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Background: We previously developed a non-invasive approach to localize the
site of early left ventricular activation origin in real time using 12-lead ECG, and to
project the predicted site onto a generic LV endocardial surface using the smallest
angle between two vectors algorithm (SA).

Objectives: To improve the localization accuracy of the non-invasive approach by
utilizing the K-nearest neighbors algorithm (KNN) to reduce projection errors.

Methods: Two datasets were used. Dataset #1 had 1012 LV endocardial pacing
sites with known coordinates on the generic LV surface and corresponding ECGs,
while dataset #2 included 25 clinically-identified VT exit sites and corresponding
ECGs. The non-invasive approach used “population” regression coefficients to
predict the target coordinates of a pacing site or VT exit site from the initial 120-m
QRS integrals of the pacing site/VT ECG. The predicted site coordinates were then
projected onto the generic LV surface using either the KNN or SA projection
algorithm.

Results: The non-invasive approach using the KNN had a significantly lower mean
localization error than the SA in both dataset #1 (9.4 vs. 12.5 mm, p < 0.05) and
dataset #2 (7.2 vs. 9.5 mm, p < 0.05). The bootstrap method with 1,000 trials
confirmed that using KNN had significantly higher predictive accuracy than using
the SA in the bootstrap assessment with the left-out sample (p < 0.05).

Conclusion: The KNN significantly reduces the projection error and improves the
localization accuracy of the non-invasive approach, which shows promise as a
tool to identify the site of origin of ventricular arrhythmia in non-invasive clinical
modalities.
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Introduction

Sudden cardiac arrest is a major cause of death in developed
countries, with approximately 350,000 deaths per year in the
United States alone (Al-Khatib et al., 2017). The majority of those
events are caused by ventricular arrhythmias (VAs) (Tang et al., 2017).
Catheter ablation has emerged as an established therapeutic option for
the treatment of VAs (Reddy et al., 2007; Kuck et al., 2010; Sapp et al.,
2016). Accurate identification of the substrate responsible for the VA
is key to the success of the modality and may be facilitated using 12-
lead ECG to non-invasively localize the breakthrough site from which
a focal ventricular tachycardia (VT) or premature ventricular
contraction (PVC) arises, from an exit pathway of a transmural re-
entry, or from which a re-entrant circuit exits the central isthmus to
activate the “normal” myocardium. Computer-aided methods for
rapidly and automatically localizing the site of early ventricular
activation origin in real-time using 12-lead ECG can be
particularly helpful for catheter ablation of VA (Cronin et al.,
2020). Several non-invasive algorithms based on the 12-lead ECG
have been proposed for localizing the site of early ventricular
activation origin with varying degrees of accuracy (Josephson et al.,
1981; Miller et al., 1988; Betensky et al., 2011; Yokokawa et al., 2012;
Efimova et al., 2015; Misra et al., 2018; Alawad and Wang, 2019; He
et al., 2020). Recent studies using deep learning—based VT exit/PVC
origin localization have shown moderate localization accuracy (Yang
et al., 2018; Gyawali et al., 2020), and the “black box” nature of these
deep learning models makes it difficult to interpret how input
variables interact to identify the VT exit/PVC origin site (Zhou
et al., 2021).

Locating the site of origin within 10 mm is of great clinical
significance. We have previously developed a non-invasive
automated approach that combines information from 12-lead
ECG recordings and a generic LV endocardial mesh surface
consisting of 238 area elements to localize the site of early left-
ventricular (LV) activation origin (Sapp et al., 2017; Zhou et al.,
2019). We have shown that, using the non-invasive automated
approach based on the 12-lead ECG (Sapp et al., 2017; Zhou
et al., 2019), spatial localization of the site of early LV activation
origin can be achieved without significant loss of accuracy in
comparison with our 120-lead Electrocardiographic Imaging
(ECGI) (Zhou et al., 2018a; Zhou et al., 2018b); ECGI uses CT/
MRI volumes to delineate the cardiac anatomy and determine the
relative location of body surface electrodes to reconstruct epicardial
electrical events by a mathematical process known as calculation of
inverse solution (Zhou et al., 2018a; Zhou et al., 2018b). The non-
invasive automatic approach demonstrated a mean localization
error of 12.2 ± 8.14 mm (Sapp et al., 2017; Zhou et al., 2019).
Briefly, the non-invasive automated approach was based on the
hypothesis of a linear relationship between coordinates of early left
ventricular activation sites and ECG lead potentials (QRS integrals);
a dataset comprising coordinates (exported from an electroanatomic
mapping (EAM) system) of 1012 LV endocardial pacing sites and
their corresponding ECGs was used to calculate population-derived
regression coefficients; the non-invasive automated approach uses
these population-derived regression coefficients to predict the target
coordinates of a pacing site or VA from the initial 120-m QRS
integrals of the pacing site ECG or the VA ECG. The predicted
pacing-site/VA origin site coordinates are projected onto one of the

238 triangular area elements of the generic LV endocardial mesh
surface using the smallest angle between two vectors algorithm
(named SA algorithm), so that the projected site can be targeted
for ablation. However, the prolate ellipsoid geometry of the normal
LV shape, with a ratio of 2:1 from echocardiographic long axis
dimension to minor axis dimension (Udelson, 2017), may lead to
projection errors when using the SA algorithm.

In this study, we hypothesized that K-Nearest Neighbors (KNN)
algorithm can reduce the projection error and improve the
localization performance of the non-invasive automated
approach. The paper is organized as follows, Section 2 describes
the methods in detail, Section 3 presents the results, and Section 4
concludes the study and discusses its limitations and future research.

Methods

Clinical datasets

This study utilized two datasets (Sapp et al., 2017; Zhou et al.,
2019; Zhou et al., 2020). The first dataset (#1) comprised 1012 LV
endocardial pacing sites pooled from 38 patients, which were
exported from an EAM system (Carto 3, Biosense Webster, Inc.,
Irvine, CA, United States) and included corresponding ECGs (Sapp
et al., 2017; Zhou et al., 2019). The second dataset (#2) included
25 clinically-identified LV endocardial VT exit sites with
corresponding ECGs (Zhou et al., 2020). All participating
patients gave written informed consent; the study protocol was
approved by the Institutional Research Ethics Board (Nova Scotia
Health Authority, Halifax, Canada).

Datasets description

In a previous study, we constructed a generic LV endocardial
mesh surface consisting of 238 triangles, derived from the necropsy
specimen of a normal human heart (Hren et al., 1998). The average
distance between the centers of the 238 triangles was found to be
5.4 ± 1.4 mm (mean ± SD). In the current study, the Cartesian
coordinates of each pacing site or clinically-identified VT exit site
were manually registered from the patient-specific EAM geometry
onto one of the 238-triangle centers of the generic LV endocardial
surface by two independent observers (Drs Sapp and AbdelWahab)
(Sapp et al., 2017; Zhou et al., 2019; Zhou et al., 2020). The
registration process had an interobserver variability of
approximately 3.7 mm in the surrounding area (Zhou et al.,
2020). For each pacing site/clinical-identified VT exit site, the
QRS integral was calculated over the initial 120 m of the QRS
complex for the 8 independent leads (I, II, V1-V6) of the 12-lead
ECG (∫QRS, in microvolt-seconds) (Sapp et al., 2017; Zhou et al.,
2018a; Zhou et al., 2018b; Zhou et al., 2019; Zhou et al., 2020) by
using summing up the area of the 120 m QRS window.

The non-invasive automated approach

The non-invasive automated approach based on a training set (n
samples) with a multiple linear regression (MLR) model can be
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applied to the 238-triangle generic LV endocardial mesh surface,
provided the 8-variable set (P:i, i = 1, . . ., k = 8) can be generated
from the 8 independent leads ECG (I, II, V1-V6) for the training-set
pacing sites with known coordinates xj, yj, zj, (j = 1, . . . n.) (Sapp
et al., 2017; Zhou et al., 2019). The MLRmodel with intercept is used
to determine “population” regression coefficients in the regression
equations linking each of the 3 coordinates of a known pacing site xj,
yj, zj, with the values of the corresponding QRS integrals, Pji, where
the subscript i indicates one of the 8 leads:

xj � α0 +∑8

i�1αiPji yj � β0 +∑8

i�1βiPji zj � γ0 +∑8

i�1γiPji (1)

Here αi, βi, and γi (i = 0, . . ., 8) are calculated “population”
regression coefficients based on the training set (n samples). The
least-squared solution to this problem yielded the estimates of the
“population” regression coefficients. Next, the calculated 3 sets of the
“population” regression coefficients are used in MLR models
mapping the coordinates of an unknown pacing-site origin or an
unknown clinically-induced VT (coordinates x̂, ŷ, ẑ) with the values
of the 8 QRS integrals (Vi) of the pacing site ECG or the clinically-
induced VT ECG

x̂ � α0 +∑8

i�1αiVi ŷ � β0 +∑8

i�1βiVi ẑ � γ0 +∑8

i�1γiVi (2)

The unknowns in this set of equations are the coordinates of the
pacing-site origin or the clinically-induced VT exit site, x̂, ŷ, ẑ. Once
the coordinates of the pacing-site origin or the induced VT exit site
are calculated, they are projected onto one of the 238-triangle centers
of the generic LV endocardial mesh surface as the targeted site.

Projection algorithm based on the smallest
angle between two vectors (SA algorithm)

To project the predicted pacing/VT exit site x̂, ŷ, ẑ onto one of
the 238-triangle centers of the generic LV endocardial mesh surface,
we have previously used vector multiplication to determine the
smallest angle between two vectors. In the 238-triangle generic LV
endocardial mesh surface, there exist 238 vectors (At, t = 1, . . . 238),
each extending from the center of the generic LV cavity to a
corresponding triangle centroid. A vector B is obtained from the
center of the generic LV cavity to the predicted pacing/VT exit site
(x̂, ŷ, ẑ). To compute all angles between At (t � 1, . . . , 238) vectors
and the B vectors, we utilize the following formulated:

θt � cos−1
At · B
At| | · B| |( ); t � 1, . . . , 238 (3)

After calculating Eq. 3, the smallest angle, θsmallest, can be
obtained from one of the 238 θt (t � 1, . . . , 238). The center of
the corresponding triangle, t, serves as the final projected site on the
generic LV endocardial mesh surface.

Projection algorithm based on K-Nearest
neighbors (KNN) algorithm

The K-nearest neighbors (KNN) algorithm is a non-parametric
approach for classification and regression tasks in supervised
learning (Bzdok et al., 2018). In this study, the KNN is used to

predict the class of the test data by calculating the distance between
the test data and all the training points, then to select the ‘K’ number
of points which is close to the test data. In this study, the test data is
the predicted pacing/VT exit site (x̂, ŷ, ẑ); the training points are all
of the 238-triangle centers of the generic LV endocardial mesh
surface; ‘K’ was assigned to 1 which means that the object is simply
assigned to the class of its nearest neighbor. In other words, the
predicted pacing/VT exit site (x̂, ŷ, ẑ) is classified into a class; and
there are 238 classes obtained from the 238-triangle centers. Then,
the distances between the predicted pacing/VT exit site and all other
238-triangle centers were calculated for finding the nearest
neighbors by ranking sites by increasing distance. Figure 1
illustrates the nearest neighbors of the predicted pacing/VT exit
site that are closest in dataspace. The predicted pacing/VT exit site
(x̂, ŷ, ẑ) is then assigned to the No. 196 triangle center based on the
votes from the KNN, and is projected onto the 196th triangle of the
LV endocardial mesh surface as the final targeted site.

Localization accuracy assessment based on
the two datasets

Dataset #1
To evaluate the localization performance of the non-invasive

automated approach, the entire dataset #1 (n = 1,012) was
randomly partitioned into a training set with 80% of the entire
set (n = 810) and a test set with the remaining 20% (n = 202). The
“population” regression coefficients were calculated from the
training set (n = 810) using Eq. 1, and then applied as
constants with the ECG variables extracted from the
8 independent leads ECG of any activation sequence of interest
initiated at the unknown site obtained from the test set (n = 202).,
The resulting coordinates x̂, ŷ, ẑ of the unknown pacing site can be
calculated using Eq. 2 with the known “population” regression
coefficients and the ECG variables for the unknown pacing site of
interest. Finally, the predicted pacing site was projected onto the
generic LV endocardial mesh surface (triangle centroid (xe, ye, ze))
using the two projection algorithms, resulting in an estimated
pacing site origin on one of the 238 triangles of the generic LV
mesh surface.

In addition, the bootstrap method with replacement was used to
assess the statistical inference (Efron and Tibshirani, 1993). To
estimate the optimistic bias of the proposed projection algorithm,
the mean error with standard deviation was calculated and applied
to the left-out sample (n = 1,012/e≃371), which served as a test set.
The mean and standard deviation of 1,000 bootstrap trials was
calculated. The standard error was used to construct the 95%-
confidence interval of the localization performance. The
Minitab’s boxplot was used to visualize the distribution of data
and identify any potential outliers. To determine the outliers, the
Minitab involved identifying data points that are more than
1.5 times the interquartile range (IQR) below the first quartile or
above the third quartile.

The actual pacing site is known and specified on the 238-
triangle generic LV endocardial mesh surface as triangle centroid
(xr, yr, zr), the accuracy of pacing-site localization can be then
assessed from the geodesic distance between (xe, ye, ze) and
(xr, yr, zr), measured on the curved surface of the generic LV,
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both located on the surface of the generic LV. The localization
accuracy was then estimated from the geodesic distance (in mm)
approximated as an arc length on the sphere with center at the
center-point of the generic LV.

Dataset #2
We evaluated the localization performance of the non-invasive

automated approach using the KNN projection algorithm on
dataset #2, which consists of 25 clinically-identified VT-exit
sites. We calculated the “population” regression coefficients
using the entire dataset #1 (n = 1,012), and compared the
results to those of the non-invasive automated approach using
the SA projection algorithm. In the Dataset #2, we used the
Euclidean distance to assess the localization accuracy of the
non-invasive automated approach using the SA projection
algorithm for predicting the 25 clinically-identified VT-exit sites
in our previous study (Zhou et al., 2020). To ensure consistency in
this study, the localization error of the VT exit site was assessed by
measuring the Euclidean distance between the clinically-identified
site and the estimated site both on the generic LV endocardial
mesh surface.

Results

Localization performance assessment based
on the dataset #1

Localization performance of the non-invasive
automated approach using the two projection
algorithms based on a test set (n = 202)

The study evaluated the localization error of a non-invasive
automated approach using two projection algorithms. Geodesic
distance was calculated from the centroid of the predicted
triangle to the centroid of the known reference triangle on the
238-triangle generic LV endocardial mesh surface. After deriving
“population” regression coefficients from a training set (n = 810), the
accuracy of the approach was assessed on a test set (n = 202). The
mean accuracy of the non-invasive automated approach was 9.4 mm
and 12.5 mm for using the KNN projection and the SA projection
algorithms, respectively. Figure 2 (left panel) shows that the mean
localization error using the KNN projection algorithm was
significantly lower than that of the SA projection algorithm
(9.4 vs. 12.5 mm, p < 0.05).

FIGURE 1
The K-nearest neighbors (KNN) algorithm with Euclidean distance measurement was used to project a predicted pacing/VT-exit site marked by the
red ball onto one of the 238-triangle centers of the generic LV endocardial mesh surface. The example illustrates that a predicted pacing/VT-exit site
marked by the red ball was projected onto the No. 196 triangle center by finding the shortest distance from all of the 238 Euclidean distances calculated
by the predicted pacing/VT-exit site and all of the 238-triangle centers of the generic LV endocardial mesh surface.
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Localization performance of the non-invasive
automated approach using the two projection
algorithms based on bootstrap assessment

The localization performance of the non-invasive automated
approach using the two projection algorithms was further
evaluated in terms of geodesic distance between the centroid
of the projected and actual pacing site, measured on the generic
LV endocardial mesh surface. The bootstrap method with
replacement, using 1,000 trials (Efron and Tibshirani, 1993),
was employed to summarize the results. Table 1 and in
Figure 2 (right panel) provide an overview of the results. As
shown in Figure 2 (right panel), the KNN projection algorithm
yielded a significantly lower mean localization errors compared
to the SA projection algorithm (KNN vs SA, p < 0.05) in the left-
out sample (n≃371). The distributions of the left-out-sample
errors are depicted in Figure 3, based on the pacing-site

localization error measured as a geodesic distance in the
generic LV endocardial mesh surface, for the 1,000 bootstrap
trials using the non-invasive automated approach with the two
projection algorithms.

Localization performance assessment based
on the dataset #2

Figure 4 shows the localization errors of 25 clinically-identified
VT exit sites in the dataset #2, based on the non-invasive automated
approach using the two different projection algorithms. The mean
localization error of the non-invasive automated approach, using the
KNN projection algorithm (named proposed approach), was
significantly lower than that of the non-invasive automated
approach using the SA projection algorithm (published in

FIGURE 2
Left Panel, Comparison based on the test set (n = 202) for the error measured as geodesic distance using the two projection algorithms (KNN,
SA). Mean values are shown numerically. Right Panel: Box plot of localization error for using the two projection algorithms (KNN, SA). Plots
represent data for mean localization error in terms of geodesic distance on the generic LV-endocardial surface for the left-out sample (n = 1,012/
e≃371). Boxes represent interquartile ranges; a line inside the box marks the median, “whiskers” above and below the box indicate range, pp
represent outliers.

TABLE 1 Bootstrap method with replacement (Efron and Tibshirani, 1993), using 1,000 trials, was used; the left-out sample had n = 1,012/e≃371 pacing sites. Three
g-variables quantify accuracy of localization by eight-predictor regression in terms of geodesic distance (in mm) from the centroid of the predicted triangle to the
centroid of the pacing-site triangle on the 238-triangle generic LV endocardial mesh surface; gmean, mean value; gsd, standard deviation; gmedian, median value;
Pctl, percentile.

Algorithms Variable Mean SD Median 5th pctl 95th pctl

Using the K-nearest-neighbors gmean 9.4 0.4 9.4 8.7 10.1

gsd 8.5 0.4 8.5 7.7 9.3

gmedian 7.2 0.4 7.3 6.6 8.1

Using the smallest angle gmean 12.8 0.4 12.8 12.1 13.6

gsd 8.7 0.5 8.7 7.6 9.7

gmedian 11.2 0.4 11.2 10.4 12.0
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reference 23). (7.2 vs. 9.5 mm, p < 0.05). Figure 5 illustrates the non-
invasive automated approach for localizing the exit site of a
ventricular tachycardia (VT) using two projection algorithms.
This VT had a cycle length of 315 m, with right bundle branch
block-type morphology in lead V1, and a rightward axis (Figure 5A).
The site of exit was identified at the mid-apical anterolateral wall
inferior to the anterolateral papillary muscle. The VT exit site was
localized to the more apical portion of the mid-anterolateral
segment identified by the non-invasive automated approach
using the two projection algorithms, respectively (Figure 5B for
using the SA projection algorithm; Figure 5C for using the KNN
projection algorithm). The electroanatomic substrate map is shown
in Figure 5D, with the site of VT exit identified (yellow arrow, yellow
star and gold ball).

Discussion

In this study, we introduced the K-nearest neighbors (KNN)
algorithm to improve the localization performance of a non-invasive
automated approach by reducing the projection error. The KNN
algorithm was used to project the predicted pacing/VT-exit site onto
a generic LV endocardial mesh surface, and compare its accuracy to
the smallest angle between two vectors projection algorithm. The
non-invasive automated approach utilizing the KNN projection
algorithm achieved a mean localization accuracy of < 10 mm in
both datasets, highlighting its clinical significance.

Based on the comprehensive assessments, we conclude that the
KNN projection algorithm can enhance the localization accuracy of
the non-invasive automated approach in clinical cardiac
electrophysiology. The KNN algorithm does not rely on any
machine learning model that requires a pre-existing training on a
dataset to make predictions. In other words, the KNN does not
require any training, which saves the training dataset and uses it only
when making real-time predictions to learn. This makes the KNN
algorithm much faster than other training-based algorithms, such
as, random forest or support vector machine. In addition, the KNN
requires knowing the number of categories (one or more), which
means that the K value has a powerful effect on the KNN
performance. In our specific situation, the ‘K’ value was required
to be 1, which completely solved the most prominent issue—the
optimal K number for determining the KNN performance.
Therefore, the 1-NN (‘K’ NN) algorithm was directly used to
calculate the Euclidean distances between the predicted pacing/
VT-exit site and all of the 238-triangle centers of the generic LV
endocardial mesh surface, finding the shortest distance for the
calculated 238 Euclidean distances.

Our study represents a significant step towards improving the
localization accuracy of the non-invasive automated approach
for real-time localization of early LV activation origin, which has
potential applications for catheter ablation of VA (Cronin et al.,

FIGURE 3
Left panel: the distributions for the non-invasive automated approach using the K-nearest neighbors (KNN) projection algorithm of the bootstrap
left-out-sample errors, based on localization errors on the LV endocardial surface for 1,000 bootstrap trials. Right panel: the distributions for the non-
invasive automated approach using the smallest angle between two vectors algorithm of the bootstrap left-out-sample errors, based on localization
errors on the LV endocardial surface for 1,000 bootstrap trials. Error was measured as geodesic distance (approximated by the arc length) between
the centroid of the projected triangle and the centroid of the pacing-site triangle on the 238-triangle generic LV endocardial mesh surface.

FIGURE 4
Box plot of localization error of the 25 VT exit sites for using the
non-invasive automated approach based the two projection
algorithms. Plots represent data for mean localization error in terms of
Euclidean distance.
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2020) and targeting VT locations for substrate modification using
cardiac stereotactic body radiotherapy (cSBRT) (Qian et al.,
2021). Recently cardiac SBRT as a non-invasive alternative has
been shown to provide a viable option for VT which is refractory
to ablation and medication (Cuculich et al., 2017). While ECGI
has been proposed as a means to identify VT substrate for guiding
cardiac SBRT (Graham et al., 2019; Samson et al., 2020), its
spatial accuracy is limited and depends on several factors
(Hohmann et al., 2019). Septal activation, for example, is
inherently difficult to represent on the epicardial surface

(Duchateau et al., 2019). Duchateau et al. compared ECGI
with invasive epicardial mapping, and found an inadequate
correlation between the two modalities, with an average
distance of 75 mm from the invasively mapped focal
breakthrough locations to the predicted origin sites
(Bhaskaran et al., 2019). Our proposed approach provides a
promising foundation for future studies in the non-invasive
cSBRT. However, there are several limitations of this study.
Specifically, the proposed study has limited applicability in the
right ventricle (RV) endocardium and epicardium. To overcome

FIGURE 5
Localization of a ventricular tachycardia (VT) exit by the non-invasive automated localization using the two projection algorithms. (A), The recorded
12-lead ECG of an induced monomorphic VT during the procedure. The onset of one VT beat was automatically detected (Kemmelings et al., 1994); the
user can edit the onset of the 120 m window (rectangle box) if correction is necessary. (B), Bull’s eye icon that indicates the estimated VT-exit locations
using the non-invasive automated approach based on the smallest angle between two vectors (SA algorithm). The red ball indicates the VT reference
site on the 238-triangle generic LV endocardial mesh surface, which was registered manually from an endocardial electroanatomic mapping map (panel
D). Localization error of the VT exit site is 6.7 mm between the bull’s eye icon and the red ball. The large number within each segment is the correlation
coefficient (%) formatch by the 12-lead ECG VT patternwith population based 12-lead ECG templates; the small number identifies the segment. (C), Bull’s
eye icon that indicates the estimated VT-exit locations using the non-invasive automated approach based on the K-nearest neighbors algorithm (KNN).
The red ball registeredmanually from an endocardial electroanatomicmappingmap (panel D) indicates the VT reference site on the 238-triangle generic
LV endocardial mesh surface. Localization error of the VT exit site is 5.8 mm between the bull’s eye icon and the red ball. The large number within each
segment is the correlation coefficient (%) for match by the 12-lead ECG VT pattern with population based 12-lead ECG templates; the small number
identifies the segment. (D), an endocardial electroanatomic substrate map, with areas featuring bipolar signal amplitude ≥1.50 mV in purple, and the site
of VT exit (identified by contact mapping) depicted by the yellow arrow, yellow starand gold ball.
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this limitation, future studies could utilize the same method to
identify the site of early RV/epicardial activation origin.
Additionally, the proposed study is based on a generic LV
endocardial mesh surface and does not account for the
patient-specific LV endocardial surface. Future studies would
explore a non-invasive ECG-image-based mapping approach
that relies on personalized ventricular surfaces from CT/MRI
scans and the proposed approach for identifying the site of early
ventricular activation origin in both ventricles.

Conclusion

The K-nearest neighbors (KNN) algorithm can greatly reduce
the projection error, improve the localization accuracy of the non-
invasive automated approach. By utilizing the KNN projection
algorithm, the non-invasive automated approach outperforms
any prior published approached, which may potentially facilitate
the use of non-invasive clinical modalities in identifying the site of
origin of ventricular arrhythmia.
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