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ABSTRACT
The magnetohydrodynamic (MHD) flow of two immiscible and electrically conducting fluids

between isothermal, insulated moving plates in the presence of an applied electric and inclined
magnetic field has been investigated in the paper. The partial differential equations governing
the flow and heat transfer are solved analytically with appropriate boundary conditions for
each fluid and these solutions have been matched at the interface. The numerical results for
various values of the Hartmann number, the angle of magnetic field inclination, load parameter
and the ratio of electrical and thermal conductivities have been presented graphically. It was
found that decrease of magnetic field inclination angle flattens out the velocity and temperature
profiles. With the increase of the Hartmann number velocity gradients near the plate’s increases,
temperature in the middle of the channel decreases and near the plate’s increases. Induced
magnetic field is evidently suppressed with an increase of the Hartman number. The effect of
changes of the load factor is to aid or oppose the flow as compared to the short-circuited case.

Keywords: MHD, immiscible fluids, moving plates, heat transfer, induced magnetic field.

DÉBIT MHD ET TRANSFERT DE CHALEUR DE DEUX FLUIDES IMMISCIBLES
ENTRE DES PLATEAUX MOBILES

RÉSUMÉ
La recherche présente une étude sur le débit magnétohydrodynamique (MHD) de deux fluides

immiscibles, conducteur du courant électrique entre des plateaux mobiles isolés, isothermes, en
présence d’un champ magnétique appliqué incliné. Les équations différentielles partielles régissant
le débit et le transfert de chaleur sont résolues de façon analytique avec des conditions limites
appropriées pour chaque fluide, ses solutions appliquées ayant été appariées à l’interface. Les
résultats numériques pour les différentes valeurs du nombre de Hartmann, l’angle d’inclinaison du
champ magnétique, les paramètres de charge et le ratio des conductivités électriques et thermiques
sont représentés dans un graphique. On a constaté que la réduction de l’angle d’inclinaison du champ
magnétique stabilise les profils de la célérité et de la température. Avec l’augmentation du nombre de
Hartmann, les gradients de célérité augmentent près des plateaux, pendant que la température au
centre du canal diminue, et augmente près des plateaux. Par le fait même, l’aimantation induite est
supprimée avec l’augmentation du nombre de Hartmann. Les changements du facteur de charge a
pour effet d’aider ou de contrer le débit, contrairement à un court-circuit.

Mots-clés : MHD;fluides immiscibles;plateauxmobiles; transfertdechaleur; champmagnétique induit.
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1 INTRODUCTION

The flow and heat transfer of electrically conducting fluids in channels and circular pipes
under the effect of a transverse magnetic field occurs in magnetohydrodynamic (MHD)
generators, pumps, accelerators and flowmeters and have applications in nuclear reactors,
filtration, geothermal systems and others.

The interest in the outer magnetic field effect on heat-physical processes appeared seventy
years ago. Research in magnetohydrodynamics grew rapidly during the late 1950s as a result of
extensive studies of ionized gases for a number of applications. Blum et al. [1] carried out one of
the first works in the field of heat and mass transfer in the presence of a magnetic field. The

Nomenclature (Optional Section)

B magnetic field vector (T)
B0 strength of applied magnetic

field (T)
Bx strength of induced magnetic

field (T)
bi dimensionless ratio of mag-

netic fields
cp specific heat capacity (J/kgK)
Ci constants
Dij constants
E electric field vector (V/m)
Fi constants
Hai Hartmann number in region i
h half channel height (m)
J current density vector (A/m2)
K load factor
ki thermal conductivity of fluid in

region i (W/Km)
L constant
Mi constants
p pressure (Pa)
Qij constants
Rmi magnetic Reynolds number in

region i
S constant
T temperature (K)
t time (s)
U0 absolute velocity of plates

(m/s)
ui fluid velocity in x-direction in

region i (m/s)
v velocity vector (m/s)

x longitudinal coordinate (m)
y transversal coordinate (m)
W constant

Greek symbols

a viscosities ratio of fluids
d ratio of magnetic

permeability’s
c ratio of electrical

conductivities
W dissipative function
l cosine of inclination angle h
mi dynamic viscosity of fluid in

region i (kg/ms)
mei magnetic permeability of fluid

in region i (H/m)
ni kinematic viscosity of fluid in

region i (m2/s)
h applied magnetic filed inclina-

tion angle (o)
Hi dimensionless temperature in

region i
ri density of fluid in region

i (kg/m3)
si electrical conductivity of fluid

in region i (S/m)
j ratio of thermal conductivities
=i constants

Subscripts

1 fluid in region 1
2 fluid in region 2
w plate
� dimensionless quantities
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increasing interest in the study of MHD phenomena is also related to the development of fusion
reactors where plasma is confined by a strong magnetic field [2]. Morley et al. [3] studied MHD
effects in the so called blanket. Blanket is located between the plasma and the magnetic field
coils, absorbs neutrons transforming their energy into heat, which is then carried away by a
suitable coolant and it prevents neutrons from reaching the magnets avoiding in this way
radiation damages. Many exciting innovations were put forth in the areas of MHD propulsion
[4], remote energy deposition for drag reduction [5], plasma actuators, radiation driven
hypersonic wind tunnel, MHD control of flow and heat transfer in the boundary layer [6,7,8,9],
enhanced plasma ignition [10] and combustion stability. Extensive research however has
revealed that additional and refined fidelity of physics in modeling and analyzing the
interdisciplinary endeavor are required to reach a conclusive assessment. In order to ensure a
successful and effective use of electromagnetic phenomena in industrial processes and technical
systems, a very good understanding of the effects of the application of a magnetic field on the
flow of electrically conducting fluids in channels and various geometric elements is required.
From this lesson learned; most recent research activities tend to refocus to basic and simpler
fluid dynamic-electromagnetic interaction phenomena.

All the mentioned studies pertain to a single-fluid model. Most of the problems relating to the
petroleum industry, geophysics, plasma physics, magneto-fluid dynamics, etc., involve multi-
fluid flow situations. The problem concerning the flow of immiscible fluids has a definite role in
chemical engineering and in medicine [11]. There have been some experimental and analytical
studies on hydrodynamic aspects of the two-fluid flow reported in the literature. Bird et al. [12]
obtained an exact solution for the laminar flow of two immiscible fluids between parallel plates.
Bhattacharya [13] investigated the flow of two immiscible fluids between two rigid parallel
plates with a time-dependent pressure gradient. Later, Mitra [14] analyzed the unsteady flow of
two electrically conducting fluids between two rigid parallel plates. The physical situation
discussed by Mitra is one possible case. Another physical phenomenon is the case in which the
two immiscible conducting fluids flow past permeable beds. Chamkha [15] reported analytical
solutions for flow of two-immiscible fluids in porous and non-porous parallel-plate channels.
The findings of a study of this physical phenomenon have a definite bearing on petroleum and
chemical technologies and on biomechanics.

These examples show the importance of knowledge of the laws governing immiscible multi-
phase flows for proper understanding of the processes involved. In modeling such problems, the
presence of a second immiscible fluid phase adds a number of complexities as to the nature of
interacting transport phenomena and interface conditions between the phases. There has been
some theoretical and experimental work on stratified laminar flow of two immiscible fluids in a
horizontal pipe [16–19]. Loharsbi et al. [20] studied two-phase MHD flow and heat transfer in a
parallel plate channel with one of the fluids being electrically conducting. Following the ideas of
Alireaz et al. [16], Malashetty et al. [21, 22] have studied the two-fluid MHD flow and heat
transfer in an inclined channel, and flow in an inclined channel containing porous and fluid
layer. Umavathi et al. [23, 24] have presented analytical solutions of an oscillatory Hartmann
two-fluid flow and heat transfer in a horizontal channel and an unsteady two-fluid flow and
heat transfer in a horizontal channel. Recently, Malashetty et al. [25] have analyzed the problem
of magnetoconvection of two-immiscible fluids in vertical enclosure.

Keeping in view the wide area of practical importance of multi-fluid flows as mentioned
above, the objective of the present study is to investigate the MHD flow and heat transfer of
two immiscible fluids between moving plates in the presence of applied electric and inclined
magnetic field.
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2 MATHEMATICAL MODEL

As mentioned in the introduction, the problem of the MHD two-fluid flow between parallel
moving plates has been considered in this paper. MHD channel flow analysis is usually
performed assuming the fluid constant electrical conductivity and treating the problem as a
mono-dimensional one: with these two main assumptions the governing equations are
considerably simplified and they can be solved analytically without causing significant errors
for simple channel geometry [26]. In this paper, usual flow analysis has been extended
considering induced magnetic filed in order to analyze the magnetohydrodynamic interaction
and in energy equation besides the viscous heating, Joule heating is taken into account.

The fluids in the two regions have been assumed immiscible and incompressible and the flow has
been steady, one-dimensional and fully developed. Furthermore, the two fluids have different
kinematic viscosities n1 and n2 and densities r1 and r2. The physical model shown in Fig. 1, consists
of two infinite parallel plates extending in the x and z-direction. The upper plate moves with
constant velocity U0 in positive longitudinal direction, while lower plates moves with same velocity
but in opposite direction. The region 1: 0ƒyƒh has been occupied by a fluid of viscosity m1,
electrical conductivity s1, and thermal conductivity k1, and the region 2: {hƒyƒ0 has been filled
by a layer of different fluid of viscosity m2, thermal conductivity k2 and electrical conductivity s2.

A uniform magnetic field of the strength B0 has been applied in the direction making an angle
h to the y axis and due the fluid motion magnetic field of the strength Bx has been induced along
the lines of motion.

The fluid velocity~vv and the magnetic field distributions are:

~vv~ u yð Þ,0,0ð Þ; ð1Þ

~BB~ Bx yð ÞzB0

ffiffiffiffiffiffiffiffiffiffiffiffi
1{l2

p
,B0l,0

� �
; ð2Þ

where ~BB is magnetic field vector and l~cosh.

The upper and lower plate have been kept at the two constant temperatures Tw1 and Tw2,
respectively, and the plates are electrically insulated.

The described MHD two-fluid flow problem is mathematically presented with a continuity
equation:

+~vv~0; ð3Þ

Fig. 1. Physical model and coordinate system.
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momentum equation:

r
L~vv
Lt

z ~vv+ð Þ~vv
� �

~{+pzm+2~vvz~JJ|~BB; ð4Þ

magnetic induction equation:

L~BB
Lt

{+| ~vv|~BB
� �

{
1

sme

+2~BB~0; ð5Þ

and an energy equation:

rcp
LT

Lt
z~vv+T

� �
~k+2TzmWz

~JJ2

s
; ð6Þ

where:

W~2
Lu

Lx

� �2

z
Lv

Ly

� �2

z
Lw

Lz

� �2
" #

z

z
Lv

Lx
z

Lu

Ly

� �2

z
Lw

Ly
z

Lv

Lz

� �2

z
Lu

Lz
z

Lw

Lx

� �2

{
2

3
+~vvð Þ2:

ð7Þ

In previous general equations and in following boundary conditions, applicable for both fluid
regions, used symbols are common for the theory of MHD flows. The third term on the right
hand side of Eq. (4) is the magnetic body force and ~JJ is the current density vector defined by:

~JJ~s ~EEz~vv|~BB
� �

; ð8Þ

where ~EE~ 0,0,Ezð Þ is the vector of the applied electric field.

Using the velocity, magnetic and electric field distribution as stated above, the Eq. (4) to
Eq. (6) are as follows:

1

r
Pzn

d2u

dy2
{

s

r
B0l EzzuB0lð Þ~0; ð9Þ

B0l
du

dy
z

1

sme

d2Bx

dy2
~0; ð10Þ

rcpu
LT

Lx
~k

L2T

Ly2
zm

Lu

Ly

� �2

zs EzzuB0lð Þ2; ð11Þ
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where:

P~{
Lp

Lx
: ð12Þ

The flow and thermal boundary conditions have been unchanged by the addition of
electromagnetic fields. The no slip conditions require that the fluid velocities are equal to the
plate’s velocities and boundary conditions on temperature are isothermal conditions. In
addition, the fluid velocity, induced magnetic field, sheer stress and heat flux must be
continuous across the interface y~0. Equations which represent these conditions for fluids in
regions 1 and 2 are:

u1 hð Þ~U0, u2 {hð Þ~{U0; ð13Þ

u1 0ð Þ~u2 0ð Þ; ð14Þ

m1

du1

dy
~m2

du2

dy
, y~0; ð15Þ

Bx1 hð Þ~0, Bx2 {hð Þ~0; ð16Þ

Bx1 0ð Þ~Bx2 0ð Þ; ð17Þ

1

me1s1

dBx1

dy
~

1

me2s2

dBx2

dy
for y~0; ð18Þ

T1 hð Þ~Tw1, T2 {hð Þ~Tw2; ð19Þ

T1 0ð Þ~T2 0ð Þ; ð20Þ

k1
dT1

dy
~k2

dT2

dy
; y~0: ð21Þ

3 VELOCITY AND MAGNETIC FIELD DISTRIBUTION

The governing equation for the velocity ui in regions 1 and 2 can be written as:

1

ri

Pzni
d2ui

dy2
{

si

ri

B0l EzzuiB0lð Þ~0; ð22Þ

Transactions of the Canadian Society for Mechanical Engineering, Vol. 34, No. 3–4, 2010 356



where suffix i (i~1,2) represent the values for the regions 1 and 2 respectively. The equation for
the magnetic field induction in the regions 1 and 2 can be written as:

B0l
dui

dy
z

1

simei

d2Bxi

dy2
~0: ð23Þ

It is convenient to transform the Eqs. (22) and (23) to a dimensionless form:

d2u�i
dy�2

{Ha2
i Kzu�i l
	 


lzGi~0; ð24Þ

d2bi

dy�2
zlRmi

du�i
dy�

~0; ð25Þ

where following dimensionless quantities have been used:

u�i ~
ui

U0
, y�~

y

h
; ð26Þ

a~
m1

m2

, c~
s1

s2
, d~

me1

me2

; ð27Þ

Gi~
P

miU0=h2ð Þ , bi~
Bxi

B0
; ð28Þ

K~
Ez

U0B0
{load parameter; ð29Þ

Hai~B0h

ffiffiffiffi
si

mi

r
{ Hartmann number; ð30Þ

Rmi~U0hsimei{magnetic Reynolds number: ð31Þ

The dimensionless form of the boundary and interface conditions (13) to (18) becomes:

u�1 1ð Þ~1, u�2 {1ð Þ~{1; ð32Þ

u�1 0ð Þ~u�2 0ð Þ; ð33Þ

Transactions of the Canadian Society for Mechanical Engineering, Vol. 34, No. 3–4, 2010 357



du�1
dy�

~
1

a

du�2
dy�

for y�~0; ð34Þ

b1 1ð Þ~0, b2 {1ð Þ~0; ð35Þ

b1 0ð Þ~b2 0ð Þ; ð36Þ

db1

dy�
~dc

db2

dy�
for y�~0: ð37Þ

The solutions of Eqs. (24) and (25) with boundary and interface conditions have the following
forms:

u�i y�ð Þ~D1i cosh lHaiy
�ð ÞzD2i sinh lHaiy

�ð ÞzFi; ð38Þ

bi y�ð Þ~{
Rmi

Hai

D1i sinh lHaiy
�ð Þ½ zD2i cosh lHaiy

�ð Þ�zQ1iy
�zQ2i; ð39Þ

where:

Fi~
Gi

l2Ha2
i

{
K

l
; ð40Þ

D11~
1{F1ð ÞH sinh(lHa2)

W
{

L sinh lHa1ð Þ
W

; ð41Þ

L~1zF2zS cosh lHa2ð Þ; ð42Þ

W~H cosh lHa1ð Þsinh lHa2ð Þzcosh lHa2ð Þsinh lHa1ð Þ; ð43Þ

H~a
Ha1

Ha2
; ð44Þ

S~
1

l2

G1

Ha2
1

{
G2

Ha2
2

� �
; ð45Þ
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D21~
1{F1ð Þcosh lHa2ð Þ

W
z

Lcosh lHa1ð Þ
W

; ð46Þ

D12~SzD11; ð47Þ

D22~HD21; ð48Þ

Q11~Rm1lD11zdc Q12{lRm2D12ð Þ; ð49Þ

Q21~
Rm1

Ha1
D11sinh lHa1ð Þz½ D21cosh lHa1ð Þ�{Q11; ð50Þ

Q12~
M1zM2

1zdc
; ð51Þ

M1~
Rm1

Ha1
D11 sinh lHa1ð Þ{lHa1½ �f zD21 cosh lHa1ð Þ{1½ �g; ð52Þ

M2~
Rm2

Ha2
D12 sinh lHa2ð Þ½f zldcHa2�zD22 1{cosh lHa2ð Þ½ �g; ð53Þ

Q22~
Rm2

Ha2
D22cosh lHa2ð Þ½ {D12sinh lHa2ð Þ�zQ12: ð54Þ

4 TEMPERATURE DISTRIBUTION

Once the velocity distributions were known, the temperature distributions for the two regions
have been determined by solving the energy equation subject to the appropriate boundary and
interface conditions (19)–(21). In the present problem, it has been assumed that the two plates
have been maintained at constant temperatures. The term involving LT=Lx~0 in the energy
Eq. (11) drops out for such a condition. The governing equation for the temperatures T1 and T2

in regions 1 and 2 is then given by:

ki

d2Ti

dy2
zmi

dui

dy

� �2

zsi EzzuiB0lð Þ2~0: ð55Þ

In order to obtain dimensionless form of the previous equation, the following transformations
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have been used beside the already introduced (26) to (31):

Hi~
Ti{Twi

U2
0

mi

ki

, j~
k1

k2
: ð56Þ

With the above dimensionless quantities Eq. (55) for regions 1 and 2 becomes:

d2Hi

dy�2
z

du�i
dy�

� �2

zHa2
i Kzu�i l
	 
2

~0: ð57Þ

In the non-dimensional form, the boundary conditions for temperature and heat flux at the
interface y~0 becomes:

H1 1ð Þ~0, H2 {1ð Þ~0; ð58Þ

H1 0ð Þ~ j

a
H2 0ð ÞzS�; ð59Þ

S�~
1

U2
0

k1

m1

Tw2{Tw1ð Þ; ð60Þ

dH1

dy�
~

1

a

dH2

dy�
, y�~0: ð61Þ

The solution of Eq. (57) with boundary and interface conditions has the following form:

Hi y�ð Þ~{
1

4l
l D2

1izD2
2i

	 

cosh 2lHaiy

�ð Þ
�

z8D2iCisinh lHaiy
�ð Þz

z2D1iD2ilsinh 2lHaiy
�ð Þz8D1iCicosh lHaiy

�ð Þ

{2l 2D3iz2D4iy
�{Hai

2C2
i y�2

	 
�
;

ð62Þ

where:

Ci~KzlFi~
Gi

lHa2
i

, i~1,2; ð63Þ

D31~
j

a
D42z

j

a
=2z=3; ð64Þ
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D41~
1

a
D42z=4; ð65Þ

D32~D42z=2; ð66Þ

D42~
a

jz1
=1{

j

a
=2{=3{=4

� �
; ð67Þ

=1~
1

4l
l D2

11zD2
21

	 

cosh 2lHa1ð Þ

�
z8D21C1sinh lHa1ð Þz

z2D11D21lsinh 2lHa1ð Þz8D11C1cosh lHa1ð Þz2lHa1
2C2

1

�
;

ð68Þ

=2~
1

4l
l D2

12zD2
22

	 

cosh 2lHa2ð Þ

�
{8D22C2sinh lHa2ð Þ{

{2D12D22lsinh 2lHa2ð Þz8D12C2cosh lHa2ð Þz2lHa2
2C2

2

�
;

ð69Þ

=3~
1

4
D2

11zD2
21{

j

a
D2

12zD2
22

	 

 �
z

2

l
D11C2{

j

a
D12C2

� �
zS�; ð70Þ

=4~D21 2C1zlD11ð ÞHa1{
1

a
D22 2C2zlD12ð ÞHa2: ð71Þ

5 RESULTS AND DISCUSSION

In this section, flow and heat transfer results for steady MHD flow of two immiscible fluids
between moving plates are presented and discussed for various values of selected parameters.
Dimensionless velocity, temperature and magnetic field induction are presented graphically in
Figs. 2 to 14 for the two fluids important for technical practice and the parameters a,j,c,d and
S� take the values of 0.66; 0.06; 0.025; 1 and 0 respectively.

The Figs. 2 to 4 show the effect of the magnetic field inclination angle on the distribution of
velocity, temperature and the ratio of the applied and induced magnetic field.

Figure 2 shows the effect of the angle of inclination on velocity which predicts that the
velocity increases as the inclination angle increases. These results are expected because the
application of a transverse magnetic field normal to the flow direction has a tendency to create a
drag-like Lorentz force which has a decreasing effect on the flow velocity.

In Fig. 3, the dimensionless temperature distribution as a function of y�, for various values of
applied magnetic field inclination angle, is shown. The Fig. 3 shows an dimensionless
temperature jump at the interface, which results from choice of Hi (the thermodynamic
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Fig. 2. Velocity profiles for different values of magnetic field inclination angle (Ha1~2; Ha2~10;
K~0; a~0:66; c~0:025; j~0:06).

Fig. 3. Temperature profiles for different values of magnetic field inclination angle (Ha1~2;
Ha2~10; K~0; a~0:66; c~0:025; j~0:06).
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Fig. 4. Ratio of an induced and applied magnetic field for different values of l (Ha1~2; Ha2~10;
K~0; a~0:66; c~0:025; j~0:06).

Fig. 5. Velocity profiles for different values of Hartmann numbers Hai (K~0; a~0:66; l~1;
c~0:025; j~0:06).
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Fig. 6. Temperature profiles for different values of Hartmann numbers Hai (K~0; a~0:66;
l~1; c~0:025; j~0:06).

Fig. 7. Ratio of an induced and applied magnetic field for different values of Hartmann numbers
Hai (K~0; a~0:66; l~1; c~0:025; j~0:06).
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Fig. 8. Temperature profiles for different values of load factor (Ha1~2; Ha2~10; l~1; a~0:66;
c~0:025; j~0:06).

Fig. 9. Velocity profiles for different values of load factor (Ha1~2; Ha2~10; l~1; a~0:66;
c~0:025; j~0:06).
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Fig. 10. Ratio of an induced and applied magnetic field for different values of load factor
(Ha1~2; Ha2~10; l~1; a~0:66; c~0:025; j~0:06).

Fig. 11. Velocity profiles for different values of electrical conductivities ratio c (K~{2; l~1;
a~0:66; j~0:06).
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Fig. 12. Temperature profiles for different values of electrical conductivities ratio c (K~{2;
l~1; a~0:66; j~0:06).

Fig. 13. Ratio of an induced and applied magnetic field for different values of electrical
conductivities ratio c (K~{2; l~1; a~0:66; j~0:06).
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temperature is continuous across the interface). This choice was made because of mathematical
simplification and its direct consequence is the difference (temperature jump) that occurs at the
interface. This difference is directly proportional to the thermal conductivities ratio of fluids j,
and inversely proportional to the ratio of viscosities a, while the S� is zero when the
temperatures of the upper and lower plate are equal (H1 0ð Þ~ j=að ÞH2 0ð ÞzS�).

It can be seen from Figs. 2 and 3 that the magnetic field flattens out the velocity and
temperature profiles and reduces the flow energy transformation as the inclination angle
decreases. The ratio of an induced and externally imposed magnetic field, for the K~0 (short-
circuit condition) and various values of magnetic field inclination, is shown in the Fig. 4.
Disturbance of the external magnetic field is directly proportional to the magnetic Reynolds
number and essentially depends on the regime of the channel load and inclination of the applied
magnetic field. In the observed case the magnetic Reynolds numbers are small
(Rm1*10{9,Rm2*10{7) and hence the induced field is small, but the general conclusions
represented in the paper are valid also for higher values.

Figure 4 shows increase in the ratio of magnetic fields as the inclination angle of an applied
field decreases. In observed case for the bottom half of the channel this ratio have tendency to
move the maximum value closer to the lower plate while l increase.

Figures 5 to 7 depict the effect of the Hartmann number on velocity, temperature and
induced magnetic field, while the electrical load factor K is equal to zero (so-called short-circuit
condition).

In the Fig. 5 are shown the velocity profiles over the channel height for several values of the
Hartmann number. It can clearly be seen that as the Hartmann number is increased, the velocity
profiles become flatter, and velocity gradient near the plates become steeper. In other words, the
force necessary to move these plates is greater, the larger Ha. The influence of the Hartmann

Fig. 14. Temperature profiles for different values of ratio of thermal conductivities j (Ha1~2;
Ha2~10; K~{1; l~1; a~0:66; c~0:025).
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number on the velocity field was more pronounced in the channel region 2 containing the fluid
with greater electrical conductivity. It was found that for larger values of the Hartmann number
flow can be almost completely stopped in the region 2, while the velocity decrease is significant
in region 1.

The Fig. 6 shows the influence of the Hartmann number on the dimensionless temperature.
Several interesting observations can readily be made. First, it should be recalled that, in the
solution, both viscous heating and Joule heating were included in the analysis. As expected, the
stronger the magnetic field, the more the flow is retarded in the middle of the channel. As the
plates move, viscous heating are more pronounced in areas close to them. With the increase of
the Hartmann number temperature in the middle of the channel decreases, which corresponds
to the results presented by Smolentsev et al. [27], while near the plate’s increases due to viscous
heating resulted from large shear stresses and Joule heating.

In general, the effect of increasing the Hartmann number on temperature profiles in both of
the parallel-plate channel regions was in equalizing the fluid temperatures.

Effect of increasing the Hartman number on the ratio of induced and applied magnetic field
in the middle of the channel is similar to the influence on temperature, as can be seen from the
Fig. 7. This ratio decreases with increase of the Hartmann number. Ratio of an induced and
applied magnetic field is more pronounced in the channel region 2 containing more conductive
fluid. The influence of the induced magnetic field for chosen fluid pair in the considered case is
not so pronounced, but in case of higher values of the magnetic Reynolds number, the
knowledge of the applied and induced field ratio have great significance. It is characteristic that
the induced magnetic field leads to the occurrence of transverse pressure gradient, without
changing the hydrodynamics of flow. Increase of the transverse pressure gradient may lead to
flow instability at the interface of two fluids.

Of particular significance is the analysis when the load factor K is different from zero (value
of load factor K define the system as generator, flow-meter or pump).

In the Fig. 8 the temperature distribution as a function of y�, for various values of K , is
shown. When K~0, the channel is short-circuited and all current flows in one direction. In this
case the temperature distribution is affected by the viscous dissipation and Joule heating. For
the lower fluid viscosity dissipation is expressed close to the plate, and towards the middle of the
channel temperature distribution is dominated by Joule heating. When the channel operates in
the open-circuit condition, and K~{1, the current flow is so small that viscous dissipation
dominates the temperature distribution. Temperature rise is particularly pronounced at the
lower fluid. On account of this increase, the temperature of the upper fluid also increases in the
middle of the channel. Due to the absence of Joule heating fluid in the region 1 now has a
smaller temperature in the upper zone compared to the previous case (K~0). Now when K~1,
the current flow is quite large, and since the Joule heating depends on the square of the current,
temperature increases throughout the channel compared to the short-circuit condition. In this
case lower fluid is affected only by the Joule heating, while the fluid in region 1 is affected by
both heating effects.

Figure 9 shows the effect of the load factor on the velocity distribution. As can be seen, for a
fixed Hartman number, a K~1 will decrease the pressure gradient while a K~{1 will increase
it. The results show the ability to change the direction of flow, although the plates move in a
certain direction. Also, significant increase in the flow is achieved for negative values of K .

The obtained results show that different values of the inclination angle, the Hartmann
number and the load factor is a convenient control method for heat and mass transfer
processes.
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Figure 10 shows the change of induced field, over the channel height, for different values of
the load factor. The curve for K~0 correspond to the already discussed case. The curves for
K=0 shows the fact that the induced field directly related to the total current in the channel and
velocity. With the change of the parameter K curves of the magnetic induction lies in the other
direction, as a result of the current flowing in the opposite direction. The ratio of an induced
and applied magnetic field has a considerable change when the load parameter is different from
zero, especially in region 2.

As for certain fluids used in technical practice is very easy to change the electrical conductivity
without significant changes in other physical properties, it is interesting to consider the influence
of electrical conductivities ratio c on the temperature, velocity and induced magnetic field.

The effect of the ratio of electrical conductivities of the fluids in regions 1 and 2 on the
velocity profiles is shown in Fig. 11. The presented results refer to the case when the load factor
is equal to 22. When K~{2, all the current flows to the right in the channel, and it must be
presumed that this net current flow has been supplied by an external power supply. This is the
case of an MHD accelerator or pump. It can clearly be seen that as the ratio of electrical
conductivities is increased, the velocity profile for the fluid in region 1 becomes flatter, and the
velocity gradient near the upper plate becomes steeper. As the electrical conductivity of the
lower fluid does not change, change of velocity in Region 2 is expressed only at the interface and
this is a consequence of the mutual effects of fluids.

In the Fig. 12 the temperature distribution as a function of y�, for various values of c, is
shown. The effect of ratio of the electrical conductivities of the two fluids on temperature field is
quite similar compared with the effect on velocity field, which is evident from this Figure. It is
found that the effect of increasing c is to increase the temperature field in the region 1. In this
case, viscous dissipation for both fluids was expressed near the plates, while the Joule heating is
dominant in the middle of the channel. Temperature rise in the middle of the channel is a
consequence of Joule heat, which increases with the increase of electrical conductivity of the
upper fluid. Although the effect of viscous dissipation is now smaller in the middle of the
channel, the total temperature increases due to mutual effects of fluids at the interface.

The effect of the ratio of electrical conductivities of the fluids on the induced magnetic field is
shown in Fig. 13. It is interesting to note that the increase of the parameter c changes
significantly the ratio of induced and applied magnetic field in region 1, while this ratio changes
very slowly in Region 2. In the case when the parameter c equal to 1, i.e. when the electrical
conductivities of the fluids are the same, profile of induced field becomes very similar to
Hartmann flow. The difference in relation to the Hartmann flow is reflected in the incomplete
symmetry around the axis of the channel as a result of plate’s movement.

Figure 14 shows the temperature distribution over the channel height for different values of the
fluids thermal conductivities ratio j. Increases in the thermal conductivity ratio have the tendency
to cool down the thermal state in the channel region 2, and to decrease the heat flux at the interface.
This is depicted in the equalizing of the temperature field as j increases as shown in Fig. 14.

6 CONCLUSIONS

The problem of MHD flow and heat transfer of two immiscible fluids between horizontal
moving parallel plates in the presence of applied electric and inclined magnetic field was
investigated analytically. Separate closed form solutions for velocity, temperature and magnetic
induction of each fluid were obtained, numerically evaluated and presented graphically for two
fluids important for technical practice.
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Numerical results for the effects of the applied magnetic field inclination angle, Hartmann
number, load factor and ratio of fluid electrical and thermal conductivities on the discussed
MHD flow have shown:

N Decrease of applied magnetic filed inclination angle increase the ratio of induced and applied
magnetic field and flattens out the velocity and temperature profiles.

N With the increase of the Hartmann number temperature in the middle of the channel
decreases, velocity profiles become flatter, and velocity gradient near the plates become
steeper. Near the plate’s temperature increases due to viscous heating resulted from large
shear stresses and Joule heating.

N Magnetic induction is evidently suppressed with an increase in the applied magnetic field.

N For a fixed Hartman number, positive values of load factor will decrease the pressure
gradient while negative will increase it.

N When the channel operates in the open-circuit condition viscous dissipation dominates the
temperature distribution. When current flow has been supplied by an external power supply
temperature increases throughout the channel due to the Joule heating.

N With the change of the load factor curves of the magnetic induction reverse lines direction, as
a result of the current flowing in the opposite direction.

N Increase of the electrical conductivities ratio changes significantly the ratio of induced and
applied magnetic field in region 1 and profile of induced field becomes very similar to the
Hartmann flow.

N Increases in the thermal conductivities ratio have the tendency to cool down the thermal state
in the channel region 2, and to decrease the heat flux at the interface.
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