, followed by [L-T.3] in the corresponding nonlinear N-S case, that introduced

in addition to the feedback tangential boundary control v, such interior, tangential-like control u in

(13.1a) localized on ω. [That its feedback stabilizing form was going to be finite dimensional for d = 2

86



and d = 3 was never a problem being an internal control].

13.4 Helmholtz decomposition

A first difficulty one faces in extending the local exponential stabilization result near an equilibrium

solution ye with tangential control pair {v, u} of the original problem (13.1) from the Hilbert-space

setting in [B-T.1], [B-L-T.1] to the Lq/Besov setting is the question of the existence of a Helmholtz

(Leray) projection for the domain Ω in Rd. More precisely: Given an open set Ω ⊂ Rd, the Helmholtz

decomposition answers the question as to whether Lq(Ω) can be decomposed into a direct sum of the

solenoidal vector space Lqσ(Ω) and the space Gq(Ω) of gradient fields. Here,

Lqσ(Ω) = {y ∈ C∞c (Ω) : div y = 0 in Ω}‖·‖q

= {g ∈ Lq(Ω) : div g = 0; g · ν = 0 on ∂Ω},

for any locally Lipschitz domain Ω ⊂ Rd, d ≥ 2 [Ga.3, p 119]

Gq(Ω) = {y ∈ Lq(Ω) : y = ∇p, p ∈W 1,q
loc (Ω) where 1 ≤ q <∞}.

(13.4)

Both of these are closed subspaces of Lq.

Definition 13.1. Let 1 < q <∞ and Ω ⊂ Rn be an open set. We say that the Helmholtz decompo-

sition for Lq(Ω) exists whenever Lq(Ω) can be decomposed into the direct sum

Lq(Ω) = Lqσ(Ω)⊕Gq(Ω). (13.5)

The unique linear, bounded and idempotent (i.e. P 2
q = Pq) projection operator Pq : Lq(Ω) −→ Lqσ(Ω)

having Lqσ(Ω) as its range and Gq(Ω) as its null space is called the Helmholtz projection.

This is an important property in order to handle the incompressibility condition div y ≡ 0. For

instance, if such decomposition exists, the Stokes equation (say the linear version of (13.1) with

control u ≡ 0, v ≡ 0) can be formulated as an equation in the Lq setting. Here below we collect a

subset of known results about Helmholtz decomposition. We refer to [H-S, Section 2.2], in particular

for the comprehensive Theorem 2.2.5 in this reference, which collects domains for which the Helmholtz

decomposition is known to exist. These include the following cases:
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(i) any open set Ω ⊂ Rd for q = 2, i.e. with respect to the space L2(Ω); more precisely, for q = 2,

we obtain the well-known orthogonal decomposition (in the standard notation, where ν =unit

outward normal vector on Γ) [C-F, Prop 1.9, p 8]

L2(Ω) = H ⊕H⊥ (13.6a)

H = {φ ∈ L2(Ω) : div φ ≡ 0 in Ω; φ · ν ≡ 0 on Γ} (13.6b)

H⊥ = {ψ ∈ L2(Ω) : ψ = ∇h, h ∈ H1(Ω)}; (13.6c)

(ii) a bounded C1-domain in Rd [F-M-M], 1 < q <∞, or [Ga.3, Theorem 1.1 p 107, Theorem 1.2 p

114] for C2-boundary;

(iii) a bounded Lipschitz domain Ω ⊂ Rd (d = 3) and for 3
2 − ε < q < 3 + ε sharp range [F-M-M];

(iv) a bounded convex domain Ω ⊂ Rd, d ≥ 2, 1 < q <∞ [F-M-M].

On the other hand, on the negative side, it is known that there exist domains Ω ⊂ Rd such that

the Helmholtz decomposition does not hold for some q 6= 2 [M-S].

Assumption (H-D) Henceforth in this paper, we assume that the bounded domain Ω ⊂ Rd under

consideration admits a Helmholtz decomposition for the values of q, 1 < q < ∞, here considered at

first, for the linearized problem (13.11) below. The final results Theorems A and B of Section 13.8 for

the non-linear problem (13.1) will require q > 3, see (24.16), in the case of interest d = dim Ω = 3.

Next, for M ⊂ Lq(Ω), 1 < q <∞, we denote the annihilator of M by

M⊥ =

{
f ∈ Lq′(Ω) :

∫
Ω
fg dΩ = 0, for all g ∈M

}
(13.7)

where q′ is the dual exponent of q : 1/q + 1/q′ = 1.

Proposition 13.2. [H-S, Prop 2.2.2 p6], [Ga.3, Ex. 16 p115], [F-M-M]

Let Ω ⊂ Rd be an open set and let 1 < q <∞.

a) The Helmholtz decomposition exists for Lq(Ω) if and only if it exists for Lq
′
(Ω), and we have:

(adjoint of Pq) = P ∗q = Pq′ (in particular P2 is orthogonal), where Pq is viewed as a bounded

operator Lq(Ω) −→ Lq(Ω), and P ∗q = Pq′ as a bounded operator Lq
′
(Ω) −→ Lq

′
(Ω), 1/q + 1/q′ = 1.
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b) Then, with reference to (13.5)[
Lqσ(Ω)

]⊥
= Gq

′
(Ω) and

[
Gq(Ω)

]⊥
= Lq

′
σ (Ω). (13.8a)

Remark 13.3. Throughout the paper we shall use freely that

(
Lqσ(Ω)

)′
= Lq

′
σ (Ω),

1

q
+

1

q′
= 1. (13.8b)

This can be established as follows. From (13.5) write Lqσ(Ω) as a factor space Lqσ(Ω) = Lq(Ω)/Gq(Ω) ≡

X/M so that [T-L.1, p 135].

(
Lqσ(Ω)

)′
=
(
Lq(Ω)/Gq(Ω)

)′
=
(
X/M

)′
= M⊥ =

[
Gq(Ω)

]⊥
= Lq

′
σ (Ω). (13.8c)

In the last step, we have invoked (13.8a), which is also established in [Ga.3, Lemma 2.1, p 116].

Similarly (
Gq(Ω)

)′
=
(
Lq(Ω)/Lqσ(Ω)

)′
=
[
Lqσ(Ω)

]⊥
= Gq

′
(Ω). (13.8d)

13.5 Translated Nonlinear Navier-Stokes z-Problem: Reduction to zero equilib-

rium

We return to Theorem 13.1 which provides an equilibrium pair {ye, πe}. Then, as in [B-L-T.1], [L-T.2]

we translate by {ye, πe} the original N-S problem (13.1). Thus we introduce new variables

z = y − ye, χ = π − πe (13.9)

and obtain the translated problem in {z, χ}

zt − νo∆z + Le(z) + (z · ∇)z +∇χ− (m(x)u)τ = 0 in Q (13.10a)
div z = 0 in Q (13.10b)

z = v on Σ (13.10c)

z(0, x) = z0(x) = y0(x)− ye(x) on Ω (13.10d)

where v · ν = 0 on Σ and the first order Oseen perturbation Le is given by

Le(z) = (ye · ∇)z + (z · ∇)ye. (13.10e)
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We shall accordingly first study the local null feedback stabilization of the z-problem (13.10), that is,

feedback stabilization in a neighborhood of the origin.

Our strategy will be to select constructively feedback control operators v = F (z) and u = G̃(z), with

v tangential v · ν = 0 on Γ and supported only on Γ̃, and u supported only on ω, and both F and

G̃ bounded and finite dimensional also for d = 3. For d = 2 this was achieved in the Hilbert space

setting [L-T.3].

13.6 The linearized w-problem of the non-linear translated z-problem (13.10)

The linearization of the non-linear z-problem (13.10) near the equilibrium solution ye is

wt − νo∆w + Le(w) +∇χ− (m(x)u)τ = 0 in Q (13.11a)
div w = 0 in Q (13.11b)

w = v on Σ (13.11c)

w(0, x) = w0(x) on Ω (13.11d)

v · ν = 0 on Γ.

13.7 Main contributions of the present paper: for dim Ω = d = 2, 3, local-in-

space well-posedness on the space of maximal regularity X∞p,q,σ of the N-S

dynamics (13.1) as well as local exponential uniform stabilization near ye on

the space B̃2−2/p
q,p (Ω), q > d, 1 < p < 2q/2q−1 by means of a finite dimensional

tangential boundary feedback control v, supported on Γ̃ and a feedback finite

dimensional tangential-like interior control u, supported on the collar ω of Γ̃

Let us introduce some preliminary notions, with focus on the critical case dim Ω = 3. Let q > 3 and

1 < p < 6/5 (in order to satisfy the requirement p < 2q/2q−1). Recall the Besov space

B
2−2/p
q,p (Ω) =

(
Lq(Ω),W 2,q(Ω)

)
1−1/p,p

(13.12)

defined as a real interpolation space, as a specialization of the general formula (15.1a) below for
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m = 2, s = 2− 2/p. Consider its subspace

B̃
2−2/p
q,p (Ω) =

{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g · ν|Γ = 0
}

(13.13a)

= B
2−2/p
q,p (Ω) ∩ Lqσ(Ω), 1 < p <

2q

2q − 1
(13.13b)

as defined in (15.3b), with Lqσ(Ω) in (13.4).

Main Theorem A. (On problem (13.1)). Let Ω, dim Ω = d = 2, 3, be a bounded domain satisfying

the Helmholtz decomposition assumption of Definition 13.1. Let Γ be its C2 boundary and let Γ̃ be

an arbitrary small, open connected subset of Γ, of positive measure, supporting the corresponding

arbitrary small interior collar ω (Fig. 2). With reference to the N-S dynamics (13.1), consider a given

unstable equilibrium solution ye of problem (13.2), as guaranteed by Theorem 13.1. Let q > d, 1 <

p < 2q/2q−1 and, take the initial condition y0 ∈ Vρ, where

Vρ ≡
{
y0 ∈ B̃

2−2/p
q,p (Ω) : ‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

≤ ρ
}
, ρ > 0. (13.14)

Thus 1 < p < 6/5 for d = 3 and 1 < p < 4/3 for d = 2. There exists ρ0 > 0 sufficiently small, such

that, if 0 < ρ ≤ ρ0, then there exist a tangential boundary feedback controller v and a tangential-like

interior feedback controller u, defined respectively by

v = F (y − ye), v · ν|Γ = 0; u = G̃(y − ye) (13.15)

through bounded operators F ∈ L
(
Lqσ(Ω), Lq(Γ̃)

)
and G̃ ∈ L

(
Lqσ(Ω)

)
, both finite-dimensional, with v

supported on Γ̃ and tangential along Γ̃, and u with tangential-like internal action (mu)τ = (mu1)τ1 +

(mu2)τ2 for d = 3, supported on a collar ω of Γ̃, such that the corresponding closed loop system (13.1)

due to the action of such pair {v, u}

yt(t, x)− νo∆y(t, x) + (y · ∇)y +∇π(t, x)− (m(x)G̃(y − ye))τ = f(x) in Q

div y = 0 in Q

 y = F (y − ye) on Σ

y(0, x) = y0(x) in Ω

(13.16)

f(x) the external force in (13.1a) or (13.2a),has the following two properties:
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(a) the feedback system (13.16) is well-posed as a non-linear s.c. semigroup on the space of maximal

regularity, see (11.8a–b)

X∞p,q,σ = Lp
(
0,∞;D

(
AF,q

))
∩W 1,p

(
0,∞;Lqσ(Ω)

)
(13.17)

⊂ X∞p,q = Lp
(
0,∞;W 2,q(Ω)

)
∩W 1,p

(
0,∞;Lqσ(Ω)

)
(13.18)

D
(
AF,q

)
≡
{
ϕ ∈W 2,q(Ω) ∩ Lqσ(Ω) : ϕ|Γ = Fϕ

}
, (13.19)

where AF,q defined in (21.12) or (23.2c), is the generator of the linearized, uniformly stable w-problem

in (17.10) in feedback form.

(b) such closed loop system (13.16) is exponentially stable on B̃
2−2/p
q,p (Ω) with decay rate γ̃ > 0 :

‖y(t)− ye‖
B̃

2−2/p
q,p (Ω)

≤ Cγ̃e−γ̃t ‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0, y0 ∈ Vρ, (13.20)

for constants γ̃, Cγ̃ ≥ 1, depending on q.

The bounded finite-dimensional operators F ∈ L
(
Lqσ(Ω), Lq(Γ̃)

)
and G̃ ∈ L

(
Lqσ(Ω)

)
have the following

form:

F (y − ye) =
K∑
k=1

〈
PN (y − ye), pk

〉
Wu
N

fk, supported on Γ̃ (13.21)

G̃(y − ye) =

K∑
k=1

〈
PN (y − ye), qk

〉
Wu
N

uk. (13.22)

Here, PN is the projector, given explicitly in (16.3a), of Lqσ(Ω) onto W u
N , L

q
σ(Ω) = W u

N ⊕W s
N , W

u
N =

PNL
q
σ(Ω) being the finite dimensional subspace of Lqσ(Ω), spanned by the generalized eigenvectors, see

(18.3) corresponding to the unstable eigenvalues, see (16.2), of the Oseen operator. Here, < , >
Wu
N

denotes the duality paring between W u
N ∈ Lqσ(Ω) and (W u

N )∗ ∈ (Lqσ(Ω))′ = Lq
′
σ (Ω), by (13.8): <

h1, h2 >Wu
N

=

∫
Ω
h1h2 dΩ. The vectors pk, qk in (W u

N )∗ ⊂ Lq
′
σ (Ω) as well as the boundary vectors fk

are constructed explicitly in Section 18, in the proof of Theorem 17.1. In particular (see Appendix E,

in particular (C.5))

fk ∈ F = span

{
∂ϕ∗ij
∂ν

: i = 1, . . . ,M ; j = 1, . . . , `i

}
∈W 2−1/q ,q(Γ), q ≥ 2, (13.23)

1/q + 1/q′ = 1, where ϕ∗ij ∈W 3,q(Ω), see (C.5) in Appendix E, are the eigenfunctions of the adjoint of

the Oseen operator, see (18.1), corresponding to the M distinct unstable eigenvalue λi, with algebraic
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multiplicity `i. Finally, K ≥ `i, i = 1, . . . ,M .

The above main Theorem A for problem (13.1) is an immediate corollary of the following main Theorem

B for the translated non-linear z-problem (13.10).

Main Theorem B. (On problem (13.10)) Under the same assumptions and in the same notation of

Theorem A, in particular, q > 3, 1 < p < 6/5 for dim Ω = 3, consider the following feedback version of

the translated non-linear z-problem (13.10), corresponding to the abstract version (24.1)

zt − νo∆z + Le(z) + (z · ∇)z +∇χ−

(
m

(
K∑
k=1

〈
PNz, qk

〉
Wu
N

uk

))
· τ = 0 in Q


div z = 0 in Q

z =
K∑
k=1

〈
PNz, pk

〉
Wu
N

fk on Σ

z(0, x) = z0(x) = y0(x)− ye(x). on Ω

(13.24)

There exists a positive constant r1 > 0 (identified in (24.24), such that if

‖z0‖
B̃

2−2/p
q,p (Ω)

≤ r1, (13.25)

then, the following local well-posedness and uniform feedback stabilization results hold true:

(i) the feedback problem (13.24) problem admits a unique (fixed point nonlinear semigroup) solution

z in the space X∞p,q,σ of maximal regularity.

(ii) Moreover, if the constant r1 > 0 in (13.25) is sufficiently small, then the guaranteed solution z

satisfies the exponential decay

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤ Cγ̃e−γ̃t ‖z0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0, for some constants γ̃ > 0, Cγ̃ ≥ 1 (13.26)

depending on q.

Remark 25.1 at the end of Section 25 supports qualitatively the intuitive expectation that “the larger

the global decay rate γ0 > 0 in (17.14) of Theorem 17.2 of the linearized w-problem (13.11) in feedback

form as in (17.10), the larger the local decay rate γ̃ in (13.26).
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The proof of the well-posedness part in X∞p,q,σ of Theorem B is given (in its concluding arguments) in

Section 24, while the exponential decay (13.26) is established (in its concluding arguments) in Section

25. Recalling z = y − ye, χ = π − πe from (13.9), we see at once that Theorem B implies Theorem A.

13.8 Comparison with the literature

To put the present paper in the context of the literature, we first repeat its main contributions, already

discussed in the Orientation of Section 13, supplemented by Appendix F.

Main Contributions of the present paper

1. The main goal of the present paper is to provide an affirmative solution to the recognized open

problem as to whether or not uniform stabilization of the Navier-Stokes equations can be achieved

by means of a localized ‘tangential’ feedback controller which, in addition, is finite dimensional also

for d = 3 in full generality. To achieve this desired goal, it was necessary to abandon the Hilbert-

Sobolev setting of all prior literature on this problem and employ, for the first time, an Lq/Besov

space framework, as explained in the Orientation in Section 13. Such stabilizing control consists

of a pair {v, u} of finite dimensional feedback controls: a localized finite dimensional tangential

boundary feedback control v in (13.1d) acting on an arbitrarily small open connected portion Γ̃

of the boundary Γ, and a localized interior finite dimensional feedback control u in (13.1a) acting

tangential-like (parallel to the boundary) on an arbitrarily small interior patch ω supported by Γ̃.

The interior tangential-like controller u cannot be dispensed with, if one insists in controlling from

an arbitrarily small portion Γ̃ of the boundary. This is due to the counter-example in [F-L] to the

unique continuation property of the over-determined Oseen eigenproblem in (D.1a-b-c), (D.2) of

Appendix F, leading to the implication noted in (D.5). For further details, see the Orientation in

Section 13.

2. Thus, the proposed solution has also the additional advantage of requiring a “minimum” control

action or support {Γ̃, ω} for the control pair {v, u}.

3. Moreover, it has another positive feature in that the finite dimensionality of the feedback stabilizing

controllers v in (13.1c) and u in (13.1a) is equal to the max of the geometric multiplicity not

the algebraic multiplicity as in [B-T.1], [B-L-T.1], [B-L-T.2], [B-L-T.3] – of the distinct unstable
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eigenvalues of the Oseen operator. This is due to the proof, given originally in [L-T.2], for checking

the controllability condition (18.28b) or (19.15b) of the finite dimensional projected system wN

in (16.8). Not only does this proof rest on the geometric rather than the algebraic multiplicity

of the unstable eigenvalues, but it also much simplifies the somewhat awkward and unnecessary

Gram-Schmidt orthogonalization process of [B-T.1] by employing direct, explicit, sharp tests.

4. Finally, the present work offers a much more attractive and preferable proof over past literature of

the ultimate non-linear result: the well-posedness and uniform stabilization of the original (modulo

translation) non-linear z-problem (24.1), given in Sections 24 and 25. This new proof now rests on

the fundamental preliminary property of maximal regularity of the linearized boundary feedback

problem (17.10), or generator AF,q , as stated in Theorem 17.2, and proved in Section 23. Such

maximal regularity-based proof is much cleaner and effective over the original proof for the non-

linear boundary stabilization result as given in [B-L-T.1]; and even more so over the approximation

argument given in the case of localized feedback control given in [B-T.1].

The origin of the studies on the uniform stabilization problem of Navier-Stokes equations.

The problem of boundary feedback stabilization of unstable linear classical parabolic equations was

investigated extensively in the period, say 1974-1983, see [RT.1], [RT.2], [RT.3], [L-T.4]. The study

of uniform stabilization of Navier-Stokes equations apparently initiated with the work of Fursikov

[Fur.1], [Fur.2], [Fur.3], first in 2d, next in 3d. However, this work used open-loop boundary controls

not closed loop feedback controls. The nature and dimensionality of the obtained boundary controllers

(whether finite or infinite dimensional, whether tangential or otherwise) was not an issue covered by

the method of these papers. Fursikov’s work was soon followed by paper [B-T.1] which tackled and

solved, instead, the (preliminary) problem of uniform stabilization of the Navier-Stokes equations,

d = 2, 3, by means of a localized interior finite dimensional high-gain, Riccati-based feedback control.

All these studies-and the subsequent ones till the present work, some of which are noted below - were

carried out in a Hilbert-Sobolev-settings [A marked improvement in both content of results and ef-

fectiveness of proofs with spectral based, explicit interior localized controllers on the interior uniform

stabilization problem is contained in Part I of the present work. For the first time, its analysis is

carried out in an Lq/Besov setting. This study was intended to be a preliminary investigation to test

techniques that have been then employed in the more challenging boundary case of the present Part II].
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Tangential Boundary feedback stabilization. Paper [B-T.1] opened then the way to a first

analysis of the tangential boundary stabilization problem in [B-L-T.1] via a high gain, Riccati-based

boundary control, followed by an axiomatic approach, still Riccati-based, in [B-L-T.2], both low and

high gain, as well as a complementary, spectral-based approach in [B-L-T.3]. These works required

some spectral assumptions of the Oseen eigenvalue problem, equivalent to a unique continuation prop-

erty for a corresponding overdetermined Oseen eigenproblem. It was only in [L-T.2], [L-T.3] that

uniform stabilization with a localized feedback control pair {v, u}, as described above, was resolved in

an “optimal” way regarding the amount of their support {Γ̃, ω}. This setting of [L-T.2], [L-T.3] had

the advantage of not requiring any property or assumptions on the distinct unstable eigenvalues of the

Oseen operator, as it was the case in prior literature, since the required corresponding unique contin-

uation property can be shown in this context to hold true (Lemma 18.2), due to an extra condition

dictated by the employment of the interior localized tangential-like control u. As noted in Section 13.3

in reference [L-T.3], the issue of finite dimensionality of the tangential boundary feedback controller

component was resolved positively only for d = 2 and for d = 3 only in the case of Initial Conditions

being compactly supported. The general case for d = 3 was left open. It is resolved here in the

affirmative.

Additional references; the case of oblique boundary stabilization. Papers [Ray.1], [Ray.2] used

low-gain, Riccati-based feedback boundary controllers with a normal component, whose dimensionality

is not addressed. Two textbooks have meanwhile appeared. [B.1, Chapter 3] present the earlier results

of [B-T.1]. The approach is spectral-based (as in [B-L-T.3]]). The treatment of [B.1] relies on two

main assumptions, much stronger than the ones in [B-T.1]. They are [B.1, Assumptions K.1 and K.2

p 123] . The first is the simplifying assumption that the distinct unstable eigenvalues of the Oseen

operators be semisimple (geometric = algebraic multiplicity). The second assumes that all N unstable

eigenvalues have dual eigenvectors whose normal derivatives are linearly independent as L2 functions

on the whole boundary Γ. This is way too stronger than the conditions (already given in [B-L-T.1])

that require the much weaker property that for each distinct unstable eigenvalue λi with geometric

multiplicity `i, only the traces ∂νϕ
∗
ij as in (D.5) be linearly independent, i = 1, 2, . . . ,M ; j = 1, . . . , `i.

We note in passing that in [L-T.4], in the case of say the Laplacian (translated) with Neumann BC

on either a rectangle or a disk, it was shown by direct computations that the eigenvectors of the
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unstable eigenvalues (assumed simple) do have the property that all their Dirichlet traces are Linearly

Independent in L2(Γ). Finally, reference [B.2] investigates stabilization with an oblique boundary

control-that is one with an additional normal component. The normal component however is not

expressed in feedback form. In addition, the strong assumptions K1 and above all K.2 noted above

are retained. In both [B.1] and [B.2], the number of controls equals the max algebraic multiplicity of

the unstable eigenvalues of the Oseen operator, see [B.1, Eq (3.19)].

97



14 Abstract models for the non-linear z-problem (13.10) and the

linearized w-problem (13.11) in the Lq-setting

We shall next provide abstract models for the translated non-linear z-problem (13.10) and its corre-

sponding linearized w-problem (13.11) in the Lq-setting. This will be the counterpart (extensions) of

these introduced in [B-L-T.1] and used in [B-L-T.3] [L-T.3]. The Lq-setting will require a wealth of

non-trivial additional results: from the well-posedness and regularity from the boundary of the station-

ary Oseen problem (that is, the definition of the Dirichlet map D with range in Lqσ(Ω) : g −→ Dg = ψ

in (14.1) below) to the definition of the adjoint (Aq)∗ = A∗q for short, (in the Lq
′ −→ Lq sense) of

the Oseen operator Aq, to the critical meaning of D∗A∗qϕ, ϕ ∈ D(A∗q). These results will be provided

below. They will be the perfect counterpart of those obtained in [B-L-T.1], in the Hilbert setting.

14.1 Well-posedness in the Lq-setting of the non-homogeneous stationary Oseen

problem: the Dirichlet map D : boundary −→ interior

Recalling the first order operator Le(ψ) = (ψ · ∇)ye + (ye · ∇)ψ from (13.10e) and introducing the

differential expression Aψ = −ν0∆ψ+Le(ψ), we consider the stationary, boundary non-homogeneous

Oseen problem on Ω:

Aψ +∇π∗ = −νo∆ψ + Le(ψ) +∇π∗ = 0 (14.1a){
div ψ = 0 in Ω; ψ = g on Γ, g · ν = 0 on Γ (14.1b)

Remark 14.1. Postponing regularity issues to the second part of the present sub-section, our purpose

here is to introduce the Dirichlet map g −→ ψ, from the boundary datum to the interior solution of

the above Oseen problem, following [B-L-T.1, Chapter 3]

As noted and discussed in [B-L-T.1, Ch 3, Orientation at p. 21; Appendix A.2, pp 99-102], prob-

lem (14.1) may not define a unique solution ψ; that is, the operator g → ψ may have a nontrivial

(finite dimensional) null space. To overcome this, one replaces in (14.1) the differential expression

Aψ = −νo∆ψ + Le(ψ) with its translation k + A, for a positive constant k, sufficiently large as to

obtain a unique solution ψ. As seen in the subsequent results below, we can take k = 0 whenever the

Stokes operator is perturbed only by a first order operator such as Aψ = −νo∆ψ+ (a.∇)ψ, div a = 0,

98



with a sufficiently regular. Moreover, as documented in [B-L-T.1] in the Hilbert setting q = 2 and re-

stated below in the general Lq-setting, the expression D∗(k)A∗q(k) does not depend on the translation

parameter k. Thus, at the end, also in name of simplicity of notation, we are here justified to admit

henceforth that problem (14.1) (with k = 0) defines a unique solution ψ. We shall then denote the

‘Dirichlet’ map g −→ ψ by D : Dg = ψ in the notation of (14.1).

The following two regularity results of the Oseen equation below are critical for our subsequent de-

velopment. The are the perfect counterpart of the results given in [B-L-T.1] in the Hilbert setting.

To state properly the conclusion of uniqueness, they will refer to the Oseen equation with only a first

order term, such as

−νo∆ψ + (a · ∇)ψ +∇π∗ = 0 in Ω (14.2a) div ψ = 0 in Ω (14.2b)

ψ = g on Γ (14.2c)

where

a ∈ Lq(Ω), div a ≡ 0, 1 < q <∞. (14.2d)

Theorem 14.1. [A-R, Thm 15, p 37, where a more general result is given]

Let

a ∈ L3(Ω), div a ≡ 0; g ∈W 1−1/q ,q(Γ), 2 < q <∞, g · ν = 0 on Γ. (14.3)

Then problem (14.2) has a unique solution

(ψ, π∗) ∈W 1,q(Ω)× Lq(Ω)/R (14.4)

continuously: there is a constant C > 0 such that

‖ψ‖W 1,q(Ω) + ‖π∗‖Lq(Ω)/R ≤ C
(
1 + ‖a‖L3(Ω)

)2 ‖g‖
W 1−1/q,q(Γ)

(14.5)

Theorem 14.2. [A-R, Thm 2, p 6, where a more general result is given]

Let

a ∈ L3(Ω), div a ≡ 0; g ∈W−1/q ,q(Γ), 3/2 < q <∞, g · ν = 0 on Γ. (14.6)

Then problem (14.2) has a unique solution

(ψ, π∗) ∈ Lq(Ω)×W−1,q(Ω)/R (14.7)
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continuously: there is a constant Ca > 0 (explicitly depending on the norm of ‖a‖L3(Ω) ) such that

‖ψ‖Lq(Ω) + ‖π∗‖W−1,q(Ω)/R ≤ Ca ‖g‖W−1/q,q(Γ)
(14.8)

We note that, in Theorem 14.2, we have also ∆ψ ∈
(
Yr′,p′(Ω)

)′
= dual of Yr,p(Ω) =

{
ϕ ∈W 1,r

0 (Ω), div ϕ ∈

W 1,q
0 (Ω)

}
, 1 < r, q <∞, but we shall not need this result [A-R, p 6].

Returning to our Oseen problem (14.1) of interest, we have ye ∈ W 2,q(Ω) ∩W 1,q
0 (Ω) from Theorem

13.1, hence the embedding W 2,q(Ω) ↪→ C(Ω) holds true for d = 3, q > 3/2 [Kes, p 79], [Adams, p 97].

Thus, we can apply Theorems 14.1 and 14.2 to problem (14.1) and obtain the following results, where,

with ψ = Dg, the range of D is in Lqσ(Ω), since div(Dg) ≡ 0 in Ω, (Dg) · ν|Γ = g · ν|Γ = 0, see (13.4):

a)

g ∈W 1−1/q ,q(Γ)

g · ν = 0 on Γ
−→ Dg = ψ ∈W 1,q(Ω) ∩ Lqσ(Ω) (14.9)

b)

g ∈W−1/q ,q(Γ)

g · ν = 0 on Γ
−→ Dg = ψ ∈ Lqσ(Ω) (14.10)

c) By interpolating in the middle we obtain

g ∈W 1/2−1/q ,q(Γ)

g · ν = 0 on Γ
−→ Dg = ψ ∈W 1/2,q(Ω) ∩ Lqσ(Ω) (14.11)

d) More generally

g ∈W
(

1− 1
q

)
(1−θ)− θ

q
,q

(Γ)

g · ν = 0 on Γ; 0 < θ < 1
−→ Dg = ψ ∈W (1−θ),q(Ω) ∩ Lqσ(Ω) (14.12)

so that, as

(
1− 1

q

)
(1− θ)− θ

q
= 0 for θ = 1− 1

q
, we also obtain

g ∈ Uq ≡
{
g̃ ∈ Lq(Γ), g̃ · ν = 0 on Γ

}
−→ Dg ∈W 1/q ,q(Ω) ∩ Lqσ(Ω), (14.13)
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all continuously. This property will be further complemented by additional information in (15.41)

below. In the Hilbert space setting, q = 2, we re-obtain the regularity results, that were derived in

[B-L-T.1, Theorem A.2.2 p 102], where we recall (1.6a–c)

a)

g ∈ H1/2(Γ)

g · ν = 0 on Γ
−→ Dg = ψ ∈ H1(Ω) ∩H (14.14)

b)

g ∈ H−1/2(Γ)

g · ν = 0 on Γ
−→ Dg = ψ ∈ L2(Ω) ∩H (14.15)

c)

g ∈ Hs(Γ), −1/2 ≤ s ≤ 1/2

g · ν = 0 on Γ
−→ Dg = ψ ∈ Hs+1/2(Ω) ∩H. (14.16)

14.2 Abstract model for the non-linear translated z-problem (13.10)

We re-write Eq (13.10a) as zt + Az + (z · ∇)z +∇χ− (mu)τ = 0 recalling the differential expression

A defined above (14.1a), and next subtract Aψ = ADg = −∇π∗ from (14.1a), where presently g = v

on Γ, v · ν = 0 on Γ. We obtain

zt + A(z −Dv) + (z · ∇)z +∇(χ− π∗)− (m(x)u)τ = 0 in Q (14.17)

Next we apply to (14.17) the Helmholtz projector Pq, and obtain [notice that Pqzt = zt, since zt ∈

Lqσ(Ω) [divzt ≡ 0, zt · ν = vt · ν = 0 on Γ] since Pq∇(χ− π∗) ≡ 0:

zt + PqA(z −Dv) + Pq(z · ∇z)− Pq((m(x)u)τ) ≡ 0 (14.18)

where via (14.1a), (13.10e)

PqAf = −νoPq∆f + Pq
[
(ye · ∇)f + (f · ∇)ye

]
. (14.19)

First, for 1 < q < ∞ fixed, the Stokes operator Aq in Lqσ(Ω) with Dirichlet boundary conditions is

defined by [G-G-H.1, p 1404], [H-S, p 1]

Aqz = −Pq∆z, D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω). (14.20)

101



The operator Aq has a compact inverse A−1
q on Lqσ(Ω), hence Aq has a compact resolvent on Lqσ(Ω).

Next, we introduce the first order operator Ao,q, via (13.10e) and (14.20)

Ao,qz = PqLe(z) = Pq[(ye . ∇)z+(z . ∇)ye], D(Ao,q) = D(A
1/2
q ) = W 1,q

0 (Ω)∩Lqσ(Ω) ⊂ Lqσ(Ω). (14.21)

where A
1/2
q is defined in (15.9) below. Thus, Ao,qA

−1/2
q is a bounded operator on Lqσ(Ω), and thus Ao,q

is bounded on D
(
A

1/2
q

)
. This leads to the definition of the Oseen operator

Aq = −(νoAq +Ao,q), D(Aq) = D(Aq) ⊂ Lqσ(Ω) (14.22)

also with compact resolvent. Finally, we define the projection of the nonlinear portion of (13.10a)

Nq(z) = Pq[(z · ∇)z] (14.23)

Thus, after using (14.20)-(14.23) in (14.18), the N-S translated problem (14.18) can rewritten as the

following abstract equation on Lqσ(Ω), 1 < q <∞:

zt −Aq(z −Dv) +Nqz − Pq((mu)τ) = 0, on Lqσ(Ω), v · ν = 0 on Γ (14.24)

in factor form on Lqσ(Ω). Next, extending the original Oseen operator Lqσ(Ω) ⊃ D(Aq) −→ Lqσ(Ω) to

Aq : Lqσ(Ω) −→
[
D(A∗q)′

]
, by isomorphism, and retaining the same symbol, we arrive at the definitive

abstract model

zt −Aqz +Nqz +AqDv − Pq
[
(mu)τ

]
= 0 on

[
D(A∗q)′

]{
z(x, 0) = z0(x) = y0(x)− ye in Lqσ(Ω)

(14.25)

in additive form, on
[
D(A∗q)′

]
.

14.3 Abstract model of the linearized w-problem (13.11) of the translated model

(13.10)

Still for 1 < q < ∞, the abstract model (in additive form) of the linearized w-problem in (13.11) is

obtained from (14.25) by dropping the nonlinear term

wt −Aqw +AqDv − Pq
[
(mu)τ

]
= 0 on

[
D(A∗q)′

]{
w(x, 0) = w0(x) = y0(x)− ye in Lqσ(Ω).

(14.26)
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14.4 The adjoint operators D∗, (Aq)
∗ = A∗q and (Ao,q)

∗ = A∗o,q, (Aq)∗ = A∗q = −(νoA
∗
q +

A∗o,q), 1 < q <∞

(i) Regarding the Helmholtz projection Pq and its adjoint P ∗q , we recall from Proposition 13.2 that

Pq ∈ L
(
Lq(Ω)

)
, while P ∗q = Pq′ ∈ L

(
Lq
′
(Ω)
)
, 1/q + 1/q′ = 1, by (13.8c)

(ii) Define as in (14.13)

Uq =
{
g ∈ Lq(Γ) : g · ν = 0 on Γ

}
. (14.27)

We have seen in (14.13) that

D : Uq =
{
g ∈ Lq(Γ) : g · ν = 0 on Γ

}
−→W

1/q ,q(Ω) ∩ Lqσ(Ω), (14.28)

so that the dual D∗ satisfies

D∗ : W−
1/q ,q′ −→ Lq

′
(Γ). (14.29)

(iii) The adjoint A∗q : Lq
′
σ (Ω) ⊃ D(A∗q) −→ Lq

′
σ (Ω), 1/q + 1/q′ = 1 of the Stokes operator Aq in (14.20)

〈
Aqf1, f2

〉
Lqσ ,L

q′
σ

=
〈
f1, A

∗
qf2

〉
Lqσ ,L

q′
σ
, f1 ∈ Lqσ, f2 ∈ Lq

′
σ (14.30)

(duality pairing Lqσ −→ Lq
′
σ ) is

A∗qf2 = −Pq′∆f2, D(A∗q) = W 2,q′(Ω) ∩W 1,q′

0 (Ω) ∩ Lq′σ (Ω). (14.31)

Proof. For f1 ∈ D(Aq) ⊂ Lqσ(Ω) ⊂ Lq(Ω), so that Aqf1 ∈ Lqσ(Ω) and f2 ∈ D(A∗q) ⊂ Lq
′
σ (Ω) ⊂ Lq

′
(Ω)

so that A∗qf2 ∈ Lq
′
σ (Ω), and Pq′f2 = f2, we compute from (14.20): with P ∗q = Pq′ by Proposition 13.2

−
〈
Aqf1, f2

〉
Lqσ ,L

q′
σ

=
〈
Pq∆f1, f2

〉
Lqσ ,L

q′
σ

(14.32)

=
〈
∆f1, P

∗
q f2

〉
Lq ,Lq′

=
〈
∆f1, Pq′f2

〉
Lq ,Lq′

=
〈
∆f1, f2

〉
Lq ,Lq′

(14.33)

=

∫
Ω
f1∆f2 dΩ +

∫
Γ�
�
��>∂f1

∂ν
f2 dΓ−

∫
Γ�
�
��>

f1
∂f2

∂ν
dΓ

=
〈
f1,∆f2

〉
Lq ,Lq

′ =
〈
Pqf1,∆f2

〉
Lq ,Lq′

=
〈
f1, Pq′∆f2

〉
Lq ,Lq′

= −
〈
f1, A

∗
qf2

〉
Lq ,Lq′

(14.34)

since f1 ∈ W 1,q
0 (Ω) by (14.20); and so f1|Γ = 0; and since f2 ∈ W 1,q′

0 (Ω) by (14.31) and so f2|Γ = 0.

Moreover, Pqf1 = f1, since f1 ∈ Lqσ(Ω). Eqt (14.34) proves (14.31).
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(iv) Similarly from Ao,q = PqLe : D(Ao,q) = D(A
1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) −→ Lqσ(Ω), in (14.21), we

obtain

(Ao,q)
∗ = A∗o,q (for short) = Pq′(Le)

∗ : W−1,q′(Ω) −→ Lq
′
σ (Ω) (14.35)

where the expression of (Le)
∗, which is not needed, is given in [B-L-T.1, p 55], [L-T.2, below (54)],

[Fur.1].

(v) As a consequence of (ii), (iii) we have (Aq)∗ = A∗q = −(ν0A
∗
q +A∗o,q), D(A∗q) = D(A∗q).

14.5 The operator D∗A∗q

Theorem 14.3. Let 1 < q <∞. Let v ∈ D(A∗q) = D(A∗q) = W 2,q′(Ω)∩W 1,q′

0 (Ω)∩Lq
′
σ (Ω), by (14.31),

1

q
+

1

q′
= 1 so that

∂v

∂ν

∣∣∣∣
Γ

∈W 1−1/q′ ,q
′
(Γ) ⊂ Lq′(Γ). Let g ∈ Lq(Γ), g · ν = 0 on Γ. Then

〈
D∗A∗qv, g

〉
Lq′ (Γ),Lq(Γ)

= νo

〈
∂v

∂ν
, g

〉
Lq′ (Γ),Lq(Γ)

(14.36)

where: q > 3 for d = 3; and q > 2 for d = 2.

Proof. We shall first prove (14.36) with g ∈W 1−1/q ,q(Γ), g · ν = 0 on Γ; and then extend the validity

of (14.36) to g ∈ Lq(Γ), g · ν = 0 on Γ by density. By (14.22), Aq = −(νoAq +Ao,q). Accordingly, we

consider D∗A∗q in Step 1 and D∗A∗o,q in Step 2.

Step 1: Let v ∈ D(A∗q) = W 2,q′(Ω) ∩ W 1,q′

0 (Ω) ∩ Lq
′
σ (Ω), so that A∗qv ∈ Lq

′
σ (Ω), and let initially

g ∈W 1−1/q ,q(Γ) ⊂ Lq(Γ), g · ν = 0 on Γ, so that Dg ∈W 1,q(Ω) ∩ Lqσ(Ω) by (14.9). Our first step is to

show

−
〈
D∗A∗qv, g

〉
Lq′ (Γ),Lq(Γ)

=

∫
Ω
v∆(Dg) dΩ +

∫
Γ

∂v

∂ν
g dΓ, (14.37)

where the integral term under Ω is well-defined as a duality pairing with v ∈ W 1,q′

0 (Ω) and ∆(Dg) ∈

W−1,q(Ω); while the integral term under Γ is well-defined as a duality paring with
∂v

∂ν

∣∣∣∣
Γ

in Lq
′
(Γ) and

g ∈ Lq(Γ).

In fact, we compute - and the computations in (14.38) through (14.40) below actually work even for
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g ∈W−1/q ,q(Γ) so that Dg ∈ Lqσ(Ω) by (14.10), and hence PqDg = Dg

−
〈
D∗A∗qv, g

〉
Lq′ (Γ),Lq(Γ)

= −
〈
A∗qv,Dg

〉
Lq
′
σ (Ω),Lqσ(Ω)

(14.38)

(by (14.31)) =
〈
Pq′∆v,Dg

〉
Lq′ ,Lq

=
〈
∆v, P ∗q′Dg

〉
Lq′ ,Lq

(14.39)

=
〈
∆v, PqDg

〉
Lq′ ,Lq

=
〈
∆v,Dg

〉
Lq′ ,Lq

(14.40)

where in going from (14.39) to (14.40) we have recalled P ∗q′ = Pq by Proposition 13.2. Next, we apply

Green’s theorem in (14.40) and get

−
〈
D∗A∗qv, g

〉
Lq′ (Γ),Lq(Γ)

=

∫
Ω

∆vDg dΩ =

∫
Ω
v∆(Dg) dΩ +

∫
Γ

∂v

∂ν
g dΓ−

∫
Γ�
�
��>

v
∂Dg

∂ν
dΓ (14.41)

where we have used Dg|Γ = g by definition of D, and v|Γ = 0 as v ∈ W 1,q′

0 (Ω). Then (14.41) proves

(14.37).

Step 2: Let v ∈ D(A∗o,q) = D
(
(A∗q)

1/2
)

= W 1,q′

0 (Ω) ∩ Lq′σ (Ω) by (14.21) and let g ∈ W 1−1/q ,q(Γ)

and g · ν = 0 on Γ so that Dg ∈ W 1,q(Ω) ∩ Lqσ(Ω) by (14.9). Recall from Theorem 13.1 that

ye ∈W 2,q(Ω) ∩W 1,q
0 (Ω).

Our second step is to show that

〈
D∗A∗o,qv, g

〉
Lq′ (Γ),Lq(Γ)

=
〈
(ye · ∇)(Dg) + ((Dg) · ∇)ye, v

〉
Lq(Ω),Lq′ (Ω)

(14.42)

Proof of (14.42).

Step (2a): Let initially h ∈ D(Ao,q) = D(A
1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) by (14.21). Recalling (14.21)

compute

〈
Ao,qh, v

〉
Lqσ(Ω),Lq

′
σ (Ω)

=
〈
Pq[(ye · ∇)h], v

〉
Lqσ(Ω),Lq

′
σ (Ω)

+
〈
Pq[(h · ∇)ye], v

〉
Lqσ(Ω),Lq

′
σ (Ω)

(14.43)

=
〈
[(ye · ∇)h], P ∗q v

〉
Lq ,Lq′

+
〈
[(h · ∇)ye], P

∗
q v
〉
Lq ,Lq′

(14.44)

=
〈
[(ye · ∇)h], Pq′v

〉
Lq ,Lq′

+
〈
[(h · ∇)ye], Pq′v

〉
Lq ,Lq′

(14.45)

=
〈
[(ye · ∇)h], v

〉
Lq ,Lq′

+
〈
[(h · ∇)ye], v

〉
Lq ,Lq′

(14.46)

where we have recalled P ∗q = Pq′ from Proposition 13.2 and Pq′v = v, as v ∈ Lq
′
σ (Ω).
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Step (2b): In the next lemma, we show that the terms in (14.46) are well-defined in an appropriate

range of q, at any rate for q > d, which is our goal, d = 2, d = 3 .

Lemma 14.4. With reference to (14.46) we have

(i)

(ye · ∇)h ∈ Lq(Ω) = W 0,q(Ω) for


d = 3, q > 3/2

d = 2, q > 1

(14.47)

(ii)

(h · ∇)ye ∈W 1,q(Ω) for


d = 3, q > 3

d = 2, q > 2.

(14.48)

Proof. First way: We may use multiplier theory [M-S, Theorem 3, p 252]. We have by Theorem 13.1

on ye and the assumption on h ∈ D(Ao,q) = W 1,q
0 (Ω) ∩ Lqσ(Ω):

(i)

ye ∈W 2,q(Ω), |∇h| ∈ Lq(Ω) = W 0,q(Ω). (14.49)

Then [M-S, Theorem 3, p 252 with m = 2 > ` = 0] yields the multiplier space

M
(
W 2,q −→W 0,q

)
= W 0,q(Ω). (14.50)

for mq = 2q > d or q > 3/2 for d = 3; q > 1 for d = 2; and part (i) established.

(ii) We start with

h ∈W 1,q
0 (Ω), |∇ye| ∈W 1,q(Ω). (14.51)

Then [M-S, Theorem 3, p 252; with m = ` = 1] yields the multiplier space

M(W 1,q −→W 1,q) = W 1,q(Ω) (14.52)

for mq = 1.q > d or q > 3 for d = 3, q > 2 for d = 2 and part (ii) is established.

Second way: We use embedding theory [Kes, p 79]

Wm,q(Ω) ↪→ Ck(Ω), m >
d

q
, k integer part of

[
m− d

q

]
(14.53)

Thus
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(i)

ye ∈W 2,q(Ω) ↪→ ye ∈ C0(Ω) for


m = 2, d = 3, q > 3/2, k = 0

m = 2, d = 2, q > 1, k = 0

and since |∇h| ∈ Lq(Ω), then

(ye · ∇)h ∈ Lq(Ω), d = 3, q > 3/2; or d = 2, q > 1 (14.54)

and (i) is reproved.

(ii) Similarly, (14.53) gives for m = 1

h ∈W 1,q(Ω) ↪→ h ∈ C0(Ω) for


d = 3, q > 3, k = 0

d = 2, q > 2, k = 0

(14.55)

and since |∇ye| ∈W 1,q(Ω), then

(h · ∇)ye ∈W 1,q(Ω), d = 3, q > 3; d = 2, q > 2 (14.56)

and (ii) is reproved.

Lemma 14.4 is proved.

Step (2c): Using Lemma 14.4 in (14.46) we see that the two terms are well-defined with v ∈ Lq
′
σ (Ω).

We rewrite (14.46) as 〈
h,A∗o,qv

〉
Lqσ ,L

q′
σ

=
〈
(ye · ∇)h+ (h · ∇)ye, v

〉
Lq ,Lq′

, (14.57)

which shows that it can be extended to all h ∈ W 1,q(Ω) ∩ Lqσ(Ω): the condition h|Γ = 0 is not used.

With g ∈ W 1−1/q ,q(Γ), g · ν = 0 on Γ, so that Dg ∈ W 1,q(Ω) ∩ Lqσ(Ω) by (14.9), we may apply such

extended version (14.57) to Dg and obtain

〈
Dg,A∗o,qv

〉
=
〈
g,D∗A∗o,qv

〉
Lq(Γ),Lq′ (Γ)

=
〈
(ye · ∇)(Dg) + ((Dg) · ∇)ye, v

〉
Lq(Ω),Lq′ (Ω)

(14.58)

and (14.42) is established.

Step 3: In view of Aq = −(νoAq + Ao,q) by (14.22), we now combine (14.37) of Step 1, with (14.42)

of Step 2. Let again g ∈ W 1−1/q ,q(Γ), g · ν = 0 on Γ, so that Dg ∈ W 1,q(Γ) ∩ Lqσ(Ω) by (14.9), and
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v ∈ D(A∗q) = D(A∗q) = W 2,q′(Ω)∩W 1,q′

0 (Ω)∩Lq
′
σ (Ω) via (14.31). We shall establish the following final

relation

〈
D∗A∗qv, g

〉
= ν0

∫
Γ

∂v

∂ν
g dΓ = ν0

〈
∂v

∂ν
, g

〉
Lq′ (Γ),Lq(Γ)

. (14.59)

In fact, we start from −A∗q = ν0A
∗
q + A∗o,q via part (iv) of Section 14.4 and next recall (14.37) and

(14.42) to obtain

−
〈
D∗A∗qv, g

〉
Lq′ (Γ),Lq(Γ)

= νo
〈
D∗A∗qv, g

〉
Lq′ (Γ),Lq(Γ)

+
〈
D∗A∗o,qv, g

〉
Lq′ (Γ),Lq(Γ)

(14.60)

= −νo
∫

Ω
v∆(Dg) dΩ− νo

∫
Γ

∂v

∂ν
g dΓ +

〈
v, (ye · ∇)(Dg) + ((Dg) · ∇)ye

〉
Lq′ (Ω),Lq(Ω)

(14.61)

=
〈
v,−νo∆(Dg) + (ye · ∇)(Dg) + ((Dg) · ∇)ye

〉
Lq′ (Ω),Lq(Ω)

− νo
〈
∂v

∂ν
, g

〉
Lq′ (Γ),Lq(Γ)

(14.62)

=
〈
v,−νo∆(Dg) + Le(Dg)

〉
Lq′ (Ω),Lq(Ω)

− νo
〈
∂v

∂ν
, g

〉
Lq′ (Γ),Lq(Γ)

, (14.63)

recalling Le(ψ = Dg) = (ye ·∇)(Dg)+((Dg) ·∇)ye by (13.10e). We next invoke the definition ψ = Dg

in Eq (14.1a) of the Stationary Oseen Equation (14.1). This way we rewrite (14.63) as

〈
D∗A∗qv, g

〉
Lq′ (Γ),Lq(Γ)

=
〈
v,∇π∗

〉
Lq′ (Ω),Lq(Ω)

+ νo

〈
∂v

∂ν
, g

〉
Lq′ (Γ),Lq(Γ)

(14.64)

= νo

〈
∂v

∂ν
, g

〉
Lq′ (Γ),Lq(Γ)

, (14.65)

since ∫
Ω
v · ∇π∗ =

∫
Γ
π∗v · ν dΓ−

∫
Ω
π∗div v dΩ ≡ 0 (14.66)

where v|Γ = 0 as v ∈ W 1,q′

0 (Ω) and div v ≡ 0 since v ∈ Lqσ(Ω), recall (13.4). Thus, (14.65) shows

(14.36) so far for g ∈W 1−1/q ,q(Γ), g · ν = 0 on Γ.

By density, we extend the validity of (14.36) to g ∈ Lq(Γ), g ·ν = 0 on Γ. Theorem 14.3 is proved.

Proposition 14.5. [B-L-T.1, Lemma 3.3.1 p35] Let ϕ ∈ C1(Ω) be a d-function satisfying the following

properties:

(i) ϕ|Γ = 0;

(ii) div ϕ = 0 in Ω (actually only on an interior strip of Γ)
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Then we have that 
the boundary vector ∇ϕ · ν = ∂ϕ

∂ν is tangential to Γ

i.e (∇φ · ν) · ν ≡ 0 on Γ.

(14.67)

For v ∈ D(A∗q) = W 2,q′(Ω) ∩W 1,q′

0 Ω ∩ Lq′σ (Ω), we have v|Γ = 0 and div v = 0 in Ω. Thus extending

Proposition 14.5 to v ∈ W 2,q′(Ω), we have
∂v

∂ν

∣∣∣∣
Γ

= tangential on Γ. Returning to Theorem 14.3, and

recalling that g is tangential. g · ν = 0 on Γ, we then obtain from (14.36) the following

Corollary 14.6. With reference to Theorem 14.3 we have tangential

component of D∗A∗v

 = (D∗A∗qv)τ = νo
∂v

∂ν
, v ∈ D(A∗q) = W 2,q′(Ω) ∩W 1,q′

0 Ω ∩ Lq′σ (Ω) (14.68)

q > 3 for d = 3; q > 2 for d = 2.

109



15 Some auxiliary results for the w-linearized problem (14.26): Ana-

lytic semigroup generation, Maximal regularity, Domains of frac-

tional powers

In this subsection we collect mostly known results to be used in the sequel.

(a) Definition of Besov spaces Bs
q,p on domains of class C1 as real interpolation of Sobolev

spaces: Let m be a positive integer, m ∈ N, 0 < s < m, 1 ≤ q < ∞, 1 ≤ p ≤ ∞, then we define

[G-G-H.1, p 1398]

Bs
q,p(Ω) = (Lq(Ω),Wm,q(Ω)) s

m
,p (15.1a)

[Wahl, p. xx] This definition does not depend on m ∈ N. This clearly gives

Wm,q(Ω) ⊂ Bs
q,p(Ω) ⊂ Lq(Ω) and ‖y‖Lq(Ω) ≤ C ‖y‖Bsq,p(Ω) . (15.1b)

We shall be particularly interested in the following special real interpolation space of the Lq and

W 2,q spaces
(
m = 2, s = 2− 2

p

)
:

B
2− 2

p
q,p (Ω) =

(
Lq(Ω),W 2,q(Ω)

)
1− 1

p
,p
. (15.2)

Our interest in (15.2) is due to the following characterization [Amann.2, Thm 3.4], [G-G-H.1, p

1399]: if Aq denotes the Stokes operator introduced in (14.20), then(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g|Γ = 0
}

if
1

q
< 2− 2

p
< 2 (15.3a)(

Lqσ(Ω),D(Aq)
)

1− 1
p
,p

=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g · ν|Γ = 0
}
≡ B̃2−2/p

q,p (Ω) (15.3b)

if 0 < 2− 2

p
<

1

q
; or 1 < p <

2q

2q − 1
.

Notice that, in (15.3b), the condition g · ν|Γ = 0 is an intrinsic condition of the space Lqσ(Ω) in

(13.4), not an extra boundary condition as g|Γ = 0 in (15.3a).

Remark 15.1. In the analysis of well-posedness and stabilization of the nonlinear N-S translated

feedback z-problem (14.18) = (24.1) with localized interior, tangential-like control u and localized

tangential boundary control v - both expressed in feedback form - we shall need to impose the
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constrain q > d = dim Ω, in particular q > 3, see Eq (24.16), to obtain the embedding W 1,q ↪→

L∞(Ω) in our case of interest d = 3. What is then the allowable range of the parameter p in such

case q > 3?. The intended goal of the present paper is to obtain the sought-after stabilization

result in a function space, such as a B
2−2/p
q,p (Ω)-space, that does not recognize boundary conditions

of the I.C. Thus, we need to avoid the case in (15.3a), as this implies a Dirichlet homogeneous

B.C. Instead, we need to fit into the case (15.3b), where the conditions div g ≡ 0 and g · ν|Γ = 0

are just features of the underlying space Lqσ(Ω), see (13.4). We shall then impose the condition

2−2/p <
1/q <

1/3 and then obtain that p must satisfy p < 6/5 for d = 3. Moreover, analyticity and

maximal regularity of the Stokes problem will require p > 1. Thus, in conclusion, the allowed range

of the parameters p, q under which we shall solve the well-posedness and stabilization problem of

the nonlinear N-S feedback z-system (14.18) = (24.1) for d = 3, in a space B
2−2/p
q,p (Ω). This - as

intended - does not recognize boundary conditions is: q > 3, 1 < p < 6/5. See Theorem A and B

to be proved as Theorem 24.1 through Theorem 24.3 in Section 24.

(b) The Stokes and Oseen operators generate strongly continuous analytic semigroups

on Lqσ(Ω), 1 < q <∞.

Theorem 15.1. Let d ≥ 2, 1 < q <∞ and let Ω be a bounded domain in Rd of class C3. Then

(i) the Stokes operator −Aq = Pq∆ in (14.20), repeated here as

−Aqψ = Pq∆ψ, ψ ∈ D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω) (15.4)

generates a s.c analytic semigroup e−Aqt on Lqσ(Ω). See the review paper [H-S, Theorem

2.8.5 p 17].

(ii) The Oseen operator Aq in (14.22)

Aq = −(νoAq +Ao,q), D(Aq) = D(Aq) ⊂ Lqσ(Ω) (15.5)

generates a s.c analytic semigroup eAqt on Lqσ(Ω). This follows as Ao,q is relatively bounded

with respect to A
1/2
q , to be formally defined in (15.9): thus a standard theorem on perturbation

of an analytic semigroup generator applies [Pazy, Corollary 2.4, p 81].
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(iii)

0 ∈ ρ(Aq) = the resolvent set of the Stokes operator Aq (15.6a){
A−1
q : Lqσ(Ω) −→ Lqσ(Ω) is compact. (15.6b)

The s.c. analytic Stokes semigroup e−Aqt is uniformly stable on Lqσ(Ω): there exist constants

M ≥ 1, δ > 0 (possibly depending on q) such that

∥∥e−Aqt∥∥L(Lqσ(Ω))
≤Me−δt, t > 0. (15.7)

(c) Domains of fractional powers, D(Aαq ), 0 < α < 1 of the Stokes operator Aq on Lqσ(Ω), 1 <

q <∞,

Theorem 15.2. For the domains of fractional powers D(Aαq ), 0 < α < 1, of the Stokes operator

Aq in (14.20) = (15.4), the following complex interpolation relation holds true [H-S, Theorem

2.8.5, p 18]

[D(Aq), L
q
σ(Ω)]1−α = D(Aαq ), 0 < α < 1, 1 < q <∞; (15.8)

in particular, see (14.21)

[D(Aq), L
q
σ(Ω)] 1

2
= D(A

1/2
q ) ≡W 1,q

0 (Ω) ∩ Lqσ(Ω). (15.9)

Thus, on the space D(A
1/2
q ), the norms

‖∇ · ‖Lq(Ω) and ‖ ‖Lq(Ω) (15.10)

are equivalent via the Poincaré inequality.

(d) The Stokes operator −Aq and the Oseen operator Aq, 1 < q <∞ generate s.c. analytic

semigroups on the Besov space(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g|Γ = 0
}

if
1

q
< 2− 2

p
< 2; (15.11a)(

Lqσ(Ω),D(Aq)
)

1− 1
p
,p

=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g · ν|Γ = 0
}
≡ B̃2−2/p

q,p (Ω) (15.11b)

if 0 < 2− 2

p
<

1

q
, or 1 < p <

2q

2q − 1
.
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In fact, Theorem 3.1(i) states that the Stokes operator −Aq generates a s.c analytic semigroup

on the space Lqσ(Ω), 1 < q < ∞, hence on the space D(Aq) in (15.4), with norm ‖ · ‖D(Aq)
=

‖Aq · ‖Lqσ(Ω) as 0 ∈ ρ(Aq). Then, one obtains that the Stokes operator −Aq generates a s.c.

analytic semigroup on the real interpolation spaces in (15.11). Next, the Oseen operator A =

−(νoAq + Ao,q) likewise generates a s.c. analytic semigroup eAqt on Lqσ(Ω) by Theorem 3.1(ii).

Moreover Aq generates a s.c. analytic semigroup on D(Aq) = D(Aq) (equivalent norms). Hence Aq

generates a s.c. analytic semigroup on the real interpolation spaces (15.11). Here below, however,

we shall formally state the result only in the case 2− 2/p <
1/q. i.e. 1 < p < 2q/2q−1, in the space

B̃
2−2/p
q,p (Ω), as this does not contain B.C. The objective of the present paper is precisely to obtain

stabilization results on spaces that do not recognize B.C.

Theorem 15.3. Let 1 < q <∞, 1 < p < 2q/2q−1

(i) The Stokes operator −Aq in (15.4) generates a s.c analytic semigroup e−Aqt on the space

B̃
2−2/p
q,p (Ω) defined in (15.3b) = (15.11b) which moreover is uniformly stable, as in (15.7),

∥∥e−Aqt∥∥
L
(
B̃

2−2/p
q,p (Ω)

) ≤Me−δt, t > 0. (15.12)

(ii) The Oseen operator Aq in (15.5) generates a s.c. analytic semigroup eAqt on the space

B̃
2−2/p
q,p (Ω) in (15.3b) = (15.11b).

(e) Space of maximal Lp regularity on Lqσ(Ω) of the Stokes operator −Aq, 1 < p <∞, 1 < q <

∞ up to T =∞. We shall use the notation of [Dore] and write −Aq ∈MReg(Lp(0,∞;Lq(Ω))).

We return to the dynamic Stokes problem in {ϕ(t, x), π(t, x)}

ϕt −∆ϕ+∇π = F in (0, T ]× Ω ≡ Q (15.13a)

div ϕ ≡ 0 in Q (15.13b)

 ϕ|Σ ≡ h0 in (0, T ]× Γ ≡ Σ (15.13c)

ϕ|t=0 = ϕ0 in Ω, (15.13d)

rewritten in abstract form, after applying the Helmholtz projection Pq to (15.13a) and recalling

Aq in (15.4) as

ϕ′ +Aqϕ = Fσ ≡ PqF, ϕ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
, (15.14)
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recall (15.11). Next, we introduce the space of maximal regularity for {ϕ,ϕ′} as [H-S, p 2; Theorem

2.8.5.iii, p 17], [G-G-H.1, p 1404-5], with T up to ∞:

XT
p,q,σ = Lp(0, T ;D(Aq)) ∩W 1,p(0, T ;Lqσ(Ω)) (15.15)

(recall (14.20) for D(Aq)) and the corresponding space for the pressure as

Y T
p,q = Lp(0, T ; Ŵ 1,q(Ω)), Ŵ 1,q(Ω) = W 1,q(Ω)/R. (15.16)

The following embedding, also called trace theorem, holds true [Amann.2, Theorem 4.10.2, p 180,

BUC for T =∞].

XT
p,q,σ ⊂ XT

p,q ≡ Lp(0, T ;W 2,q(Ω)) ∩W 1,p(0, T ;Lq(Ω)) ↪→ C
(

[0, T ];B
2−2/p
q,p (Ω)

)
. (15.17)

For a function g such that div g ≡ 0, g|Γ = 0 we have g ∈ XT
p,q ⇐⇒ g ∈ XT

p,q,σ, by (13.4).

The solution of Eq(15.14) is

ϕ(t) = e−Aqtϕ0 +

∫ t

0
e−Aq(t−τ)Fσ(τ)dτ. (15.18)

The following is the celebrated result on maximal regularity on Lqσ(Ω) of the Stokes problem due

originally to Solonnikov [Sol.2] reported in [H-S, Theorem 2.8.5(iii) for ϕ0 = 0 and Theorem 2.10.1

p24], [Saa], [G-G-H.1, Proposition 4.1 , p 1405], [P-S]. See also [B-L-T.1, Theorem 3.1 p 31 for

p = q = 2 case]

Theorem 15.4. Let 1 < p, q <∞, T ≤ ∞. With reference to problem (15.13) = (15.14), assume

Fσ ∈ Lp(0, T ;Lqσ(Ω)), ϕ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
. (15.19)

Then there exists a unique solution ϕ ∈ XT
p,q,σ continuously on the data: there exist constants

C0, C1 independent of T, Fσ, ϕ0 such that via (15.17)

C0 ‖ϕ‖
C
(

[0,T ];B
2−2/p
q,p (Ω)

) ≤ ‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q

=
∥∥ϕ′∥∥

Lp(0,T ;Lqσ(Ω))
+ ‖Aqϕ‖Lp(0,T ;Lqσ(Ω)) + ‖π‖Y Tp,q

≤ C1

{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖(Lqσ(Ω),D(Aq)

)
1− 1

p ,p

+ ‖h0‖Lp(0,∞;W 1−1/q,q(Γ))

}
.

(15.20)

In particular,
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(i) With reference to the variation of parameters formula (15.18) of problem (15.14) arising

from the Stokes problem (15.13), we have recalling (15.15): the map

Fσ −→
∫ t

0
e−Aq(t−τ)Fσ(τ)dτ : continuous (15.21)

Lp(0, T ;Lqσ(Ω)) −→ XT
p,q,σ ≡ Lp(0, T ;D(Aq)) ∩W 1,p(0, T ;Lqσ(Ω)). (15.22)

(ii) The s.c. analytic semigroup e−Aqt generated by the Stokes operator −Aq (see (15.4)) on the

space
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

satisfies

e−Aqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
−→ XT

p,q,σ ≡ Lp(0, T ;D(Aq))∩W 1,p(0, T ;Lqσ(Ω)).

(15.23a)

In particular via (15.11b), for future use, for 1 < q < ∞, 1 < p < 2q
2q−1 , the s.c. analytic

semigroup e−Aqt on the space B̃
2−2/p
q,p (Ω), satisfies

e−Aqt : continuous B̃
2−2/p
q,p (Ω) −→ XT

p,q,σ. (15.23b)

(iii) Moreover, setting ∇π = (Id−Pq)(∆ +F ), it follows that {ϕ, π} ∈ XT
p,q,σ ×Y T

p,q, see (15.16),

solves problem (15.13) and there is a constant C > 0 independent of T, Fσ, φ0 s.t.

‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q ≤ C
{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖(Lqσ(Ω),D(Aq)

)
1− 1

p ,p

}
(15.24a)

while, for future use, for 1 < q <∞, 1 < p < 2q
2q−1 , then (15.24a) specializes to

‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q ≤ C
{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖

B̃
2−2/p
q,p (Ω)

}
. (15.24b)

(f) Maximal Lp regularity on Lqσ(Ω) of the Oseen operator Aq, 1 < p < ∞, 1 < q < ∞:

Aq ∈ MReg(Lp(0, T ;Lqσ(Ω))), T finite arbitrary. We next transfer the maximal regularity of

the Stokes operator (−Aq) on Lqσ(Ω)-asserted in Theorem 15.4 into the maximal regularity of the

Oseen operator Aq = −νoAq − Ao,q exactly on the same space XT
p,q,σ defined in (15.15), except

now only on T <∞.

Thus, consider the dynamic Oseen problem in {ψ(t, x), π(t, x)} with equilibrium solution ye, see
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Theorem 13.1 on (13.2) :

ψt − νo∆ψ + Le(ψ) +∇π = F in (0, T ]× Ω ≡ Q (15.25a)

div ψ ≡ 0 in Q (15.25b)

 ψ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ (15.25c)

ψ|t=0 = ψ0 in Ω, (15.25d)

Le(ψ) = (ye.∇)ψ + (ψ.∇)ye (15.26)

rewritten in abstract form, after applying the Helmholtz projector Pq to (15.25a) and recalling Aq

in (15.5)

ψt = Aqψ + PqF = −νoAqψ −Ao,qψ + Fσ, ψ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

(15.27)

whose solution is

ψ(t) = eAqtψ0 +

∫ t

0
eAq(t−τ)Fσ(τ)dτ. (15.28)

ψ(t) = e−νoAqtψ0 +

∫ t

0
e−νoAq(t−τ)Fσ(τ)dτ −

∫ t

0
e−νoAq(t−τ)Ao,qψ(τ)dτ. (15.29)

Theorem 15.5. Let 1 < p, q <∞, 0 < T <∞. Assume (as in (15.19))

Fσ ∈ Lp
(
0, T ;Lqσ(Ω)

)
, ψ0 ∈

(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

(15.30)

where D(Aq) = D(Aq), see (15.5). Then there exists a unique solution ψ ∈ XT
p,q,σ of the dy-

namic Oseen problem (15.25), continuously on the data: that is, there exist constants C0T , C1T

independent of Fσ, ψ0 such that (recall (15.17)):

C0T ‖ψ‖
C
(

[0,T ];B
2−2/p
q,p (Ω)

) ≤ ‖ψ‖XT
p,q,σ

+ ‖π‖Y Tp,q

≡
∥∥ψ′∥∥

Lp(0,T ;Lq(Ω))
+ ‖Aqψ‖Lp(0,T ;Lq(Ω)) + ‖π‖Y Tp,q (15.31)

≤ C1T

{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ψ0‖(Lqσ(Ω),D(Aq)

)
1− 1

p ,p

}
(15.32)

Equivalently, for 1 < p, q <∞

i. The map

Fσ −→
∫ t

0
eAq(t−τ)Fσ(τ)dτ : continuous

Lp(0, T ;Lqσ(Ω)) −→ Lp
(
0, T ;D(Aq) = D(Aq)

) (15.33)
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where then automatically, see (15.27)

Lp(0, T ;Lqσ(Ω)) −→W 1,p(0, T ;Lqσ(Ω)) (15.34)

and ultimately

Lp(0, T ;Lqσ(Ω)) −→ XT
p,q,σ ≡ Lp

(
0, T ;D(Aq)

)
∩W 1,p(0, T ;Lqσ(Ω)). (15.35a)

Thus,

Aq ∈MReg(Lp(0, T ;Lqσ(Ω))), 1 < T <∞ (15.35b)

and the operator Aq has maximal Lp regularity on Lqσ(Ω).

ii. The s.c. analytic semigroup eAqt generated by the Oseen operator Aq (see (15.5)) on the space(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

satisfies for 1 < p, q <∞

eAqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
−→ Lp

(
0, T ;D(Aq) = D(Aq)

)
(15.36)

and hence automatically

eAqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p
−→ XT

p,q,σ. (15.37)

In particular, for future use, for 1 < q < ∞, 1 < p < 2q
2q−1 , we have that the s.c. analytic

semigroup eAqt on the space B̃
2−2/p
q,p (Ω), satisfies

eAqt : continuous B̃
2−2/p
q,p (Ω) −→ Lp

(
0, T ;D(Aq) = D(Aq)

)
, T <∞, (15.38)

and hence automatically

eAqt : continuous B̃
2−2/p
q,p (Ω) −→ XT

p,q,σ, T <∞. (15.39)

iii. An estimate such as the one in (15.24a) applies to the pressure π, where now ∇π(Id−Pq)(∆−

Le + F ).

A proof of Theorem 15.5 is given in Appendix A.

(g) We return to the Dirichlet map D introduced in Section 14.1, and extract an important result

[to be used e.g. in Section 21 to claim that the feedback generator AF generates a s.c. analytic

semigroup in Lqσ(Ω)]. All this is a perfect counterpart of results in Hilbert spaces (q = 2), which
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have been used in [L-T.3] etc.

We first quote a known result

Proposition 15.6. With reference to the Stokes operator Aq introduced in (15.4) on Lqσ(Ω), we

have, for 1 < q <∞.

(i)

W s,q(Ω) ≡W s,q
0 (Ω), 0 ≤ s ≤ 1

q
(15.40a)

(ii)

W 2s,q
0 (Ω) ∩ Lqσ(Ω) ⊂ D

(
Aγq
)
, 0 ≤ γ < s, 0 ≤ s ≤ 1, q ≥ 2,

2s 6= 1

q
, 2s 6= 1

q
+ 1 (15.40b)

(iii) In particular, for ε > 0 arbitrary, q ≥ 2, via (i):

W
1/q ,q(Ω) ∩ Lqσ(Ω) = W

1/q ,q
0 (Ω) ∩ Lqσ(Ω) ⊂ D

(
A

1/2q−ε
q

)
(15.40c)

Indeed, for (i) we invoke [Wahl, (0.2.17) p XX1]. For (ii), we quote [Wahl, Theorem III.2.3 p

91] where, in this reference, the space Hq(Ω) is our space Lqσ(Ω), and the space H̊2s,q(Ω) can be

replaced (see proof) by the space W 2s,q
0 (Ω) in our notation. For (iii), we apply (i) and (ii) with

2s = 1/q, hence γ < 1/2q.

Corollary 15.7. For the Dirichlet map D : g −→ ψ defined in reference to problem (14.1) and the

paragraph below it, we have complementing (14.13) = (14.28)

g ∈ Uq =
{
g ∈ Lq(Γ); g · ν = 0 on Γ

}
−→ Dg ∈ W

1/q ,q(Ω) ∩ Lqσ(Ω) ⊂ D
(
A

1/2q−ε
q

)
(15.41a)

or A
1/2q−ε
q D ∈ L(Uq, L

q
σ(Ω)) (15.41b)

We shall invoke this property in Theorem 21.1.

Remark 15.2. As noted in Remark 13.2, The literature reports physical situations where the vol-

umetric force f in (13.1a) or (13.2a), is actually replaced by ∇g(x); that is, f is a time dependent

conservative vector field. In this case, a solution to the stationary problem (13.2) is: ye ≡ 0, πe = g.
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Taking ye ≡ 0 (hence Le(φ) = 0) and returning to Eq (13.1a) with f(x) replaced now by ∇g(x) and

applying to the resulting equation the projection operator Pq, one obtains in this case the projected

equation

yt − νoPq∆y + Pq
[
(y · ∇)y

]
= Pq(mu) in Q. (15.42)

This, along with the solenoidal and boundary conditions (13.1b), (13.1c), yields the corresponding

abstract form

yt + νoAq(y −Dv) +Nqy = Pq(mu) in Lqσ(Ω). (15.43)

Then y-problem (15.43) is the same as the z-problem (14.24) or (14.25), except without the Oseen

term Ao,q see (14.22). The linearized version of problem (15.43) is then

ηt + νoAq(η −Dv) = Pq(mu) in Lqσ(Ω), (15.44)

which is the same as the w-problem (14.26), except without the Oseen term Ao,q. The s.c. analytic

semigroup e−νoAqt driving the linear equation (15.44) is uniformly stable in Lqσ(Ω), see (15.7), as well

as in B̃
2−2/p
q,p (Ω), see (15.12) with decay rate −δ. Then, in the case of the present Remark and as

anticipated in the Orientation, the present paper may be used to enhance at will the uniform stability

of the corresponding problem by use only of the tangential boundary feedback finite dimensional

control v, as acting on the entire boundary Γ. It is of the form given by (17.8), with boundary vectors

fk now acting on the entire boundary Γ. Thus one can take the interior tangential-like control u ≡ 0,

or vectors qk ≡ 0 in (17.9). Given the original decay rate −δ of the Stokes semigroup in (15.7) or

(15.12), and preassigned a desirable decay rate −k2 (arbitrary), the procedure of the present paper

can be adopted to construct such a tangential boundary finite dimensional feedback control v on all

of Γ that yields the decay rate −k2. Thus there is no need to perform the translation y −→ z of

Section 13.5, when f in (13.2a) is replaced by ∇g(x); i.e. ye = 0 in this case. The corresponding

required “unique continuation property” holds true for the Stokes problem (ye = 0), see Problem #3

of Appendix F, [RT.4], [RT.5].
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16 Introducing the Problem of Feedback Stabilization of the Lin-

earized w-Problem (14.26) on the Complexified Lqσ(Ω)-space.

Preliminaries: In this subsection we take q fixed, 1 < q <∞ throughout. Accordingly, to streamline

the notation in the preceding setting of Section 14, we shall drop the dependence on q of all relevant

quantities and thus write P,A,Ao,A instead of Pq, Aq, Ao,q,Aq. We return to the linearized system

(14.26).

Moreover, as in [B-T.1], [B-L-T.1], we shall henceforth let Lqσ(Ω) denote the complexified space Lqσ(Ω)+

iLqσ(Ω), whereby then we consider the extension of the linearized problem (14.26) to such complexified

space. Thus, henceforth, w will mean w + iw̃, u will mean u + iũ, v will mean v + iṽ, w0 will mean

w0 + iw̃0. Thus, henceforth, the abstract model (14.26) is rewritten with the same symbols as

wt −Aw = −ADv + P ((mu)τ) ∈ [D(A∗)]′, w(0) ∈ Lqσ(Ω), v · ν = 0 on Σ (16.1)

to mean however the complexified version of (14.26). As noted in Theorem 3.1(iii), the Oseen operator

A has compact resolvent on Lqσ(Ω). It follows that A has a discrete point spectrum σ(A) = σp(A)

consisting of isolated eigenvalues {λj}∞j=1, which are repeated according to their (finite) algebraic

multiplicity `j . However, since A generates a C0 analytic semigroup on Lqσ(Ω), Theorem 3.1(ii), its

eigenvalues {λj}∞j=1 lie in a triangular sector of a well-known type.

The case of interest in stabilization occurs where A has a finite number, say N , of eigenvalues

λ1, λ2, λ3, . . . , λN on the complex half plane {λ ∈ C : Re λ ≥ 0} which we then order according

to their real parts, so that

. . . ≤ Re λN+1 < 0 ≤ Re λN ≤ . . . ≤ Re λ1, (16.2)

each λi, i = 1, . . . , N being an unstable eigenvalue repeated according to its geometric multiplicity

`i. Let M denote the number of distinct unstable eigenvalues λj of A. Denote by PN and P ∗N the
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projections given explicitly by [K-1, p 178], [B-T.1], [B-L-T.1]

PN = − 1

2πi

∫
Γ

(λI −A)−1 dλ : Lqσ(Ω) onto W u
N ⊂ Lqσ(Ω) (16.3a)

P ∗N = − 1

2πi

∫
Γ̄

(λI −A∗)−1 dλ : (Lqσ(Ω))∗ = Lq
′
σ (Ω) onto (W u

N )∗ ⊂ Lq′σ (Ω), (16.3b)

1/q + 1/q′ = 1, recall (13.8b), where Γ (respectively, its conjugate counterpart Γ̄) is a smooth closed

curve that separates the unstable spectrum from the stable spectrum of A (respectively, A∗).

As in [B-L-T.1, Sect 3.4, p 37], following [RT.1],we decompose the space Lqσ(Ω) into the sum of two

complementary subspaces (not necessarily orthogonal):

Lqσ(Ω) = W u
N ⊕W s

N ; W u
N ≡ PNLqσ(Ω); W s

N ≡ (I − PN )Lqσ(Ω); dim W u
N = N, (16.4)

where each of the spaces W u
N and W s

N is invariant under A, and let

AuN = PNA = A|
Wu
N

; AsN = (I − PN )A = A|W s
N

(16.5)

be the restrictions of A to W u
N and W s

N respectively. The original point spectrum (eigenvalues) {λj}∞j=1

of A is then split into two sets

σ(AuN ) = {λj}Nj=1; σ(AsN ) = {λj}∞j=N+1, (16.6)

and W u
N is the generalized eigenspace of (A, hence of) AuN , corresponding to its unstable eigenvalues.

The system (16.1) on Lqσ(Ω) with v · ν = 0 on Σ can accordingly be decomposed as

w = wN + ζN , wN = PNw, ζN = (I − PN )w. (16.7)

After applying PN and (I − PN ) (which commute with A) to (16.1), we obtain via (16.5)

on W u
N : w′N −AuNwN = −PN (ADv) + PNP ((mu)τ) (16.8a)

= −AuNPNDv + PNP ((mu)τ); wN (0) = PNw0 (16.8b)
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on W s
N : ζ ′N −AsNζN = −(I − PN )(ADv) + (I − PN )P ((mu)τ) (16.9a)

= −AsN (I − PN )Dv + (I − PN )P ((mu)τ); ζN (0) = (I − PN )w0 (16.9b)

respectively. [In (16.8a), (16.9a), actually PN is the extension from original Lqσ(Ω) to [D(A∗)]′ [B-L-T.1,

Appendix A.1]]. For each distinct λi, i = 1, . . . ,M , let PN,i, P
∗
N,i be the projection corresponding to

λi and λ̄i, respectively, given by a similar integral of (λI − A)−1, or (λI − A∗)−1, respectively, as in

(16.3a-16.3b), this time over a curve that encircles only λi, or λ̄i, respectively, and no other eigenvalue.

Let (W u
N )i = PN,iL

q
σ(Ω), and (AuN )i = Au

∣∣
(Wu

N )i
.

We anticipate the fact (noted below (18.3) and in the first paragraph of Section 19) that, for 1 <

p, q <∞:

W u
N =



space of generalized

eigenfunctions of Aq(= AuN )

corresponding to its distinct

unstable eigenvalues


⊂


(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p[

D(Aq), L
q
σ(Ω)

]
1−α = D(Aαq ), 0 < α < 1

 ⊂ Lqσ(Ω).

(16.10)
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17 Main results

17.1 Orientation

Having introduced the necessary background in the Lq-setting, we can finally list the main uniform

stabilization results by a pair {v, u} of feedback tangential controllers, both finite dimensional: with

v acting tangentially on an arbitrary small connected portion Γ̃ of the boundary Γ, and u acting

tangentially on a patch ω supported by Γ̃. We do this first, globally, for the linear case. More pre-

cisely, we do this first for the uniform feedback stabilization of the finite dimensional wN -system in

(16.8) in the space W u
N ⊂ Lqσ(Ω), for which we obtain an arbitrarily large decay rate in Theorem

17.1; then for the linearized w-problem in (14.26) = (16.1), in both the Lqσ(Ω)-setting as well as the

Besov space B̃
2−2/p
q,p (Ω) in Theorem 17.2. These linear global uniform stabilization results are next

employed to obtain the sought-after goal: local uniform stabilization, near an unstable equilibrium

solution ye, by a finite dimensional pair {v, u} of feedback tangential controllers, also for d = 3, first

for the z-dynamics (14.25) in Theorem 17.4; finally, for the original N-S dynamics (13.1) in Theorem

17.5. The linear/linearized Theorems 17.1 and 17.2 will require q ≥ 2, to guarantee that the boundary

vectors
∂ϕ∗ij
∂ν
∈W 2−1/q ,q(Γ) ⊂ Lq(Γ), see Appendix E, in particular Eq (C.5). In addition, in the case

of interest d = 3, the non-linear Theorem 17.3, 17.4, 17.5 will require q > 3, 1 < p < 2q/2q−1 by (24.6).

All the main results of this paper, Theorems 17.1 through 17.5, are stated (at first) in the complex

state space setting Lqσ(Ω)+iLqσ(Ω). Thus, the finitely many stabilizing feedback vectors pk ∈ (W u
N )∗ ⊂

Lq
′
σ (Ω), uk ∈ W u

N ⊂ Lqσ(Ω) constructed in the subsequent proofs are related to the complex finite

dimensional unstable subspace W u
N . The question then arises as to transfer back these results into

the original real setting. This issue was resolved in [B-T.1]. Here, the translation, taken from [B-T.1],

from the results in the complex setting (Theorems 17.1 through 17.5) into corresponding results in the

original real setting is given in Section 17.6.
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17.2 Arbitrary decay rate of the finite dimensional wN -dynamics (16.8) by suit-

able finite-dimensional boundary feedback tangential localized control v and

interior localized tangential-like feedback control u. Constructive proof with

q ≥ 2.

The following is the key desired control theoretic result of the dynamic wN in (16.8) over the finite

dimensional space W u
N ⊂ Lqσ(Ω). We shall henceforth impose the condition q ≥ 2, due to requirement

(C.5) in Appendix E.

Theorem 17.1. Let λ1, . . . , λM be the unstable distinct eigenvalues of the Oseen operator A (= Aq)

as in (16.2), with geometric multiplicity `i, i = 1, . . . ,M , and set K = sup{`i; i = 1, . . . ,M}. Let Γ̃

be an open connected subset of the boundary Γ of positive surface measure and ω be a localized collar

supported by Γ̃ (Fig. 2). Let q ≥ 2. Given γ1 > 0 arbitrarily large, we can construct two K-dimensional

controllers: a boundary tangential control v = vN acting with support on Γ̃, of the form given by

v = vN =
K∑
k=1

νk(t)fk, fk ∈ F ⊂W 2− 1
q
,q

(Γ), q ≥ 2, so that fk · ν = 0, hence vN · ν = 0 on Γ (17.1)

F defined in (13.23), q ≥ 2, fk supported on Γ̃, and an interior tangential-like control u = uN acting

on ω, of the form given by

u = uN =

K∑
k=1

µk(t)uk, uk ∈W u
N ⊂ Lqσ(Ω), µk(t) = scalar, (17.2)

thus with interior vectors [u1, . . . , uK ] in the smooth subspace W u
N of Lqσ(Ω), 2 ≤ q <∞, supported on

ω, such that, once inserted in the finite dimensional projected wN -system in (16.8), yields the system

w′N −AuNwN = −AuNPND

(
K∑
k=1

νk(t)fk

)
+ PNP

(
m

(
K∑
k=1

µk(t)uk

)
τ

)
, (17.3)

whose solution then satisfies the estimate

‖wN (t)‖Lqσ(Ω) + ‖vN (t)‖
Lq(Γ̃)

+ ‖v′N (t)‖
Lq(Γ̃)

+

‖uN (t)‖Lqσ(ω) + ‖u′N (t)‖Lqσ(ω) ≤ Cγ1e
−γ1t‖PNw0‖Lqσ(Ω), t ≥ 0. (17.4)

In (17.4) we may replace the Lqσ(Ω)-norm, 2 ≤ q <∞, alternatively either with the
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

norm, 2 ≤ q < ∞; or else with the
[
D(Aq), L

q
σ(Ω)

]
1−α = D(Aαq )-norm, 0 ≤ α ≤ 1, 2 ≤ q < ∞. In
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particular, we also have

‖wN (t)‖
B̃

2−2/p
q,p (Ω)

+ ‖vN (t)‖
Lq(Γ̃)

+
∥∥v′N (t)

∥∥
Lq(Γ̃)

+

‖uN (t)‖
B̃

2−2/p
q,p (ω)

+
∥∥u′N (t)

∥∥
B̃

2−2/p
q,p (ω)

≤ Cγ1e
−γ1t ‖PNw0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0, (17.5)

in the B̃
2−2/p
q,p (Ω)-norm, 2 ≤ q <∞, p < 2q/2q−1.[Estimate (17.4) (in the weaker form (8.1) = (10.3),

i.e. without the derivative terms) will be invoked in the nonlinear stabilization proof of Section 22, see

(22.11)].

Moreover, such controllers v = vN and u = uN may be chosen in feedback form: that is, with refer-

ences to the explicit expressions (17.1) for v and (17.2) for u, of the form νk(t) =
〈
wN (t), pk

〉
Wu
N

and

µk(t) =
〈
wN (t), qk

〉
Wu
N

for suitable vectors pk ∈ (W u
N )∗ ⊂ Lq

′
σ (Ω), qk ∈ (W u

N )∗ ⊂ Lq
′
σ (Ω) depending on

γ1, where
〈
,
〉

denotes the duality pairing W u
N × (W u

N )∗.

In conclusion, wN in (17.5) is the solution of the equation (17.3) on W u
N rewritten explicitly as

w′N −AuNwN = −AuNPND

(
K∑
k=1

〈
wN (t), pk

〉
Wu
N

fk

)
+ PNP

(
m

(
K∑
i=1

〈
wN (t), qk

〉
Wu
N

uk

)
τ

)
, (17.6)

fk supported on Γ̃, uk supported on ω, rewritten in turn as

w′N = A
u
wN , wN (t) = eA

u
tPNw0, wN (0) = PNw0 on W u

N . (17.7)

The technical proof will be given in Section 20

17.3 Global well-posedness and Uniform Exponential Stabilization of the Lin-

earized w-problem (13.11) or (14.26)=(16.1) in various Lqσ(Ω)-based spaces,

q ≥ 2, by means of the same feedback controls {v, u} obtained for the wN -

problem in Section 17.2

We let again, 2 ≤ q <∞ throughout this section.

Theorem 17.2. With reference to the unstable, possibly repeated, eigenvalues {λj}Nj=1, as in (16.2),

M of which are distinct, let ε > 0 and set γ0 = |Re λN+1| − ε. Let q ≥ 2. Consider the same
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K-dimensional feedback controllers constructed in Theorem 17.1 and yielding estimate (17.4), (17.5)

for the finite-dimensional projected wN -system (16.8) in feedback form (17.6); that is, the tangential

boundary controller v = vN supported on Γ̃, and the tangential-like interior controller u = uN supported

on ω

v = vN =

K∑
k=1

νk(t)fk =

K∑
k=1

〈
wN (t), pk

〉
Wu
N

fk, fk ∈ F ⊂W 2−1/q ,q(Γ), pk ∈ (W u
N )∗ ⊂ Lq′σ (Ω), q ≥ 2

fk · ν|Γ = 0; hence v · ν|Γ = 0, fk supported on Γ̃

(17.8)

u = uN =
K∑
k=1

µk(t)uk =
K∑
k=1

〈
wN (t), qk

〉
Wu
N

uk, qk ∈ (W u
N )∗ ⊂ Lq′σ (Ω), uk supported on ω. (17.9)

(a) (Well-posedness) Once inserted, this time, in the full linear w-problem (13.11) or (14.26) = (16.1),

such v and u in (17.8), (17.9) yield the linearized feedback dynamics (wN = PNw) driven by the

dynamical feedback stabilizing operator AF,q below

dw

dt
= Aqw −AqD

(
K∑
k=1

〈
PNw, pk

〉
Wu
N

fk

)
+ Pq

(
m

(
K∑
k=1

〈
PNw, qk

〉
Wu
N

uk

)
τ

)
≡ AF,qw, (17.10)

where AF,q is the generator of a s.c. analytic semigroup in the space Lqσ(Ω). More specifically AF,q

is rewritten as in the subsequent Section 21, Eqts (21.1), (21.11), (21.12) as

AF,q = AF,q +G : Lqσ(Ω) ⊃ D
(
AF,q

)
−→ Lqσ(Ω), q ≥ 2 (17.11)

AF,q = Aq(I −DF ) : Lqσ(Ω) ⊃ D(AF,q) −→ Lqσ(Ω), q ≥ 2 (17.12a)
 D(AF,q) =

{
h ∈ Lqσ(Ω) : h−DFh ∈ D(Aq) = W 2,q(Ω) ∩W 1,q

0 (Ω) ∩ Lqσ(Ω)
}

(17.12b)

F (·) =
K∑
k=1

〈
PN ·, pk

〉
Wu
N

fk ∈W 2−1/q ,q(Γ̃);

G(·) = Pq

(
m

( K∑
k=1

〈
PN ·, qk

〉
Wu
N

uk

)
τ

)
∈ Lqσ(Ω), q ≥ 2 (17.13a)

F ∈ L(Lqσ(Ω), Lq(Γ̃)); G ∈ L(Lqσ(Ω)). (17.13b)
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(b) (Uniform stabilization) Moreover, such dynamics w in (17.10) (equivalently, such generator AF,q

in (17.10)) is uniformly stable in the space Lqσ(Ω) with decay rate γ0 > 0: there exists Cγ0 > 0

such that ∥∥∥eAF tw0

∥∥∥
Lqσ(Ω)

= ‖w(t;w0)‖Lqσ(Ω) ≤ Cγ0e
−γ0t ‖w0‖Lqσ(Ω) , t ≥ 0, q ≥ 2 (17.14)

or for 0 < θ < 1, δ > 0 arbitrarily small, q ≥ 2

Cγ0,θe
−γ0t

∥∥∥Aθq w0

∥∥∥
Lqσ(Ω)

, t ≥ 0, (17.15a)

w0 ∈ D(Aθq).
∥∥Aθq eAF tw0

∥∥
Lqσ(Ω)

=
∥∥Aθq w(t;w0)

∥∥
Lqσ(Ω)

≤

 Cγ0,θ,δe
−γ0t ‖w0‖Lqσ(Ω) , t ≥ δ > 0. (17.15b)

As in the case of Theorem 17.1, we may replace the Lqσ(Ω)-norm in (17.14), 2 ≤ q <∞, with the(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

-norm, 1 < p <∞; in particular, with the B̃
2−2/p
q,p (Ω)-norm and obtain

∥∥∥eAF tw0

∥∥∥
B̃

2−2/p
q,p (Ω)

= ‖w(t;w0)‖
B̃

2−2/p
q,p (Ω)

≤ Cγ0e
−γ0t ‖w0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0

2 ≤ q <∞, 1 < p <
2q

2q − 1
(17.16)

The proof of well-posedness will be given in Section 21, while the proof of uniform stabilization will

be given in Section 22.

17.4 Local well-posedness and uniform (exponential) null-stabilization of the trans-

lated nonlinear z-problem (13.10) or (14.25) by means of a finite dimensional

explicit, spectral based tangential feedback control pair {v, u} localized on Γ̃

and ω. Now q > 3 for d = 3.

Starting with the present section, the nonlinearity of problem (13.1) will impose for d = 3 the re-

quirement q > 3, while q > 2 for d = 2, see (24.16) below. As our deliberate goal is to obtain the

stabilization result in the space B̃
2−2/p
q,p (Ω) which does not recognize boundary conditions, then the

limitation p < 2q/2q−1, of this space applies. In conclusion, our well-posedness and stabilization results

will hold under the restriction q > 3, 1 < p < 6/5 for d = 3; q > 2, 1 < p < 4/3 for d = 2. As throughout

this paper, Γ̃ is an open connected subset of the boundary Γ of positive surface measure and ω in a

localized collar.
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Theorem 17.3. (Well-posedness) Let d = 3; 1 < p < 6
5 and q > 3. Consider the nonlinear z-problem

(13.10) or (14.25) in the following feedback form in the notation of Theorem 17.2:

dz

dt
−Aq

[
z−D

(
K∑
k=1

〈
PNz, pk

〉
Wu
N

fk

)]
+Nqz = Pq

(
m

(
K∑
k=1

〈
PNz, qk

〉
Wu
N

uk

)
τ

)
; z0 = z(0) (17.17)

i.e. subject to a feedback controls of the same structure as in the linear w-dynamics (17.10) of Theorem

17.2, Here pk, qk, fk, uk are the same vectors as those constructed in Theorem 17.1, and appearing in

(17.6), (17.8)-(17.10); fk supported on Γ̃, uk supported on ω. There exists a positive constant ρ > 0

such that, if the initial condition z0 satisfies

‖z0‖
B̃

2−2/p
q,p (Ω)

< ρ, (17.18)

then problem (17.17) defines a unique solution z in the space (see (15.15), (15.17))

z ∈ X∞p,q,σ ≡ Lp(0,∞;D(Aq)) ∩W 1,p(0,∞;Lqσ(Ω)) (17.19)

↪→ C([0,∞); B̃
2−2/p
q,p (Ω)) (17.20)

where D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω), see (15.4).

Theorem 17.4. (Uniform Stabilization) In the situation of Theorem 17.3, d = 3, 1 < p < 6
5 , q > 3, we

have that such solution is uniformly stable on the space B̃
2−2/p
q,p (Ω): there exist constants γ̃ > 0,Mγ̃ ≥ 1,

such that said solution satisfies

‖z(t; z0)‖
B̃

2−2/p
q,p (Ω)

≤Mγ̃e
−γ̃t ‖z0‖

B̃
2−2/p
q,p (Ω)

. (17.21)

A proof of Theorem 17.3 will be given in Section 24: it will be critically based on the maximal regularity

property of Section 23. A proof of Theorem 17.4 will be given in Section 25. Remark 25.1 will provide

insight on the relationship between γ̃ in the nonlinear case in (17.21) and γ0 in the corresponding

linear case in (17.14).

17.5 Local well-posedness and uniform (exponential) stabilization of the original

nonlinear y-problem (13.1) in a neighborhood of an unstable equilibrium so-

lution ye, by means of a finite dimensional explicit, spectral based, tangential

feedback control pair {v, u} localized on Γ̃ and ω. Now q > 3 for d = 3.

The results of this subsection are an immediate corollary of Theorems 17.3 and 17.4 via the change of

variable in (13.9). They are listed as Theorem A and Theorem B in Section 13.7.
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Theorem 17.5. Let d = 3; 1 < p < 6
5 , q > 3, consider the original N-S problem (13.1). Let ye be a

given unstable equilibrium solution as guaranteed by Theorem 13.1 for the steady state problem (13.2):

i.e. assume (16.2). For a constant ρ > 0, let the initial condition y0 in (13.1d) be in B̃
2−2/p
q,p (Ω) and

satisfy

Vρ ≡
{
y0 ∈ B̃

2−2/p
q,p (Ω) : ‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

≤ ρ
}
, ρ > 0. (17.22)

If ρ > 0 is sufficiently small, then

(i) for each y0 ∈ Vρ, there exist bounded finite-dimensional operators F ∈ L
(
Lqσ(Ω), Lq(Γ̃)

)
and

G̃ ∈ L
(
Lqσ(Ω)

)
have the following form with pk, qk, fk, uk defined in, say, (17.8); fk supported on

Γ̃ and uk supported on ω:

F (y − ye) =

K∑
k=1

〈
PN (y − ye), pk

〉
Wu
N

fk, supported on Γ̃, (17.23)

G̃(y − ye) =
K∑
k=1

〈
PN (y − ye), qk

〉
Wu
N

uk, supported on ω, (17.24)

that is, of the same structure as in the translated N-S z-problem (17.17), such that the closed

loop problem corresponding to (13.1)

yt − νo∆y + (y · ∇)y +∇π = (m(G̃(y − ye))τ) + f(x) in Q (17.25a)

div y = 0 in Q (17.25b)

 y = F (y − ye) on Σ (17.25c)

y|t=0 = y0 in Ω (17.25d)

rewritten abstractly after application of the Helmholtz projection Pq as

dy

dt
−Aq

[
y −DF (y − ye)

]
+Nqy = Pq

[
(m(G̃(y − ye))τ)

]
+ f(x) (17.26a)

explicitly

dy

dt
−Aq

[
y −D

( K∑
k=1

〈
PN (y − ye), pk

〉
Wu
N

fk

)]
+Nqy = Pq

[
m

( K∑
k=1

〈
PN (y − ye), qk

〉
Wu
N

uk

)
τ

]
+ f(x)

(17.26b)

y(0) = y0 ∈ B̃
2−2/p
q,p (Ω) (17.26c)

has a unique (nonlinear semigroup) solution y ∈ C
(
[0,∞); B̃

2−2/p
q,p (Ω)

)
.
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(ii) Moreover, such solution exponentially stabilizes the equilibrium solution ye in the space B̃
2−2/p
q,p (Ω):

there exist constants γ̃ > 0 and Mγ̃ ≥ 1. such that said solution satisfies

‖y(t)− ye‖
B̃

2−2/p
q,p (Ω)

≤Mγ̃e
−γ̃t ‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0, y0 ∈ Vρ. (17.27)

Once the neighborhood Vρ is obtained to ensure the well-posedness, then the values of Mγ̃ and

γ̃ do not depend on Vρ and γ̃ can be made arbitrarily large through a suitable selection of the

feedback operator F .

17.6 Results on the real space setting

Here we shall complement the results of Theorems 17.1 through 17.5 by giving their version in the

real space setting. We shall quote from [B-T.1]. In the complexified setting Lqσ(Ω) + iLqσ(Ω) we have

that the complex unstable subspace W u
N is,

W u
N = W 1

N + iW 2
N (17.28)

= space of generalized eigenfunctions {φj}Nj=1 of the operator Aq(= Auq )

corresponding to its N unstable eigenvalues. (17.29)

Set φj = φ1
j + iφ2

j with φ1
j , φ

2
j real. Then:

W 1
N = Re W u

N = span{φ1
j}Nj=1; W 2

N = Im W u
N = span{φ2

j}Nj=1. (17.30)

The stabilizing vectors pk, uk, k = 1, . . . ,K are complex valued and belong to W u
N .

The complex-valued uniformly stable linear w-system in (14.26) with K complex valued stabilizing

vectors admits the following real-valued uniformly stable counterpart

dw

dt
= Aqw −AqD

(
K∑
k=1

Re
(
wN (t), pk

)
Wu
N

Refk −
K∑
k=1

Im
(
wN (t), pk

)
Wu
N

Imfk

)

+ Pq

(
m

(
K∑
k=1

Re(wN (t), qk)Wu
N

Re uk −
K∑
k=1

Im (wN (t), qk)Wu
N

Im uk

)
· τ

)
(17.31)

with 2K ≤ N real stabilizing vectors, see [B-T.1, Eq 3.52a, p 1472].If K = sup {`i, i = 1, . . . ,M} is

achieved for a real eigenvalue λi (respectively, a complex eigenvalue λi), then the effective number of
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stabilizing controllers is K ≤ N , as the generalized functions are then real, since ye is real; respec-

tively, 2K ≤ N , for, in this case, the complex conjugate eigenvalue λ̄j contributes an equal number of

components in terms of generalized eigenfunctions φλ̄j = φ̄λj . In all cases, the actual (effective) upper

bound 2K is 2K ≤ N . For instance, if all unstable eigenvalues were real and simple then K = 1, and

only one stabilizing controller is actually needed.

Similarly, the complex-valued locally (near ye) uniformly stable nonlinear y-system (14.28) with K

complex-valued stabilizing vectors admits the following real-valued locally uniformly stable counterpart

dy

dt
− νAqy +Nqy = −AqD

(
K∑
k=1

Re
(
wN (t), pk

)
Wu
N

Refk −
K∑
k=1

Im
(
wN (t), pk

)
Wu
N

Imfk

)

+ Pq

(
m

(
K∑
k=1

Re (y − ye, pk)ω Re uk −
K∑
k=1

Im (y − ye, pk)ω Im uk

)
· τ

)
(17.32)

with 2K ≤ N real stabilizing vectors, see [B-L-T.1, p 43].
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18 First step in the proof of Theorem 17.1 for the wN-system in

(16.8): verification of the controllability algebraic rank condi-

tions under the Finite-Dimensional Spectral Assumption (FDSA)

[B-L-T.1, Section 3.6], based on the unique continuation prop-

erty of Lemma 18.2

Orientation The first challenging step in the proof of Theorem 5.1 consists in showing that the

N -dimensional wN -problem (16.8) is controllable in W u
N by using a finite dimensional pair {v, u} of

localized tangential controllers, in particular in feedback form. Verification of the corresponding alge-

braic rank conditions of Kalman and Hautus style runs into a peculiar unique continuation property

for the Oseen eigenvalue problem related to the unstable eigenvalues. Without the injection of the

internal, localized (on ω), finite-dimensional, tangential-like control u, the resulting unique contin-

uation property which is required if only v were to be employed on the subportion Γ̃ of Γ is false.

This was already explained in the Orientation of Section 13, with the technical help of Appendix F.

In short and repeating, due to reference [F-L], the unique continuation property of Lemma 18.2 is

false, if one omits the interior condition ϕ · τ ≡ 0 on ω, in (18.36c). See problem #1 in Appendix F:

over-determination ϕ|
Γ̃

= 0 and ∂νϕ|Γ̃ ≡ 0 only in the portion Γ̃ is not enough. On the other hand, for

a general unstable equilibrium solution ye, the unique continuation property with over-determination

ϕ|Γ ≡ 0, ∂νϕ|Γ ≡ 0 on the whole boundary is unknown at present. See Appendix F. This leaves

open if one could only employ the tangential boundary control v as applied to all of Γ (with u ≡ 0),

in the case of a general unstable equilibrium solution ye. The modified version as in Lemma 18.2

from [L-T.2] of the unique continuation problem of the Oseen eigenfunction problem that results from

the extra condition ϕ · τ ≡ 0 on ω imposed by such internal, tangential-like control u has however a

positive answer. The related algebraic rank conditions for controllability can then be established in

full generality for the Oseen operator restriction AuN on W u
N , in a constructive way, in terms only of

the eigenvectors {ϕ∗ij}
M `i
i=1,j=1 of the adjoint operator (AuN )∗ on (W u

N )∗ ⊂ (Lqσ(Ω))′ = Lq
′
σ (Ω) by (13.8c).

This is done in Section 19. In the present Section 18, we provide a preliminary analysis of a special -

generically true case - characterized by the Finite Dimensional Spectral Assumption below.
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For i = 1, . . . ,M , we now denote by {ϕij}`ij=1, {ϕ∗ij}
`i
j=1 the (normalized) linearly independent (on

Lqσ(Ω)) eigenfunctions corresponding to the (possibly unstable) distinct eigenvalues λ1, . . . , λM of

A (= Aq) and λ1, . . . λM of A∗ (= A∗q), respectively:

Aqϕij = λiϕij ∈ D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω) ⊂ Lqσ(Ω),

A∗ϕ∗ij = λiϕ
∗
ij ∈ D(A∗q) = W 2,q′(Ω) ∩W 1,q′

0 (Ω) ∩ Lq′σ (Ω) ⊂ Lq′σ (Ω).
(18.1a)

The eigenvectors ϕij and ϕ∗ij are inD(Anq ) andD((A∗q)n), for any n, hence they are arbitrarily smooth in

Lqσ(Ω) and Lq
′
σ (Ω), respectively. For our purposes, it will suffice to take q ≥ 2, hence q′ ≤ 2, 1/q+1/q′ =

1, and view eigenvectors henceforth as follows, see Appendix E, Eq (C.5)

ϕij ∈W 3,q(Ω) ∩ Lqσ(Ω); ϕ∗ij ∈W 3,q(Ω) ∩ Lqσ(Ω). (18.1b)

Hence, for i = 1, . . . ,M , we may view ϕij and ϕ∗ij as elements of the generalized eigenspaceW u
N in (16.4)

and its dual (W u
N )∗, corresponding to the unstable eigenvalues as in (16.2). For h1 ∈W u

N , h2 ∈ (W u
N )∗,

we set
〈
h1, h2

〉
Wu
N

=

∫
Ω
h1h2 dΩ, as a duality pairing.

FDSA: We henceforth assume in this section that for each of the distinct eigenvalues λ1, . . . , λM of

the Oseen operator (Aq =) A, algebraic and geometric multiplicity coincide:

(W u
N )i ≡ PN,iLqσ(Ω) = span{ϕij}`ij=1; (W u

N )∗i = P ∗N,iL
q′
σ (Ω) = span{ϕ∗ij}

`i
j=1. (18.2)

The space (W u
N )i = range of PN,i is the algebraic/geometric eigenspace of the eigenvalue λi, and

`i = dim(W u
N )i is the algebraic/geometric multiplicity of λi, so that `1 + `2 + · · · + `M = N . Here

PN,i, P
∗
N,i are the projections corresponding to the eigenvalue λi and λi, respectively. For instance,

PN,i is given by an integral such as that on the RHS of (16.3a), where now Γ is a closed smooth curve

encircling the eigenvalue λi and no other. Similarly, for P ∗N,i. As a consequence of the FDSA, we

obtain

W u
N = PNL

q
σ(Ω) = span{ϕij}Mi=1,

`i
j=1; (W u

N )∗ = P ∗NL
q′
σ (Ω) = span{ϕ∗ij}Mi=1,

`i
j=1 (18.3)

[without the FDSA, W u
N is the span of the generalized eigenfunctions of A, corresponding to its

(possibly unstable) distinct eigenvalues {λj}Mj=1 as in (16.2); and similarly for (W u
N )∗ (see the subse-

quent, more general Section 19). In other words, the FDSA says that the restriction AuN in (16.5) is

diagonalizable or that AuN is a semisimple operator on W u
N in the terminology of [K-1, p. 43]. Under
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the FDSA assumption, any vector w ∈W u
N admits the following unique expansion [K-1, p.12], [B-T.1,

p.1453],

W u
N 3 w =

M,`i∑
i,j

〈
w,ϕ∗ij

〉
Wu
N

ϕij ,
〈
ϕij , ϕ

∗
hk

〉
Wu
N

=


1, if i = h, j = k,

0, otherwise.

(18.4)

that is, the system consisting of {ϕij} ∈ Lqσ(Ω) and {ϕ∗ij} ∈ Lq
′
σ (Ω), i = 1, . . . ,M , j = 1, . . . , `i,

–each system being viewed also as made of elements of W u
N for q ≥ 2, see (18.1b)– can be chosen

to form bi-orthogonal sequences. Next, we return to the wN -dynamics in (16.8a), rewritten here for

convenience

on W u
N : w′N −AuNwN = −PN (ADv) + PNPq((mu)τ), wN (0) = PNw0. (18.5)

We next express (18.5) component-wise, using the expansion (18.4).

The term PN (ADv). For v · ν ≡ 0 on Σ, v supported on Γ̃, we compute by (18.4) in the duality

pairing between D(A∗) and [D(A∗)]′ [B-L-T.1, Eqns. (3.6.7), (3.6.8)], since P ∗Nϕ
∗
ij = ϕ∗ij ∈ D(A∗):

W u
N 3 PN (ADv) =

M,`i∑
i,j=1

〈
PN (ADv), ϕ∗ij

〉
Wu
N

ϕij =
∑
i,j

〈
ADv,ϕ∗ij

〉
Wu
N

ϕij (18.6)

=
∑
i,j

〈
v,D∗A∗ϕ∗ij

〉
Lq(Γ̃)

ϕij

(by (14.36)) = ν0

M,`i∑
i,j=1

(
v,
∂ϕ∗ij
∂ν

∣∣∣∣
Γ

)
Lq(Γ̃)

ϕij , (18.7)

by invoking (14.36) since v · ν = 0, on Γ by assumption, and v is supported only on Γ̃.

Motivated by (18.7), we introduce the following subspace as in (13.23) (see Appendix E, Eq (C.5)).

F ≡ span

{
∂

∂ν
ϕ∗ij , i = 1, . . . ,M ; j = 1, . . . , `i

}
⊂W 2−1/q ,q(Γ), (18.8a)

 for ϕ∗ij ∈W 3+m,q′(Ω) ∩ Lqσ(Ω) ⊂W 3,q(Ω) ∩ Lqσ(Ω) (18.8b)

q ≥ 2, m ≥ d
(

1/q′ − 1/q
)
≥ 0, 1/q′ + 1/q = 1, 1 < q′ ≤ 2 ≤ q <∞, via a Sobolev embedding Theorem

[Adams, Theorem 5.4 p97]. We also recall that (as a consequence of ϕ∗ij |Γ = 0 and div ϕ∗ij ≡ 0 in Ω),
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we have, as recalled in Proposition 14.5 and from [B-L-T.1, Lemma 3.3.1, p. 35], [RT.4, Lemma 5.1,

p. 495]
∂ϕ∗ij
∂ν

∣∣∣∣
Γ

is tangential on Γ,
∂ϕ∗ij
∂ν
· ν = 0 on Γ, thus F · ν = 0 on Γ. (18.9)

Next, we pick boundary vectors f1, f2, . . . , fK ∈ F , K ≥ `i, i = 1, . . . ,M , and select the tangential

boundary control v of the form

v =
K∑
k=1

νk(t)fk ∈W 2−1/q ,q(Γ), fk ∈ F , so that fk · ν = 0 on Γ by (18.9), q ≥ 2 (18.10)

and the condition v · ν = 0 on Γ for v in (18.10) is then satisfied. Substituting (18.10) into (18.7)

yields

W u
N 3 PN (ADv) = ν0

M,`i∑
i,j=1

{
K∑
k=1

(
fk,

∂ϕ∗ij
∂ν

∣∣∣∣
Γ

)
Lq(Γ̃)

νk(t)

}
ϕij . (18.11)

Accordingly, by (18.11), we introduce the `i ×K matrix Wi, i = 1, . . . ,M :

Wi =



(f1, ∂νϕ
∗
i1|Γ)

Γ̃
, · · · , (fK , ∂νϕ

∗
i1|Γ)

Γ̃

(f1, ∂νϕ
∗
i2|Γ)

Γ̃
, · · · , (fK , ∂νϕ

∗
i2|Γ)

Γ̃

...
...

(f1, ∂νϕ
∗
i`i
|Γ)

Γ̃
, · · · , (fK , ∂νϕ

∗
i`i
|Γ)

Γ̃


: `i×K; ∂ν =

∂

∂ν
, ( , )

Γ̃
= ( , )

Lq(Γ̃),Lq′ (Γ̃)
. (18.12)

Define by βi and β the following ordered bases of length `i and N , respectively:

βi = [ϕi1, . . . ϕi`i ]

β = β1 ∪ β2 . . . ∪ βM = [ϕ11, . . . , ϕ1`1 , ϕ21 . . . , ϕ2`2 , . . . , ϕM1, . . . , ϕM`M ]. (18.13)

Moreover, denote by [PN (ADv)]βi and [PN (ADv)]β the coordinates (as column vectors) of PN (ADv)

with respect to the basis βi and the basis β, respectively. Then for i = 1, . . .M by (18.11):

[PN (ADv)]βi = ν0Wiv̂K : `i × 1; v̂K =


ν1

ν2

...

νK

 : K × 1; (18.14)
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[PN (ADv)]β = ν0



W1

W2

...

WM


ν̂K =



νoW1ν̂K

νoW2ν̂K

...

νoWM ν̂K


= νoWν̂K : N × 1; W =


W1

...

WM

 . (18.15)

The term PNPq((mu)τ). Next, for mu ∈ Lqσ(ω), we compute via (18.4), noticing that P ∗q P
∗
Nϕ
∗
ij =

Pq′P
∗
Nϕ
∗
ij = ϕ∗ij ∈ D(A∗), ϕ∗ij ∈W 3,q(Ω), as well, q ≥ 2, see (18.8) and Appendix E Eq (C.5):

W u
N 3 PNPq((mu)τ) =

M,`i∑
i,j=1

〈
PNPq((mu)τ), ϕ∗ij

〉
Wu
N

ϕij (18.16)

=

M,`i∑
i,j=1

〈
(mu)τ, ϕ∗ij

〉
Wu
N

ϕij =

M,`i∑
i,j=1

〈
uτ, ϕ∗ij

〉
Lqσ(ω)

ϕij (18.17)

=

M,`i∑
i,j=1

〈
u, ϕ∗ij · τ

〉
Lqσ(ω)

ϕij , (18.18)

since m ≡ 0 on Ω\ω and (uτ) ·ϕ∗ij = u(ϕ∗ij · τ) for u scalar . Next, we select the scalar interior control

function u of the separated form

u =

K∑
k=1

µk(t)uk, uk ∈W u
N ⊂ Lqσ(Ω), µk(t) = scalar. (18.19)

Substituting (18.19) into (18.18) yields

W u
N 3 PNPq((mu)τ) =

M,`i∑
i,j=1

{
K∑
k=1

〈
uk, ϕ

∗
ij · τ

〉
Lqσ(ω)

µk(t)

}
ϕij . (18.20)

Accordingly, by (18.20), we introduce the `i ×K matrix Ui, i = 1, . . . ,M ; K ≥ `i, i = 1, . . . ,M :

Ui =



〈
u1, ϕ

∗
i1 · τ

〉
ω
, · · · ,

〈
uK , ϕ

∗
i1 · τ

〉
ω〈

u1, ϕ
∗
i2 · τ

〉
ω
· · · ,

〈
uK , ϕ

∗
i2 · τ

〉
ω

...
...〈

u1, ϕ
∗
i`i
· τ
〉
ω
· · · ,

〈
uK , ϕ

∗
i`i
· τ
〉
ω


: `i ×K;

〈
· , ·
〉
ω

=
〈
· , ·
〉
Lqσ(ω)

. (18.21)

duality pairing between Lqσ(ω), Lq
′
σ (ω). Then, in the notation of (18.13)–(18.15), we can write for
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i = 1, . . .M :

[PNPq((mu)τ)]βi = Uiµ̂K : `i × 1; µ̂K =


µ1

µ2

...

µK

 ; (18.22)

[PNPq((mu)τ)]β =



U1

U2

...

UM


µ̂K =



U1µ̂K

U2µ̂K

...

UM µ̂K


= Uµ̂K : N × 1; U =


U1

...

UM

 . (18.23)

Substituting (18.11) and (18.20) on the RHS of (18.5), we obtain

on W u
N : w′N −AuNwN

=

M,`i∑
i,j=1

{
K∑
k=1

[
(−ν0)

(
fk,

∂ϕ∗ij
∂ν

∣∣∣∣
Γ

)
Lq(Γ̃)

νk(t) +
〈
uk, ϕ

∗
ij · τ

〉
Lqσ(ω)

µk(t)

]}
ϕij . (18.24)

Next, we represent the N -dimensional vector wN ∈W u
N as column vector ŵN = [wN ]β i.e.,

wN =

M,`i∑
i,j=1

wijNϕij ; and set ŵN = col
[
w11
N , . . . , w

1,`1
N , . . . , wi,1N , . . . , w

i,`i
N , . . . , wM,1

N , . . . , wM,`M
N

]
.

(18.25)

N = `1 + · · ·+ `M . Then, in CN , with respect to the basis {ϕij}Mi=1,
`i
j=1 of normalized eigenfunctions

of AuN , we may rewrite system (18.5) = (18.24) = (16.8) as

(ŵN )′ − ΛŵN = −νoWν̂K + Uµ̂K = [−ν0W,U ]

 v̂K

µ̂K

 = B

 v̂K

µ̂K

 , (18.26)

where, similarly, ν̂K = col[ν1, ν2, . . . , νK ]; µ̂K = col[µ1, µ2, . . . , µK ], see (18.14), (18.12), (18.15). In

(18.26), we have introduced N ×K matrices

W = ‖(fr, ∂νϕ∗ij |Γ)
Γ̃
‖ =



W1

W2

...

WM


; U = ‖(ur, ϕ∗ij · τ)ω‖ =



U1

U2

...

UM


, (18.27a)
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and

Bi = [−ν0Wi, Ui] : `i × 2K; B = [−ν0W,U ] : N × 2K, (18.27b)

based on the `i×K matrices Wi and Ui in (18.12) and (18.21), accounting for the control action v on

the boundary and the tangential control uτ acting in the interior collar ω, and one N ×N matrix

Λ =



λ1I1

0
λ2I2

. . .

0
λMIM


: N ×N, Ii : `i × `i identity, (18.27c)

accounting for the free dynamics operator on W u
N (see also [RT.1], [RT.2], [B-L-T.1, Sect. 3.6], [B-T.1,

(3.37), (3.38)]. The following is the main result of the present section, from which the desirable and

sought-after control-theoretic results will follow as corollaries in Remark 18.1 below.

Theorem 18.1. Assume the FDSA. With reference to (18.12), (18.21), it is possible to select boundary

vectors f1, . . . , fK in F ⊂ W 2−1/q ,q(Γ), F defined in (18.8) with support on Γ̃, and interior vectors

u1, . . . , uK ∈ Lq(ω),K = sup{`i, i = 1 . . .M}, such that for the matrix Bi = [−ν0Wi Ui] of size

`i × 2K, we have

rank [−ν0Wi Ui] = full = `i, i = 1, . . . ,M. (18.28a)

In fact, explicitly and more precisely, for each i = 1, . . . ,M , we have via (18.12), (18.21):

rank



(
f1, ∂νϕ

∗
i1

)
Γ̃
· · ·
(
f`i , ∂νϕ

∗
i1

)
Γ̃

〈
u1, ϕ

∗
i1 · τ

〉
ω
· · ·
〈
u`i , ϕ

∗
i1 · τ

〉
ω(

f1, ∂νϕ
∗
i2

)
Γ̃
· · ·
(
f`i , ∂νϕ

∗
i2)

Γ̃

〈
u1, ϕ

∗
i2 · τ

〉
ω
· · ·
〈
u`i , ϕ

∗
i2 · τ

〉
ω

...
...(

f1, ∂νϕ
∗
i`i

)
Γ̃
· · ·
(
f`i , ∂νϕ

∗
i`i

)
Γ̃

〈
u1, ϕ

∗
i`i
· τ
〉
ω
· · ·
〈
u`i , ϕ

∗
i`i
· τ
〉
ω


= `i, (18.28b)

where the matrix in (6.28b) is `i × 2`i and the boundary terms are only evaluated on Γ̃.

Proof. The proof will be critically based on a unique continuation result, Lemma 18.2 below.

Step 1: If the set of vectors {∂νϕ∗i1, . . . , ∂νϕ∗i`i} were linearly independent in Lq(Γ̃) recall (18.8a), q ≥ 2,

or else if the set of functions {ϕ∗i1 ·τ, . . . , ϕ∗ili ·τ} were linearly independent in Lq(ω), conclusion (6.28a)
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would follow for infinitely many choices of the vectors f1, . . . , fK ∈ F and u1, . . . uK ∈ Lq(ω). In

general, in seeking that the `i rows (of length 2`i) of the matrix in (6.28b) be linearly independent,

we see that the full rank statement (6.28b) will hold true if and only if we can exclude that each of

the two sets of vectors

{∂νϕ∗i1, . . . , ∂νϕ∗i`i} in Lq(Γ̃) and {ϕ∗i1 · τ, . . . , ϕ∗i`i · τ} in Lq(ω) (18.29)

are linearly dependent, with the same linear dependence relation in the two cases; that is, if and only

if we establish that we cannot have simultaneously,

∂νϕ
∗
i`i

=

`i−1∑
j=1

αj∂νϕ
∗
ij in Lq(Γ̃) and ϕ∗i`i · τ =

`i−1∑
j=1

αjϕ
∗
ij · τ in Lq(ω), q ≥ 2 (18.30)

with the same constants α1, . . . , α`i−1 in both expansions. In fact, in one direction, validity of both

expansions in (18.30) would imply a similar expansion, with the same common constants α1, . . . , α`i−1,

of the last row of the `i× 2`i matrix in (6.28b) in terms of its preceding rows, thus violating condition

(6.28a) for all choices of the wr and ur. Conversely, failure of 18.30 would imply that the last row of

this matrix cannot be a linear combination of its preceding rows, yielding (6.28a).

It remains to show the following Claim: Statement (18.30) is false. By contradiction, suppose that

both linear combinations in (18.30) hold true. Define the function (depending on i) in Lq(Ω)

ϕ∗ =

`i−1∑
j=1

αjϕ
∗
ij − ϕ∗i`i

 ∈ Lq(Ω), i = 1, . . . ,M, q ≥ 2, (18.31a)

so that by (18.30),

∂νϕ
∗|

Γ̃
= 0, in Γ̃ and ϕ∗ · τ ≡ 0 in ω. (18.31b)

Then we have that ϕ∗ satisfies the following eigenvalue problem for the operator A∗ (or (AuN )∗):

A∗ϕ∗ = λiϕ
∗, div ϕ∗ ≡ 0 in Ω; (18.32a){

ϕ∗|
Γ̃

= 0; ∂νϕ
∗|

Γ̃
= 0; ϕ∗ · τ ≡ 0 on ω. (18.32b)

Both statements in (6.32a) hold true for the function ϕ∗ in (18.31a), since they are true for the

eigenfunctions ϕ∗ij , see (18.1) and D(A∗) ⊂ V . Similarly, for the Dirichlet B.C. ϕ∗|Γ = 0 in (6.32a) as
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ϕ∗ij ∈ D(A∗) ⊂ V . Finally, the remaining two conditions ∂νϕ
∗|Γ = 0 and ϕ∗ · τ ≡ 0 in ω are due to

(18.31b). Explicitly, the PDE version of problem (6.32a–b) is

−νo∆ϕ∗ − (Le)
∗(ϕ∗) +∇p∗ = λiϕ

∗ in Ω; (18.33a)
divϕ∗ ≡ 0 in Ω; (18.33b)

ϕ∗|
Γ̃

= 0;
∂ϕ∗

∂ν

∣∣∣∣
Γ̃

= 0; ϕ∗ · τ = 0 in ω; (18.33c)

(Le)
∗(ϕ∗) = (ye · ∇)ϕ∗ + (ϕ∗ · ∇)∗ye, (18.34)

where (f · ∇)∗ye is a d-vector whose ith component is

d∑
j=1

(Diyej )fj [B-L-T.1, p. 55], [Fur.1].

Step 2: The critical point is now that the over-determined problem (6.33a–c) implies (see subsequent

Step 3).

ϕ∗ ≡ 0 in Lq(Ω); or ϕ∗i`i = α1ϕ
∗
i1 + α2ϕ

∗
i2 + · · ·+ α`i−1α

∗
i`i−1 in Lq(Ω), (18.35)

i.e., the set {ϕ∗i1, . . . , ϕ∗i`i} is linearly dependent on (Lq(Ω). But this is false, by the very selection of

such eigenfunctions, see (18.1) and statement preceding it. Thus, the two conditions (18.30) cannot

hold simultaneously. The Claim is established.

Hence, it is possible to select, in infinite many ways, boundary functions f1, . . . , fK ∈ F ⊂ Lq(Γ) for

q ≥ 2, see (18.8a) and interior functions u1, . . . , uK in Lq(ω) such that the algebraic full rank condition

(18.28b) hold true for each i = 1, . . . ,M .

Step 3: Here we shall establish the unique continuation property that is needed in Step 2 to conclude

with statement (18.35). Actually we shall do this for the original problem in ϕ rather than for the

problem (18.33) for ϕ∗ in order to fall readily in results of [RT.4, Theorem 3.2, p. 489].

Lemma 18.2. Assume that {ϕ, p} ∈W 2,q(Ω)×W 1,q(Ω) satisfies

−νo∆ϕ+ Le(ϕ) +∇p = λϕ in Ω; (18.36a)

div ϕ ≡ 0 in Ω; (18.36b)

ϕ|
Γ̃

= 0;
∂ϕ

∂ν

∣∣∣∣
Γ̃

= 0; ϕ · τ ≡ 0 in ω, (18.36c)

Then, in fact,

ϕ ≡ 0 in Ω, p ≡ const. (18.37)

140



where Γ̃ is an open subset of Γ of positive surface measure and ω is a local collar of Γ̃ (Fig. 2).

Proof. Step 1: First, condition ϕ · τ ≡ 0 in a collar ω of the sub-portion Γ̃ of the boundary Γ implies

∂2

∂ν2
ϕ(ξ) · τ(ξ) ≡ 0, ξ ∈ ω, hence

∂2

∂ν2
ϕ|

Γ̃
· τ = 0 on Γ̃; (18.38)

this is justified in Appendix D, Lemma D.1, Eqns. (B.10), (B.11).

Step 2: Next, recalling [L-T.2, Prop. 3C.6, p. 305], [S-Z.1, Prop. 2.68, p. 94], we deduce from the first

two boundary conditions in (18.36c) and from (18.38) that

∆ϕ · τ |Γ =

[
∂2ϕ

∂ν2
+ ∆Γϕ+ (div ν)

∂ϕ

∂ν

]
Γ̃

· τ = 0. (18.39)

Step 3: We next return to Eqn. (6.36a) and restrict it on the portion of Γ̃ of the boundary. We use

∆ϕ|
Γ̃
· τ = 0 from (18.39), Le(ϕ)|

Γ̃
· τ = 0 from the definition (1.2) of Le combined with ye|Γ = 0 in

(1.3c) and ϕ|
Γ̃

= 0 in (6.36c). We thus obtain for the tangential derivative on Γ̃:

∂p

∂τ
|
Γ̃

= ∇p · τ |
Γ̃

= 0⇒ p constant on Γ̃. (18.40)

Since p is identified up to a constant, we may then take

p ≡ 0 on Γ̃. (18.41)

Step 4: We now return to the BC in (18.36c) together with the B.C. in (6.36c) to obtain

ϕ|
Γ̃
≡ 0,

[
∂ϕ

∂ν
− p
]

Γ̃

≡ 0 on Γ̃. (18.42)

We then invoke [RT.4, Thm 3.2, p.489] or [RT.5, Thm 1.3, p.647] to system (6.36a–c), combined with

the B.C. in (18.42) to conclude that

ϕ ≡ 0 in Ω, (18.43)

as desired. Lemma 18.2 is proved. The proof of (18.43) is along classical lines (based also on [B-L-T.1,

Sect. 3.6]) in elliptic equations.

Remark 18.1. The following alternative (less direct) route is available which we illustrate for ω being

a collar of the entire boundary Γ, so that Γ̃ = Γ (Fig. 1).
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We already know from [RT.4, Lemma 5.5, p. 496] that the three conditions in (6.36b–c):

div ϕ ≡ 0 in Ω; ϕ|Γ = 0;
∂ϕ

∂ν

∣∣∣∣
Γ

= 0 (18.44)

imply
∂2ϕ

∂ν2

∣∣∣∣
Γ

· ν = 0 on Γ. (18.45)

The property (18.45), combined with (18.38) with Γ̃ = Γ, i.e., ∂2ϕ
∂ν2 · τ ≡ 0 on Γ yields then

∂2ϕ

∂ν2

∣∣∣∣
Γ

= 0 on Γ. (18.46)

Next, recalling [L-T.1, Prop. 3C.6, p. 305], [S-Z.1, Prop. 2.68, p. 94], we deduce from the first two

boundary conditions in (18.36c) with Γ̃ = Γ as in (18.44) and from (18.46) that

∆ϕ|Γ =

[
∂2ϕ

∂ν2
+ ∆Γϕ+ (div ν)

∂ϕ

∂ν

]
Γ

= 0. (18.47)

Then returning to Eqn. (6.36c), restricting it on Γ, and invoking (18.4), as well as Le(ϕ)|Γ = 0 from

(1.2) with ye|Γ = 0 and ϕ|Γ = 0, we then obtain

∇p|Γ = 0, or p|Γ = const,
∂p

∂ν

∣∣∣∣
Γ

= 0 in Γ, in fact, p|Γ ≡ 0 on Γ, (18.48)

since p is identified up to a constant. So all Cauchy data for ϕ and p vanish on Γ. Results (18.47)

and (18.48) are stronger than necessary in order to invoke [RT.5, Thm. 3.2, p. 489] and include that

ϕ = 0 in Ω, as desired.
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19 First step in the proof of Theorem 17.1 for the wN-system in

(16.8): verification of the controllability algebraic rank condi-

tions in the general case

In the present section we dispense with the FDSA (18.2). More precisely, we shall obtain Theorem

18.1 without assuming the FDSA (18.2). This is Theorem 19.2 below. Thus, in the present general

case W u
N is the space of generalized eigenfunctions of Aq (= AuN ) corresponding to its unstable eigen-

values, see (16.9). Also in Section 18, we have used the notation Aϕij = λiϕij and A∗ϕ∗ij = λ̄iϕ
∗
ij

for the eigenvectors of A and A∗ corresponding to the distinct unstable eigenvalues λ1, . . . , λM or

λ̄1, . . . , λ̄M respectively. In the present section we shall introduce a more complicated notation to deal

with generalized eigenvectors. The relationship between the notation for eigenvectors in the present

section and in Section 18 is identified in (19.7b) below. We recall Appendix E, in particular (C.5)

yielding (18.8), q ≥ 2.

Step 1: To treat this computationally more complicated case we shall, essentially invoke the classical

result on controllability of a finite-dimensional, time-invariant system {A,B},A : N × N,B : N × p,

where A is given in Jordan form J . Controllability is invariant under any equivalent transformation.

Let again λ1, λ2, · · · , λM be the distinct eigenvalues of A = J . Let Ai denote all the Jordan blocks

associated with the eigenvalue λi; let `i be the number of Jordan blocks of A (i.e., the number of

linearly independent eigenvectors associated with the eigenvalue λi or geometric multiplicity of λi).

Let Aij be the jth Jordan block in Ai corresponding to a Jordan cycle of length N i
j . That is:

A = diag{A1,A2, · · · ,AM};Ai = diag{Ai1,Ai2, · · · ,Ai`i}. (19.1)

Partition the matrix B accordingly:

A
(N×N)

=



A1

0
A2

. . .

0 AM


, B

(N×p)
=



B1

B2

...

BM


(19.2)
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Ai
(Ni×Ni)

=



Ai1
0

Ai2
. . .

0 Ai`i


, Bi

(Ni×p)
=



Bi1

Bi2
...

Bi`i


(19.3)

Aij
(N i

j×N i
j)

=



λi 1

0
λi 1

. . . 1

0
λi


, Bij

(N i
j×p)

=



b1ij

b2ij
...

bLij


(19.4)

If Eλi and Kλi denote the eigenspace and generalized eigenspace associated with the eigenvalue λi,

i = 1, . . .M , then dim Eλi = `i = # of Jordan blocks in Ai, dim Kλi = Ni, N
i
j = length of jth-cycle

associated with λi, j = 1, . . . `i. We have dim W u
N = N =

M∑
i=1

Ni =
M∑
i=1

`i∑
j=1

N i
j . In (19.4), the last row

of Bij is denoted by bLij . The following result is classical [K-H-N.1, p. 204], [L-M.1, Ex. #7, p. 102],

[Chen.1, p. 211], [Chen.2, p. 165], [B-M, Theorem 3.3-4, p 148].

Theorem 19.1. The pair {J,B}, J : N × N , Jordan form, B : N × p is controllable if and only if,

for each i = 1, 2, · · · ,M (that is for each distinct eigenvalue) the rows of the `i× p matrix constructed

with all “last” rows bLi1, . . . bLi`i

BLi =



BLi1

BLi2
...

BLi`i


: `i × p (19.5)

are linearly independent (in the field of complex number). [A direct proof uses Hautus criterion for

controllability [Chen.1], [Chen.2].]

We next apply the above Theorem 19.1 to the wN -problem (16.8) and (18.5). To this end, we select

a Jordan basis β for the operator AuN on W u
N and βi for the operator (AuN )i on W u

N,i given by

144



Jordan Basis

β = β1 ∪ β2 ∪ · · · ∪ βM (19.6a)

βi =
{
e1

1(λi), e
1
2(λi), · · · , e1

N i
1
(λi)

...e2
1(λi), · · · , e2

N i
2
(λi)

... · · ·
...e`i1 (λi), · · · , e`iN i

`i

(λi)
}
. (19.6b)

Here the first vector of each cycle: e1
1(λ), e2

1(λi), · · · , e`i1 (λi) are eigenvectors of (AuN )i corresponding to

the eigenvalue λi, while the remaining vectors in βi are corresponding generalized eigenvectors. Thus,

in the notation (18.1) of Section 18, we have:

ϕi1 = e1
1(λi); ϕi2 = e2

1(λi), . . . ϕi`i = e`i1 (λi). (19.6c)

Next, we can choose a bi-orthogonal basis β∗i of ((AuN )∗)i corresponding to its eigenvalue λ̄i given by

Bi-orthogonal Basis

β∗i =

{
Φ1

1(λi),Φ
1
2(λi), · · · ,Φ1

N i
1
(λi)

...Φ2
1(λi),Φ

2
2(λi), · · · ,Φ2

N i
2
(λi)

...

· · ·
...Φ`i

1 (λi),Φ
`i
2 (λi), · · · ,Φ`i

N i
`i

(λi)

}
. (19.7a)

Thus, in the notation (18.1) of Section 18, we have

ϕ∗i1 = Φ1
1(λ̄i), ϕ

∗
i2 = Φ2

1(λ̄i), . . . ϕ
∗
i`i

= Φ`i
1 (λ̄i). (19.7b)

In the bi-orthogonality relationship between the vectors in (19.6) and those in (19.7), the first eigen-

vector e1
1(λi) of the first cycle in βi is associated with the last generalized eigenvector Φ1

N i
1
(λ̄i) of the

first cycle in β∗i ; etc., the last generalized eigenvector e1
N i

1
(λi) of the first cycle in βi is associated with

the first eigenvector Φ1
1(λ̄i) of the first cycle in β∗i ; etc.

e1
1(λi) e1

2(λi) · · · e1
N i

1
(λi)

Φ1
1(λ̄i) Φ1

2(λ̄i) · · · Φ1
N i

1
(λ̄i)

, · · ·

Fig. 7.1: Relation between the generalized eigenvectors of AuN and (AuN )∗
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Thus, if f ∈W u
N,i, the following expression holds true:

f = (f,Φ1
N i

1
(λi))e

1
1(λi) + · · ·+ (f,Φ1

1(λ̄i))e
1
N i

1
+ · · ·+ (f,Φ`i

N i
`i

(λ̄i))e
`i
1 (λi)+

· · ·+ (f,Φ`i
1 (λi))e

`i
N i
`i

(λi). (19.8)

This is the counterpart of

`i∑
j=1

(w,ϕ∗ij)Wu
N
ϕij ∈ W u

N,i in (18.4) under the FDSA. Next, we apply (19.8)

with f = PN (ADv), with v compactly supported on Γ̃. More specifically, we shall write the vector rep-

resentation of PN (ADv) with respect to the basis βi in (19.5), and moreover, in line with Theorem 19.1,

we shall explicitly note only the coordinates corresponding to the vectors e1
N i

1
(λi), e

2
N i

2
(λi), · · · , e`i

N
`i
i

(λi),

each being the last vector of each cycle in (19.6):

[PN (ADv)]βi = ν0



×××(
v, ∂νΦ1

1(λ̄i)
)

Γ̃

. . . . . . . . . . . . . . .

×××(
v, ∂νΦ2

1(λ̄i)
)

Γ̃

. . . . . . . . . . . . . . .

×××(
v, ∂νΦ`i

1 (λ̄i)
)

Γ̃



= ν0



×××(
v, ∂νϕ

∗
i1

)
Γ̃

. . . . . . . . . . . .

×××(
v, ∂νϕ

∗
i2

)
Γ̃

. . . . . . . . . . . .

×××(
v, ∂νϕ

∗
i`i

)
Γ̃



←− last row of the 1st cycle

←− last row of the 2nd cycle

←− last row of the `thi cycle

(19.9)

with ( , )
Γ̃

the Lq(Γ̃), Lq
′
(Γ̃) duality paring. The symbol ××× refers to terms which we do not care

about. (19.9) is the relevant counterpart of the expansion ν0

`i∑
j=1

(v, ∂iϕ
∗
ij)Γ̃

in (18.7) under the FDSA.

Notice that (19.9) involves only the eigenvectors ϕ∗i1 = Φ1
1(λ̄i), ϕ

∗
i2 = Φ2

1(λ̄i), . . . , ϕ
∗
i`i

= Φ`i
1 (λ̄i) of

(AuN )∗ corresponding to the eigenvalue λi.

The controls v and u

Next, we choose a tangential boundary control v in (18.10) of the form

v =
K∑
k=1

νk(t)fk, fk ∈ F ⊂W 2−1/q ,q(Γ), so that fk · ν = 0 on Γ, (19.10)
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as in (18.10). We then get the relevant counterpart of (18.12), which we write by omitting the explicit

dependence on λi:

Wi =

× × ×

(f1, ∂νΦ1
1)

Γ̃
(f2, ∂νΦ1

1)
Γ̃
· · · (fK , ∂νΦ1

1)
Γ̃
← last row of first cycle: bLi1(f)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·


(f1, ∂νΦ2

1)
Γ̃

(f2, ∂νΦ2
1)

Γ̃
· · · (fK , ∂νΦ2

1)
Γ̃


← last row of second cycle: bLi2(f)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

(f1, ∂νΦ`i
1 )

Γ̃
(f2, ∂νΦ`i

1 )
Γ̃
· · · (fK , ∂νΦ`i

1 )
Γ̃
← last row of last cycle: bLi`i(f)

(19.11)

where we recall from (19.7b) ϕ∗i1 = Φ1
1(λ̄i), ϕ

∗
i2 = Φ2

1(λ̄i), . . . , ϕ
∗
i`i

= Φ`i
1 (λ̄i). The relevant rows

exhibited in (19.11) correspond to the last rows of each Jordan sub-block Ai1,Ai2, · · · ,Ai`i in (19.3),

that is to the row bLi1, bLi2, · · · , bLi`i related to the vector f . Similarly we select a scalar interior

(d = 2) or a two component control vector u = [u1, u2], (d = 3) of the separated form

u =

K∑
k=1

µk(t)vk, uk ∈ (Lq(ω))d−1, uk =


scalar, d = 2∣∣∣∣∣∣
u1
k

u2
k

∣∣∣∣∣∣ , d = 3.
(19.12)

likewise obtain that the relevant counterpart of (18.21) is

Ui =

× × ×〈
u1,Φ

1
1 · τ

〉
ω

〈
u2,Φ

1
1 · τ

〉
ω
· · ·

〈
uK ,Φ

1
1 · τ

〉
ω
← row bLi1(u)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

× × ×



〈
u1,Φ

2
1 · τ

〉
ω

〈
u2,Φ

2
1 · τ

〉
ω
· · ·

〈
uK ,Φ

2
1 · τ

〉
ω


← row bLi2(u)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

× × ×〈
u1,Φ

`i
1 · τ

〉
ω

〈
u2,Φ

`i
1 · τ

〉
ω
· · ·

〈
uK ,Φ

`i
1 · τ

〉
ω
← row bLi`i(u)

(19.13)
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Again, the relevant rows exhibited in (19.12) correspond to the last rows of each Jordan sub-block

Ai1,Ai2, · · · ,Ai`i in (19.3). As a consequence, setting as in (18.27b), Bi = [−νoWi, Ui], this time with

Wi and Ui defined by (19.11) and (19.13), we obtain for i = 1, 2, . . . ,M :

Bi =



× × × ×

(f1, ∂νΦ1
1)

Γ̃
· · · (fK , ∂νΦ1

1)
Γ̃

〈
u1,Φ

1
1 · τ

〉
ω
· · ·
〈
uK ,Φ

1
1 · τ

〉
ω

× × × ×

(f1, ∂νΦ2
1)

Γ̃
· · · (fK , ∂νΦ2

1)
Γ̃

〈
u1,Φ

2
1 · τ

〉
ω
· · ·
〈
uK ,Φ

2
1 · τ

〉
ω

× × × ×

(f1, ∂νΦ`i
1 )

Γ̃
· · · (fK , ∂νΦ`i

1 )
Γ̃

〈
u1,Φ

`i
1 · τ

〉
ω
· · ·
〈
uK ,Φ

`i
1 · τ

〉
ω



. (19.14)

In (19.13), we have displayed only the relevant rows: bLi1, bLi2, . . . , bLi`i . According to Theorem 19.1

the test for controllability as applied to system (18.5), i.e., to the pair {AuN , B}, B = col[B1, B2, . . . BM ],

is

rank



row bLi1 of Bi

row bLi2 of Bi

· · ·

row bLi`i of Bi



= rank



(f1, ∂νΦ1
1)

Γ̃
· · · (fK , ∂νΦ1

1)
Γ̃

〈
u1,Φ

1
1 · τ

〉
ω
· · ·
〈
uK ,Φ

1
1 · τ

〉
ω

(f1, ∂νΦ2
1)

Γ̃
· · · (fK , ∂νΦ2

1)
Γ̃

〈
u1,Φ

2
1 · τ

〉
ω
· · ·
〈
uK ,Φ

2
1 · τ

〉
ω

...
...

(f1, ∂νΦ`i
1 )

Γ̃
· · · (fK , ∂νΦ`i

1 )
Γ̃

〈
u1,Φ

`i
1 · τ

〉
ω
· · ·
〈
uK ,Φ

`i
1 · τ

〉
ω


(19.15a)

= rank



(f1, ∂νϕ
∗
i1)

Γ̃
· · · (f`i , ∂νϕ∗i1)

Γ̃

〈
u1, ϕ

∗
i1 · τ

〉
ω
· · ·
〈
u`i , ϕ

∗
i1 · τ

〉
ω

(f1, ∂νϕ
∗
i2)

Γ̃
· · · (f`i , ∂νϕ∗i2)

Γ̃

〈
u1, ϕ

∗
i2 · τ

〉
ω
· · ·
〈
u`i , ϕ

∗
i2 · τ

〉
ω

...
...

(f1, ∂νϕ
∗
i`i

)
Γ̃
· · · (f`i , ∂νϕ∗i`i)Γ̃

〈
u1, ϕ

∗
i`i
· τ
〉
ω
· · ·
〈
u`i , ϕ

∗
i`i
· τ
〉
ω


= `i, (19.15b)
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i = 1, 2, · · · ,M . But this is exactly the test obtained in (6.28b) via the identification in (19.7b). Thus

the remainder of the proof in Section 18 past (6.28b) applies and shows Theorem 18.1 without the

FDSA. We have

Theorem 19.2. With reference to the Wi (19.11) and Ui in (19.13), it is possible to select boundary

vectors f1, . . . , fK in F ⊂W 2−1/q ,q(Γ), see (18.8b), F defined in (18.8), fi supported on Γ̃ and interior

vectors u1, . . . , uK ∈ Lq(ω), K = sup{`i, i = 1, . . . ,M}, such that the algebraic conditions (19.15b)

hold true, i = 1, . . . ,M .

Thus Theorem 19.2 states that we may require that the full boundary Γ (Fig. 1) be replaced by an

arbitrarily small portion Γ̃ of positive measure (Fig. 2) for the tangential boundary control v, with

an associated internal tangential-like control u on ω. We close this section by writing down the coun-

terpart of expansion (18.24) for the wN -dynamics in terms this time of the basis β (see (19.8)) of

generalized eigenvectors in the present general case:

The wN -dynamics in (16.8) in Jordan basis β. Then the wN -dynamics in (16.8) (projection of

the dynamics (14.26) onto the unstable subspace W u
N ) may be given in terms of the basis β in (19.6)

of generalized eigenvectors of A (or AuN ) as follows [L-T.2, Eq (85)], recalling (19.6), (19.7) and ( , )
Γ̃
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the Lq(Γ̃), Lq
′
(Γ̃) duality paring, q ≥ 2:

on W u
N : w′N −AuNzN

= (−νo)
N∑
i=1

{ K∑
k=1

[
(fk, ∂νΦ1

N i
1
(λ̄i))

Γ̃
vk(t) +

〈
uk,Φ

1
N i

1
(λ̄i) · τ

〉
ω
µk(t)

]
e1

1(λi)

+ · · ·+ · · ·

+
K∑
k=1

[
(fk, ∂νΦ1

1(λ̄i))
Γ̃
vk(t) +

〈
uk,Φ

1
1(λ̄i) · τ

〉
ω
µk(t)

]
e1
N i

1
(λi)

+ · · ·+ · · ·

+
K∑
k=1

[
(fk, ∂νΦ`i

N i
`1

(λ̄i))
Γ̃
vk(t) +

〈
uk,Φ

`i
N i
`i

(λ̄i) · τ
〉
ω
µk(t)

]
e`i1 (λi)

+ · · ·+ · · ·

+
K∑
k=1

[
(fk, ∂νΦ`i

1 (λ̄i))
Γ̃
vk(t) +

〈
uk,Φ

`i
1 (λ̄i) · τ

〉
ω
µk(t)

]
e`i
N i
`i

(λi)

}
.

(19.16)

where, for d = 3, recalling (18.19)

(uk,Φ
i
j · τ)Lq(ω) =

∣∣∣∣∣∣
u1
k

u2
k

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

Φi
j · τ1

Φi
j · τ2

∣∣∣∣∣∣

Lq(ω)

. (19.17)

The above expansion (19.17) is across the 1st, 2nd, · · · , `i-th cycle of βi and β∗i .
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20 Proof of Theorem 17.1: Arbitrary decay rate of the wN-dynamics

(19.16) (or (18.24) under FDSA) by suitable finite-dimensional

boundary tangential localized control v on Γ̃ and interior local-

ized tangential-like control u in feedback form as in (17.6) on

ω

We are now in a position to obtain the desired control-theoretic result of Theorem 17.1, which we now

restate for convenience. This will be a corollary of Theorem 19.2. Let 1 < q <∞.

Theorem 20.1. Let λ1, . . . , λM be the unstable distinct eigenvalues of A as in (16.2). Let Γ̃ be an

open subset of the boundary Γ of positive surface measure and ω be a localized collar of Γ̃ (Fig. 2). By

virtue of Theorem 19.2, pick vectors [f1, . . . , fK ] in F ⊂W 2−1/q ,q(Γ), see (18.8b) and interior vectors

[u1, . . . , uK ] in Lq(ω) such that the rank conditions (19.15) hold true, with K = sup `i, i = 1, . . . ,M ,

`i = geometric multiplicity of λi.

Then: Given γ1 > 0 arbitrarily large, there exist two K-dimensional controllers: a boundary tangential

control v = vN acting on Γ̃ of the form given by (18.10) = (19.10), so that vN ·ν|Γ = 0, and an interior

tangential-like control u = uN acting on ω, of the form given by (18.19) or (19.12), such that, once

inserted in (16.8) or (19.16) yield the estimate

‖wN (t)‖Lqσ(Ω) + ‖vN (t)‖
Lq(Γ̃)

+ ‖uN (t)‖Lq(ω) ≤ Cγ1e
−γ1t‖PNw0‖Lqσ(Ω), t ≥ 0. (20.1)

Here, wN is the solution of (19.16), i.e., (18.5) or (16.8) corresponding to such controls v = vN

and u = uN . Moreover, such controls v = vN and u = uN can be given in feedback form νk(t) =〈
wN (t), pk

〉
Wu
N

and µk(t) =
〈
wN (t), qk

〉
Wu
N

for suitable (constructed) vectors pk and qk , so that, in

conclusion, wN in (20.1) is the solution of the equation on W u
N (see (17.6)):

w′N −AuNwN = −AuNPND
( K∑
k=1

〈
wN (t), pk

〉
Wu
N

fk

)
+ PNPq

(
m

( K∑
i=1

〈
wN (t), qk

〉
Wu
N

uk

)
· τ
)
, (20.2)

rewritten as

w′N = A
u
wN , wN (t) = eA

u
tPNw0, wN (0) = PNw0. (20.3)
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Proof. Step 1: Following [RT.1], [RT.2], [B-T.1], [B-L-T.1] the proof consists in testing the controlla-

bility of the linear, finite-dimensional system (2.5), in short, the pair

{J,B}, B = [−ν0W,U ]} : N × 2K,K = sup{`i, i = 1 . . .M}, (20.4)

J being the Jordan form of AuN with respect to the Jordan basis β = β1 ∪ β2 ∪ · · · ∪ βM , βi being

given by (19.6). But the rank conditions (19.15) precisely assert such controllability property of the

pair {AuN = J,B}, in light of Theorem 19.1.

Step 2: Having established the controllability condition for the pair {J = AuN , B}, then by the well-

known Popov’s criterion in finite-dimensional theory, there exists a feedback matrix Q : 2K ×N , such

that the spectrum of the matrix (J + BQ) = (J + [−ν0W,U ]Q) may be arbitrarily preassigned; in

particular, to lie in the left half-plane {λ : Re λ < −γ1 < − Re λN+1}, as desired. The resulting

closed-loop system

(ŵN )′ − JŵN = [−νoW,U ]

 vN

uN

 , (20.5)

is obtained with [vN , uN ] = QŵN , Q being the 2K×N matrix with row vectors [p̂1, . . . , p̂K , q̂1, . . . , q̂K ],

vkN = (ŵN , p̂k), µ
k
N = (ŵN , q̂k) in the CN -inner product. Thus, returning from CN × CN back to

W u
N × (W u

N )∗, there exist suitable vectors p1, . . . , pK and q1, . . . , qK in W u
N , such that vkN =

〈
zN , pk

〉
,

µkN =
〈
zN , qk

〉
, whereby the closed-loop system (20.2) corresponds precisely to (19.16) via PN (ADv)

and PNP ((mu)τ) written in terms of the Jordan basis of generalized eigenvectors β in (19.6).

Remark 20.1. In the easier case of Section 2 under the FDSA, checking controllability of system

(18.26) is easier. To this end, we can pursue, as usual, two strategies.

A first strategy invokes the well-known Kalman controllability criterion by constructing the N×(2K)N

Kalman controllability matrix

K = [B,ΛB,Λ2B, . . . ,ΛN−1B] =



B1 J1B1, · · · , JN−1
1 B1

B2 J2B2, · · · , JN−1
2 B2

· · · · · · · · · · · · · · · · · · · · · · · · ·

BM JMBM , · · · , JN−1
M BM


, (20.6)
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B = col[B1, B2, . . . BM ], Bi = [−ν0Wi, Ui] : `i × 2`i (20.7)

of size N × (2K)N , N = dim W u
N , Ji = λiIi: `i × `i, Bi = [ν0Wi, Ui] : `i × 2`i, and requiring that it

be full rank.

rankK = full = N. (20.8)

In view of generalized Vandermond determinants, this is the case if and only if rank Bi = rank

[−ν0Wi, Ui] = `i (full), i = 1, . . . ,M , as assumed.

A second strategy invokes the Hautus controllability criterion:

rank [Λ− λiI,B] = rank [Λ− λiI, [−ν0W,U ]] = N (full), (20.9)

for all unstable eigenvalues λi, i = 1, . . . ,M , yielding again the condition that rank [−ν0Wi, Ui] = `i,

i = 1, . . . ,M .

In conclusion, with the present Section 20, Theorem 17.1 is proved.
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21 Proof of Theorem 17.2: The feedback operator A
F,q

in (17.10)

generates a s.c analytic semigroup in Lqσ(Ω), 2 < q < ∞ or in

B̃2−2/p
q,p (Ω), 1 < p < 2q/2q−1, q > d, d = 2, 3.

We return to the feedback operator AF,q = AF,q + G in (17.11), driving the feedback w-dynamics

(17.10). We also refer to (17.15), (17.16) which require q ≥ 2 in order to have the finite dimensional

feedback operators F : Lqσ(Ω) −→ Lq(Γ) and G on Lqσ(Ω) bounded. Thus in turn, is due to Appendix

E, in particular Eq (C.5) which yields (18.8): φ∗ij ∈W 3,q(Ω), q ≥ 2.

∂ϕ∗ij
∂ν

∣∣∣∣
Γ

∈W 2−1/q ,q(Γ) ⊂ Lq(Γ), and F ⊂W 2−1/q ,q(Γ)

Thus, it suffices to consider the operator AF,q , below in (21.1), which differs from AF,q by the bounded

operator G.

Theorem 21.1. Let F be the bounded operator Lqσ(Ω) −→ Lq(Γ̃) in (17.13), q ≥ 2. Then, with

reference to the Oseen operator Aq introduced in (15.5) on Lqσ(Ω) and the Dirichlet map D introduced

in Section 14, with reference to problem (14.1), we have

The operator, see (17.12)

AF,q = Aq(I −DF ) : Lqσ(Ω) ⊃ D(AF,q) −→ Lqσ(Ω) (21.1a)

D(AF,q) =
{
h ∈ Lqσ(Ω) : h−DFh ∈ D(Aq) = W 2,q(Ω) ∩W 1,q

0 (Ω) ∩ Lqσ(Ω)
}

(21.1b)

generates a s.c. analytic semigroup on Lqσ(Ω) and R
(
λ,AF,q

)
is compact in Lqσ(Ω), q ≥ 2.

Proof. (i). [B-L-T.1]. We shall critically use property (15.41) for the Dirichlet map D in the Lq-

setting, 1 < q < ∞, just as it was done in these references in the Hilbert setting; namely that, with

ε > 0, recalling (15.41), we have:

D : continuous Uq =
{
g ∈ Lq(Ω) = W 0,q(Ω), g · ν = 0 on Γ

}
−→

W
1/q ,q(Ω) ∩ Lqσ(Ω) ⊂ D

(
A

1/2q−ε
q

)
, (21.2)

1 < q <∞, where Aq is the Stokes operator. We transfer relation (21.2) to the Oseen operator Aq in

(15.5). To do this, we just translate it. Let k > 0 be suitably large, then, via (21.2)

Â
1/2q−ε
q D =

(
kI −Aq

)1/2q−εD : continuous
{
g ∈ Lq(Γ), g · ν = 0 on Γ

}
−→ Lqσ(Ω) (21.3)
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(ii) We shall next give a containment relation for D(AF,q). Since DF ∈ L(Lqσ(Ω)), q ≥ 2, then, recalling

(21.1a), we have

D(AF,q) = D
((
kI −Aq

)1−1/2q+ε[(
kI −Aq

)1/2q−ε
−
(
kI −Aq

)1/2q−ε
DF

])
(21.4)

=

{
x ∈ D

(
kI −Aq

)1/2q−ε
:(

kI −Aq
)1/2q−ε

x−
(
kI −Aq

)1/2q−ε
DFx ∈ D

(
kI −Aq

)1−1/2q+ε
}

(21.5)

⊂ D
(
kI −Aq

)1/2q−ε
= D

(
Âq
)1/2q−ε = D

(
Aq
)1/2q−ε ⊂W 1/q−4ε,q(Ω) ∩ Lqσ(Ω) (21.6)

where in the last step we have invoked the relationship [Wahl, p 93]

D(Aγq ) ⊂W 2s,q(Ω) ∩ Lqσ(Ω), 1 ≥ γ > s, q ≥ 2, (21.7)

with γ = 1/2q − ε and s = 1/2q − 2ε. Relation (21.6) says that D
(
AF,q

)
is contained in D

(
Aγq
)

up to

the level γ = 1/2 − ε that does not recognize boundary conditions.

(iii) Analyticity: first proof. We let throughout q ≥ 2. Finally we establish by classical perturbation

theory based on the resolvent R
(
λ,AF,q

)
of AF,q and property (21.3) that, for F ∈ L

(
Lqσ(Ω), Lq(Γ)

)
,

the operator AF,q generates a s.c. analytic semigroup eAF,q t on Lqσ(Ω), t > 0; and moreover that

R
(
λ,AF,q

)
is compact on Lqσ(Ω). Both statements rely on the classical perturbation formula [Pazy]

written for AF,q in (21.1).

R
(
λ,AF,q

)
= [I +R(λ,Aq)AqDF ]−1R(λ,Aq) (21.8)

where by property (21.3) Â
1/2q−ε
q DF ∈ L(Lqσ(Ω)). Moreover, since Aq generates a s.c. analytic

semigroup in Lqσ(Ω) (Theorem 3.1.ii), a well-known formula [Pazy] gives for ε > 0, θ = 1− 1/2q − ε∥∥∥R(λ, Âq)Âθq
∥∥∥
L(Lqσ(Ω))

≤ C

|λ|1−θ
=

C

|λ|1/2q+ε
→ 0 as |λ| → ∞. (21.9)

Then, (21.9) in (21.8) yields

∥∥R(λ,AF,q

)∥∥
L(Lqσ(Ω))

≤ Cρo ‖R(λ,Aq)‖L(Lqσ(Ω)) , ∀ λ, |λ| ≥ some ρo > 0 (21.10)

and hence, via (21.10) the properties of R(λ,Aq) of Theorem 15.1 [generation of s.c. analytic semi-

group on Lqσ(Ω) and, respectively, compactness] transfer into corresponding properties for R(λ,AF,q).
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Theorem 21.1 is proved.

(iv) Analyticity: second proof. One may provide a second proof that AF,q generates a s.c. analytic

semigroup on Lqσ(Ω), q ≥ 2. This is still a perturbation argument, however perturbation of an original

analytic generator, not of the resolvent. In fact, the present perturbation argument applies to the

adjoint operator A∗
F,q

on Lq
′
σ (Ω), not to AF,q on Lqσ(Ω), 1 < q′ ≤ 2, 2 ≤ q. Eqts (23.13), (23.14) in

the argument below of Proposition 23.2 dealing with AF,q = AF,q + G show that A∗
F,q

can be written

as A∗
F,q

= −A∗q + Π, where the perturbation Π is
(
A∗q
)θ

-bounded, with θ = 1 − 1/2q + ε < 1, see

(23.17). Thus, since −A∗q generates s.c. analytic semigroup on Lq
′
σ (Ω) (by adjointness on Theorem

3.1(i) on −Aq), then a standard semigroup result [Pazy] implies that the perturbed operator A∗
F,q

is

an analytic semigroup generator on Lq
′
σ (Ω), 1 < q′ ≤ 2. But this is equivalent (Lqσ(Ω) being reflexive,

1 < q < ∞) to the original operator AF,q begin an analytic semigroup generator on Lqσ(Ω), q ≥ 2, as

desired. The quoted Proposition 23.2 shows more. In fact: that is, that AF,q (actually AF,q = AF,q +G)

has Lp-maximal regularity on Lqσ(Ω), in symbols, AF,q ∈MReg
(
Lp(0,∞;Lqσ(Ω))

)
, q ≥ 2 (23.18). And

maximal regularity implies analyticity [Dore], The argument of Proposition 23.2 is of the perturbation

type described above, however tuned to the notion of maximal regularity, which is stronger than

analyticity.

The desired result follows next for the operator AF,q in (17.11), describing the evolution of the w-

linearized dynamics (17.10) under feedback control, see (17.13)

F (·) =
K∑
k=1

〈
PN ·, pk

〉
Wu
N

fk ∈W 2−1/q ,q(Γ̃); G(·) = Pq

(
m

( K∑
k=1

〈
PN ·, qk

〉
Wu
N

uk

)
τ

)
∈ Lqσ(Ω), q ≥ 2

(21.11)

both bounded: F ∈ L(Lqσ(Ω), Lq(Γ̃)), G ∈ L(Lqσ(Ω)). In going from (21.12a) to (21.12c) below, we

recall that fk ∈ W 2−1/q ,q(Γ), so that DFh ∈ W 2,q(Ω) ∩ Lqσ(Ω), for h ∈ Lqσ(Ω), q ≥ 2, by Corollary

C.2(v) in Appendix E.

Corollary 21.2. Let q ≥ 2. With reference to the feedback operator AF,q in (17.11) describing the

feedback w-system in (17.10), repeated here as

AF,q = Aq(I −DF ) +G = AF,q +G : Lqσ(Ω) ⊃ D
(
AF,q

)
−→ Lqσ(Ω) (21.12a)
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D
(
AF,q

)
= D

(
AF,q

) (21.1b)
=

{
h ∈ Lqσ(Ω) : h−DFh ∈ D

(
Aq
)

≡ D
(
Aq
)
≡W 2,q(Ω) ∩W 1,q

0 (Ω) ∩ Lqσ(Ω)
}

(21.12b)

=
{
ϕ ∈W 2,q(Ω) ∩ Lqσ(Ω) : ϕ

∣∣
Γ

= Fϕ
}

(21.12c)

with F and G as in (21.11), we have:

(i) AF,q generates a s.c. analytic semigroup eAF,q t on Lqσ(Ω), t > 0, q ≥ 2;

(ii) AF,q has a compact resolvent on Lqσ(Ω), q ≥ 2.

We can next extend Corollary 21.2 to the Besov space B̃
2−2/p
q,p (Ω) in (13.13) 1 < p < 2q/2q−1, q ≥ 2, of

interest.

To this end, we need the following result.

Proposition 21.3. Let 1 < p <
2q

2q − 1
, q ≥ 2. Then (recall (15.3b))

(
Lqσ(Ω),D(AF,q)

)
1− 1

p
,p

= B̃
2−2/p
q,p (Ω) (21.13)

=
{
g ∈ B2−2/p

q,p (Ω) : div g ≡ 0, g · ν|Γ = 0
}
. (21.14)

Proof. Step 1: From the characterization of D
(
AF,q

)
in (21.12b) we obtain for 0 < θ < 1, p > 1, q ≥ 2(

Lqσ(Ω),D(AF,q)
)
θ,p
⊂
(
Lqσ(Ω),W 2,q(Ω) ∩ Lqσ(Ω)

)
θ,p

= B2θ
q,p(Ω) ∩ Lqσ(Ω) (21.15)

recalling the definition/characterization (15.1) of Bs
q,p(Ω) with m = 2, s/2 = θ. Next we take 1 < p <

2q/2q−1, q ≥ 2, θ = 1− 1/p, so that - for these parameters - (21.15) specializes to(
Lqσ(Ω),D(AF,q)

)
1− 1

p
,p
⊂ B̃2−2/p

q,p (Ω) = defined in (21.14) = (15.3b) (21.16)

Step 2: But B̃
2−2/p
q,p (Ω) does not recognize boundary conditions [the conditions div g = 0, g · ν|Γ = 0

are included in the definition of the underlying space Lqσ(Ω), see (13.4)].

Hence, the space in the LHS of (21.16) does not recognize boundary conditions. Thus, for the indexes{
θ = 1− 1/p, p

}
, with 1 < p < 2q/2q−1, q ≥ 2, we have recalling (15.3b)(

Lqσ(Ω),D(AF,q)
)

1− 1
p
,p

=
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

= B̃
2−2/p
q,p (Ω) (21.17)
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as D
(
AF,q

)
and D(Aq) both consist of W 2,q(Ω) ∩ Lqσ(Ω) functions, subject only to different boundary

conditions. Thus (21.17) proves the desired conclusion (21.13), (21.14).

Theorem 21.4. The operator AF,q in (21.12), where the bounded operators F and G are defined by

(21.11), generates a s.c. analytic semigroup eAF,q t on the Besov space B̃
2−2/p
q,p (Ω), 1 < p < 2q/2q−1, q ≥

2 defined in (21.14).

Proof. The operator AF,q generates a s.c. analytic semigroup eAF,q t on Lqσ(Ω) by Corollary 21.2 for

q ≥ 2. Then, it generates a s.c. analytic semigroup on D
(
AF,q

)
. Hence the conclusion follows by

(21.13).
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22 Proof of Theorem 17.2: The feedback operator A
F,q

in (17.11)

is uniformly stable on Lqσ(Ω), 2 ≤ q < ∞; or on B̃2−2/p
q,p (Ω), 1 <

p < 2q/2q−1, q ≥ 2: Feedback stabilization of the linearized w-

system (16.1) by suitable finite-dimensional localized boundary

tangential control v and interior localized tangential-like control

u

The feedback analytic generator AF,q in (17.11) is, moreover, uniformly stable. We restate for conve-

nience the feedback stabilization part of Theorem 17.2.

Theorem 22.1. Consider the setting of Theorem 20.1, so that, in particular, the feedback finite-

dimensional control pair acting in Eqn (14.26) and resulting in Eqn (17.10), (17.13) is given by

v = vN =
K∑
k=1

〈
wN (t), pk

〉
Wu
N

fk, fk ∈ F ⊂W 2− 1
q
,q

(Γ), q ≥ 2, fk · ν|Γ = 0; (22.1a)

u = uN =
K∑
k=1

〈
wN (t), qk

〉
Wu
N

uk, (22.1b)

and satisfies estimate (17.4) = (20.1). The vectors pk, qk ∈ (W u
N )∗ ⊂ Lq′σ (Ω) and fk ∈W 1−1/q ,q(Γ), see

(17.1), are constructed in the proof of Theorem 17.1. This results on the feedback w-problem (17.10).

Then, with γ0 < γ1, where γ1 was picked up in Theorem 20.1, the corresponding feedback solution w

of (14.26) satisfies the (uniform stabilization) estimate∥∥∥AθqeAF,q tw0

∥∥∥ =
∥∥∥Aθqw(t)

∥∥∥
Lqσ(Ω)

≤ Cγ0,δ,θe
−γ0t ‖y0‖Lqσ(Ω) , t ≥ δ > 0, 0 ≤ θ < 1

4
, q ≥ 2, (22.2)

δ > 0 arbitrary, where we can take δ = 0 for θ = 0.

Proof. Step 1: According to Theorem 20.1, the finite-dimensional system wuN in (16.8) can be uniformly

feedback stabilized with an arbitrarily preassigned decay rate γ1 > 0 (in particular, −γ1 < Re λN+1 ≤

0, see (16.2)) by a pair of finite-dimensional feedback controllers {v = vN , u = uN} as to obtain the

feedback system (20.2) (rewritten coordinate-wise as in (19.16)), as quantified by inequality (20.1),

(17.4):

‖wN (t)‖Lqσ(Ω) + ‖vN (t)‖
Lq(Γ̃)

+ ‖uN (t)‖Lq(ω) ≤ Cγ1e
−γ1t ‖PNw0‖Lqσ(Ω) , t ≥ 0, q ≥ 2 (22.3)
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((17.4) includes also v′N and u′N .) Here, as in (20.2), (and (10.1a-b))

vN (t) =
K∑
k=1

(wN (t), pk))Wu
N
fk, uN (t) =

K∑
k=1

(wN (t), qk)Wu
N
uk, (22.4)

are the tangential boundary feedback control, vN · ν|Γ ≡ 0, and the interior tangential-like control

uN (t) · τ ; the first acting on the arbitrary sub-portion Γ̃ of Γ of positive measure, the second acting

on the corresponding collar ω based on Γ̃ (Fig. 2).

Step 2: Next, we examine the impact of such constructive feedback control pair {vN , uN · τ} on the

ζN -dynamics (16.9), whose explicit solution is given by the variation of parameter formula

ζN (t) = eA
s
N tζN (0) + (Iint)(t) + (Ibry)(t); (22.5)∥∥eAsN t∥∥L(Lqσ(Ω))

≤ Cγ0e
−γ0t, 0 ≤ t, 0 < γ0 < |Re λN+1|; (22.6)

(
Iint

)
(t) = −

∫ t

0
eA

s
N (t−r)(I − PN )P (m(uN (r) · τ(r))dr; (22.7)

(
Ibry

)
(t) = −

∫ t

0
eA

s
N (t−r)AsN (I − PN )DvN (r)dr; (22.8)

Here, Iint is the integral term driven by the interior control uN , while Ibry is the integral term driven

by the tangential boundary control vN .

We now recall from Section 3(b) and 3(d) that the Oseen operator Aq generates a s.c. analytic semi-

group not only on Lqσ(Ω) but also on
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

, in particular on B̃
2−2/p
q,p (Ω). So we can

estimate (22.5) in the norm of either of these spaces. Furthermore, the (point) spectrum of the gen-

erator AsN on W s
N satisfies sup{Re σ(AsN )} < − |λN+1| < −γ0 by assumption. We shall carry our

the subsequent computations explicitly in the space B̃
2−2/p
q,p (Ω) for the case of greatest interest in the

nonlinear analysis of sections 24, 25.

Step 3. The Interior-Driven Integral Term
(
Iint

)
(t): We consider first the term eA

s
N tζN (0)+(Iint)(t) in

(22.5) and provide estimates in the Lqσ(Ω)-norm first, q ≥ 2. Selecting as we may, in view of Theorem

20.1, γ1 > γ0, we obtain the estimate∥∥eAsN tζN (0) + (Iint)(t)
∥∥
Lqσ(Ω)

≤ Cγ0e
−γ0t ‖w0‖Lqσ(Ω) , ∀ t ≥ 0, q ≥ 2; (22.9)
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Cγ0,δ,θe
−γ0(t−δ) ‖w0‖Lqσ(Ω) , ∀ t ≥ δ > 0; q ≥ 2; (22.10a)∥∥∥AθqζN (t)

∥∥∥
Lqσ(Ω)

≤

 Cγ0,θe
−γ0t

∥∥∥Aθqw0

∥∥∥
Lqσ(Ω)

, ∀ t ≥ 0, w0 ∈ D
(
Aθq

)
, q ≥ 2. (22.10b)

0 < γ0 < |Re λN+1|, 0 < θ < 1. In fact invoking the estimate (22.3) of (20.1) for uN , we obtain in

the in the Lqσ(Ω)-norm since the operators (I − PN ), P are bounded:

∥∥eAsN tζN (0) + Iint(t)
∥∥
Lqσ(Ω)

≤
∥∥eAsN tζN (0)

∥∥
Lqσ(Ω)

+ C

∫ t

0

∥∥∥eAsN (t−τ)
∥∥∥ ‖uN (τ)‖Lqσ(Ω) dτ (22.11)

≤ Ce−γ0t ‖ζN (0)‖Lqσ(Ω) + C

∫ t

0
e−γ0(t−r)e−γrdr ‖PNw0‖Lqσ(Ω) (22.12)

Since we may choose γ1 > γ0 by Theorem 17.1(or by Theorem 20.1), we may obtain

∥∥eAsN tζN (0) + Iint(t)
∥∥
Lqσ(Ω)

≤ C

[
e−γ0t + e−γ0t 1− e

−(γ−γ0)t

γ − γ0

]
‖w0‖Lqσ(Ω) (22.13)

≤ Ce−γ0t ‖w0‖Lqσ(Ω) , ∀t > 0, q ≥ 2. (22.14)

Step 4. The Interior-Driven Integral Term Ibry(t): We shall follow the computations given in [B-L-T.1,

Prop. B.2.1 Eqn. (B.2.5) and its proof, p. 105] for the boundary-driven integral Ibry(t) in (22.8), with

v = vN given by (17.1) and obeying estimate (17.4) for vN . We shall obtain

∥∥∥Aθq(Ibry)(t)
∥∥∥
Lqσ(Ω)

≤ Cγ0,δ,θe
−γ0t ‖w0‖Lqσ(Ω) , t ≥ δ > 0, 0 ≤ θ < 1

4
, g ≥ 2, (22.15)

where we can take δ = 0 for θ = 0. In fact, from (22.8) we obtain

(
−AsN

)θ
Ibry(t) =

∫ t

0

(
−AsN

)1−1/2q+ε+θeA
s
N (t−τ)

(
−AsN

)1/2q−ε(I − PN )DvN (τ)dτ (22.16)

where we choose θ + 1− 1/2q + ε = 1− ε′, ε > 0, ε′ > 0.

But, by Theorem 15.5, AsN generates a s.c. analytic semigroup on W s
N , which therefore satisfies the

spectrum determined growth condition. Thus, choose ε1 > 0 s.t. γ0 + ε1 < |Re λN+1|, see (16.2) and

then
∥∥eAsN t∥∥ ≤ Ce−(γ0+ε1)t, t ≥ 0 in the Lqσ(Ω)-norm. We then compute form (22.8):
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∥∥∥(−AsN)θIbry

∥∥∥
Lqσ(Ω)

= C

∫ t

0

e−(γ0+ε1)(t−τ)

(t− τ)1−ε′ ‖vN (t)‖Lqσ(Ω) dτ (22.17)

(by (22.3)) ≤
∫ t

0

e−(γ0+ε1)(t−τ)

(t− τ)1−ε′ e−(γ1+ε1)τ dτ ‖PNw0‖Lqσ(Ω) (22.18)

≤ Ce−(γ0+ε1)t

∫ t

0

e−(γ1−γ0)τ

(t− τ)1−ε′ dτ ‖PNw0‖Lqσ(Ω) (22.19)

≤ −Ce−(γ0+ε1)t (t− τ)ε
′

ε′

∣∣∣∣τ=1

τ=0

‖PNw0‖Lqσ(Ω) (22.20)

≤ C

ε′
tε
′
e−(γ0+ε1)t ‖PNw0‖Lqσ(Ω) (22.21)

≤ Cε′e−γ0t ‖PNw0‖Lqσ(Ω) , t ≥ 0, q ≥ 2. (22.22)

In (22.16) we have used (22.3) with γ1 replaced by γ1 + ε1, as this is an arbitrarily large preassigned

number. But the domain of the
(
−AsN

)θ
-powers coincide in norm with the domain of the Aθq-powers

[as D(Aq) = D(Aq)]. Thus (22.10) yields∥∥∥Aθq Ibry

∥∥∥
Lqσ(Ω)

= C̃e−γ0t ‖PNw0‖Lqσ(Ω) , t ≥ 0 (22.23)

Step 5: Combining 22.9 with (22.23) in (22.5) yields Theorem 22.1

We conclude this section with the counterpart of the Theorem 22.1 on the space B̃
2−2/p
q,p (Ω), a result

to be needed in Section 23, Eq (23.44).

Theorem 22.2. Under the same setting of Theorem 22.1, in particular for q ≥ 2, 1 < p < 2q/2q−1,

we have ∥∥∥eAF,q tw0

∥∥∥
B̃

2−2/p
q,p (Ω)

≤ Ce−γ0t ‖w0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0 (22.24)

Proof. We recall (15.39) for eAqt, which restricted on the stable subspace W s
N gives

eA
s
N,qt : continuous B̃

2−2/p
q,p (Ω) −→ X∞p,q,σ∥∥∥eAsN,qt∥∥∥

L
(
B̃

2−2/p
q,p (Ω)

) ≤ Ce−γ0t, t ≥ 0
(22.25)

counterpart of (22.6). We now repeat the proof of Theorem 22.1, except on the space B̃
2−2/p
q,p (Ω) rather

than Lqσ(Ω)., by using (22.25) instead of (22.6). We obtain:
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(i) ∥∥eAsN tζN (0) + Iint(t)
∥∥
B̃

2−2/p
q,p (Ω)

≤ Ce−γ0t ‖w0‖
B̃

2−2/p
q,p (Ω)

, ∀t > 0, q ≥ 2. (22.26)

counterpart of (22.14);

(ii)

‖Ibry‖
B̃

2−2/p
q,p (Ω)

= C̃e−γ0t ‖w0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0 (22.27)

counterpart of (22.23)

Combining (22.26) and (22.27) in (22.5) yields (22.24).
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23 Maximal Lp-regularity on Lqσ(Ω), q ≥ 2 and up to T =∞ of the s.c.

analytic semigroup eAF,q
t yielding uniform decay of the linearized

w-problem (17.10) of Theorem 17.2

Preliminaries

1. We recall the tangential boundary feedback operator F ∈ L
(
Lqσ(Ω), Lq(Γ̃)

)
, for q ≥ 2 and the

interior tangential-like feedback operator G ∈ L
(
Lqσ(Ω)

)
from (21.11)

F (·) =
K∑
k=1

〈
PN ·, pk

〉
Wu
N

fk ∈W 2−1/q ,q(Γ̃), q ≥ 2;

G(·) = Pq

(
m

( K∑
k=1

〈
PN ·, qk

〉
Wu
N

uk

)
τ

)
∈ Lqσ(Ω), q ≥ 2 (23.1)

so that we rewrite the feedback w-equation (17.10) as

dw

dt
= Aq(I −DF )w +Gw = AF,qw (23.2a)

AF,q : Lqσ(Ω) ⊃ D
(
AF,q

)
−→ Lqσ(Ω), q ≥ 2{

D
(
AF,q

)
=
{
h ∈ Lqσ(Ω) : (h−DFh) ∈ D(Aq) = D(Aq)

}
, (23.2b)

since G is a bounded operator G ∈ L
(
Lqσ(Ω)

)
. Recall from (13.23), or (17.1), or (18.8), or Appendix E

that the boundary vectors fk (= linear combinations of normal traces of eigenfunctions of A∗ = A∗q in

(18.1)) have the regularity fk ∈ W 2−1/q ,q(Γ), so that DFh ∈ W 2,q(Ω) ∩ Lqσ(Ω) for h ∈ Lqσ(Ω), q ≥ 2,

see below (21.11), in light of Corollary C.2(v) in Appendix E. Thus, we can more specifically describe

D(AF,q) as follows.

AF,q : Lqσ(Ω) ⊃ D
(
AF,q

)
−→ Lqσ(Ω),{

D
(
AF,q

)
=
{
ϕ ∈W 2,q(Ω) ∩ Lqσ(Ω) : ϕ|Γ = Fϕ

}
, q ≥ 2 (23.2c)

see (21.12c). Such characterization of D
(
AF,q

)
will be critical in using maximal Lp regularity of AF,q

in the analysis of the non-linear problem in Sections 24 and 25.

We also recall that eAF,q t is a s.c. analytic semigroup in Lqσ(Ω), which moreover is uniformly stable

here (Theorem 17.2, Eq (17.14) for AF = AF,q) as well as Theorem 22.1, Eq (22.2):
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∥∥∥eAF,q t∥∥∥
L
(
Lqσ(Ω)

) ≤ Cγ0e
−γ0t, t ≥ 0, q ≥ 2. (23.3)

2. We consider the system

dη

dt
= AF,qη + f ; η(0) = η0 in Lqσ(Ω), q ≥ 2 (23.4)

η(t) = eAF,q tη0 +

∫ t

0
eAF,q (t−τ)f(τ) dτ. (23.5)

Goal: The goal of the present section is to establish maximal Lp regularity on Lqσ(Ω) and for T =∞

of the feedback analytic generator AF,q in (23.2), as described in the following result.

Theorem 23.1. Let q ≥ 2. With reference to the dynamics (23.4), (23.5) with ηo = 0, we have: the

map

f −→ η(t) =

∫ t

0
eAF,q (t−τ)f(τ) dτ : continuous (23.6a)

Lp(0,∞;Lqσ(Ω)) −→Lp
(
0,∞;D(AF,q)

)
, 1 < p <∞, (23.6b)

Lp(0,∞;Lqσ(Ω)) −→X∞p,q,σ ≡ Lp
(
0,∞;D(AF,q)

)
∩W 1,p(0,∞;Lqσ(Ω)), (23.6c)

by (23.2c), so that, there exists a constant C = Cp,q > 0 such that

‖ηt‖Lp
(

0,∞;Lqσ(Ω)
) +

∥∥AF,qη
∥∥
Lp
(

0,∞;Lqσ(Ω)
) ≤ C ‖f‖

Lp
(

0,∞;Lqσ(Ω)
) . (23.7a)

In short:

AF,q ∈MReg(Lp
(
0,∞;Lqσ(Ω)

)
) (23.7b)

If we introduce the space of maximal regularity for {η, ηt}, with η0 = 0, as

X∞p,q,σ ≡ Lp
(
0,∞;D(AF,q)

)
∩W 1,p(0,∞;Lqσ(Ω)) (23.8a)

⊂ X∞p,q ≡ Lp(0,∞;W 2,q(Ω)) ∩W 1,p(0,∞;Lq(Ω)), (23.8b)

we rewrite (23.7) as

f ∈ Lp
(
0,∞;Lqσ(Ω)

)
−→ η ∈ X∞p,q,σ ↪→ C

(
[0,∞];B

2−2/p
q,p (Ω)

)
(23.8c)

where to justify the continuous embedding in (23.8c), we recall [Amann.2, Theorem 4.10.2; p180] and

the characterization (23.2c) for D
(
AF,q

)
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Proof. Step 1: Because of the intrinsic presence of the operator DF (boundary feedback F followed

by the Dirichlet map D) as a right factor in

AF,q = Aq(I −DF ) +G = (−νoAq −Ao,q)(I −DF ) +G (23.9a)

: Lqσ(Ω) ⊃ D(AF,q) in (23.2b) −→ Lqσ(Ω), 2 ≤ q <∞ (23.9b)

recall (15.5), we find it is necessary to consider instead the more amenable adjoint/dual operator (with

νo = 1 w.l.o.g)

A∗
F,q

= (I −DF )∗A∗q +G∗ = −(I −DF )∗A∗q − (I −DF )∗A∗o,q +G∗ (23.10a)

D
(
A∗
F,q

)
= D

(
A∗q
)

= D
(
A∗q
)

=
{
h ∈W 2,q′(Ω) ∩W 1,q′

0 (Ω) ∩ Lq′σ (Ω)
}

(23.10b)

A∗
F,q

: Lq
′
σ (Ω) ⊃ D

(
A∗
F,q

)
in (23.10b) −→ Lq

′
σ (Ω), 1 < q′ ≤ 2 (23.10c)

Here 1/q + 1/q′ = 1, where q ≥ 2 for AF,q . In order to have F bounded Lqσ(Ω) −→ Lq(Γ), we need to

impose 1 < q′ ≤ 2, in which case (I − DF )∗ ∈ L(Lq
′
σ (Ω)), 1 < q′ ≤ 2, see Appendix E, Eqt (C.11).

We rewrite A∗
F,q

in (23.10a) as

A∗
F,q

= −A∗q +
[
F ∗D∗A∗q

1/2q−ε]A∗q1−1/2q+ε −
[
(I −DF )∗

(
A
−1/2
q Ao,q

)∗]
A∗q

1/2 +G∗ (23.11)

: Lq
′
σ (Ω) ⊃ D(A∗

F,q
) −→ Lq

′
σ (Ω),

1

q
+

1

q′
= 1, q ≥ 2, 1 < q′ ≤ 2 (23.12)

whereby the adjoint of the right factor becomes now a left factor. In obtaining in (23.10a) the form

of A∗
F,q

from that of AF,q in (23.9a), we have used that (I − DF ) ∈ L(Lqσ(Ω)) q ≥ 2 [Fat.1, p 14].

Moreover, to go from (23.9) to (23.11), we use Ao,q = A
1/2
q

(
A
−1/2
q Ao,q

)
, hence A∗o,q =

(
A
−1/2
q Ao,q

)∗
A∗q

1/2 ,

where the ( )–term is bounded by (14.21).

Step 2: By duality on Corollary 21.2 on a reflexive Banach space, the operator A∗
F,q

in (23.10) generates

a s.c. analytic semigroup e
A∗
F,q

t
on Lq

′
σ (Ω), which moreover is uniformly stable in L

(
Lq
′
σ (Ω)

)
, 1 < q′ ≤ 2,

with the same decay rate γ0 > 0 in (23.3) = (17.14) as eAF,q t in L
(
Lqσ(Ω)

)
, q ≥ 2 in Theorem 22.1.

Step 3:

Proposition 23.2. For the generator A∗
F,q

in (23.10) of a s.c. analytic, uniformly bounded semigroup

e
A∗
F,q

t
on Lq

′
σ (Ω), we have: A∗

F,q
∈MReg

(
Lp(0,∞;Lq

′
σ (Ω))

)
, 1 < q′ ≤ 2.
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Proof. The proof is based on a perturbation argument. For q ≥ 2, rewrite (23.11) as

A∗
F,q

= −A∗q + Π (23.13)

Π =
[
F ∗D∗A∗q

1/2q−ε]A∗q1−1/2q+ε −
[
(I −DF )∗

(
A
−1/2
q Ao,q

)∗]
A∗q

1/2 +G∗. (23.14)

In (23.14), both terms in square brackets [ ] are bounded in Lq
′
σ (Ω), and so is G∗, 1 < q′ ≤ 2. To

this end we use critically and recall (15.41b):

A
1/2q−ε
q D ∈ L(Uq, L

q
σ(Ω)), so D∗A∗q

1/2q−ε ∈ L(Lq
′
σ (Ω), Lq

′
(Γ)), 1 ≤ q′ ≤ 2 :

while A−
1/2

q Ao,q ∈ L(Lqσ(Ω)) by (14.21).

The following estimates then hold, q ≥ 2, 1 < q′ ≤ 2:

i.
∥∥∥[F ∗D∗A∗q1/2q−ε]A∗q1−1/2q+εx

∥∥∥
Lq
′
σ (Ω)

≤ Cq
∥∥∥A∗q1−1/2q+εx

∥∥∥
Lq
′
σ (Ω)

, ∀ x ∈ D
(
A∗q

1−1/2q+ε
)

(23.15)

ii.
∥∥∥[(I −DF )∗

(
A
−1/2
q Ao,q

)∗]
A∗q

1/2x
∥∥∥
Lq
′
σ (Ω)

≤ Cq
∥∥∥A∗q1/2x

∥∥∥
Lq
′
σ (Ω)

,

= Cq

∥∥∥(A∗q−1/2+1/2q−ε
)
A∗q

1−1/2q+εx
∥∥∥
Lq
′
σ (Ω)

≤ C̃q
∥∥∥A∗q1−1/2q+εx

∥∥∥
Lq
′
σ (Ω)

(23.16)

Hence, the perturbation Π in (23.14) satisfies q ≥ 2, 1 < q′ ≤ 2:

‖Πx‖
Lq
′
σ (Ω)

≤ Cq
∥∥∥A∗q1−1/2q+εx

∥∥∥
Lq
′
σ (Ω)

, x ∈ D
(
A∗q

1−1/2q+ε
)

(23.17)

1/q + 1/q′ = 1, ε > 0. We draw now some consequences from (23.13), (23.17):

(a) The perturbation operator Π is A∗q
θ-bounded on Lq

′
σ (Ω) with θ = 1− 1/2q + ε < 1, 1 < q′ ≤ 2 ≤ q.

(b) On the other hand A∗q ∈MReg
(
Lp(0,∞;Lq

′
σ (Ω))

)
, from Section 3(c) In fact, while Aq is the Stokes

operator on Lqσ(Ω), 1 < q < ∞, A∗q is the Stokes operator on Lq
′
σ (Ω) by (14.31), 1/q + 1/q′ = 1.

Then, properties (a), (b) imply -by the abstract perturbation theorem in the Appendix C, see also

[Dore, Theorem 6.2. p 311] and [K-W.2, SNP Remark 1i, p 426 for β = 1], for related results,

that A∗
F,q
∈MReg

(
Lp(0,∞;Lq

′
σ (Ω))

)
, 1 < q′ ≤ 2 and Proposition 23.2 is proved.
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Step 4: We now prove Theorem 23.1 that AF,q satisfies the maximal Lp regularity on Lqσ(Ω):

AF,q ∈MReg
(
Lp
(
0,∞;Lqσ(Ω)

))
, 2 ≤ q <∞. (23.18)

Step 4.i: We invoke the fundamental result of L. Weis [K-W.2, Theorem 1.11 p 76], [Weis, Theorem p

198]. Since AF,q generates a bounded analytic semigroup eAF,q t on Lqσ(Ω), 2 ≤ q <∞, on a UMD-space

[K-W.2, p 75], then the sought-after property that AF,q ∈ MReg
(
Lp
(
0,∞;Lqσ(Ω)

))
is equivalent to

the property that the family τ ∈ L
(
Lqσ(Ω)

)
τ =

{
tR
(
it,AF,q

)
, t ∈ R\{0}

}
be R-bounded (23.19)

Step 4.ii: By the complete duality for R-boundedness on Lq(Ω), 2 ≤ q <∞, we have [K-W.2, Corollary

2.11 p90] that the family τ in (23.19) is R-bounded if and only if the corresponding dual family τ ′ in

L
(
Lq
′
σ (Ω)

)
, (Lqσ(Ω))∗ = Lq

′
σ (Ω)) by (13.8b)

τ ′ =
{
tR
(
it,A∗

F,q

)
, t ∈ R\{0}

}
is R-bounded (23.20)

Step 4.iii: But the R-boundedness property in (23.20) is equivalent, by the same result [K-W.2] to

the property that A∗
F,q
∈ MReg

(
Lp(0,∞;Lq

′
σ (Ω))

)
, 1 < q′ ≤ 2, 1/q + 1/q′ = 1, and this is true by

Proposition 23.2. In conclusion: AF,q ∈MReg
(
Lp
(
0,∞;Lqσ(Ω)

))
, and Theorem 23.1 is proved.

We next examine the regularity of the term eAF,q tη0 due to the initial condition η0 in (23.5). For the

same reasons noted in the Theorem 23.1, Eqts (23.10) through (23.12), we shall equivalently examine

the regularity of the adjoint semigroup e
A∗
F,q

t
. To this end, we need the counterpart of Proposition

21.3 this time for the adjoint/dual operator A∗
F,q

on Lq
′
σ (Ω), 1 < q′ ≤ 2, 1/q + 1/q′ = 1.

Proposition 23.3. Let 1 < p <
2q′

2q′ − 1
, 1 < q′ ≤ 2, q ≥ 2,

1

q
+

1

q′
= 1. Then

(
Lq
′
σ (Ω),D(A∗

F,q
)
)

1− 1
p
,p

= B̃
2−2/p
q′,p (Ω) (23.21)

=
{
g ∈ B2−2/p

q′,p (Ω) : div g ≡ 0, g · ν|Γ = 0
}

(23.22)

Proof. From (23.10b) we have: D
(
A∗
F,q

)
⊂W 2,q′(Ω) ∩ Lq′σ (Ω), 1 < q′ ≤ 2. Thus, as in (21.15)

(
Lq
′
σ (Ω),D(A∗

F,q
)
)
θ,p
⊂
(
Lq
′
σ (Ω),W 2,q′(Ω) ∩ Lq′σ (Ω)

)
θ,p

= B2θ
q′,p(Ω) ∩ Lq′σ (Ω) (23.23)
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recalling the definition (15.2). Next we take 1 < p < 2q′/2q′−1, θ = 1−1/p, so that, for these parameters,

(23.23) specializes to

(
Lq
′
σ (Ω),D(A∗

F,q
)
)

1− 1
p
,p
⊂ B̃2−2/p

q′,p (Ω) = defined in (15.3b). (23.24)

But B̃
2−2/p
q′,p (Ω) does not recognize the boundary conditions so neither does the space on the LHS of

(23.24). Thus for these parameters θ = 1− 1/p, with 1 < p < 2q′/2q′−1, we have

(
Lq
′
σ (Ω),D(A∗

F,q
)
)

1− 1
p
,p

=
(
Lq
′
σ (Ω),D(A∗q)

)
1− 1

p
,p

(23.25)

= B̃
2−2/p
q′,p (Ω) (23.26)

recalling (14.31) (A∗q is the Stokes operator on Lq
′
σ (Ω)) and (15.3b) as D

(
A∗
F,q

)
and D

(
A∗q
)

both consist

of W 2,q′(Ω)∩Lq′σ (Ω) functions, subject only to different boundary conditions. Thus (23.26) proves the

desired conclusion.

We conclude this section with results for the semigroup eAF,q t on Lqσ(Ω) that yield the solution in the

space XT
p,q of maximal regularity. This is the companion result of Theorem 23.1. It is done by duality

on the adjoint semigroup e
A∗
F,q

t
as in the proof of Theorem 23.1.

Theorem 23.4. (i) Let 1 < p < 2q′/2q′−1, 1 < q′ ≤ 2, q ≥ 2, 1/q + 1/q′ = 1. Consider the adjoint s.c.

analytic semigroup e
A∗
F,q

t
on Lq

′
σ (Ω), which is uniformly stable here, by duality on Eq (22.2), θ = 0,

or (17.14) of Theorem 22.1. Then (see (23.26))

e
A∗
F,q

t
: continuous B̃

2−2/p
q′,p (Ω) =

(
Lq
′
σ (Ω),D(A∗

F,q
)
)

1− 1
p
,p

=
(
Lq
′
σ (Ω),D(A∗q)

)
1− 1

p
,p

(23.27)

−→ X∞p,q′ ≡ Lp
(
0,∞;W 2,q′(Ω)

)
∩W 1,p

(
0,∞;Lq

′
σ (Ω)

)
. (23.28)

(ii) Consider now the original s.c. analytic feedback semigroup eAF,q t on Lqσ(Ω), which is uniformly

stable here by (17.14) or (22.2), θ = 0. Let 1 < p < 2q/2q−1, q ≥ 2. Then, see (21.17)

eAF,q t : continuous B̃
2−2/p
q,p (Ω) =

(
Lqσ(Ω),D(AF,q)

)
1− 1

p
,p

=
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

(23.29)

−→ X∞p,q = Lp
(
0,∞;W 2,q(Ω)

)
∩W 1,p

(
0,∞;Lqσ(Ω)

)
. (23.30)

Proof. We shall prove (i) and then (ii) will follow by duality.
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Step 1: Thus, consider A∗
F,q

in Lq
′
σ (Ω), 1 < q′ ≤ 2. Write

χ(t) = e
A∗
F,q

t
χo , χt = A∗

F,q
χ, χ(0) = χo . (23.31)

Recalling A∗
F,q

= −A∗q + B1A
∗
q

1−1/2q+ε + B2A
∗
q

1/2 + G∗ from (23.11), where B1, B2 are in L
(
Lq
′
σ (Ω)

)
,

we rewrite the equation in (23.31) as

χt = −A∗qχ+B1A
∗
q

1−1/2q+εχ+B2A
∗
q

1/2χ+G∗χ (23.32)

whose solution is

χ(t) = e−A
∗
qtχo +

∫ t

0
e−A

∗
q(t−τ)B1A

∗
q

1−1/2q+εχ(τ) dτ +

∫ t

0
e−A

∗
q(t−τ)B2A

∗
q

1/2χ(τ) dτ

+

∫ t

0
e−A

∗
q(t−τ)G∗χ(τ) dτ. (23.33)

Hence apply A∗q throughout,

A∗qχ(t) = A∗qe
−A∗qtχo +A∗q

∫ t

0
e−A

∗
q(t−τ)B1A

∗
q

1−1/2q+εχ(τ) dτ +A∗q

∫ t

0
e−A

∗
q(t−τ)B2A

∗
q

1/2χ(τ) dτ

+A∗q

∫ t

0
e−A

∗
q(t−τ)G∗χ(τ) dτ. (23.34)

Step 2: We now recall from (14.31) that A∗q is nothing but the Stokes operator on the space Lq
′
σ (Ω).

Thus, A∗q enjoys the maximal regularity properties stated for Aq in Section 3(c) except on (Lqσ(Ω))′ =

Lq
′
σ (Ω), see (13.8b). We shall use these for each of the four terms of the RHS of (23.34).

First term: By use of estimate (15.23b), or (15.20), we obtain changing q into q′∥∥∥A∗qe−A∗q ·χo∥∥∥
Lp
(

0,∞;Lq
′
σ (Ω)

) ≤ C ‖χo‖
B̃

2−2/p

q′,p (Ω)
. (23.35)

Second Term: Again by the maximal regularity property of A∗q in (15.22), except in Lq
′
σ (Ω), we estimate

since B1 ∈ L
(
Lq
′
σ (Ω)

)
∥∥∥∥A∗q ∫ ·

0
e−A

∗
q( · −τ)B1A

∗
q

1−1/2q+εχ(τ) dτ

∥∥∥∥
Lp
(

0,∞;Lq
′
σ (Ω)

) ≤ C ∥∥∥B1A
∗
q

1−1/2q+εχ
∥∥∥
Lp
(

0,∞;Lq
′
σ (Ω)

) (23.36)

≤ C̃
∥∥∥A∗q1−1/2q+εχ

∥∥∥
Lp
(

0,∞;Lq
′
σ (Ω)

) (23.37)

≤ ε1

∥∥A∗qχ∥∥Lp(0,∞;Lq
′
σ (Ω)

)
+ Cε1 ‖χ‖Lp

(
0,∞;Lq

′
σ (Ω)

) (23.38)
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after using an interpolation inequality [Triebel, Thm 5.3, Eq (3)], see (A.11) with θ = 1/2 in Appendix

C, to go from (23.37) to (23.38).

Third term: Similarly, since B2 ∈ L
(
Lq
′
σ (Ω)

)
, via (15.20):∥∥∥∥A∗q ∫ ·

0
e−A

∗
q( · −τ)B2A

∗
q

1/2χ(τ) dτ

∥∥∥∥
Lp
(

0,∞;Lq
′
σ (Ω)

) ≤ C ∥∥∥B2A
∗
q

1/2

∥∥∥
Lp
(

0,∞;Lq
′
σ (Ω)

)
≤ C̃

∥∥∥A∗q1/2

∥∥∥
Lp
(

0,∞;Lq
′
σ (Ω)

) (23.39)

≤ ε2

∥∥A∗qχ∥∥Lp(0,∞;Lq
′
σ (Ω)

)
+ Cε2 ‖χ‖Lp

(
0,∞;Lq

′
σ (Ω)

) . (23.40)

Fourth term: Finally, since G∗ ∈ L
(
Lq
′
σ (Ω)

)
, via (15.20)∥∥∥∥A∗q ∫ ·

0
e−A

∗
q( · −τ)G∗χ(τ) dτ

∥∥∥∥
Lp
(

0,∞;Lq
′
σ (Ω)

) ≤ C ‖χ‖Lp(0,∞;Lq
′
σ (Ω)

) . (23.41)

Invoking (23.35), (23.38), (23.40), (23.41) in (23.34), we obtain∥∥A∗qχ∥∥Lp(0,∞;Lq
′
σ (Ω)

) ≤ C ‖χo‖
B̃

2−2/p

q′,p (Ω)
+ (ε1 + ε2)

∥∥A∗qχ∥∥Lp(0,∞;Lq
′
σ (Ω)

)+ C̃ ‖χ‖
Lp
(

0,∞;Lq
′
σ (Ω)

) (23.42)

from which we obtain 1 < q′ ≤ 2, q ≥ 2, 1 < p < 2q′/2q′−1, with ε1 + ε2 small,∥∥A∗qχ∥∥Lp(0,∞;Lq
′
σ (Ω)

) ≤ C ‖χo‖
B̃

2−2/p

q′,p (Ω)
+ C̃ ‖χ‖

Lp
(

0,∞;Lq
′
σ (Ω)

) (23.43)

Step 3: By returning to (23.31) with χo ∈ B̃
2−2/p
q′,p (Ω), since e

A∗
F,q

t
is a s.c. semigroup, uniformly stable

in such space B̃
2−2/p
q′,p (Ω) ⊂ Lq′σ (Ω), see (22.24) with q replaced by q′, we obtain a-fortiori

χo ∈ B̃
2−2/p
q′,p (Ω)

e
A∗
F,q

t

−−−−→ χ ∈ Lp
(
0,∞;Lq

′
σ (Ω)

)
(23.44a)

 ‖χ‖
Lp
(

0,∞;Lq
′
σ (Ω)

) ≤ C ‖χo‖
B̃

2−2/p

q′,p (Ω)
. (23.44b)

Substituting (23.44b) in (23.43) yields the desired estimate.∥∥A∗qχ∥∥Lp(0,∞;Lq
′
σ (Ω)

) ≤ C ‖χo‖
B̃

2−2/p

q′,p (Ω)
(23.45)

χo ∈ B̃
2−2/p
q′,p (Ω)

e
A∗
F,q

t

−−−−→ χ ∈ Lp
(
0,∞;D(A∗q)

)
= Lp

(
0,∞;W 2,q′(Ω) ∩W 1,q′

0 (Ω) ∩ Lq′σ (Ω)
)

(23.46)
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continuously see (23.10b). Consequently, (23.46) gives

e
A∗
F,q

t
: continuous B̃

2−2/p
q′,p (Ω)→ X∞q′,p = Lp

(
0,∞;W 2,q′(Ω)

)
∩W 1,p

(
0,∞;Lq

′
(Ω)
)

(23.47)

Thus (23.47) shows part (i) for e
A∗
F,q

t
, based on Lq

′
σ (Ω). As noted, part (ii) then follows by duality.

Theorem 23.4 is proved.
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24 Proof of Theorem 17.3: Well-posedness on X∞p,q of the non-linear

z-dynamics (17.17) in feedback form

In this section we return to the translated non-linear z-dynamics (13.10a) and apply to it the interior

feedback (localized tangential-like) control u = Gqz = Pq

(
m

(
K∑
k=1

(PNz, qk)Wu
N
uk

)
τ

)
as well as the

tangential localized boundary control v = Fz =
K∑
k=1

(PNz, pk)Wu
N
fk i.e. of the same structure as

the feedback identified on the linearized w-dynamics (20.2), Here the vectors pk, qk, uk ∈ W u
N and

the boundary vectors fk ∈ F ⊂ W 2−1/q′ ,q
′
(Γ) are precisely those identified in Theorem 20.1. These

feedback operators produced the s.c. analytic, uniformly stable feedback semigroup eAF,q t on Lqσ(Ω)

Eq (22.2), as well as on the space B̃
2−2/p
q,p (Ω), 1 < p < ∞, 1 < q < ∞, as described in Theorem

22.2, (22.24). In addition such semigroup eAF,q t possesses maximal Lp-regularity on Lqσ(Ω) and up to

T = ∞, as documented on Section 23. These properties will be critically used now in the analysis of

the fully nonlinear z-dynamics (13.10a).

dz

dt
−Aq(I −DF )z +Nqz −Gqz = 0; z(0) = z0 (24.1a)

in detail, see (17.17)

dz

dt
−Aq

[
z−D

(
K∑
k=1

(PNz, pk)Wu
N
fk

)]
+Nqz = Pq

(
m

(
K∑
k=1

(PNz, qk)Wu
N
uk

)
τ

)
; z(0) = z0 (24.1b)

Recalling from (17.10) of Theorem 17.2 the feedback generator AF,q, we can rewrite (24.1b) as

zt = AF,qz −Nqz; z(0) = z0 (24.2)

whose variation of parameters formula is

z(t) = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqz(τ)dτ. (24.3)

We already know from (22.24) of Theorem 22.2 that for z0 ∈ B̃
2−2/p
q,p (Ω), 1 < q < ∞, 1 < p < 2q/2q−1

we have ∥∥∥eAF,qtz0

∥∥∥
B̃

2−2/p
q,p (Ω)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0, (24.4)

with Mγ0 possibly depending on p, q. Maximal regularity properties corresponding to the solution

operator formula in (24.3) were established in section 23. Accordingly, for z0 ∈ B̃
2−2/p
q,p (Ω) and f ∈
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X∞p,q,σ ≡ Lp(0,∞;D(AF,q)) ∩W 1,p(0,∞;Lqσ(Ω)), see (23.8a), D(AF,q) given by (23.2b), we define the

operator Fq by

Fq(z0, f)(t) = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqf(τ)dτ (24.5)

The main result of this section is Theorem 17.3. restated as

Theorem 24.1. Let d = 3, q > 3 and 1 < p < 6/5 (in order to satisfy the requirement p < 2q/2q−1).

There exists a positive constant r1 > 0 (identified in the proof below in (24.24)), such that if

‖z0‖
B̃

2−2/p
q,p (Ω)

< r1, (24.6)

then the operator Fq in (24.5) has a unique fixed point on X∞p,q,σ ≡ Lp(0,∞;D(AF,q))∩W 1,p(0,∞;Lqσ(Ω))

Fq(z0, z) = z, or z(t) = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqz(τ)dτ (24.7)

which therefore is the unique (nonlinear semigroup) solution of problem (24.2) (= (24.1)) in X∞p,q,σ.

The proof of Theorem 24.1 is accomplished in two steps.

Step 1:

Theorem 24.2. Let d = 3, q > 3 and 1 < p < 6/5 (in order to satisfy the requirement p < 2q/2q−1).

There exists a positive constant r1 > 0 (identified below in (24.24)) and a subsequent constant r > 0

(identified below in (24.22)) depending on r1 > 0 and the constant C > 0 in (24.20), such that with

‖z0‖
B̃

2−2/p
q,p (Ω)

< r1 as in (24.6), the operator Fq(z0, f) maps the ball B(0, r) in X∞p,q,σ into itself.

Theorem 24.1 will follow then from Theorem 24.2 after establishing that

Step 2:

Theorem 24.3. Let d = 3, q > 3 and 1 < p < 6/5 (in order to satisfy the requirement p < 2q/2q−1).

There exists a positive constant r1 > 0, such that if ‖z0‖
B̃

2−2/p
q,p (Ω)

< r1 as in (24.6), then there exists

a constant 0 < ρ0 < 1, such that the operator Fq(z0, f) defines a contraction in the ball B(0, ρ0) of

X∞p,q,σ

The Banach contraction principle then establishes Theorem 24.1, once we prove Theorems 24.2 and

24.3.
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Proof of Theorem 24.2. Step 1 : We start from definition (24.5) of Fq and invoke the maximal

regularity properties (23.29), (23.30) for eAF,qt and (23.8c) for

∫ t

0
eAF,q(t−τ)Nqf(τ)dτ . We obtain

‖Fq(z0, f)(t)‖X∞p,q,σ ≤
∥∥∥eAF,qtz0

∥∥∥
X∞p,q,σ

+

∥∥∥∥∫ t

0
eAF,q(t−τ)Nqf(τ)dτ

∥∥∥∥
X∞p,q,σ

(24.8)

≤ C
[
‖z0‖

B̃
2−2/p
q,p (Ω)

+ ‖Nqf‖Lp(0,∞;Lqσ(Ω))

]
. (24.9)

Step 2 : By the definition Nqf = Pq[(f.∇)f ] in (14.23), we estimate ignoring ‖Pq‖ and using,

sup
·

[
|g(·)|

]r
= [sup

·
(|g(·)|)]r

‖Nqf‖pLp(0,∞;Lqσ(Ω))
≤
∫ ∞

0
‖Pq[(f.∇)f ]‖p

Lqσ(Ω)
dt

≤
∫ ∞

0

{∫
Ω
|f(t, x)|q |∇f(t, x)|q dΩ

}p/q
dt (24.10)

≤
∫ ∞

0

{[
sup

Ω
|∇f(t, ·)|q

]1/q[ ∫
Ω
|f(t, x)|q dΩ

]1/q}p
dt (24.11)

≤
∫ ∞

0
‖∇f(t, ·)‖pL∞(Ω) ‖f(t, ·)‖p

Lqσ(Ω)
dt (24.12)

≤ sup
0≤t≤∞

‖f(t, ·)‖p
Lqσ(Ω)

∫ ∞
0
‖∇f(t, ·)‖pL∞σ (Ω) dt (24.13)

= ‖f‖p
L∞(0,∞;Lqσ(Ω))

‖∇f‖p
Lp(0,∞;Lqσ(Ω))

(24.14)

Step 3 : The following embeddings hold true:

(i) [G-G-H.1, Proposition 4.3, p 1406 with µ = 0, s =∞, r = q] so that the required formula reduces

to 1 ≥ 1/p, as desired

f ∈ X∞p,q,σ ↪→ f ∈ L∞(0,∞;Lqσ(Ω)) (24.15a)

so that, ‖f‖L∞(0,∞;Lqσ(Ω)) ≤ C ‖f‖X∞p,q,σ (24.15b)

(ii) [Kes, Theorem 2.4.4, p 74 requiring C1-boundary]

W 1,q(Ω) ⊂ L∞(Ω) for q > dim Ω = d, d = 2, 3, (24.16)
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so that, with p > 1, q > 3, in case d = 3:

‖∇f‖p
Lp(0,∞;Lqσ(Ω))

≤ C ‖∇f‖p
Lp(0,∞;W 1,q(Ω))

≤ C ‖f‖p
Lp(0,∞;W 2,q(Ω))

(24.17)

≤ C ‖f‖pX∞p,q,σ (24.18)

In going from (24.17) to (24.18) we have recalled the definition of f ∈ X∞p,q,σ in (23.8a). Then,

the sought-after final estimate of the non-linear term Nqf, f ∈ X∞p,q,σ, is obtained from substituting

(24.15b) and (24.18) into the RHS of (24.14). We obtain

‖Nqf‖Lp(0,∞;Lqσ(Ω)) ≤ C ‖f‖
2
X∞p,q,σ

, f ∈ X∞p,q,σ. (24.19)

Returning to (24.8), we finally, obtain by (24.19)

‖Fq(z0, f)‖X∞p,q,σ ≤ C
{
‖z0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖2X∞p,q,σ
}
. (24.20)

Step 4 : We now impose the restrictions on the data on the RHS of (24.20): z0 is in a ball of radius

r1 > 0 in B̃
2−2/p
q,p (Ω) and f is in a ball of radius r > 0 in X∞p,q,σ. We further demand that the final

result Fq(z0, f) shall lie in a ball of radius r in X∞p,q,σ. Thus we obtain from (24.20)

‖Fq(z0, f)‖X∞p,q,σ ≤ C
{
‖z0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖2X∞p,q,σ
}
≤ C(r1 + r2) ≤ r (24.21)

This implies

Cr2 − r + Cr1 ≤ 0 or
1−
√

1− 4C2r1

2C
≤ r ≤ 1 +

√
1− 4C2r1

2C
(24.22)

whereby {
range of values of r

}
−→ interval

[
0,

1

C

]
, as r1 ↘ 0 (24.23)

a constraint which is guaranteed by taking

r1 ≤
1

4C2
, C being the constant in (24.20). (24.24)

We have thus established that by taking r1 as in (24.24) and subsequently r as in (24.22), then the

map

Fq(z0, f) takes:

 ball in B̃
2−2/p
q,p (Ω)

of radius r1

×
 ball in X∞p,q,σ

of radius r

 into

 ball in X∞p,q,σ

of radius r

 ,

3 < q, 1 < p <
2q

2q − 1
(24.25)
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This establishes Theorem 24.2.

Proof of Theorem 24.3 Step 1: For f1, f2 both in the ball of X∞p,q,σ of radius r obtained in (24.22)

of the proof of Theorem 24.2, we estimate from (24.5):

‖Fq(z0, f1)− Fq(z0, f2)‖X∞p,q,σ =

∥∥∥∥∫ t

0
eAF,q(t−τ)

[
Nqf1(τ)−Nqf2(τ)

]
dτ

∥∥∥∥
X∞p,q,σ

(24.26)

≤ m̃ ‖Nqf1 −Nqf2‖Lp(0,∞;Lqσ(Ω)) (24.27)

after invoking the maximal regularity property (11.6).

Step 2: Next recalling Nqf = Pq[(f · ∇)f ] from (14.23), we estimate the RHS of (24.27). In doing so,

we add and subtract (f2 · ∇)f1, set A = (f1 · ∇)f1 − (f2 · ∇)f1, B = (f2 · ∇)f1 − (f2 · ∇)f2, and use

|A+B|q ≤ 2q[|A|q + |B|q]. [T-L.1, p 12] We obtain, again ignoring ‖Pq‖:

‖Nqf1 −Nqf2‖Lp(0,∞;Lqσ(Ω)) ≤
∫ ∞

0

{[∫
Ω
|(f1 · ∇)f1 − (f2 · ∇)f2|q dΩ

]1/q}p
dt (24.28)

=

∫ ∞
0

[ ∫
Ω
|A+B|q dΩ

]p/q
dt (24.29)

≤ 2q
∫ ∞

0

{∫
Ω

[
|A|q + |B|q

]
dΩ

}p/q
dt (24.30)

= 2q
∫ ∞

0

{[∫
Ω
|A|q dΩ +

∫
Ω
|B|q dΩ

]1/q
}p
dt (24.31)

= 2q
∫ ∞

0

{[
‖A‖q

Lqσ(Ω)
+ ‖B‖q

Lqσ(Ω)

]1/q
}p
dt (24.32)

≤ 2q · 21/q

∫ ∞
0

{
‖A‖Lqσ(Ω) + ‖B‖Lqσ(Ω)

}p
dt (24.33)

≤ 2p+q+
1/q

∫ ∞
0

[
‖A‖p

Lqσ(Ω)
+ ‖B‖p

Lqσ(Ω)

]
dt (24.34)

= 2p+q+
1/q

∫ ∞
0

[
‖((f1 − f2) · ∇)f1‖pLqσ(Ω)

+ ‖(f2 · ∇)(f1 − f2)‖p
Lqσ(Ω)

]
dt (24.35)

= 2p+q+
1/q

∫ ∞
0

{
‖f1 − f2‖pLqσ(Ω)

‖∇f1‖pLqσ(Ω)

+ ‖f2‖pLq(Ω) ‖∇(f1 − f2)‖pLq(Ω)

}
dt (24.36)
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Step 3: We now notice that regarding each of the integral term in the RHS of (24.36) we are structurally

and topologically as in the RHS of (24.12), except that in (24.36) the gradient terms ∇f1,∇(f1 − f2)

are penalized in the Lqσ(Ω)-norm which is dominated by the L∞(Ω)-norm, as it occurs for the gradient

term ∇f in (24.12). Thus we can apply to each integral term on the RHS of (24.36) the same argument

as in going from (24.12) to the estimates (24.15b) and (24.18) with q > dim Ω = 3. We obtain

‖Nqf1 −Nqf2‖pLp(0,∞;Lqσ(Ω))
≤ RHS of (24.36)

(see (24.14)) ≤ Cp,q
{
‖f1 − f2‖pL∞(0,∞;Lq(Ω)) ‖∇f1‖pLp(0,∞;L∞(Ω))

+ ‖f2‖pL∞(0,∞;Lq(Ω)) ‖∇(f1 − f2)‖pLp(0,∞;L∞(Ω)

}
(24.37)

(see (24.15b) and (24.18)) ≤ Cp,q
{
‖f1 − f2‖pX∞p,q,σ ‖f1‖pX∞p,q,σ (24.38)

+ ‖f2‖pX∞p,q,σ ‖f1 − f2‖pX∞p,q,σ
}

(24.39)

= Cp,q

{
‖f1 − f2‖pX∞p,q,σ

(
‖f1‖pX∞p,q,σ + ‖f2‖pX∞p,q,σ

)}
(24.40)

with Cp,q = 2p+q+
1/q , finally (24.40) yields

‖Nqf1 −Nqf2‖Lp(0,∞;Lqσ(Ω)) ≤ Cp,q ‖f1 − f2‖X∞p,q,σ
(
‖f1‖pX∞p,q,σ + ‖f2‖pX∞p,q,σ

)1/p
(24.41)

≤ 2
1/pCp,q ‖f1 − f2‖X∞p,q,σ

(
‖f1‖X∞p,q,σ + ‖f2‖X∞p,q,σ

)
(24.42)

Step 4: Using estimate (24.42) on the RHS of estimate (24.27) yields

‖Fq(z0, f1)− Fq(z0, f2)‖X∞p,q,σ ≤ Kp ‖f1 − f2‖X∞p,q,σ
(
‖f1‖X∞p,q,σ + ‖f2‖X∞p,q,σ

)
(24.43)

Kp,q = m̃Cp,q = m̃2p+
1/p+q+1/q (m̃ as in (24.27)). Next, pick f1, f2 in the ball of X∞p,q,σ of radius R:

‖f1‖X∞p,q,σ , ‖f2‖X∞p,q,σ ≤ R (24.44)

Then

‖Fq(z0, f1)− Fq(z0, f2)‖X∞p,q,σ ≤ ρ0 ‖f1 − f2‖X∞p,q,σ (24.45)

and Fq(z0, f) is a contraction on the space X∞p,q,σ as soon as

ρ0 ≡ 2Kp,qR < 1 or R < 1/2Kp,q , Kp,q = m̃2p+
1/p+q+1/q . (24.46)

In this case, the map Fq(z0, f) defined in (24.5) has a fixed point z in X∞p,q,σ

Fq(z0, z) = z, or z = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqz(τ)dτ (24.47)
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and such fixed point z ∈ X∞p,q,σ is the unique solution of the translated non-linear equation (24.1), or

(24.2) with finite dimensional control u in feedback form, as described by the RHS of (24.1). Theorem

24.1 is proved.
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25 Proof of Theorem 17.4. Local exponential decay of the non-linear

translated z-dynamics (17.17) = (24.1) with finite dimensional

localized feedback control {v, u}, case d = 3.

In this section we return to the feedback problem (24.1) rewritten equivalently as in (24.3)

z(t) = eAF,qtz0 −
∫ t

0
eAF,q(t−τ)Nqz(τ)dτ. (25.1)

For z0 in a small ball of B̃
2−2/p
q,p (Ω), Theorem 24.1 provides a unique solution in a ball of X∞p,q,σ. We

recall from (22.24) = (24.4)∥∥∥eAF,qtz0

∥∥∥
B̃

2−2/p
q,p (Ω)

≤Mγ0e
−γ0t ‖z0‖

B̃
2−2/p
q,p (Ω)

, t ≥ 0. (25.2)

Our goal now is to show that for z0 in a small ball of B̃
2−2/p
q,p (Ω), problem (25.1) satisfies the exponential

decay

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤ Ce−at ‖z0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0, for some constants, a > 0, Ca ≥ 1.

Step 1: Starting from (25.1) and using (25.2), we estimate

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤Me−γ0t ‖z0‖
B̃

2−2/p
q,p (Ω)

+ sup
0≤t≤∞

∥∥∥∥∫ t

0
eAF,q(t−τ)Nqz(τ)dτ

∥∥∥∥
B̃

2−2/p
q,p (Ω)

(25.3)

≤Me−γ0t ‖z0‖
B̃

2−2/p
q,p (Ω)

+ C

∥∥∥∥∫ t

0
eAF,q(t−τ)Nqz(τ)dτ

∥∥∥∥
X∞p,q,σ

(25.4)

≤Me−γ0t ‖z0‖
B̃

2−2/p
q,p (Ω)

+ C ‖Nqz‖Lp(0,∞;Lqσ(Ω)) (25.5)

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤Me−γ0t ‖z0‖
B̃

2−2/p
q,p (Ω)

+ C1 ‖z‖2X∞p,q,σ . (25.6)

In going from (25.3) to (25.4) we have recalled the embedding X∞p,q,σ ↪→ L∞
(
0,∞; B̃

2−2/p
q,p (Ω)

)
from

(23.8c) or (15.17) with T =∞. Next, in going from (25.4) to (25.5) we have used the maximal regu-

larity property (11.6). Finally, to go from (25.5) to (25.6) we have invoked estimate (24.19).

Step 2: We shall next establish that

‖z‖X∞p,q,σ ≤M ‖z0‖
B̃

2−2/p
q,p (Ω)

+K ‖z‖2X∞p,q,σ , hence ‖z‖X∞p,q,σ
(
1−K ‖z‖X∞p,q,σ

)
≤M ‖z0‖

B̃
2−2/p
q,p (Ω)

(25.7)
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In fact, to this end, we take the X∞p,q,σ estimate of equation (25.1). We obtain

‖z‖X∞p,q,σ ≤
∥∥∥eAF,qtz0

∥∥∥
X∞p,q,σ

+

∥∥∥∥∫ t

0
eAF,q(t−τ)Nqz(τ)dτ

∥∥∥∥
X∞p,q,σ

(25.8)

from which then (25.7) follows by invoking the maximal regularity property (23.34), (23.35) on eAF,qt

as well as the maximal regularity estimate (11.6) followed by use of of (24.19), as in going from (25.4)

to (25.6) ∥∥∥∥∫ t

0
eAF,q(t−τ)Nqz(τ)dτ

∥∥∥∥
X∞p,q,σ

≤ m̃ ‖Nqz‖Lp(0,∞;Lqσ(Ω)) (25.9)

≤ m̃C ‖z‖2X∞p,q,σ . (25.10)

Thus (25.7) is proved with K = m̃C where C is the same constant occurring in (24.19), hence in

(24.21), (24.22).

Step 3: The well-posedness Theorem 24.1 says that
If ‖z0‖

B̃
2−2/p
q,p (Ω)

≤ r1

for r1 sufficiently small

 =⇒

 The solution z satisfies

‖z‖X∞p,q,σ ≤ r

 (25.11)

where r satisfies the constraint (24.22) in terms of r1 and some constant C that occurs for K = m̃C

in (25.10). We seek to guarantee that we can obtain
‖z‖X∞p,q,σ ≤ r <

1
2K = 1

2m̃C

(
< 1

2C

)

hence 1
2 < 1−K ‖z‖X∞p,q,σ ,

(25.12)

where w.l.o.g. we can take the maximal regularity constant m̃ in (24.27) to satisfy m̃ ≥ 1. Again,

the constant C arises from application of estimate (24.19). This is indeed possible by choosing r1 > 0

sufficiently small. In fact, as r1 ↘ 0, (24.23) shows that the interval rmin ≤ r ≤ rmax of corresponding

values of r tends to the interval

[
0,

1

C

]
. Thus (25.12) can be achieved as rmin ↘ 0: 0 < rmin < r <

1

2m̃C
. Next, (25.12) implies that (25.7) holds true and yields then

‖z‖X∞p,q,σ ≤ 2M ‖z0‖
B̃

2−2/p
q,p (Ω)

≤ 2Mr1. (25.13)
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Substituting (25.13) in estimate (25.6) then yields

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤Me−γ0t ‖z0‖
B̃

2−2/p
q,p (Ω)

+ 4C1M
2 ‖z0‖2

B̃
2−2/p
q,p (Ω)

(25.14)

= M

[
e−γ0t + 4MC1 ‖z0‖

B̃
2−2/p
q,p (Ω)

]
‖z0‖

B̃
2−2/p
q,p (Ω)

(25.15)

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤M
[
e−γ0t + 4MC1r1

]
‖z0‖

B̃
2−2/p
q,p (Ω)

(25.16)

recalling the constant r1 > 0 in (25.11).

Step 4: Now take T sufficiently large and r1 > 0 sufficiently small such that

β ≡Me−γ0T + 4M2C1r1 < 1 (25.17)

Then (25.15) implies by (25.17)

‖z(T )‖
B̃

2−2/p
q,p (Ω)

≤ β ‖z0‖
B̃

2−2/p
q,p (Ω)

and hence (25.18a)

‖z(nT )‖
B̃

2−2/p
q,p (Ω)

≤ β ‖z((n− 1)T )‖
B̃

2−2/p
q,p (Ω)

≤ βn ‖z0‖
B̃

2−2/p
q,p (Ω)

. (25.18b)

Since β < 1, the semigroup property of the evolution implies that there are constants M̃ ≥ 1, γ̃ > 0

such that

‖z(t)‖
B̃

2−2/p
q,p (Ω)

≤ M̃e−γ̃t ‖z0‖
B̃

2−2/p
q,p (Ω)

, t ≥ 0 (25.19)

This proves Theorem 17.4.

Remark 25.1. The above computations - (25.17) through (25.19) - can be used to support qualita-

tively the intuitive expectation that “the larger the decay rate γ0 in (22.24) of the linearized feedback

w-dynamics (17.10), the larger the decay rate γ̃ in (25.19) of the nonlinear feedback z-dynamics (13.24)

= (24.1b); hence the larger the rate γ̃ in (13.20) of the original y-dynamics in (13.16)”.

The following considerations are somewhat qualitative. Let S(t) denote the non-linear semigroup

in the space B̃
2−2/p
q,p (Ω), with infinitesimal generator

[
AF,q − Nq

]
describing the feedback z-dynamics

(13.24)=(24.1b), as guaranteed by the well posedness Theorem B.(i) = Theorem 24.1. Thus, z(t; z0) =

S(t)z0 on B̃
2−2/p
q,p (Ω). By (25.17), we can rewrite (25.18a) as:

‖S(T )‖
L
(
B̃

2−2/p
q,p (Ω)

) ≤ β < 1. (25.20)
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It follows from [Bal, p 178] via the semigroup property that

− γ̃ is just below
lnβ

T
< 0. (25.21)

Pick r1 > 0 in (25.17) so small that 4M2C1r1 is negligible, so that β is just above Me−γ0T , so lnβ is

just above
[

lnM − γ0T
]
, hence

lnβ

T
is just above (−γ0) +

lnM

T
. (25.22)

Hence, by (25.21), (25.22),

γ̃ ∼ γ0 −
lnM

T
(25.23)

and the larger γ0, the larger is γ̃, as desired.
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26 Well-posedness of the pressure χ for the z-problem (13.24), (17.17)

= (24.1b) in feedback form, and of the pressure π for the y-

problem (13.16) in feedback form

The z-problem in feedback form: We return to the translated z problem (13.24) = (17.17), with  Le(z)

given by (15.26)

zt − ν∆z + Le(z) + (z · ∇)z +∇χ = m(G̃z)τ in Q (26.1a)

div z = 0 in Q (26.1b)

z = Fz on Σ (26.1c)

z(0, x) = y0(x)− ye(x) on Ω (26.1d)

with Fz and m(G̃z)τ given in the feedback form as in (17.23) = (17.13) and (17.24) respectively

m(G̃z)τ = m

(
K∑
k=1

(PNz, qk)Wu
N
uk

)
τ, Fz =

K∑
k=1

〈
PNz, pk

〉
Γ
fk, (26.1e)

for which Theorem B = Theorem 17.3 provides a local well-posedness result (17.19), (17.20) for the

z variable. We now complement such well-posedness for z with a corresponding local well-posedness

result for the pressure χ.

Here we recall maximal regularity result in (15.20) for problem (15.13) which accounts for inhomoge-

neous no-slip Dirichlet boundary conditions [P-S]. We present it for convenience

ψt − νo∆ψ +∇π = F in (0, T ]× Ω ≡ Q (26.2a)

div ψ ≡ 0 in Q (26.2b)

 ψ|Σ ≡ h0 in (0, T ]× Γ ≡ Σ (26.2c)

ψ|t=0 = ψ0 in Ω, (26.2d)

Then there exists a unique solution ϕ ∈ XT
p,q,σ, π ∈ Y T

p,q to the dynamic Stokes problem (26.2) or

(15.20), continuously on the data: there exist constants C0, C1 independent of T, Fσ = PqF,ϕ0 such
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that via (15.17)

C0 ‖ϕ‖
C
(

[0,T ];B
2−2/p
q,p (Ω)

) ≤ ‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q

≡
∥∥ϕ′∥∥

Lp(0,T ;Lqσ(Ω))
+ ‖Aqϕ‖Lp(0,T ;Lqσ(Ω)) + ‖π‖Y Tp,q

≤ C1

{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖(Lqσ(Ω),D(Aq)

)
1− 1

p ,p

+ ‖h0‖Lp(0,∞;W 1−1/q,q(Γ))

}
.

(26.3)

Theorem 26.1. Consider the setting of Theorem A for problem (13.16). Then the following well-

posedness result for the pressure χ holds true, where we recall the spaces Y∞p,q for T =∞ and Ŵ 1,q(Ω)

in (15.15), (15.16) as well as the steady state pressure πe from Theorem 13.1:

‖χ‖Y∞p,q ≤ C̃ ‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1
}
. (26.4)

Proof. We first apply the full maximal-regularity up to T = ∞ (26.3) to the Stokes component of

problem (26.1) with Fq = Pq
(
mG(z)− Le(z)− (z · ∇)z

)
and h0 = Fz to obtain

‖z‖X∞p,q,σ + ‖χ‖Y∞p,q ≤ C
{
‖Pq[m(Gz)− (z · ∇)z − Le(z)]‖Lp

(
0,∞;Lqσ(Ω)

) + ‖z0‖
B̃

2−2/p
q,p (Ω)

+ ‖Fz‖
Lp(0,∞;W 1−1/q,q(Γ))

}
≤ C

{
‖Pq[m(Gz)]‖

Lp
(

0,∞;Lqσ(Ω)
) + ‖Pq(z · ∇)z‖

Lp
(

0,∞;Lqσ(Ω)
)

+ ‖PqLe(z)‖Lp
(

0,∞;Lqσ(Ω)
) + ‖z0‖

B̃
2−2/p
q,p (Ω)

+ ‖Fz‖
Lp(0,∞;W 1−1/q,q(Γ))

}
. (26.5)

But Pq[mG(z)] = mG(z) as the vectors uk in the definition of G̃ in (21.11) are uk ∈ W u
N ⊂ Lqσ(Ω).

Moreover G ∈ L(Lqσ(Ω)), we obtain∥∥∥Pq[m(G̃z)]
∥∥∥
Lp
(

0,∞;Lqσ(Ω)
) ≤ C1 ‖z‖X∞p,q,σ , (26.6a)

‖Fz‖
Lp(0,∞;W 1−1/q,q(Γ))

≤ C ′1 ‖z‖X∞p,q,σ (26.6b)

recalling the space X∞p,q,σ from (15.15). Next, recalling (24.19) for Nqz = Pq
[
(z · ∇)z

]
, see (14.23), we

obtain

‖Pq(z · ∇)z‖
Lp
(

0,∞;Lqσ(Ω)
) ≤ C2 ‖z‖2X∞p,q,σ . (26.7)

The equilibrium solution {ye, πe} is given by Theorem 13.1 as satisfying

‖ye‖W 2,q(Ω) + ‖πe‖Ŵ q,1 ≤ c ‖f‖Lq(Ω) , 1 < q <∞. (26.8)
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We next estimate the term PqLe(z) = Pq[(ye · ∇)z + (z · ∇)ye] in (26.5)

‖PqLe(z)‖Lp
(

0,∞;Lqσ(Ω)
) = ‖Pq(ye.∇)z + Pq(z.∇)ye‖Lp

(
0,∞;Lqσ(Ω)

) (26.9)

≤ ‖Pq(ye.∇)z‖
Lp
(

0,∞;Lqσ(Ω)
) + ‖Pq(z.∇)ye‖Lp

(
0,∞;Lqσ(Ω)

) (26.10)

≤ ‖ye‖Lq(Ω) ‖∇z‖Lp
(

0,∞;Lqσ(Ω)
) + ‖z‖

Lp
(

0,∞;Lqσ(Ω)
) ‖∇ye‖Lq(Ω) (26.11)

≤ 2C2 ‖f‖Lq(Ω) ‖z‖Lp
(

0,∞;Lqσ(Ω)
) (26.12)

≤ C3 ‖z‖X∞p,q,σ (26.13)

with the constant C3 depending on the Lq(Ω)-norm of the datum f . Setting now C4 = C ·{C1, C2, C3}

and substituting (26.6a), (26.7), (26.13) in (26.5), we obtain

‖z‖X∞p,q,σ + ‖χ‖Y∞p,q ≤ C4

{
‖z‖2X∞p,q,σ + 2 ‖z‖X∞p,q,σ + ‖z0‖

B̃
2−2/p
q,p (Ω)

}
(26.14)

Next we drop the term ‖z‖X∞p,q,σ on the left hand side of (26.14) and invoking (25.13) to estimate

‖z‖X∞p,q,σ . Thus we obtain

‖χ‖Y∞p,q ≤ C5

{
‖z0‖2

B̃
2−2/p
q,p (Ω)

+ 2 ‖z0‖
B̃

2−2/p
q,p (Ω)

+ ‖z0‖
B̃

2−2/p
q,p (Ω)

}
(26.15)

≤ C̃ ‖z0‖
B̃

2−2/p
q,p (Ω)

{
‖z0‖

B̃
2−2/p
q,p (Ω)

+ 1
}
, C̃ = 3C5 (26.16)

and (26.16) proves (26.4), as desired, recalling (13.9).

The y-problem in feedback form We return to the original y-problem however in feedback form as in

(13.16), (13.21), (13.22) for which Theorem A in Secntion 13.7 proves a local well-posedness result. We

now complement such well-posedness result for y with the corresponding local well-posedness result

for the pressure π.

Theorem 26.2. Consider the setting of Theorem A for the y-problem in (13.16), (13.21), (13.22).

Then, the following well-posedness result for the pressure π holds true.

‖π − πe‖Y Tp,q ≤ ‖π − πe‖Y∞p,q ≤ C̃ ‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1
}

(26.17)

≤ Ĉ
{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q(Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q(Ω) + 1
}

(26.18)

≤ Ĉ
{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖Lq(Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖Lq(Ω) + 1
}

(26.19)
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‖π‖Y Tp,q ≤ Ĉ ‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

{
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ 1
}

+ cT
1/p ‖πe‖Ŵ 1,q(Ω)

, 0 < T <∞ (26.20)

≤ Ĉ
{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖Lq(Ω)

}{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖f‖Lq(Ω) + 1
}

+ cT
1/p ‖f‖Lq(Ω) , 0 < T <∞ (26.21)

Proof. We return to the estimate (26.4) for χ and recall χ = π− πe from (13.9) to obtain (26.17). We

next estimate y − ye by

‖y0 − ye‖
B̃

2−2/p
q,p (Ω)

≤ C
{
‖y0‖

B̃
2−2/p
q,p (Ω)

+ ‖ye‖W 2,q(Ω)

}
. (26.22)

which substituted in (26.17) yields (26.18). In turn, (26.18) leads to (26.19) by means of (26.8).
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Appendix C Proof of Theorem 15.5: maximal regularity of the Os-

een operator Aq on Lqσ(Ω), 1 < p, q <∞

Part I: (15.33). By (15.28) with ψ0 = 0

ψ(t) =

∫ t

0
eAq(t−τ)Fσ(τ)dτ. (A.1)

where by Theorem 3.1(ii) ∥∥∥eAq(t−τ)
∥∥∥
L(Lqσ(Ω))

≤Meb(t−τ), 0 ≤ τ ≤ t (A.2)

for M ≥ 1, b possibly depending on q.

Step 1 : We have the following estimate∫ T

0
‖ψ(t)‖p

Lqσ(Ω)
dt ≤ CT

∫ T

0
‖Fσ(t)‖p

Lqσ(Ω)
dt (A.3)

where the constant CT may depend also on p, q, b. This follows at once from Young’s inequality for

convolutions: [Sa]

‖ψ(t)‖Lqσ(Ω) ≤M
∫ t

0
eb(t−τ) ‖Fσ(τ)‖Lqσ(Ω) dτ ∈ L

p(0, T )

and the convolution of the Lp(0, T )-function ‖Fσ‖Lqσ(Ω) and the L1(0, T )-function ebt is in Lp(0, T ).

More elementary, one can use Hölder inequality with 1/p + 1/p̃ = 1 and obtain an explicit constant.

Step 2 : Claim: Here we shall next complement (A.3) with the estimate∫ T

0
‖Aqψ(t)‖p

Lqσ(Ω)
dt ≤ C

∫ T

0
‖ψ(t)‖p

Lqσ(Ω)
dt+ C

∫ T

0
‖Fσ(t)‖p

Lqσ(Ω)
dt (A.4)

to be shown below. Using (A.3) in (A.4) then yields∫ T

0
‖Aqψ(t)‖p

Lqσ(Ω)
dt ≤ CT

∫ T

0
‖Fσ(t)‖p

Lqσ(Ω)
dt. (A.5)

With respect to (15.27) with ψ0 = 0, then (A.5) says

Fσ ∈ Lp(0, T ;Lqσ(Ω)) −→ ψ ∈ Lp(0, T ;D(Aq) = D(Aq)) (A.6)

while (15.28) then yields via (A.6)

Fσ ∈ Lp(0, T ;Lqσ(Ω)) −→ ψt ∈ Lp(0, T ;Lqσ(Ω)) (A.7)
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continuously. This is part (i) of Theorem 13.6.

Proof of (A.4): . In this step, with ψ0 = 0, we shall employ the alternative formula, via (15.27)

ψ(t) =

∫ t

0
e−Aq(t−τ)(−Ao,q)ψ(τ)dτ +

∫ t

0
e−Aq(t−τ)Fσ(τ)dτ. (A.8)

where by maximal regularity of the Stokes operator −Aq on the space Lqσ(Ω), as asserted in Theorem

3.1(ii), Eq (15.22), we have in particular

Fσ ∈ Lp(0, T ;Lqσ(Ω)) −→
∫ t

0
e−Aq(t−τ)Fσ(τ)dτ ∈ Lp(0, T ;D(Aq)) continuously. (A.9)

Regarding the first integral term in (A.8) we shall employ the (complex) interpolation formula (15.9),

and recall from (13.9) that D(Ao,q) = D(A
1/2
q ):

D(Ao,q) = D(A
1/2
q ) = [D(Aq), L

q
σ(Ω)]1/2

(A.10)

so that the interpolation inequality [Triebel, Theorem p 53, Eq(3)] with θ = 1/2 yields from (A.10)

‖a‖D(Ao,q)
= ‖a‖

D
(
A

1/2
q

) ≤ C ‖a‖1/2

D(Aq)
‖a‖

1/2

Lqσ(Ω)

≤ ε ‖a‖D(Aq)
+ Cε ‖a‖Lqσ(Ω)

(A.11)

[
Since D(A

1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) by (14.21), then for a ∈ D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω), see

(14.20), we may as well invoke the interpolation inequality for W -spaces. [Adams, Theorem 4.13, p

74]:

‖a‖
W 1,q

0 (Ω)
≤ ε ‖a‖W 2,q(Ω) + Cε ‖a‖Lqσ(Ω)

]
We return to (A.8) and obtain

Aqψ(t) = Aq

∫ t

0
e−Aq(t−τ)(−Ao,q)ψ(τ)dτ +Aq

∫ t

0
e−Aq(t−τ)Fσ(τ)dτ. (A.12)

Hence via the maximal regularity of the uniformly stable Stokes semigroup e−Aqt, Eqts (15.22), (15.7)

‖Aqψ‖Lp(0,T ;Lqσ(Ω)) ≤ C
{
‖Ao,qψ‖Lp(0,T ;Lqσ(Ω)) + ‖Fσ‖Lp(0,T ;Lqσ(Ω))

}
(A.13)

by (A.11) ≤ ε′ ‖Aqψ‖Lp(0,T ;Lqσ(Ω)) + Cε′ ‖ψ‖Lp(0,T ;Lqσ(Ω)) + C ‖Fσ‖Lp(0,T ;Lqσ(Ω)) (A.14)
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ε′ = εC > 0 arbitrarily small. Hence (A.14) yields

‖Aqψ‖Lp(0,T ;Lqσ(Ω)) ≤
Cε′

1− ε′
‖ψ‖Lp(0,T ;Lqσ(Ω)) +

C

1− ε′
‖Fσ‖Lp(0,T ;Lqσ(Ω)) (A.15)

and estimate (A.4) of Step 2 is established. Part I of Theorem 15.5 is proved.

Part II: (15.36). For simplicity of notation, we shall write the proof on B̃
2−2/p
q,p (Ω) i.e. for 1 < q, p <

2q/2q−1. The proof on
(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

in the other case 2q/2q−1 < p is exactly the same.

Step 1 : Let η0 ∈ B̃
2−2/p
q,p (Ω) and consider the s.c. analytic Oseen semigroup eAqt on the space

B̃
2−2/p
q,p (Ω), as asserted by Theorem 3.3.ii:

η(t) = eAqtη0, or ηt = Aqη = −Aqη −Ao,qη (A.16)

Then we can rewrite η as

η(t) = e−Aqtη0 +

∫ t

0
e−Aq(t−τ)(−Ao,q)η(τ) dτ (A.17)

Aqη(t) = Aqe
−Aqtη0 +Aq

∫ t

0
e−Aq(t−τ)(−Ao,q)η(τ) dτ (A.18)

We estimate, recalling the maximal regularity (15.22), (15.23) as well as the uniform decay (13.25) of

the Stokes operator.

‖Aqη‖Lp(0,T ;Lq(Ω)) ≤ C ‖η0‖
B̃

2−2/p
q,p (Ω)

+ C ‖Ao,qη‖Lp(0,T ;Lqσ(Ω)) (A.19)

≤ C ‖η0‖
B̃

2−2/p
q,p (Ω)

+ εC̃ ‖Aqη‖Lp(0,T ;Lqσ(Ω)) + Cε ‖η‖Lp(0,T ;Lqσ(Ω)) (A.20)

after invoking, in the last step, the interpolation inequality (A.11). Thus (A.20) yields via (15.5)

‖Aqη‖Lp(0,T ;Lqσ(Ω)) = ‖Aqη‖Lp(0,T ;Lqσ(Ω))

≤ C

1− εC̃
‖η0‖

B̃
2−2/p
q,p (Ω)

+
Cε

1− εC̃
‖η‖Lp(0,T ;Lqσ(Ω)) (A.21)

Step 2 : With η0 ∈ B̃
2−2/p
q,p (Ω), since eAqt generates a s.c (analytic) semigroup on B̃

2−2/p
q,p (Ω), Theorem

3.3.ii, we have

η(t) = eAqtη0 ∈ C
(

0, T ; B̃
2−2/p
q,p (Ω)

)
⊂ Lp

(
0, T ; B̃

2−2/p
q,p (Ω)

)
⊂ Lp

(
0, T ;Lqσ(Ω)

)
(A.22)
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continuously, where in the last step, we have recalled that B̃
2−2/p
q,p (Ω) is the interpolation between

Lq(Ω) and W 2,q(Ω), see (15.3b). (A.22) says explicitly

‖η‖
Lp
(

0,T ;Lqσ(Ω))
) ≤ C ‖η0‖

B̃
2−2/p
q,p (Ω)

(A.23)

Step 3 : Substituting (A.23) in (A.21) yields

‖Aqη‖Lp
(

0,T ;Lqσ(Ω)
) ≤ C ‖η0‖

B̃
2−2/p
q,p (Ω)

(A.24)

and (15.36) is established, from which (15.37) follows at once. Thus Theorem 15.5 is proved.
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Appendix D Justification of (18.38)

Step 0. Selection of tangential vector field.

τ(ξ) for d = 3 in ω. For d = 3, we may make a selection of the tangential vector field τ(ξ) =

[τ1(ξ), τ1(xi)], an orthonormal system, ξ ∈ ω, at the outset, following standard procedure [Car, pp

52-54]. We start with an open set O in R2 with canonical basis e1 = {1, 0}, e2 = {0, 1}, and corre-

sponding coordinates {α, β}. In O, we fix two families oriented straight segments: family Fe1 with

β = constant (segments parallel to e1) and family Fe2 with α = constant (segments parallel to e1).

Let now M be a smooth, one-to-one conformal(parametrization) mapping of O onto Γ̃ ⊂ Γ, mapping

the families Fe1 and Fe2 in O into two families Ce1 and Ce2 of oriented coordinate curves, respec-

tively: Ce1 is obtained from α → M(α, β0) = {y1(α, β0), y2(α, β0), y3(α, β0)}, while Ce2 is obtained

from β →M(α0, β) = {y1(α0, β), y2(α0, β), y3(α0, β)}. Recall that any C3-surface is conformal to the

plane [Gug, p. 247], [Sto, p. 257], see also [Car, p.227]. For each point x ∈ Γ̃, there exist only one

coordinate curve of Ce1 and one coordinate curve of Ce2 meeting at x at an orthogonal angle. This

allows us to define at each x of Γ an orthonormal system τ(x) = {τ1(x), τ2(x)}. (Technically, we only

need that τ1(x) and τ2(x) be a basis rather than an orthonormal basis.) Finally, we transport each

such coordinate system τ(x), x ∈ Γ̃, in a parallel fashion to points ξ ∈ ω by taking the normal line at

x passing through ξ, so that v(x) = v(ξ) for the two normal vectors.

Step 1. Preliminaries. [L-T.1, Appendix 3C, p. 297] The following considerations are actually local

in character, and we may as well focus on a portion Γ̃ of Γ. Let η ∈ Γ̃, of class C2. Let ν(η) denote

the unit outward normal vector at η. On the tangent plane Mη of Γ at η, we let [τ1(η), τ2(η)] denote

an orthonormal system of tangent vectors

τ1(η)

η
τ2(η)

ν(η)
�
��

�
��

@
@
@
@
@

@
@
@
@
@

�
���

�

?

St0

 · ·
·

· ·

Γ̃Γ̃t

τ(ξ)

τ(η)

ξ

ν(ξ)

ν(η)η

���Q
Qk

���Q
Qk

We then define the vector or point in Ω:

ξ = r(t; η) = η + tν(η), −t0 < t < 0, η ∈ Γ̃, (B.1)
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|t0| sufficiently small, that for t fixed and η running over Γ̃, describes the parallel translation surface

Γ̃t of Γ̃ in Ω; moreover, as t runs over (−t0, 0), the family of surfaces Γ̃t sweeps a collar, or strip, St0

of Γ̃:

Γ̃t = {r(t; η) : η ∈ Γ̃}, St0 =
⋃

−t0<t<0

Γ̃t. (B.2)

The map η ∈ Γ̃ 7→ ξ ∈ St0 is one-to-one (the Jacobian is 6= 0). For each η ∈ Γ̃ and corresponding

ξ = η + tν(η) ∈ St0 , we let ν(ξ) be the unit outward normal to the surface Γ̃t passing through ξ, and

let [τ1(ξ), τ2(ξ)] be the corresponding orthonormal system of tangent vectors. Thus, we have

ν(ξ) = ν(η) and [τ1(ξ), τ2(ξ)] = [τ1(η), τ2(η)] for all ξ = η + tν(η), −t0 < t < 0, (B.3)

that is, the normal unit vector ν(η) at the boundary point η ∈ Γ̃ generates a constant vector field

ν(ξ) for all points ξ of the normal line to η in the collar; and similarly for the orthonormal system

[τ1(η), τ2(η)] of tangent vectors. In this way, smooth vector fields ν(ξ) and [τ1(ξ), τ2(ξ)] are defined at

all points ξ of the collar, by parallel translation of ν(η) and the pair [τ1(η), τ2(η)], η ∈ Γ̃, along the

normal line to η. Thus, we may define the normal derivative and tangential derivatives of a sufficiently

smooth vector w = [w1, . . . , wd], d = 2, 3, to Γ̃t for each point ξ = η + tν(η) of the collar St0 beside

the case η ∈ Γ̃:
∂w

∂ν
(ξ) = ∇w(ξ) · ν(ξ);

∂w

∂τi
(ξ) = ∇w(ξ) · τi(ξ), i = 1, 2, ; (B.4a)

∇τw(ξ) =
∂w

∂τ1
(ξ) · τ1(ξ) +

∂w

∂τ2
(ξ) · τ2(ξ); ∇w(ξ) =

∂w

∂ν
(ξ) · ν(ξ) +∇τw(ξ). (B.4b)

Thus, given vector w = [w1, . . . , wd], d = 2, 3, sufficiently smooth, the following two relations are

well known to hold true pointwise at each point ξ = Q of the collar of Γ:

(a) [L-T.1, Prop. 3C.6, p. 305], [S-Z.1, Proposition 2.68, p. 94]:

∆w|Q =
∂2w

∂ν2

∣∣∣∣
Q

+ ∆Γ(ξ)w

∣∣∣∣
Q

+

[(
∂w

∂ν

)
(div ν)

]
Q

, Q ∈ a collar of Γ; (B.5)

where ∆Γ is the tangential Laplacian (∆Γw|Q = ∂2w
∂τ2

∣∣∣∣
Q

when d = 2, where τ = [−ν2, ν1] is the

corresponding unit tangential vector).
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(b) [A-T, Prop. A.1, Appendix A] For d = 2, 3,

[divw]Q =

[
∂w1

∂x1
+ · · ·+ ∂wd

∂xd

]
Q

=

[
∂w

∂ν
· ν
]
Q

+

[
∂w

∂τ1
· τ1

]
Q

+

[
∂w

∂τ2
· τ2

]
Q

, Q ∈ a collar of Γ. (B.6)

(c) [L-T.1, Eqn. 3C.68, p. 309] The following property holds true:

on Γ :
∂

∂τi

∂f

∂ν
=

∂

∂ν

∂f

∂τi
+ (div ν)

∂f

∂τi
, i = 1, 2. (B.7)

Thus, the commutator of ∂
∂τi

and ∂
∂ν is a first-order tangential operator.

The Needed Result. In the next lemma, we start with a function ϕ(ξ) sufficiently smooth in the

collar ω of Ω [not necessarily the function ϕ in problem (6.36a-b-c) subject to the assumption [the

third condition in (18.36c)] that

ϕ(ξ) · τ(ξ) ≡ 0, ξ ∈ ω ⊂ Ω; (B.8a)

that is,

ϕ(ξ) = (ϕ(ξ) · ν(ξ))ν(ξ) + (ϕ(ξ) · τ(ξ))τ(ξ) (B.8b)

= (ϕ(ξ) · ν(η))ν(η). (B.8c)

Lemma D.1. (i) Let ϕ be a sufficiently smooth function defined on the collar ω such that assumption

(A.8) holds true. Then, we have that:

(i)
∂ϕ(ξ)

∂ν
= parallel to ν(ξ) ≡ ν(η); i.e.,

∂ϕ(ξ)

∂ν
· τ(ξ) ≡ 0, ξ ∈ ω; (B.9)

(ii)
∂ϕ2(ξ)

∂ν2
= parallel to ν(ξ) ≡ ν(η); i.e.,

∂2ϕ(ξ)

∂ν2
· τ(ξ) ≡ 0, ξ ∈ ω, (B.10)

hence
∂2ϕ

∂ν2

∣∣∣∣
Γ̃

· τ = 0 on Γ̃, (B.11)

and ∂2ϕ
∂ν2 is parallel to ν on Γ̃.

Proof.
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ϕ(ξ)

ϕ(ξ+hν(ξ))

�
�
�
�
�
�
��

ν(η)

• η

���•
ξ+hν(ξ)

�
��
•
ξ

Assumption (B.8) implies that the vectors ϕ(ξ) and ϕ(ξ+hν(ξ)) = ϕ(ξ+hν(η)) are along such normal

axis ξ + hν(ξ) = ξ + hν(η), h scalar > 0, that is, orthogonal to τ(ξ) = τ(ξ + hν(η)) = τ(η). Thus, via

(A.8c) and ν(ξ) = ν(η):

lim
h↘0

ϕ(ξ + hν(ξ))− ϕ(ξ)

h
= lim

h↘0

[
(ϕ(ξ + hν(η))− ϕ(ξ))

h
· ν(η)

]
ν(η)

=

(
∂ϕ(ξ)

∂ν
· ν(η)

)
ν(η),

and thus (B.9), i.e., part (i), is established.

Part (ii) now follows by replacing ϕ(ξ) with ∂ϕ(ξ)
∂ν , which by part (i) satisfies the counterpart of

assumption (B.8).
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Appendix E The eigenvectors ϕ∗ij ∈ W 2,q′(Ω)∩W 1,q′

0 (Ω)∩Lq′σ (Ω) of A∗(=

A∗q) in Lq
′
(Ω) may be viewed also as ϕ∗ij ∈ W 3,q(Ω), so

that
∂ϕ∗ij
∂ν

∣∣∣∣
Γ

∈ W 2−1/q,q(Γ), q ≥ 2

The eigenvectors ϕ∗ij of A∗(= A∗q), defined in (18.1), are in D((A∗q)n) for any n, so the are arbitrarily

smooth in Lq
′
σ (Ω), say ϕ∗ij ∈ W s,q′(Ω), with s as large as we please. We seek to view ϕ∗ij in an

Lq(Ω)-based space. To this end, we recall a Sobolev embedding theorem.

Theorem E.1. [Triebel, p328], For a more restricted version [Adams] Let Ω be an arbitrary bounded

domain, dim Ω = d. Let 0 ≤ t ≤ s < ∞ and ∞ > q ≥ q̃ > 1. Then, the following embedding holds

true:

W s,q̃(Ω) ⊂W t,q(Ω), s− d

q̃
≥ t− d

q
(C.1)

Corollary E.2. With 2 ≤ q <∞, 1/q + 1/q′ = 1, so that 1 < q′ ≤ 2 ≤ q, 0 ≤ r, we have

(i)

ϕ∗ij ∈W r+m,q′(Ω) ⊂W r,q(Ω), m ≥ d
(

1

q
+

1

q′

)
=


0, q′ = q = 2

d, q′ = 1, q =∞
(C.2)

(ii)
∂ϕ∗ij
∂ν

∣∣∣∣
Γ

∈W r−1−1/q ,q(Γ), r > 1 +
1

q
(C.3)

(iii) With reference to the sub-space F based on Γ, as defined in (13.23) = (18.8), we have

F ≡ span

{
∂

∂ν
ϕ∗ij , i = 1, . . . ,M ; j = 1, . . . , `i

}
⊂W r−1−1/q ,q(Γ), r > 1 +

1

q
(C.4)

In particular, for our purposes, if will suffice to take r = 3 in (C.2), so that (C.2)-(C.4) become

ϕ∗ij ∈W 3,q(Ω),
∂ϕ∗ij
∂ν

∣∣∣∣
Γ

∈W 2−1/q ,q(Γ), F ⊂W 2−1/q ,q(Γ). (C.5)

(iv) Thus, with reference to the boundary vector v = vN introduced in (17.1) = (18.10), we have

v =

K∑
k=1

νk(t)fk ∈W 2−1/q ,q(Γ), fk ∈ F , fk · ν|Γ = 0, v · ν|Γ = 0 (C.6)
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(v) Recalling the Dirichlet map D introduced to describe the solution of problem (14.1), we have

Dv ∈W 2,q(Ω), 2 ≤ q <∞ (C.7)

Proof. (i) Apply Theorem E.1 with s = r+m ≥ t = r, q̃ = q′, 1/q+ 1/q′ = 1, q ≥ 2, so that q′ = q̃ ≤ q,

to verify that the required condition (C.1)

s− d

q̃
= r +m− d

q′
≥ t− d

q
= r − d

q
, or m ≥ d

(
1

q′
− 1

q

)
≥ 0 (C.8)

can always be satisfied by taking m ≥ 0 suitable as in (C.8). This is possible, since ϕ∗ij is arbitrarily

smooth.

(ii) Then (C.3) follows by the usual trace theory [Adams].

Then, (iii)-(v) readily follow.

Next, we return to the operator F : Lq(Ω) ⊂ Lqσ(Ω) −→ Lq(Γ) in (21.11) = (17.13). Its adjoint F ∗ is

F ∗g =
K∑
k=1

(fk, g)Γpk ∈ (W u
N )∗ ⊂ Lq′σ (Ω), g ∈ Lq(Γ) (C.9)

where we have seen in (15.41) that D : Lq(Γ) ⊃ Uq −→W
1/q ,q(Ω) ∩ Lqσ(Ω) ⊂ D

(
A

1/2q−ε
q

)

F ∗D∗h =

K∑
k=1

(fk, D
∗h)Γpk =

K∑
k=1

〈
Dfk, h

〉
Wu
N

pk ∈ (W u
N )∗ (C.10)

where we have conservatively: fk ∈ Lq
′
(Γ), fk · ν = 0 on Γ, thus by (14.13), Dfk ∈ W

1/q′ ,q
′
(Ω) =

W
1/q′ ,q

′

0 (Ω) by (15.40a) since 1/q′ ≤ q′ for 1 < q′ ≤ 2. Thus, in (C.10) we can take h ∈W−1/q ,q(Ω). In

particular

F ∗D∗ ∈ L
(
Lq
′
(Ω)
)
, 1 < q′ ≤ 2. (C.11)
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Appendix F Relevant unique continuation properties for overdeter-

mined Oseen eigenvalue problems

In this Appendix F, we assemble a comprehensive account of unique continuation problems for Oseen

eigenproblems, as they pertain to the problem of controllability of finite dimensional projected system

(4.8a-b) of the linearized w-problem (13.11a) (with interior, tangential-like localized control u ≡ 0).

Positive solution, or lack thereof, of this finite dimensional problem is a key step, or obstruction, for

the uniform stabilization of the Navier Stokes equations. This issue has been known since the study of

boundary feedback stabilization of a parabolic equation with Dirichlet boundary trace in the feedback

loop, as acting on the Neumann boundary conditions [L-T.4]. We return to the bounded domain

Ω, d = 2, 3, with boundary Γ = ∂Ω. As before, Γ̃ is a subportion of Γ.

Problem #1 (over-determination only on a portion Γ̃ of Γ) Let {ϕ, p} ∈ W 2,q(Ω) ×W 1,q(Ω) solve

the over-determined problem

(−νo∆)ϕ+ Le(ϕ) +∇π = λϕ in Ω (D.1a)

div ϕ = 0 in Ω (D.1b)

 ϕ|
Γ̃
≡ 0,

∂ϕ

∂ν

∣∣∣∣
Γ̃

≡ 0 on Γ̃ (D.1c)

with over-determination only on the portion Γ̃ of Γ. Does (D.1a-b-c) imply

ϕ ≡ 0 and p ≡ const in Ω ? (D.2)

The answer is negative even in the Stokes case: Le(ϕ) ≡ 0. This follows from [F-L], where the following

counterexample is given in the 2-dimensional half-space Ω = {(x, y) : x ∈ R+, y ∈ R} with boundary

Γ = {x = 0}. On Ω take

u1(x, y) ≡ 0, u2(x, y) = ax2, p = 2ay, a 6= 0, (D.3)

so that with u = {u1, u2}, it follows that

∆u = ∇p in Ω, u|Γ = ∇u|Γ = 0, (D.4)

to obtain a nontrivial solution of the Stokes overdetermined eigenproblem with λ = 0. Such half-space

example can then be transformed into a counterexample over the bounded domain Ω where the over-
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determination is active on any subset Γ̃ of the boundary Γ = ∂Ω.

Implications of failure of unique continuation under Problem #1: A negative consequence

of the lack of unique continuation (D.1) =⇒ (D.2) with over-determination only in a portion Γ̃ of

the boundary Γ is as follows: that global uniform stabilization of the linearized w-problem (1.11a-d)

by means of a purely tangential (finite or infinite dimensional) feedback boundary control v (as given

by (17.8) in the finite dimensional case) acting only on a small subportion Γ̃ of the boundary Γ (and

thus with localized interior tangential-like control u ≡ 0) is not possible. This is so since the algebraic

rank condition (6.28b) (with u ≡ 0) fails, as boundary traces{
∂ϕ∗i1
∂ν

∣∣∣∣
Γ̃

,
∂ϕ∗i2
∂ν

∣∣∣∣
Γ̃

, . . . ,
∂ϕ∗i`i
∂ν

∣∣∣∣
Γ̃

}
(D.5)

fail to be linearly independent on Γ̃ since, equivalently, the implication (D.1) =⇒ (D.2) fails. See

Orientation.

Problem #2 (same as the statement of Lemma 18.2): necessity to complement the localized control

v on Γ̃ with a localized interior tangential-like control u supported on ω in terms of Γ̃. Let now

{ϕ, p} ∈W 2,q(Ω)×W 1,q(Ω) solve the problem

(−νo∆)ϕ+ Le(ϕ) +∇π = λϕ in Ω (D.6a)

div ϕ = 0 in Ω (D.6b)

 ϕ|
Γ̃
≡ 0,

∂ϕ

∂ν

∣∣∣∣
Γ̃

≡ 0, ϕ · τ ≡ 0 in ω (D.6c)

Then, [L-T.3, Theorem 6.2],

ϕ ≡ 0 and p ≡ const in Ω. (D.7)

It is as a consequence of such unique continuation property that the Kalman algebraic rank conditions

(6.28b) are satisfied. This is the basic result upon which the uniform stabilization of the present paper

relies. Thus we can conclude that the results of the present paper (as in [L-T.3]) are optimal in terms

of the required extra condition of the localized interior, tangential-like control needed to supplement

the insufficient role of the localized tangential boundary control v on Γ̃. Optimality is in terms of the

smallness of the required control action for v and u.
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Problem #3 (over-determination on the entire boundary Γ = ∂Ω). Let now {ϕ, p} ∈ W 2,q(Ω) ×

W 1,q(Ω) solve the over-determined problem

(−νo∆)ϕ+ Le(ϕ) +∇π = λϕ in Ω (D.8a)

div ϕ = 0 in Ω (D.8b)

 ϕ|Γ ≡ 0,
∂ϕ

∂ν

∣∣∣∣
Γ

≡ 0 on Γ (D.8c)

with over-determination on all of Γ. Then, does (D.8a-b-c) imply

ϕ ≡ 0 and p ≡ const in Ω ? (D.9)

It seems that a general definitive answer is not known at present. Only partial results are known.

The desired unique continuation (D.8) =⇒ (D.9) holds true, if the equilibrium solution ye ≡ 0 (Stokes

eigenproblem) or, more generally, if ye is sufficiently small in the W 1,q(Ω)-norm. Several different

proofs are given in [RT.4] and [RT.5].

The case ye ≡ 0 is actually physically quite important as it occurs for instance when the forcing

function in (13.1a) or (13.2a) is a conservative vector field (say an electrostatic or gravitational field)

f = ∇g. In this case, a solution (1.2a-b-c) is: ye ≡ 0, πe = g.

When ye ≡ 0 (or ye small) the tangential boundary feedback control v alone, in the form

such as (17.13), as acting on the entire boundary Γ produces enhancement of stability at

will for the linearized w-problem.

Of course, with ye ≡ 0, the corresponding Oseen problems reduces to the Stokes problem. The

Stokes semigroup is already uniformly stable, see (15.7), with margin of stability δ > 0. When

ye ≡ 0 a most valuable variation of the problem under investigation of the present paper is to

enhance the original margin of stability δ > 0 of the original linearized uncontrolled w-problem (13.11)

(with u ≡ 0, v ≡ 0) to obtain an arbitrary decay rate, say k2, by means of only a tangential boundary

finite dimensional feedback control, of the same form as the operator F in (17.13) but applied to all

of Γ. To this, it suffices to apply the procedure of the present paper to a finite dimensional projected
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space spanned by the eigenvectors of the Stokes operator corresponding to finitely many eigenvalues

λi, i = 1, . . . , I,

− k2 ≤ −Re λI ≤ · · · ≤ Re λ1 ≤ −δ (D.10)

Problem #4 over-determination on a portion of the boundary Γ̃ involving also the pressure p. Let

{ϕ, p} ∈W 2,q(Ω) ∩W 1,q(Ω) solve the over-determined problem

(−νo∆)ϕ+ Le(ϕ) +∇π = λϕ in Ω (D.11a)

div ϕ = 0 in Ω (D.11b)

 ϕ|Γ ≡ 0,

[
∂ϕ

∂ν
− pν

]
Γ

≡ 0 (D.11c)

Does this imply

ϕ ≡ 0 and p ≡ const in Ω ? (D.12)

This answer is in the affirmative. The argument, given in the [RT.4] is along more classical elliptic

arguments [Ko]. Here however the new condition in (D.11c) contains the pressure, which must be

viewed as unknown in general. Application of this result to the present paper will result in substituting

∂νϕ
∗
ij |Γ̃ with ∂νϕ

∗
ij − piν|Γ̃ in the matrix Wi in (18.12) or (19.11), which then - with this modification

- becomes full rank, as desired. Thus, the stabilizing control will be expressed in terms of the pressure

on the boundary, which is typically unknown.
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NavierStokes equations, Journal de Mathématiques Pures et Appliquées, Vol. 87, Issue 6, June

2007, pp 627-669.

[C-M-R] S. Chowdhury, D. Mitra, M. Renardy, Null controllability of the incompressible Stokes

equations in a 2-D channel using normal boundary control, Evolution Equations & Control

Theory, 2018, 7 (3), pp 447-463.

[Saa] J. Saal, Maximal regularity for the Stokes system on non-cylindrical space-time domains, J.

Math. Soc. Japan 58 (2006), no. 3, 617-641.

206



[Sa] C. Sadosky, Interpolation of Operators and Singular Integrals, Marcel Dekker pp 375, 1979.

[Sch] C. Schneider, Traces of Besov and Triebel-Lizorkin spaces on domains, Math. Nachr.284, No.

56, 572 586 (2011).

[Ser] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch.

Rational Mech. Anal. (1962) 9: 187. https://doi.org/10.1007/BF00253344.

[Sh] Z. Shen, Resolvent Estimates in Lp for the Stokes Operator in Lipschitz Domains, Arch. Rational

Mech. Anal. 205 395-424,2012.

[Sol.1] V. A. Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier-

Stokes equations, A.M.S. Translations, 75 (1968), 1-116.

[Sol.2] V. A. Solonnikov, Estimates for solutions of non-stationary Navier-Stokes equations, J. Sov.

Math., 8, 1977, pp 467-529.

[Sol.3] V. A. Solonnikov, On the solvability of boundary and initial-boundary value problems for the

Navier-Stokes system in domains with noncompact boundaries. Pacific J. Math. 93 (1981), no.

2, 443-458. https://projecteuclid.org/euclid.pjm/1102736272.

[Sol.4] V. A. Solonnikov, On Schauder Estimates for the Evolution Generalized Stokes Problem. Ann.

Univ. Ferrara 53, 1996, 137-172.

[Sol.5] V. A. Solonnikov, Lp-Estimates for Solutions to the Initial Boundary-Value Problem for

the Generalized Stokes System in a Bounded Domain, J. Math. Sci., Volume 105, Issue 5, pp

24482484.

[S-Z.1] J. Sokolowski, J. P. Zolesio, Introduction to Shape Optimization, Shape Sensitivity Analysis,

Springer Ser. Comput. Math. 16, Springer, 1992.

[Sto] J. Stoker, Differential Geometry, Wiley-Interscience, 1969, 404 pages.

[T-L.1] A. E. Taylor, D. Lay Introduction to Functional Analysis 2nd Edition. Wiley Publication,

ISBN-13: 978-0471846468, 1980.

[Te] R. Temam, Navier-Stokes Equations, North Holland, 1979, pp 517.

207



[RT.1] R. Triggiani, On the Stability Problem of Banach Spaces. J. Math. Anal. Appl. 52 303-

403,1975.

[RT.2] R. Triggiani, Feedback Stability of Parabolic Equations. Appl. Math. Optimiz. 6 201-220

,1975.

[RT.3] R. Triggiani, Boundary feedback stabilizability of parabolic equations, Appl. Math. Optimiz.

6 (1980), 201–220.

[RT.4] R. Triggiani, Linear independence of boundary traces of eigenfunctions of elliptic and Stokes

Operators and applications, invited paper for special issue, Applicationes Mathematicae 35(4)

(2008), 481–512, Institute of Mathematics, Polish Academy of Sciences.

[RT.5] R. Triggiani, Unique continuation of boundary over-determined Stokes and Oseen eigenprob-

lems, Discrete & Continuous Dynamical Systems - S, Vol. 2 , N. 3, Sept 2009, 645-677.

[RT.6] R. Triggiani, Unique Continuation from an Arbitrary Interior Subdomain of the Variable-

Coefficient Oseen Equation. Nonlinear Analysis, 2009.

[Triebel] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Bull. Amer.

Math. Soc. (N.S.) 2, no. 2, 339-345 , 1980.

[Wahl] W. von Whal, The Equations of Navier-Stokes and Abstract Parabolic Equations. Springer

Fachmedien Wiesbaden, Vieweg+Teubner Verlag , 1985.

[Weid] P. Weidemaier, Maximal Regularity for Parabolic Equations with Inhomogeneous Boundary

Conditions in Sobolev Spaces with Mixed Lp-norm. Electronic Research Announcements of the

AMS, volume 8, pp 47-51, 2002.

[Weis] L. Weis, A new approach to maximal Lp-regularity. In Evolution Equ. and Appl. Physical Life

Sci., volume 215 of Lect. Notes Pure and Applied Math., pages 195214, New York, 2001. Marcel

Dekker.

208


	Uniform Stabilization of Navier-Stokes Equations in Lq-based Sobolev and Besov Spaces
	Recommended Citation

	Part I: Using finitely many tangential, boundary, localized, feedback controls also in dimension d = 3.
	Introduction
	Controlled Dynamic Navier-Stokes Equations
	Stationary Navier-Stokes equations
	Main goal of the present paper
	Qualitative Orientation
	On the local, interior, feedback stabilization problem: Past Literature
	Additional goals of the present paper as definite improvements over the literature

	What is the motivation for seeking interior localized feedback exponential stabilization of problem (2.1) in the topology of the Besov space in (2.3)?
	Comparison with the prior work BT:2004, once the present treatment is specialized to the Hilbert setting (q=2)
	Helmholtz decomposition
	Translated nonlinear Navier-Stokes z-problem: reduction to zero equilibrium
	Abstract nonlinear translated model
	The linearized problem of the translated model
	Some auxiliary results for problem (2.13): analytic semigroup generation, maximal regularity, domains of fractional powers

	Main results
	Orientation
	Introducing the problem of feedback stabilization of the linearized w-problem (2.13) on the complexified Lq() space.
	Uniform (exponential) stabilization of the linear finite-dimensional wN-problem (3.8a) in the space WuN by means of a finite-dimensional, explicit, spectral based feedback control localized on .
	Global well-posedness and uniform exponential stabilization on the linearized w-problem (3.1) in various Lq()-based spaces, by means of the same feedback control obtained for the wN-problem in Section 3.3
	Local well-posedness and uniform (exponential) null stabilization of the translated nonlinear z-problem (2.7) or (2.12) by means of a finite dimensional explicit, spectral based feedback control localized on 
	Local well-posedness and uniform (exponential) stabilization of the original nonlinear y-problem (2.1) in a neighborhood of an equilibrium solution ye, by means of a finite dimensional explicit, spectral based feedback control localized on 
	Results on the real space setting

	Algebraic rank condition for the wN-dynamics in (3.8a) under the (preliminary) Finite-Dimensional Spectral Assumption (FDSA)
	Algebraic rank conditions for the dynamics wN in (3.8a) in the general case
	Proof of Theorem 3.1: arbitrary decay rate of the wN-dynamics (4.5) or (5.15) (or (4.13) under the FDSA) by a suitable finite-dimensional interior localized feedback control u
	Proof of Theorem 3.2: Feedback stabilization of the original linearized w-Oseen system (2.13) by a finite dimensional feedback controller
	Maximal Lp regularity on Lq() and for T =  of the s.c. analytic semigroup eAF,qt yielding uniform decay of the linearized w-problem (3.1), once specialized as in (7.1) of Theorem 3.2 = Theorem 7.1.
	Proof of Theorem 3.3: Well-posedness on Xp,q of the non-linear z-dynamics in feedback form
	Proof of Theorem 3.4. Local exponential decay of the non-linear translated z-dynamics (9.1) with finite dimensional localized feedback control
	Well-posedness of the pressure  for the z-problem (2.7) in feedback form, and of the pressure  for the y-problem (2.1) in feedback form (3.22) in the vicinity of the equilibrium pressure e.
	Appendix On Helmholtz Decomposition
	Appendix Proof of Theorem 2.6: maximal regularity of the Oseen operator Aq on Lq(), 1 < p,q < , T < .
	Part II: Using finitely many interior, localized, feedback controls also in dimension d = 3.
	Introduction
	Controlled Dynamic Navier-Stokes Equations
	Stationary Navier-Stokes equations
	Main goal of the present paper: solution of the presently open problem on local uniform stabilization of the N-S equations (13.1), near an unstable equilibrium solution ye by means of a tangential boundary, localized feedback control v which is finite dimensional also for d = 3 (in addition to a corresponding control u).
	Helmholtz decomposition
	Translated Nonlinear Navier-Stokes z-Problem: Reduction to zero equilibrium
	The linearized w-problem of the non-linear translated z-problem (13.10)
	Main contributions of the present paper: for dim = d = 2, 3, local-in-space well-posedness on the space of maximal regularity Xp,q, of the N-S dynamics (13.1) as well as local exponential uniform stabilization near ye on the space B"0365B2-2/pq,p(),  q > d,  1 < p < 2q/2q-1 by means of a finite dimensional tangential boundary feedback control v, supported on "0365 and a feedback finite dimensional tangential-like interior control u, supported on the collar  of "0365
	Comparison with the literature

	Abstract models for the non-linear z-problem (13.10) and the linearized w-problem (13.11) in the Lq-setting
	Well-posedness in the Lq-setting of the non-homogeneous stationary Oseen problem: the Dirichlet map D: boundary -3mu interior
	Abstract model for the non-linear translated z-problem (13.10)
	Abstract model of the linearized w-problem (13.11) of the translated model (13.10)
	The adjoint operators D*,  (Aq)* = Aq* and  (Ao,q)* = A*o,q,  (Aq)* = Aq* = - (o A*q + A*o,q),  1 < q < 
	The operator D* Aq*

	Some auxiliary results for the w-linearized problem (14.26): Analytic semigroup generation, Maximal regularity, Domains of fractional powers
	Introducing the Problem of Feedback Stabilization of the Linearized w-Problem (14.26) on the Complexified Lq()-space.
	Main results
	Orientation
	Arbitrary decay rate of the finite dimensional wN-dynamics (16.8) by suitable finite-dimensional boundary feedback tangential localized control v and interior localized tangential-like feedback control u. Constructive proof with q 2.
	Global well-posedness and Uniform Exponential Stabilization of the Linearized w-problem (13.11) or (14.26)=(16.1) in various Lq()-based spaces, q 2, by means of the same feedback controls {v,u} obtained for the wN-problem in Section 17.2
	Local well-posedness and uniform (exponential) null-stabilization of the translated nonlinear z-problem (13.10) or (14.25) by means of a finite dimensional explicit, spectral based tangential feedback control pair {v,u} localized on "0365 and . Now q >3 for d=3.
	Local well-posedness and uniform (exponential) stabilization of the original nonlinear y-problem (13.1) in a neighborhood of an unstable equilibrium solution ye, by means of a finite dimensional explicit, spectral based, tangential feedback control pair {v,u} localized on "0365 and . Now q > 3 for d = 3.
	Results on the real space setting

	First step in the proof of Theorem 17.1 for the wN-system in (16.8): verification of the controllability algebraic rank conditions under the Finite-Dimensional Spectral Assumption (FDSA) [Section 3.6]BLT1:2006, based on the unique continuation property of Lemma 18.2
	First step in the proof of Theorem 17.1 for the wN-system in (16.8): verification of the controllability algebraic rank conditions in the general case
	Proof of Theorem 17.1: Arbitrary decay rate of the wN-dynamics (19.16) (or (18.24) under FDSA) by suitable finite-dimensional boundary tangential localized control v on "0365 and interior localized tangential-like control u in feedback form as in (17.6) on 
	Proof of Theorem 17.2: The feedback operator AF,q in (17.10) generates a s.c analytic semigroup in Lq(),  2 < q <  or in B"0365B2-2/pq,p(),  1 < p < 2q/2q-1,  q > d,  d = 2,3.
	Proof of Theorem 17.2: The feedback operator AF,q in (17.11) is uniformly stable on Lq(),  2 q < ; or on B"0365B2-2/pq,p(),  1 < p < 2q/2q-1,  q 2: Feedback stabilization of the linearized w-system (16.1) by suitable finite-dimensional localized boundary tangential control v and interior localized tangential-like control u
	Maximal Lp-regularity on Lq(),  q 2 and up to T =  of the s.c. analytic semigroup eAF,qt yielding uniform decay of the linearized w-problem (17.10) of Theorem 17.2
	Proof of Theorem 17.3: Well-posedness on Xp,q of the non-linear z-dynamics (17.17) in feedback form
	Proof of Theorem 17.4. Local exponential decay of the non-linear translated z-dynamics (17.17) = (24.1) with finite dimensional localized feedback control {v,u}, case d = 3.
	Well-posedness of the pressure  for the z-problem (13.24), (17.17) = (24.1b) in feedback form, and of the pressure  for the y-problem (13.16) in feedback form
	Appendix Proof of Theorem 15.5: maximal regularity of the Oseen operator Aq on Lq(), 1 < p,q < 
	Appendix Justification of (18.38)
	Appendix The eigenvectors *ij W2,q'() W1,q'0() Lq'() of A* (=Aq*) in Lq'() may be viewed also as *ij W3,q(), so that *ij |to. W2-1/q,q(),  q 2
	Appendix Relevant unique continuation properties for overdetermined Oseen eigenvalue problems

