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Introduction: There is an increasing evidence supporting the hypothesis that 
traumatic experiences during early developmental periods might be associated 
with psychopathology later in life. Maternal deprivation (MD) in rodents has been 
proposed as an animal model for certain aspects of neuropsychiatric disorders.

Methods: To determine whether early-life stress leads to changes in GABAergic, 
inhibitory interneurons in the limbic system structures, specifically the amygdala 
and nucleus accumbens, 9-day-old Wistar rats were exposed to a 24 h MD. On 
postnatal day 60 (P60), the rats were sacrificed for morphometric analysis and 
their brains were compared to the control group.

Results: Results show that MD affect GABAergic interneurons, leading to the decrease 
in density and size of the calcium-binding proteins parvalbumin-, calbindin-, and 
calretinin-expressing interneurons in the amygdala and nucleus accumbens.

Discussion: This study indicates that early stress in life leads to changes in the 
number and morphology of the GABAergic, inhibitory interneurons in the 
amygdala and nucleus accumbens, most probably due to the loss of neurons 
during postnatal development and it further contributes to understanding the 
effects of maternal deprivation on brain development.
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Introduction

Maternal deprivation (MD) is a widely used paradigm for the investigation of neurobiological 
changes associated with vulnerability to stress-related diseases in animal models. This model 
consists of the separation of newborn infants from their mothers for 24 h, on the 9th day after 
birth, and during this period they are not fed by their mothers (Llorente et al., 2007). The 
separation of pups from their mothers increases plasma corticosterone, which causes 
disturbances in postnatal development (Llorente et al., 2007). Namely, maternal deprivation 
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reduces prepulse inhibition and latent inhibition, and it enchances 
sensitivity to dopaminergic drugs (Ellenbroek et al., 2005). Numerous 
studies show that changes in different brain structures and changes in 
behavior later in life are not diminished when the stressor is removed. 
Early life stress leads to social behavioral deficits in pre-weaned 
rodents, and later depressive-like symptoms in adolescent rodents 
(Raineki et al., 2012). As for the morphological substrate of these 
behavioral changes, we have previously shown that MD decreased 
numbers of NeuN-expressing neurons and parvalbumin-expressing 
interneurons in the prefrontal cortex (Aksić et al., 2014, 2021), as well 
as the decreased overall number of NeuN-expressing neurons in the 
amygdala and nucleus accumbens (Aleksić et al., 2016).

Psychiatric patients often show aberrant brain activity in regions 
implicated in emotion and reward processing, such as the amygdala 
and nucleus accumbens (Pankow et  al., 2013). The amygdala is a 
limbic structure deep within the temporal lobe that is involved in 
processing emotions and regulating behavioral and physiological 
responses to stressors (Kennedy et  al., 2007; Bryant et  al., 2008). 
Amygdala hyperactivity has been observed in several functional 
neuroimaging studies investigating anxiety disorders (Xie et al., 2021). 
Together with the hypothalamus and ventral striatum, the amygdala 
is implicated in mood disorders, including depression and anxiety, 
and in substance abuse (Medina et  al., 2023). Dysfunction in the 
corticolimbic circuitry also predicts increased fear responses, 
hypersensitivity to stress and negative behavioral outcomes 
(Guadagno et al., 2021). One of the main parts of the ventral striatum, 
as a part of limbic system, is the nucleus accumbens, a region with the 
capacity to mediate a diverse range of stress responses by interfacing 
limbic, cognitive and motor circuitry (Lemos et al., 2012). The stress-
associated changes in limbic plasticity, dopamin release in the ventral 
tegmental area and reward—related behaviors point to the nucleus 
accumbens as a brain region particularly sensitive to stress (Perrotti 
et al., 2004).

The disruption of inhibitory circuits may underlie some of the 
clinical features in various psychiatric disorders (Schmalbach et al., 2015; 
Aksić et al., 2021). The GABAergic neurons play a fundamental role in 
the proper maturation of neural circuitry during postnatal development 
(Ben-Ari et al., 2004; Marguet et al., 2015). Calcium-binding proteins are 
important in the defense of neurons against excitotoxic damage, 
particularly for immature neurons due to their sensitivity to the influx 
of Ca2+ ions (Hogan and Berman, 1993). GABAergic interneurons can 
be defined further by the presence of one of three calcium binding 
proteins: parvalbumin (PV), calbindin (CB), or calretinin (CR). Only 
20% of neurons in the amygdala are GABAergic interneurons but they 
have considerable role in the control of excitatory principal neurons 
(Hajos, 2021). In the amygdala, CB—immunopositive (CB+) and PV+ 
interneurons are localized primarily in the basolateral nucleus, as well as 
in the cortical amygdalar group of nuclei, while their number in the 
medial nucleus of the amygdala is very small (McDonald and Betette, 
2001). CB+ and PV+ are most often colocalized on the same interneuron 
in the amygdaloid complex of nuclei. PV+ interneurons in the amygdala 
are basket and candle cells, similar to the same cells in the cerebral cortex 
and make up 50% of inhibitory interneurons (McDonald and Betette, 
2001). In the nucleus accumbens approximately 95% of the neurons are 
GABAergic medium spiny neurons (Robison and Nestler, 2011) while 
the remaining interneurons express somatostatin (SST), parvalbumin, 
or the calcium-binding protein calretinin and calbindin. There are not 
many studies dealing with GABAergic inhibitory interneurons in the 
nucleus accumbens and the data are non-consistent. The PV+ 

interneurons in the nucleus accumbens are multipolar neurons, medium 
in size with greater density in rostral pole. Their density is lower than in 
the dorsal striatum, but with no difference in the distribution between 
shell and core (Totterdell and Meredith, 1997). The CB+ interneurons 
are more densely populated in the core of the nucleus accumbens 
compared to its shell (Tan et  al., 1999). CR+ interneurons synapse 
predominantly on the dendritic shafts of other GABA interneurons, thus 
may act to disinhibit pyramidal neurons (Meskenaite, 1997; Gonchar 
and Burkhalter, 1999). CR+ interneurons account for 25% of all GABA-
ergic interneurons in the basolateral amygdala (Hajos, 2021). The 
distribution of CR+ interneurons in the nucleus accumbens is higher 
than in dorsal striatum. These interneurons are uni-or bipolar cells 
which distribution is the same in the core and shell of the nucleus 
accumbens, but there is no consensus whether their density changes 
from the rostral to the caudal pole and from the medial to the lateral part 
of the nucleus (Hussain et al., 1996). Also, there is no clear evidence that 
PV and CR colocalize in the same interneuron (Hussain et al., 1996).

The aim of this study was to investigate the long-term effects of 
MD on the number and size of GABAergic interneurons which 
express parvalbumin, calbindin and calretinin in the rat basolateral 
amygdala (BLA) and the nucleus accumbens core (AcbC) (Figure 1).

Materials and methods

Animals and procedures

A male and four nulliparous female 3-month-old Wistar rats were 
put together in a standard plexiglass cage, in a temperature controlled 
room. The lights were on from 07:00 a.m. to 07:00 p.m., and water and 
food were available ad libitum. Two weeks later, as the dams got 
pregnant, the males were removed and the dams were checked twice 
daily for delivery. The day of delivery was denoted as the postnatal day 
zero (P0). On P9, the litters were weight and then subjected to the MD 
procedure, as published previously (Ellenbroek et al., 1998; Roceri 
et al., 2002). The dams were removed from the litter at 10:00 a.m., and 
the pups were returned to their home cage afterwards. The pups 
remained in their home cage at room temperature for 24 h. On P10, 
the pups were weighed again, and the dams were returned to their 
cages. As a control experiment, the dams of were briefly (3 min) 
removed from their home cages and the pups were weighed on both 
P9 and P10. The litters were further left undisturbed except for the 
routine cleaning until P21, when they were weaned and assigned to 
new cages according to the sex. To avoid sexual dimorphism, only 
male rats were used for morphological studies (Woolley and McEwen, 
1992) as was the case with many previous studies (Own and Patel, 
2013; Vivinetto et al., 2013). The animals were sacrificed at P60, as 
young adults. All experiments were carried out according to the NIH 
Guide for Care and Use of Laboratory Animals, and were approved by 
the Local Bioethics Committee 323-07-10153/2016-05/3.

Tissue processing and immunofluorescece 
staining

For morphological analysis, the animals from control and MD 
groups were anaesthetized with chloral hydrate (3 mg/kg, i.p.) and 
transcardially perfused with fixative (4% formaldehyde in 0.1 M 
phosphate buffer solution), at 60 days of age. The brains were 
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post-fixed for 24 h at +4°C and cryoprotected by infiltration with 
sucrose for 2 days at 4°C (20% sucrose in 0.1 M phosphate buffer). 
Brains were frozen by immersion in 2-methyl-butane (Fluka) 
precooled to −80°C and then stored at −80°C. On a cryostat (Leica 
Instruments, Nußloch Germany) spaced-serial frontal sections were 
cut at 25-μm thickness. The sections were collected in a standard 
sequence so that four sections 250 μm apart were present on each 
slide, using SuperFrost Plus glass slides (Menzel Braunschweig, 
Germany).

Immunofluorescence staining was performed after antigen retrieval 
(0.01 M sodium citrate solution, pH 9.0, for 30 min at 80°C in a water 
bath). To block the nonspecific binding of the secondary antibody, 
sections were rinsed in a 5% normal serum from the species in which the 
secondary antibody was produced, diluted in 0.1 M phosphate-buffered 
saline (PBS, pH 7.3), and supplemented with 0.2% Triton X-100 and 
0.02% sodium azide for 1 h at room temperature (RT). The primary 
antibodies (anti-mouse parvalbumin, 1:1000, Sigma; anti-rabbit 
calretinin, 1:1000, Sigma; or anti-calbindin 1:1000, Sigma) were diluted 
in PBS (pH 7.3) containing 0.5% lambda-carrageenan (Sigma) and 0.2% 
sodium azide and applied to the sections for 2 days at 4°C. After several 
washes in PBS, the sections were incubated for 2 h at RT with the 
appropriate Cy3-conjugated secondary antibodies diluted at 1:200 in PBS 
containing 0.5% lambdacarrageenan and 0.2% sodium azide. Following 
a subsequent wash in PBS, the nuclear counterstaining was performed 
with bis-benzimide solution (Hoechst dye 33258, 5 μg/mL in PBS, Sigma) 
10 min at RT. Slices were washed in PBS, covered by a coverslip, and 
allowed to dry for 24 h before analysis. Specificity of staining was 
controlled by replacing the primary antibody with the normal serum 
from the animal in which the antibody was produced, which resulted in 
the absence of fluorescent signal.

Cresyl-violet staining

In order to visualize brain structures, every 10th microscope slide 
(containing 4 sections at 250-μm distance from each other), was 
stained using standard cresyl-violet staining protocol, as previously 
described (Jakovljević et al., 2022). Briefly, the sections were rinsed for 
3 min in 2 changes of xylene, 95, and 70% ethanol and distilled water. 

The sections were incubated in cresyl violet dye (Sigma) for 10 min at 
60°C, rinsed in distilled water and incubated in a series of ethanols 
with concentration gradient 70, 95, 100%, 3 min each, and finally 
cleared in xylene for 5 min, prior to drying and applying Entellan 
mounting medium (Sigma).

Image acquisition and quantitative analysis 
of immunolabeled neurons

Quantitative analyses were performed similar as previously 
described (Aleksić et al., 2016). Spaced-serial sections (250 μm apart) 
were used for quantifications. The borders of the amygdala and 
nucleus accumbens regions were defined by the nuclear staining 
pattern using ×10 objective. The profile density of various subclasses 
of interneurons was estimated by counting the immunolabeled cells 
within the delineated regions of interest.

Images for the cell body area were taken on the fluorescent 
confocal microscope (Zeiss LSM 510) with a 40× objective and 
analyzed in Image J software (Adobe, San Jose, CA), using an 1-cm 
grid. The cell body area of immunolabeled interneurons was estimated 
in spaced serial sections of the rat brains at the same distance from the 
bregma (−2.52 mm for the nucleus accumbens and −2.76 mm for the 
amygdala) and was expressed per unit area (mm2), which will further 
be referred to as the “cell soma area.” At least 200 random microscope 
fields (area of 400 μm2) were counted bilaterally in the nucleus 
accumbens and the amygdala of each section.

Left and right sides were evaluated in four sections each. All 
results shown are averaged bilateral values. The counts were performed 
on coded microscope slides by one observer.

Statistical analysis

All numerical data are presented as group mean values with 
standard deviations (SD). Morphological analysis was performed for 
the left and right side separately, and as no difference between the 
sides was observed, data were pooled together. After the Shapiro–Wilk 
test confirmed normal distribution, the comparisons between groups 

FIGURE 1

Representative micrographs of Nissl-stained rat brain sections, with labeled nucleus accumbens core (A) and basolateral amygdala (B). AcbC, nc. 
accumbens core; BLA, basolateral amygdala.
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were performed using Student’s t test for two independent samples, 
with the threshold value for acceptance of the difference set at 5%.

Results

There was no significant weight loss neither in the MD group 
between P9 and P10 (15.3 g vs. 14.7 g on P9 and P10, respectively, 
p = 0,64, n = 2 litters or at least 8 pups each), nor between MD and 
control group on P10 (16.1 vs. 15.4 for CON and MD, respectively, 
p = 0,77, n = 2 litters or at least 8 pups each). Therefore, stress from MD 
protocol did not significantly affect the body weight of rat pups.

Maternal deprivation decreases the number 
of GABAergic interneurons in the 
basolateral amygdala

Profile densities (number of cells per surface area) of GABAergic 
interneurons in sections of the rat brain were counted according to the 
distance from the bregma (Figure 1). We immunostained the control 
and MD rat brain sections for PV, CB, and CR (Figure 2). In the BLA, 
the profile density of the PV+ interneurons was 54.5 ± 9.5 cell/mm2 vs. 
28.7 ± 4.9 cell/mm2 for the control group vs. MD, respectively 
[t(6) = 4.77; p = 0.003]. The profile density of the CB+ interneurons was 
44 ± 1.4 cell/mm2 vs. 28 ± 2.9 cell/mm2 for the control group vs. MD, 
respectively [t(6) = 5.657; p = 0.001]. The profile density of the CR+ 
interneurons was 16 ± 1.5 cell/mm2 vs. 8 ± 1.7 cell/mm2, for the control 
group vs. MD, respectively [t(6) = 6.928; p < 0.001]. These differences 
were statistically significant, p = 0.003, p = 0.001, and p = 0.0004, for PV, 
CB, and CR, respectively (Figure  3). We  conclude that maternal 
deprivation reduces numbers of calcium-binding protein expressing 
interneurons in the amygdala.

Maternal deprivation decreases the number 
of GABAergic interneurons in the nucleus 
accumbens core

We immunostained the control and MD rat brain sections for PV, CB, 
and CR (Figure  4) containing AcbC. The profile density of the PV+ 
interneurons was 49 ± 2.9 cell/mm2 vs. 28 ± 0.9 cell/mm2 for the control 
group vs. MD, respectively [t(8) = 6.9; p < 0.001]. The profile density of the 
CB+ interneurons was 32.75 ± 3.2 cell/mm2 vs. 25.25 ± 0.9 cell/mm2 for the 
control group vs. MD, respectively [t(8) = 4.48; p = 0.004]. The profile 
density of the CR+ interneurons was 14.8 ± 2.7 cell/mm2 vs. 9.48 ± 0.8 cell/
mm2, for the control group vs. MD, respectively [t(8) = 4.21; p = 0.003]. 
These differences were statistically significant, p = 0.0001, p = 0.004, and 
p = 0.003, vor PV, CB, and CR, respectively (Figure 5). We conclude that 
maternal deprivation reduces numbers of calcium-binding protein 
expressing interneurons in the nucleus accumbens as well.

The effect of maternal deprivation on the 
reduction of cell body areas of GABAergic 
interneurons in the AcbC and BLA

In our previous study we demonstrated that NeuN+ principal 
neurons in the amygdala and nucleus accumbens had smaller cell 

bodies after maternal deprivation, compared to controls (Aleksić 
et al., 2016). Thus, we also measured the cell body area of the 
GABAergic interneurons. The average cell body area of the PV+ 
interneurons in the AcbC of the control group was 
287.8 ± 15.1 μm2, while in the MD group it was 161.06 ± 3.4 μm2 
[t(6) = 7.473; p < 0.001]. The cell body area of the CB+ 
interneurons in the control group was 203.49 ± 6.5 μm2, while in 
the MD group it was 123.6 ± 4.8 μm2 [t(6) = 5.722; p = 0.001]. The 
cell soma area of the CR+ interneurons in the control group was 
178 ± 12.1, while in the MD group it was 104.7 ± 3.2 μm2 
[t(6) = 8.399; p < 0.0001]. These differences were statistically 
significant, p = 0.0002, p = 0.001, and p = 0.00001, vor PV, CB, and 
CR, respectively (Figure 6A).

As for the BLA, the cell body area of the PV+ interneurons in 
the amygdala of the control group was 316.7 ± 8.5 μm2, while in the 
MD group it was 185.9 ± 23.2 μm2 [t(6) = 8.36; p < 0.001]. The cell 
body area of the CB+ interneurons in the control group was 
269.05 ± 15.2 μm2, while in the MD group it was 186.8 ± 30.5 μm2 
[t(6) = 8.043; p < 0.001]. The cell body area of the CR+ interneurons 
in the control group was 184.08 ± 1.1 μm2, while in the MD group it 
was 103 ± 0.9 μm2 [t(6) = 6.021; p < 0.0001]. These differences were 
statistically significant, p = 0.0001, p = 0.0002, and p = 0.0009, for PV, 
CB, and CR, respectively (Figure 6B). We conclude that not only the 
number of interneurons, but also their cell body size is reduced 
after MD.

FIGURE 2

Representative micrographs of the PV+, CB+, and CR+ neurons in the 
BLA of control (CON, left panels) and maternally deprived rats (MD, 
right panels). Inset represents the schematic drawing of the 
investigated area. Scale bar: 25 μm.
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Discussion

In this study, we investigated the long term effects of maternal 
deprivation on the GABAergic interneurons in the nucleus accumbens 
and the amygdala. Our results have shown reduced numbers of PV+, 
CB+, and CR+ cells in both, the nucleus accumbens and the amygdala 
of the maternally deprived rats, which has also been accompanied by 
a reduction in size of the neuron cell body.

Alterations in the expression of calcium binding proteins in 
various forebrain areas have been linked to anxiety—related behaviors 
and depression in humans and rodents (Lupien et al., 2009; Maciag 
et al., 2010). Our results suggest a decreased GABAergic tone in the 
amygdala and nucleus accumbens. It is important to know that, many 
aspects of GABAergic transmission in the BLA mature at the end of 
the first postnatal month (Ehrlich et al., 2013). The GABAergic tone 
in the amygdala reduces emotional arousal in social interactions, 
thereby decreased numbers of interneurons are implicated in 
increased anxiety behavior (Smith et  al., 2000). Under resting 
conditions, the amygdala is inhibited by the extensive GABAergic 
network and exhibits low neuronal firing (Sanders and Shekhar, 1995). 
By contrast, a disinhibited amygdala leads to heightened activation 
upon chronic stress (Quirk and Gehlert, 2003; Barr et  al., 2004), 
resulting in the increased sensitivity of to the environmental cues and 
individual’s hypervigilance which persist even after long period of 
recovery. Experimental exposure to dexametason in rats also caused 
the decrease in the number of CR+ and CB+ cells in the amygdala, due 
to decreased proliferation, altered phenotype differentiation and 
migration (Zuloaga et al., 2012). The decreased inhibitory synaptic 
transmission in the amygdala results from the loss of GABAergic 
interneurons which is associated with increased anxiety—like 
behaviors (Truitt et al., 2009). Mounting evidence has demonstrated 
that amygdala is one of the primary targets of chronic stress (Vyas 
et al., 2006; Roozendaal et al., 2009). Contrary to our results, Giachino 
et al. (2007) reported that rats exposed to maternal separation during 
the first 2 weeks of life and those exposed to prolonged maternal 
separation, had increased density of PV+ in the lateral nucleus of 

amygdala, but not in the basal nucleus. They also showed that CR+ 
and CB+ neuronal densities did not change in any nucleus of the 
amygdala analyzed. Gildawie et  al. (2020) found sex-, age-, and 

FIGURE 3

Profile densities of PV+, CB+, and CR+ neurons in the BLA. Results are presented as the mean values ± SD. The asterisks indicate significant differences 
between group mean values (two-tailed t test, p < 0.05).

FIGURE 4

Representative micrographs of the PV+, CB+, and CR+ neurons in the 
AcbC of control (CON, left panels) and maternally deprived rats (MD, 
right panels). Inset represents the shematic drawing of the 
investigated area. Scale bar: 25 μm.
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region-specific effects of early life adversity on PNN and PV+ 
maturation. His work reveals that maternal deprivation does not 
change the density of perineuronal network, but leads to an increase 
in the density of PV+ neurons in the male basolateral amygdala in 
adolescence period comparing to females. Like in our study, they 
showed that GABAergic and extracellular maturation corresponds 
with major changes in neurocircuitry and plasticity. New evidence 
showing that early life stress alters perineuronal nets that play 
important role stabilizing synaptic inputs to developing inhibitory 
interneurons (Guadagno et al., 2021; Jakovljević et al., 2022). Maternal 
deprivation, as a model of early life stress, also affects the physiology 
of the nucleus accumbens. Restrain stress elevates c-Fos protein 
expression in numerous reward-related brain regions, including the 
nucleus accumbens shell and core (Barr et al., 2004). Perrotti et al. 
(2004) found that chronic stress increased FosB expression throughout 
the nucleus accumbens. FosB has been shown to increase the 
expression of metabotropic glutamate receptor subtype 2 (GluR2) in 
the nucleus accumbens (Kelz et  al., 1999). Nucleus accumbens 
contains levels of corticotropin—releasing factor (CRF) receptors that 
are comparable to those in the amygdala (Aguilera et al., 2004; Lim 
et al., 2005). Schizophrenia patients show a substantial loss of various 
subclasses interneurons in the limbic system (Swanson et al., 1983). 
The loss of these interneurons presumably creates disruption in the 
modulation of cortical inputs to the nucleus accumbens.

It is worth mentioning in this context, that in our MD model 
we evaluated the numbers of principal cells, as well as interneurons in 
several other relevant structures, such as the hippocampus, prefrontal, 
cingulate and infralimbic cortices. In all these structures, structure 
volume, number of principal neurons as well as interneurons were 
decreased (Aksić et al., 2014, 2021), and the evidence for the increased 
oxidative stress were found (Marković et al., 2017). Additionally, the 
number and structure of perineuronal nets around PV+, as well as 
PV-neurons were altered in the lymbic cortex, but not in the 
hippocampus (Jakovljević et al., 2022). These findings are accompanied 
by reduced cholinergic input to those structures, as well as overall loss 

of dopaminergic neurons in the substantia nigra and ventral tegmental 
area (Marković et al., 2014; Kapor et al., 2020). MRI studies of human 
nucleus accumbens show the reduction in the concentration of GABA 
observed following situational stress in people. Reduced GABA 
concentration in the nucleus accumbens might reflect a reduction in 
GABAergic function resulting in reduced inhibitory potential in the 
nucleus accumbens associated neural circuitry in humans (Strasser 
et al., 2019).

Research to date suggests that long-term effects of postnatal 
manipulations cause diverse changes in the neurobiological and 
neuroendocrinological systems. In the light of neurodevelopmental 
changes, the development of CB+ and PV+ interneurons in the 
amygdala is most intensive during the first two postnatal weeks 
(Berdel et al., 1997). Moreover, this is the period when significant 
morphological changes occur in the formation of the basolateral 
nucleus of the amygdala (Berdel et  al., 1997), which makes the 
developing cells particularly sensitive to stress. The development of 
CB+ interneurons begins even earlier, and it is assumed that these 
interneurons are therefore important for cell migration and 
differentiation (Berdel and Moryś, 2000). Presumably, PV+ interneurons 
in the amygdala, play a role in formation and maturation of synapses. 
The final distribution of CB+ and PV+ interneurons is formed around 
the 14th postnatal day, so it is assumed that any stress situation during 
the period after the birth, like the separation from the mother, my 
cause developmental changes which can be manifested later in life 
through various neuropsychiatric diseases (Berdel et  al., 1997). 
Hyperactivity of the hypothalamic—pituitary—adrenal (HPA) axis, 
induced by early life stress and followed by increased levels of 
corticotropin—releasing hormone (CRH) and corticosterone (Fuchs 
and Flügge, 1998; Swaab et  al., 2005). Increased cortisol levels 
(Matthews and Fava, 2000) lead to neuronal cell death, because the 
limbic system is highly sensitive to endogenous glucocorticoids during 
brain development (Cottrell, 1972). Exposure of neonatal rats to high 
levels of glucocorticoids leads to a reduction in the brain weight 
(Russo-Neustadt, 2003), reduction of dendritic spine density, neuronal 

FIGURE 5

Profile densities of PV+, CB+, and CR+ neurons in the AcbC. Results are presented as the mean values ± SD. The asterisks indicate significant differences 
between group mean values (two-tailed t test, p < 0.05).
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atrophy and changes of the neuronal morphology, which may explain 
why the cell soma area of the PV+, CB+, CR+ interneurons is reduced 
in our study in both examined structures. Glucocorticoids have the 
ability to bind to the GABA A receptor and have been found to change 
its activity (Helmeke et al., 2008). Hence, exposure to early postnatal 
stressors such as maternal deprivation has the potential to disrupt the 
typical developmental trajectory of the GABAergic system, thereby 
establishing a foundation for the emergence of mental disorders in 
later stages of life.

In our previous study, we demonstrated that maternal deprivation 
led to a reduction in the size of the amygdala and nucleus accumbens 
in young adult male rats, along with a decrease in the quantity and 
soma areas of NeuN-positive cells present within these regions 
(Aleksić et al., 2016). Considering that the NeuN protein is the marker 
of almost all neurons (Wolf et al., 1996), including interneurons, this 
study confirms that the volume of the amygdala and nucleus 
accumbens has probably reduced through decrease in the number and 
size of the calcium binding PV+, CB+, and CR+ interneurons. This 

study furthers our understanding how early life stress affects inhibitory 
neurons in the amygdala and nucleus accumbens. Additional 
investigations are necessary to evaluate the comprehensive impact of 
the combined loss of principal cells (Aleksić et al., 2016) and inhibitory 
interneurons (present study) on the connectivity within the 
limbic system.
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