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Introduction: Decoding brain activities is one of the most popular topics in 
neuroscience in recent years. And deep learning has shown high performance in 
fMRI data classification and regression, but its requirement for large amounts of 
data conflicts with the high cost of acquiring fMRI data.

Methods: In this study, we propose an end-to-end temporal contrastive self-
supervised learning algorithm, which learns internal spatiotemporal patterns within 
fMRI and allows the model to transfer learning to datasets of small size. For a given 
fMRI signal, we segmented it into three sections: the beginning, middle, and end. We 
then utilized contrastive learning by taking the end-middle (i.e., neighboring) pair as 
the positive pair, and the beginning-end (i.e., distant) pair as the negative pair.

Results: We pretrained the model on 5 out of 7 tasks from the Human Connectome 
Project (HCP) and applied it in a downstream classification of the remaining two 
tasks. The pretrained model converged on data from 12 subjects, while a randomly 
initialized model required 100 subjects. We then transferred the pretrained model to a 
dataset containing unpreprocessed whole-brain fMRI from 30 participants, achieving 
an accuracy of 80.2 ± 4.7%, while the randomly initialized model failed to converge. 
We further validated the model’s performance on the Multiple Domain Task Dataset 
(MDTB), which contains fMRI data of 26 tasks from 24 participants. Thirteen tasks 
of fMRI were selected as inputs, and the results showed that the pre-trained model 
succeeded in classifying 11 of the 13 tasks. When using the 7 brain networks as input, 
variations of the performance were observed, with the visual network performed as 
well as whole brain inputs, while the limbic network almost failed in all 13 tasks.

Discussion: Our results demonstrated the potential of self-supervised learning for 
fMRI analysis with small datasets and unpreprocessed data, and for analysis of the 
correlation between regional fMRI activity and cognitive tasks.
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1. Introduction

Decoding brain activities is one of the most popular topics in neuroscience in recent years. One 
of the tasks of decoding brain activities is to predict the cognitive task states. In the past few years, 
deep learning has been used for brain decoding and achieved high accuracy (Huang et al., 2017; Li 
and Fan, 2019; Nguyen et al., 2020; Wang et al., 2020; Jiang et al., 2022). These deep models need 
large data amounts, but studies in fMRI are usually datasets with data from a few dozen individuals 
(Szucs and Ioannidis, 2020).

OPEN ACCESS

EDITED BY

Nicha C. Dvornek,  
Yale University, United States

REVIEWED BY

Omer Demirel,  
University of Minnesota Twin Cities, 
United States
Yu Zhao,  
Sichuan University, China
Jingyong Su,  
Harbin Institute of Technology, Shenzhen,  
China

*CORRESPONDENCE

Bensheng Qiu  
 bqiu@ustc.edu.cn  

Xiaoxiao Wang  
 wang506@ustc.edu.cn

RECEIVED 03 April 2023
ACCEPTED 05 June 2023
PUBLISHED 26 June 2023

CITATION

Shi C, Wang Y, Wu Y, Chen S, Hu R, Zhang M, 
Qiu B and Wang X (2023) Self-supervised 
pretraining improves the performance of 
classification of task functional magnetic 
resonance imaging.
Front. Neurosci. 17:1199312.
doi: 10.3389/fnins.2023.1199312

COPYRIGHT

© 2023 Shi, Wang, Wu, Chen, Hu, Zhang, Qiu 
and Wang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 26 June 2023
DOI 10.3389/fnins.2023.1199312

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1199312%EF%BB%BF&domain=pdf&date_stamp=2023-06-26
https://www.frontiersin.org/articles/10.3389/fnins.2023.1199312/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1199312/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1199312/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1199312/full
mailto:bqiu@ustc.edu.cn
mailto:wang506@ustc.edu.cn
https://doi.org/10.3389/fnins.2023.1199312
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1199312


Shi et al. 10.3389/fnins.2023.1199312

Frontiers in Neuroscience 02 frontiersin.org

A method to solve this problem is transfer learning, which is to 
train a model on large datasets and transfer the parameters of the 
model to a small dataset (Koyamada et al., 2015; Zhang et al., 2018; 
Thomas et  al., 2019). Self-supervised learning is a deep learning 
approach where models learn from unstructured or unlabeled data 
without explicit supervision (Mikolov et al., 2013), and has been used 
in various domains such as natural language processing and computer 
vision (Doersch and Zisserman, 2017). The core is to carefully design 
a self-supervised task that requires no manual annotation, yet pushes 
the model to extract useful characteristics from the data (Kumar et al., 
2022). For instance, contrastive learning, a method in self-supervised 
learning, is a technique that enhances the performance of vision tasks 
by using the principle of contrasting samples against each other to 
learn attributes that are common between data classes. Like natural 
videos, fMRI data are high dimensional data containing both temporal 
and spatial information. The spatial and temporal autocorrelation is 
basic properties of fMRI signals and may explain numerous brain 
network topology features (Shinn et al., 2023). Unlike natural videos, 
the outlines of fMRI images rarely change, and the information is 
within the activity patterns of the voxels, i.e., the spatiotemporal 
variance of the values of voxels. Moreover, the fMRI data suffer from 
much lower signal to noise ratio (SNR) than natural video. Thus, 
researchers have employed various ways of self-supervised learning in 
fMRI: Li et  al. (2023) used self-supervised learning method to 
calculate personalized brain functional networks fron fMRI data, and 
Thomas et al. (2022) modeled sequences of fMRI signals as sequences 
of text by natural language processing (NLP) self-supervised learning 
methods. Both studies employed self-supervised learning by internal 
persistency of brain networks, but it still remains an open question of 
whether we can build a simple end-to-end self-supervised model by 
the instance representations within 4-dimensional fMRI images.

Another challenge in applying deep learning to fMRI data is 
interpretability. Deep learning models are often criticized for their lack 
of interpretability, which can be problematic in fMRI studies where 
the underlying neurobiological mechanisms are of most interest. 
Researchers have used several methods to gain insight into how the 
network is processing the data: saliency maps (Simonyan et al., 2014), 
activation maximization (Erhan et al., 2009), and attentional mask 
(Jiang et al., 2022). All these are hard to make a direct link between 
the input data and performance. Inspired by multi-variate pattern 
analysis (MVPA) (Hanke et  al., 2009), we  figure out an input-
dependent method for interpretability.

Inspired by these challenges, the main contributions to this paper 
are as follows. First, we  propose a time-domain-based fMRI self-
supervised learning method and validate it on small databases for 
downstream tasks. Second, we use fMRI signal in ROIs as input to 
explore the correlation between brain network activity and multi-
domain cognitive tasks.

2. Materials and methods

2.1. Dataset

2.1.1. HCP dataset
The minimally preprocessed 3 T data from the S1200 release of the 

Human Connectome Project (HCP) (Glasser et al., 2013) were used 
in this research. The pipeline of the minimally preprocessed removes 

spatial distortions, realigns volumes to compensate for subject motion, 
registers the fMRI data to the structural, reduces the bias field, 
normalizes the 4D image to a global mean, and masks the data with 
the final brain mask. The detail is described in Glasser et al. (2013). 
We employed the HCP task fMRI of 1,034 subjects during seven tasks: 
emotion, gambling, language, motor, relational, social, and working 
memory (WM). The HCP S1200 dataset has been minimally 
preprocessed with the HCP functional pipeline and normalized to the 
Montreal Neurological Institute’s (MNI) 152 space. According to the 
previous studies (Nguyen et al., 2020; Wang et al., 2020; Jiang et al., 
2022), only one condition was selected for each task (Table 1). Similar 
to a previous study (Jiang et al., 2022), a bounding box of the size of 
[80, 96, 88] voxels was applied to each fMRI volume to crop out the 
blank parts within the images.

2.1.2. OpenNeuro dataset ds002938
To validate the self-supervised strategy in fMRI datasets of normal 

sample size, we employed the OpenNeuro dataset ds002938(Aben 
et al., 2022), which consists of fMRI data from 30 participants. The 
data were obtained in a 3 T Siemens MRI scanner, with 
3.5 × 3.5 × 3.5 mm in-plane resolution and repetition time (TR) equal 
to 2 s. The details of the dataset and task are described in Aben et al. 
(2020). We  employed the 1-back task scan, in which participants 
conducted a 1-back working memory task viewing grayscale images 
of 18 faces and 18 houses. The task is block-designed, with each block 
lasting for 36 s (18 TRs). Four-dimensional fMRI clips were segmented 
by covering the whole block and six extra TRs extended forward and 
backward (Table 2), and 8 clips were obtained for each condition.

2.1.3. Multiple domain task battery dataset
Multiple domain task battery (MDTB) dataset (King et al., 2019) 

was used for validating the self-supervised strategy’s performance in 
fMRI data with multiple cognitive tasks of normal participant size. 
MDTB dataset contains fMRI data from 24 healthy individuals, 
conducting 26 tasks comprising 47 unique task conditions to engage 
a broad range of sensorimotor, cognitive and social/affective processes. 
The tasks were block-designed and measured over four fMRI scanning 
sessions (TR = 1 s). We excluded some non-block-design tasks, movie-
watching tasks, rest task and short block tasks. We  also selected 
nBackPic instead of verbal working memory for the nBack task, and 
we selected the motor sequence task and dropped the motor imagery 

TABLE 1 Details of the selected HCP tasks and time series.

Task Selected 
condition

Samples per 
subject

Frames of 
the block 

(time scale)

Emotion Fear 2 26(18.72 s)

Gambling Loss 2 39(28.08 s)

Language Present story 2 29(20.88 s)

Motor Right hand 2 17(12.24 s)

Relational Relation 2 23(16.56 s)

Social Mental 2 32(23.04 s)

Working 

Memory

2-back places 2 39(28.08 s)
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task. Finally, thirteen tasks were selected, with one condition for each 
task (Table 3).

ROI-based analysis is a common method in MVPA (Hanke et al., 
2009), and we also validate the ROI-based analysis of the deep model. 
The fMRI data were registered to MNI 152 spaces by the FMRIB 
Software Library (FSL) (Jenkinson et al., 2012), and then ROIs of 7 
brain networks by Yeo et al. (2011) were used to obtain fMRI signal 
within each brain network (Figure 1). We trimmed the blank areas 
surrounding the segmented brain networks to save computational 
resources and expedite the processing speed (Table 3). Finally, four-
dimensional fMRI clips were segmented by covering each block and 
4 extra TRs extended forward and backward (Table 4).

2.2. The proposed network

The main idea of the proposed self-supervised method is the 
continuity of the human internal neural state, i.e., fMRI sequences that 
are temporally close exhibit a stronger correlation compared to 
sequences that are temporally distant. We  thus design a temporal 
comparison loss within the contrast space (Figure 2A), and network 
parameters are updated accordingly to learn the potential temporal 
feature relationships in fMRI data. The proposed network (Figure 2B) 
comprises a temporal convolutional layer for incorporating temporal 
information, followed by four residual layers (He et al., 2016; Hara 
et al., 2018) to extract features and a non-linear layer for mapping 
these features to the contrast space.

2.2.1. Loss function
Our core idea was inspired by contrastive learning, but with a 

novel approach: we utilized a single fMRI scan to generate positive and 
negative pairs, which differs from other contrastive learning methods. 
For a given fMRI signal, we  segmented it into three sections: the 
beginning, middle, and end. We then utilized the end portion of the 
signal as the positive pair with the middle portion in the contrastive 
learning task, and the beginning portion with the end portion as the 
negative pair.

Based on this idea, we designed a loss function that is expressed 
as follows:
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Here, y1, y2, y3 is the output of the beginning, the middle and the 
end part of the input fMRI. The sim(x, y) function measures the cosine 
similarity of vectors x and y. The function sim(x, y) is defined as:
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2.3. Training and evaluation

The model was constructed on PyTorch. The training was 
performed on an NVIDIA GTX 3090 graphic card. We choose 
1,034 subjects from HCP dataset and 7 tasks were chosen for each 
subject. Two blocks were chosen for one task. That is to say, a total 
of 14,476 fMRI data were used. Among them, 5 tasks (Emotion, 
Gambling, Language, Social, Working Memory) were chosen to 
pretrain the model, so 10,340 fMRI data were used for pretraining. 
The left two tasks were used to execute a downstream classification 
task to validate the validity of the pretrained model. The reason 
we chose Motor and Relational tasks as downstream task is that 
these two task’s lengths are too short. The beginning and the end 
parts may overlap which we try to avoid. The batch size was set to 
16 and each model was trained for 100 epochs using the Adam 
algorithm with the standard parameters (β1 = 0.9 and β2 = 0.999). 
The learning rate was initialized at 0.0001 and decayed by a factor 
of 0.99 for each training epoch. While pretraining the model, 
we pretrain the model with different input frames (frames = 9, 12, 
15) as a comparison.

2.4. Downstream task

While conducting the downstream task, we  reused the 
parameters of the model and added a fc layer as classifier in the 
end. A segment of k continuous frames, which was randomly split 
from each segment, was used as input for training. Meanwhile, 
the cross-entropy loss was used following the previous related 
works (Nguyen et al., 2020; Wang et al., 2020; Jiang et al., 2022). 
The cross-entropy loss is one of the mostly widely used loss 
function in classification for its convexity, probability estimation, 
heavy penalization of incorrect predictions, and multiple classes 
handling. Adam optimizer was used and the learning rate was set 
to 0.0001 and decayed by a factor of 10 when the validation 
accuracy plateaued after 10 epochs.

2.4.1. Transfer learning within HCP (Motor and 
Relational tasks)

The pretrained model contains knowledge about the other 5 tasks, 
so we try to figure out if the model is helpful to the tasks whose type 
was not seen. Here, We also use a different number of subjects to 
finetune the model. Five-fold cross-subject validation was applied to 
minimize randomness in validation. The training epochs were set to 
30 to avoid overfitting.

2.4.2. Transfer learning to OpenNeuro ds002938
We fine-tuned a pre-trained model to a dataset consisting of 

working memory tasks of house and face images from 30 individuals. 
The scanning parameters, including TR and voxel size, were different 
from those of the HCP database, and the task types differed from the 
pre-training dataset for working memory tasks. Lastly, subject-based 

TABLE 2 Details of the selected OpenNeuro ds002938 task and time 
series.

Task Condition Samples per 
subject

Frames of 
the block 

(time scale)

Working 

memory

Face 8 24(48 s)

Working 

memory

House 8 24(48 s)
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5-fold cross-validation was performed. Due to transfer learning to a 
different dataset, the convergence of the pre-trained model is a bit 
slower compared to transferring the model to the HCP dataset. Thus, 
the fine-tuning epochs were set to 60 to get better convergence of 
the model.

2.4.3. Transfer learning to multiple task dataset 
(cognitive function analysis based on brain 
networks)

Brain networks were used to decoding brain cognitive states. 
These networks are consistent with what we mentioned in section 
2.1.3, including the visual network, somatomotor network, dorsal 

attention network, ventral attention network, limbic network, 
frontoparietal network, and default mode network. Most of the 
previous studies used to calculate the functional connections 
between different brain regions to calculate the features as the 
input of the neural network, while we  directly input the entire 
brain region covered by the mask. Classification of cognitive 
function was performed on datasets consisting of 7 brain networks. 
Each of the network datasets was used as input for pre-training 
models for the classification task, and different results were 
obtained by utilizing various brain network inputs. Like transfer 
the model to the OpenNeuro ds002938, the fine-tuning epochs 
were set to 60.

TABLE 3 Details of the selected MDTB task and time series.

Task Selected condition Task description Samples per subject Frames of the 
block (time scale)

Theory of Mind (ToM) (Dodell-

Feder et al., 2011)
–

2AFC to indicate if short story 

contains true or false belief
16 35(35 s)

Action Observation (Observe) 

(Cross et al., 2012)
Video actions

Passive viewing of videos of knots 

being tied, learning the name of 

the knot (presented at top of 

screen) for a latter recall test.

16 20(20s)

ArithMetic (Arith) (Rickard et al., 

2000)
Math

2AFC to indicate if simple 

multiplication equations are 

correct or incorrect

16 20(20s)

Object Viewing (ObjView) –

Passive viewing, pictures of 

objects and a checkerboard 

pattern

16 35(35 s)

Biological Motion (BioMotion) 

(Troje, 2002)
Biological motion

2AFC to identify intact point-light 

walkers (either happy or sad)
16 20(20s)

Interval Timing (Interval) 

(Schubotz and von Cramon, 2001)
–

2AFC, indicating if a tone is short 

(100 ms) or long (175 ms)
16 30(30s)

Motor Sequence(Motor) (Wiestler 

and Diedrichsen, 2013)
Finger Sequence

6-element sequence, either 

requiring one key press with each 

of six fingers

16 19(19 s)

Object N-Back (NBack) (Owen 

et al., 2005)
2-back

2AFC, indicating if current 

stimulus in stream of objects 

matches objects displayed two 

items previously

16 35(35 s)

Response Alternatives (RespAlt) 

(Bischoff-Grethe et al., 2002)
Easy

Execute a fast motor response to 

an imperative signal (white cross) 

that appears 1 primed position

16 15(15 s)

Spatial Map (SpaMap) Easy
Memorize a spatial mapping of 1 

for subsequent recall
16 15(15 s)

Spatial Imagery (SpaImage) (Boly 

et al., 2007)
Spatial imagery

Imagine walking from room to 

room in childhood home, with a 

cue specifying the path to 

be taken

16 35(35 s)

Verb Generation (Verb) (Fiez, 

1996)
Word reading

covert responses to visually 

presented nouns, repeating the 

stimulus

16 21(21 s)

Visual Search (Visual) (Donner 

et al., 2002)
Small

2AFC, indicating if target stimulus 

(“L”) is present among distractors 

(“T”), with set size = 4

16 15(15 s)
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3. Results

3.1. Transfer within the HCP dataset

The performance of various models was compared by the mean and 
standard deviation of accuracy. In the downstream classification tasks of 
Motor and Language, we investigated the impact of different input frame 
lengths and numbers of individuals on the results of fine-tuning the 
pre-trained models and compared them with randomly initialized models. 
The final classification results show that with an input frame length of 15 
and model fine-tuning using 200 subjects, the model has an accuracy of 
94.5 ± 1.8% while the randomly initialized model has an accuracy of 
74.9 ± 16.7%, and the standard deviation of the pre-trained model is very 
low, showing the stable convergence of the model. The results 
(Figures 3A–C) showed that, under the same input frame length and a 
small dataset, the pre-trained model fine-tuning always outperformed the 
randomly initialized model. The models with an input length of 15 frames 
(Figure 3A) outperformed those with an input length of 12 and 9 frames 
(Figures 3B,C) with the same group of data. When the input frame length 

was 15, a good classification result (69.7 ± 4.4%) could be obtained even 
with only 12 individuals for fine-tuning. In contrast, even with 100 
individuals for training, the model trained from scratch had difficulty in 
obtaining classification (66.8 ± 12.7%) higher than the random level (50%).

We also pretrained an Overlapped model with frame N = 9 and 
overlapped frame N = 3, where the middle part overlaped with the 
beginning and end parts by 3 frames while no overlaps existing 
between the beginning and end ones. The same downstream 
classification tasks (Motor-Relational) were applied and the results 
were shown in the Supplementary Table S1. The overplapped model 
performed comparable to the randomly initialized model, and worse 
than the non-overlapped model.

The results show that regardless of the amount of data used for fine-
tuning, even if the network does not contain task-relevant information, 
good results can still be achieved compared to random initialization of 
the network. In particular, the network still shows good results and low 
standard deviation when fine-tuning with few subjects. At the same time, 
good results can still be obtained for networks with small input frame 
lengths. After only five epochs of pre-training, the model achieves an 
accuracy rate of 89.9 ± 2.6% with an input frame length of 15 and uses 200 
subjects for the downstream task. As the training process deepens, the 
performance of the model when migrating to downstream tasks is 
increasingly better (Figure 3D).

3.2. Transfer to different datasets

The above experiment was conducted to validate the transferability 
of our self-supervised learning method using the same dataset as the 
downstream task. To further investigate whether our method can 
be applied across fMRI datasets with the site and scanning parameter 
differences, we  conducted additional experiments using smaller 
datasets and a brain network-based dataset to explore the relationship 
between brain networks and cognition.

FIGURE 1

Seven brain networks in MNI152 space.

TABLE 4 Bounding box size of 7 brain networks and the whole brain.

Brain network Bounding box size

Visual [60, 46, 47]

Somatomotor [70, 36, 48]

Dorsal Attention [66, 53, 53]

Ventral Attention [68, 59, 50]

Limbic [59, 54, 25]

Frontoparietal [69, 59, 50]

Default [78, 70, 57]

Whole Brain [80, 96, 88]
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3.2.1. Transfer to the OpenNeuro dataset 
ds002938

As a means of cross-site and scanning parameter validation, 
we  utilized the OpenNeuro ds002938 dataset as an additional 
downstream task. The pre-trained model from HCP was applied to 
this dataset, and the results were compared with those obtained by 
randomly initialized parameters during training. Furthermore, the 

input data was employed in its unprocessed raw form and was not 
registered to either the standard MNI152 space or the subject’s own 
T1w. Like the previous experiment, we used the mean and standard 
deviation of accuracy as the criteria to measure the results and 
conducted five-fold cross-validation based on subjects to obtain the 
final results. The task is to perform sub-task between tasks. The 
transferred model achieved 80.2 ± 4.7% accuracy (Figure 4B) while the 

FIGURE 2

The proposed neural network. (A)The proposed framework of self-supervised learning. Dividing an fMRI signal segment into three parts: the beginning, 
middle, and end. After feature extraction and nonlinear mapping, the beginning and end parts are more widely separated, whereas the middle and end 
parts are closer in the contrast space. (B) the model consists of a temporal convolutional layer, four 3D residual layers, and a project head to map the 
feature to the contrast space.

FIGURE 3

Performance evaluation on Motor and Relational tasks (A–C) show the average accuracy on the Motor and Relational classification task using different 
numbers of subjects to finetune the model and (A–C) use different frames as input (frame N = 15, 12, 9). (D) The average accuracy of different training 
epochs of the model which uses 200 subjects’ data to finetune. The performance goes better as the training process progresses.
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initial model trained from scratch failed to converge to a satisfactory 
accuracy (<55%) across a wide range of choices of hyper-parameter. 
And the model pretrained using supervised learning on HCP gets only 
70 ± 3.4% correct in the classification task of this dataset, which is not 
as good as the generalization ability of the model trained by our 
proposed method.

3.2.2. Transfer to the MDTB dataset
We try to use regions rather than volumes as input to explore 

whether the network works well even if only part of the brain’s 
information is preserved. F1 scores are calculated to measure the 
goodness of the results of the classification. For example, when 
the whole brain is used as input, the f1 scores of ToM, Observe, 
NBack, and SpaMap are 0.42, 0.62, 0.35, and 0.43, respectively, 
and when the visual network is used as input, the f1 scores of 
ToM, Observe, NBack, and SpaMap are 0.43, 0.66, 0.30, and 0.43, 
respectively. In particular, in the classification results, the f1 score 
was 0.31 when the visual network was used as input and the 
significance was verified by the false discovery rate (FDR) 
corrected t-test, while the f1 score did not pass the significance 
test when the whole brain signal was used as input The results 
show that the performance of task classification varies with the 
different brain networks used as input. Among them, the overall 
performance of the network was best when the visual network was 
used as input compared to other brain networks while the Limbic 
network was the input brain network, the results are basically at 
the random level except for the biological motion task. However, 
all brain regions, even the Somatomotor brain network, perform 
at random levels on the motor task (Figure 5A). What puzzled us 
was the poor classification results of the Motor task whether using 
whole-brain fMRI signals or fMRI signals from individual brain 
regions. We drew the average confusion matrix for the five-fold 
cross-validation of the whole-brain fMRI for the classification 
task (Figure  5B), and we  found that the Motor task was 
misclassified as ToM, ObjetView, BioMot, Interval, NBack, 
RespAlt, and SpaImagery(Table 3).

4. Discussion

In this work, we proposed a self-supervised framework to learn 
internal spatiotemporal patterns within fMRI and allow the model to 
transfer to datasets of small size. When transferring the pre-trained 
model to the HCP dataset, the model shows higher accuracy and more 
robust results. In particular, when using the pre-trained model for the 
classification task on the OpenNeuro ds002938 dataset, we obtained 
an accuracy of 80.2 ± 4.7% using the raw data directly as input, while 
the randomly initialized model failed to converge. Finally, we use 7 
brain networks as input to analyze the correlation between brain 
networks and cognitive tasks.

4.1. End-to-end network

The end-to-end training is robust, because the deep model may 
leverage information (like the signal patterns and individual brain 
structure) automatically. One challenge of end-to-end learning of 
fMRI is the big size of fMRI data, tens to hundreds of MB for one 
sample. Our work and related work (Wang et al., 2020; Jiang et al., 
2022) have demonstrated that a not-too-deep neural network may 
be enough to abstract informative features in a normal game graphic 
card (such as NVidia GTX 1080Ti) with a batch size of around 10. 
Batch size matters in deep learning, and we will be happy if someone 
may answer whether a much bigger batch size improves the efficiency 
of deep learning, which we can not do at the present work due to the 
limited computing resources. We have proved that deep learning may 
learn in individual space, consistent with previous results (Jaiswal 
et  al., 2021; Jiang et  al., 2022). It means that the preprocessing of 
normalization to standard space may be removed from deep learning 
of fMRI, which is good for analysis that requires high efficiency (such 
as real-time fMRI). One might dream of a deep model robust to 
interferences, such as head motion, physiological noise, and signal 
drifts, and not requiring any preprocessing. Whether deep learning 
can achieve these remains an open question for futural works.

FIGURE 4

Performance evaluation on OpenNeuro ds002938 Dataset. (A) The average confusion matrix of OpenNeuro ds002938 task classification. (B) The 
performance of the different methods on OpenNeuro ds002938 dataset. SSRes means self-supervised resnet trained on the HCP dataset. SRes means 
supervised resnet trained on HCP. Res_r means resnet with randomly initialized. 4DAtt means 4D attention model trained on HCP. 4DAtt_r means 4D 
attention model with randomly initialized.
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4.2. Transfer learning

Creating positive and negative pairs is a crucial step in 
contrastive learning, and it forms a fundamental component of the 
model construction. However, fMRI data exhibits distinct 
characteristics from natural images. The viewing angle of fMRI 
‘videos’ is always the same, with a bounding box covering the whole 

brain. There are some self-supervised methods (Sermanet et  al., 
2018; Alwassel et al., 2020; Akbari et al., 2021) to extract features of 
videos, audio and text. While videos rely on visual elements to 
convey meaning, in fMRI data it is the spatiotemporal patterns of 
voxel value changes that carry significance. Previous work has 
proposed a self-supervised method that learns the dynamics of brain 
activity within brain networks by modeling sequences of activity 

FIGURE 5

Performance on MDTB dataset. (A) The ‘*’ shows that after the t-test, the f1 scores were greater than the random classification level for p < 0.05 (with 
FDR corrected). ToM: Theory of Mind, Observe: Action Observation, Arith: ArithMetic, Object: Object Viewing, BioMotion: Biological Motion, Interval: 
Interval Timing, Object N-Back: NBack, Response Alternatives: ResAlt, Spatial Map: SpaMap, Spatial Imagery: SpaImag, Verb Generation: Verb, Visual 
Search: Visual. (B) The average confusion matrix of the task classification using the whole brain fMRI signal as input.
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akin to sequences of text (Thomas et  al., 2022). The proposed 
contrastive pairs abandon spatial contrastive and focus on temporal 
information within the 4D fMRI data. The low SNR of fMRI means 
that the dominant signal within fMRI is the noise, not the internal 
neural signal (Bandettini, 2020). In the present work, positive and 
negative pairs are generated from clips of different temporal 
distances within the fMRI data, forcing the model to focus on long-
term internal brain state variations but not short-term noises. This 
design also avoids the requirements for large batch sizes in 
contrastive learning and speeds up the training process.

Our results demonstrate that the HCP pre-trained model 
outperforms randomly initialized training for both Motor and Relational 
classification tasks, regardless of the amount of data used, and exhibits a 
shorter convergence time. Specifically, with only 12 subjects, the fine-
tuned pre-trained model achieved impressive classification performance 
(69.7 ± 4.4%), indicating that the pre-training method allowed the 
network to learn general features of fMRI data. What is interesting is that 
a pre-trained model from HCP may help the learning of a small dataset 
(OpenNeuro dataset ds002938) of different sequences (multiband vs. 
single band), time of repetition (0.72 s vs. 2 s), spatial resolution (2 mm vs. 
3.5 mm), and space (MNI152 vs. individual). The HCP pre-trained 
model learn from a dataset containing unpreprocessed fMRI from 30 
participants, achieving an accuracy of 80.2 ± 4.7%, while the randomly 
initialized model failed to converge and even the supervised model 
trained on the HCP dataset only achieved an accuracy of 70 ± 3.7%. This 
suggests that self-supervised learning methods learn the spatiotemporal 
information inherent in fMRI data, ignoring the variance of scan setups, 
while supervised learning methods focus more on the task itself.

4.3. Interpretability

While using the MDTB dataset as input, we try to find the 
relationship between different brain networks and tasks. For the 
Biological Motion task, almost all networks show some decoding 
abilities (Figure 5A). Although the proposed model is biased to 
the predicted label of Biological Motion (Figure 5B), the f1 score 
used in the present study is not particularly sensitive to false 
positives or false negatives, as it takes both into account. The 
Biological Motion task in the MDTB is to identify whether intact 
point-light walkers are either happy or sad, which may engage 
emotion-related neural activity in a wider range of brain networks 
than common biological motion tasks. For the visual search task, 
the visual network showed the best results among all brain 
networks which is consistent with common sense perception. The 
proposed model misclassifies the motor sequence task into ToM, 
ObjView, BioMotion, Interval, NBack, RespAlt, and SpaImag 
(Figure  5B), most of which include key pressing in the task 
(Table 1) and lead to confusion with the finger pressing activity 
of the Motor task. And the f1 score of the visual search task was 
0.31 when the visual network was used as input and the 
significance was verified by the FDR corrected t-test, while the f1 
score did not pass the significance test when the whole brain 
signal was used as input. This suggests that using specific regional 
fMRI enables the neural network to focus on more 
detailed information.

Moreover, when the visual network is used as input, it performs the 
best among all brain networks, consistent with the visualization result 

of Wang et al. (2020), whose deep visualization highlights visual cortices 
for the 7 tasks in HCP. It indicates that for the decoding process of 
cognitive function tasks, the involvement of the visual network is 
necessary, and it may also be that different cognitive tasks have different 
activation patterns formed in the visual network by top-down feedback 
to the visual network from higher cognitive brain regions. The exact 
mechanism remains unclear and requires futural research. In 
conclusion, we  used a brain network database to investigate the 
relationship between brain networks and cognitive functions. Our 
findings demonstrate that the pre-trained model is capable of extracting 
features not only from the entire brain volume as input but also ROIs as 
input, exhibiting its feature extraction and generalization abilities.

4.4. Limitations and future applications

In this paper, we  propose an end-to-end fMRI temporal 
pre-training method that has shown good performance on 
downstream tasks. However, our approach also has some 
limitations that should be addressed. For instance, our method 
requires a relatively long block experiment design, and we solely 
relied on the HCP dataset as the pre-training dataset. While our 
downstream tasks demonstrate that our method can work well 
with different temporal resolutions, there is still a need for further 
exploration of how to combine datasets with varying temporal and 
spatial resolutions as the original pre-training dataset. Apply the 
model to resting-state and event-designed fMRI may also 
be possible. Furthermore, our use of a limited range of task types 
underscores the importance of a decoding model with a fine 
cognitive granularity that can generalize across multiple cognitive 
domains and brain states induced by various tasks. Meanwhile, the 
transformer (Vaswani et  al., 2017) has shown competitive 
performance on several image and video classification tasks, and it 
deserves a try in fMRI data classification. Additionally, with the 
development of high-field super-resolution fMRI, high-resolution 
task-state fMRI-based data for brain decoding is expected in 
future studies.

5. Conclusion

This study proposes an end-to-end fMRI pretraining method that 
is based on fMRI internal temporal information. Through various 
downstream tasks, we demonstrate the effectiveness of our proposed 
method. Notably, our research on the OpenNeuro ds002938 dataset 
shows that the pre-trained model can learn from fMRI data of 
common sample size without preprocessing, thus simplifying the data 
analysis process. Moreover, we explore the relationship between brain 
networks and cognitive functions using different brain networks, 
highlighting the potential of deep learning in cognitive function brain 
region localization.
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