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Sleep plays an essential role in all studied animals with a nervous system. However,

sleep deprivation leads to various pathological changes and neurobehavioral

problems. Astrocytes are the most abundant cells in the brain and are involved

in various important functions, including neurotransmitter and ion homeostasis,

synaptic and neuronal modulation, and blood–brain barrier maintenance;

furthermore, they are associated with numerous neurodegenerative diseases,

pain, and mood disorders. Moreover, astrocytes are increasingly being recognized

as vital contributors to the regulation of sleep-wake cycles, both locally and

in specific neural circuits. In this review, we begin by describing the role of

astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal

activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and

(v) astrocyte–microglia cross-talk. Moreover, we review the role of astrocytes

in sleep deprivation comorbidities and sleep deprivation-related brain disorders.

Finally, we discuss potential interventions targeting astrocytes to prevent or treat

sleep deprivation-related brain disorders. Pursuing these questions would pave

the way for a deeper understanding of the cellular and neural mechanisms

underlying sleep deprivation-comorbid brain disorders.

KEYWORDS

astrocytes, sleep deprivation, glymphatic system, neuroinflammation, sleep deprivation
comorbidity

1. Introduction

Humans spend approximately one-third of their lives sleeping, which is known to be a
necessary and conserved function throughout mammalian life (Krueger et al., 2016; Ingiosi
et al., 2020). Normal sleep is divided into two phases: non-rapid eye movement (NREM)
sleep and rapid eye movement (REM) sleep. Several processes have been linked to sleep,
including cognitive processes such as memory consolidation and emotional control, as well
as physiological processes such as hematological system modulation, tissue regeneration,
cellular metabolism, endocrine regulation, and even atherosclerosis prevention (Spiegel
et al., 1999; Tononi and Cirelli, 2014; Palmer and Alfano, 2017; Elkhenany et al., 2018;
Raven et al., 2018; McAlpine et al., 2019). However, sleep disorders are associate with pain
and various central nervous system (CNS) diseases, including mood disorders, psychiatric
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disorders, and neurodegenerative disorders such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), and Huntington’s disease
(HD) (Tang et al., 2021; Winer et al., 2021; Nassan and Videnovic,
2022; Kunz et al., 2023; Stankeviciute et al., 2023).

Sleep deprivation (SD) is defined as prolonged periods of
time without sleep. Today, SD is no longer a minor group
condition but has evolved into an epidemic that is a major
social and public health concern. Rising work demands, increasing
prevalence of shift work, abuse of drugs that may have sleep-
suppressing side effects, and increased use of artificial light-
emitting devices contribute to sleep-related issues. In the context
of chronic insomnia disorder, Zhang et al. (2018) demonstrated
that inadequate sleep damaged cerebral microstructure, affecting
astrocytes, neurons, and neuronal terminals; consequently, the
damage resulted in impaired cognition, alertness, hippocampal
connections, and episodic memory (Ikegami et al., 2009; Boardman
et al., 2018; Chai et al., 2020; Smith et al., 2020; Ochab et al., 2021).
It was once believed that recovery sleep would be accompanied by
cognitive restoration; however, a growing body of research has cast
doubt on this idea (Axelsson et al., 2008; Pejovic et al., 2013; van
Straten et al., 2018). Accordingly, a list of abnormal changes in the
brain after SD should be carefully evaluated.

Astrocytes are highly heterogeneous brain cells; apart from
numerous subtle morphological changes, they have a ramified
structure and intricate arborization. Reactive astrocytes might
be generally divided into two subtypes: a neuroprotective
phenotype (A2) and a neurotoxic phenotype (A1) (Fan and
Huo, 2021). Liddelow et al. (2017) in their study, identified
that lipopolysaccharide (LPS)-stimulated microglia produced
differentiation factors, including tumor necrosis factor, interleukin-
1α, and complement component 1q to increase an A1 astrocyte
phenotype. Conversely, by analyzing samples from ischemic brain,
they assigned A2 astrocytes neuroprotective activity (Liddelow
et al., 2017). Astrocytes engage in synaptic pruning (Lee et al.,
2021) and phagocytosis of damaged or dead cells (Davis et al.,
2014; Morizawa et al., 2017; Wan et al., 2022), thus contributing to
the maintenance and prolongation of brain homeostasis (Damisah
et al., 2020) and helping delay the progression of degenerative
diseases, although the precise regulatory process involved in such
waste/debris removal is significantly affected by aging.

Astrocytes play an important role as timekeepers of the
hypothalamic suprachiasmatic nucleus, which is considered as
the central pacemaker (Astiz et al., 2022), and the astrocyte
cell-autonomous molecular clock can drive circles in the daily
neuronal circuit (Hastings et al., 2023); moreover, they possess 55
unique sleep genes and 396 unique awake genes (Bellesi et al.,
2015). Additionally, astrocytes serve various specific purposes
during sleep and wakefulness, including information processing
and cognitive consolidation (Pannasch and Rouach, 2013; Sardinha
et al., 2017; Adamsky et al., 2018). Some astrocyte secretions
increase sleep time or non-rapid eye movement slow-wave
activity, which in turn affect astrocyte morphology and gene
expression patterns (Frank, 2019). Using transcriptomic profiling
experiments, researchers demonstrated that some astrocytes were
state-dependent and that their metabolism and activities were
mostly upregulated in the awake state. At the same time, sleep
evoked the expression of a few specific genes to extend peripheral
astrocytic processes, like Cirp and Uba1 (Bellesi et al., 2015).
Nevertheless, although a few breakthrough studies have shown

that astrocytes are crucial for sleep regulation, the mechanisms
underpinning their contribution to physiological sleep and SD
comorbidities are still unclear.

Sleep deprivation hampers daily functions of astrocytic that
protect neuronal homeostasis. However, the associations among
SD and astrocytes and subsequent brain disorders remain
poorly investigated. In this review, we discuss the current
views on astrocytic contributions to physiological sleep, from
molecular mechanisms to systematic manifestations in the case
of SD. Subsequently, we discuss pathological ailments such as
stroke, epilepsy, and neurodegenerative diseases, usually worsened
by coexisting sleep deprivation. Finally, we elaborate on the
potential mechanisms by which astrocytes contribute to SD-related
comorbidities and discuss some feasible strategies and possible
treatments for the various neural consequences. These findings
are expected to shed light on potential therapeutic strategies for
managing sleep loss and its associated comorbidities.

2. Role of astrocyte in normal sleep
and sleep deprivation

Astrocytes participate in various physiological activities in
the brain, from ion balance to metabolism. As important
components of the energy metabolism process in the brain,
astrocytes work with neurons to significantly influence overall
brain activity. Additionally, astrocyte–microglia cross-talk has been
linked to several physiological functions, including immunological
functions. Astrocytes are also involved in the control of cerebral
blood flow through neurovascular coupling, regulating synaptic
activity and plasticity, encircling the synapses of other neurons,
helping to form the blood–brain barrier (BBB), which ensures
brain homeostasis, and releasing vasoactive substances that cause
arteriole dilation in highly active neural regions. In 1895, Cajal
hypothesized that astrocytes control sleep by extending their
dendrites into synapses during sleep and retracting them during
wakefulness (García-Marín et al., 2007). Although this hypothesis
was later proven inaccurate (Bellesi et al., 2015), recent studies
have highlighted the importance of astrocytes in modulating sleep
(Halassa et al., 2009; Jackson et al., 2020). The detailed regulation of
astrocytes on sleep would be discussed in the following section and
the summary information was outlined in Figure 1.

2.1. Neuronal activity

Through the release of gliotransmitters [adenosine, glutamate,
gamma-aminobutyric acid (GABA), glycine, D-serine, lactate, and
various cytokines], astrocytes play a significant role in regulating
neuronal activity and synaptic transmission (Araque et al., 2014;
Sahlender et al., 2014; Yoon and Lee, 2014; Mosienko et al., 2015;
Petrelli and Bezzi, 2016; Bonvento and Bolaños, 2021; Park et al.,
2022), which can synchronize neuronal activity in the different
brain regions, such as the hippocampus, posterior hypothalamus,
and cortex. Ion chemical signals in astrocytes are also correlated
with neuronal synchrony, and synchronization is important for
generating slow-wave activity and sleep (Garofalo et al., 2020). The
characteristic electroencephalography EEG pattern of wakefulness
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FIGURE 1

This panel briefly summarized the roles of astrocyte in physiological sleep and sleep deprivation. (ATP, adenosine triphosphate; AD, Alzheimer’s
disease; ANLS, astrocyte–neuron lactate shuttle; CB1R, type 1 cannabinoid receptors; FABPs, fatty acid-binding proteins; MERTK, tyrosine-protein
kinase MER; mHb ChNs, cholinergic output neurons in the medial habenula complex; PTG, protein targeting to glycogen; REM sleep, rapid eye
movement sleep; SCN, suprachiasmatic nucleus; SD, sleep deprivation; BBB, blood–brain barrier).

can be rapidly induced in sleeping mice by manipulating the
extracellular ion content (Ding et al., 2016).

2.1.1. Astrocytic somnogenic molecules
2.1.1.1. Adenosine

Adenosine is produced following a long period of wakefulness
to regulate sleep homeostasis (Porkka-Heiskanen et al., 1997).
Theoretically, gliotransmission can be switched on or off in vivo
when paired with an astrocyte-specific inducible mechanism (the
Tet-off system) (Morozov et al., 2003; Pascual et al., 2005).
Pascual et al. (2005) showed that the selective expression of
a dominant-negative soluble N-ethylmaleimide-sensitive protein
receptor (dnSNARE) in astrocytes decreases the extracellular

build-up of adenosine both in situ and in vivo. Moreover,
adenosine builds up while awake, but extracellular adenosine
concentration does not increase during SD, indicating that
adenosine regulation during sleep and wakefulness is complex and
that SD might also have a direct impact on adenosine tone (Zeitzer
et al., 2006; Clasadonte et al., 2017). Using molecular genetics
techniques, researchers discovered that astrocytes release adenosine
triphosphate (ATP) as the source of extracellular adenosine via
astrocytic adenosine kinase (ADK) (Bjorness et al., 2016) to
act on synaptic A1 receptors of neurons in sleep-wakefulness-
related neural regions; one example is the perifornical-lateral
hypothalamic area (Alam et al., 2009), which provides highly
region-specific negative feedback for inhibition or suppression
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of neuronal activation, contributing to circadian rhythmicity and
increased NREM sleep, decreasing fear memory, and protecting
the brain from excessive activation in healthy as well as certain
disease states (Halassa et al., 2009; Badimon et al., 2020; Li et al.,
2020). Moreover, ADK expression in astrocytes is associated with
astrogliosis and synaptic transmission modulation, and it may
also play a role in neuroinflammation (Garofalo et al., 2020).
ADK is also involved in several neurotransmitter pathways, sleep
regulation, and the generation of EEG oscillations (Palchykova
et al., 2010). Furthermore, activation of adenosine A(2A) receptors
activates basal forebrain glutamatergic, hypothalamic GABAergic,
and striatal parvalbumin neurons, all of which play a role in
improving sleep (Kumar et al., 2013; Yuan et al., 2017; Peng et al.,
2020). Using pharmacological and genetic approaches, Jagannath
et al. (2021) showed that adenosine regulates the circadian clock
genes Per1 and Per2, which affect circadian processes by activating
adenosine A(1)/adenosine A(2A) receptors via the Ca2+-ERK-AP-
1 and CREB/CRTC1-CRE pathways.

Peng et al. (2023) found that calcium activity in astrocytes from
the basal forebrain (BF), a crucial regulatory region for sleep and
wake behavior, can bi-directionally regulate sleep-wake behavior.
Notably, this regulation occurs independently of extracellular
adenosine signaling, challenging the previous understanding that
adenosine from astrocytes is the sole contributor to extracellular
adenosine levels (Peng et al., 2023). Calcium activity of BF
astrocytes was activated and inhibited by the chemogenetic method
and conditional knockout of IP3R2, respectively. It was found
that activating the calcium activity of BF astrocytes caused NREM
sleep disruption and reduced REM sleep duration, indicating
worse sleep quality and higher levels of alertness. Moreover, the
arousal level in mice was considerably decreased by inhibiting
the calcium activity of BF astrocytes. Furthermore, Peng et al.
(2023) demonstrated that in the BF, astrocyte calcium activity was
primarily induced by neural activity rather than neuromodulatory
signals like noradrenaline or acetylcholine. Through chemogenetic
activation of astrocytes’ calcium activity in the BF, astrocytes
decreased the consolidation of NREM sleep by amplifying the
activation of the GABAergic neurons, which are more active during
wakefulness than during sleep (Hassani et al., 2009), increasing
persistent inhibition in the BF neural network. Thus, this study
offers novel insights into the role and mechanism of astrocytes in
sleep-wake regulation.

2.1.1.2. Glutamate
Astrocytes are the only type of neural cells to express pyruvate

carboxylase, providing extra glutamate to the brain by converting
glucose into glutamate (Bélanger et al., 2011). By regulating
synaptic activation and neuronal excitability via glutamate release,
astrocytes support several physiological functions, including sleep
homeostasis and memory consolidation (Pal, 2018). Astrocytes
have long been known to possess the ability to release glutamate in
response to prostaglandins via a Ca2+-signal-dependent pathway
(Bezzi et al., 1998). Subsequently, it was demonstrated that
optogenetically reactive astrocytes increase extracellular glutamate
concentration, increasing REM and NREM sleep duration (Pelluru
et al., 2016; Poskanzer and Yuste, 2016). Astrocytes may also
remove glutamate from synaptic clefts in addition to releasing
it. Glutamate is primarily absorbed by glutamate transporter
1 (GLT1) (a high-affinity glutamate transporter) and glutamate

aspartate transporter (Bak et al., 2006). GLT1 has been reported
to react differently in wake-promoting orexin neurons and
sleep-promoting melanin-concentrating hormone (MCH) neurons
depending on differences in sleep needs (Briggs et al., 2018);
moreover, it can regulate the activation of glutamate receptors
in astrocyte–neuron circuits, contributing to sleep normalization.
Specifically, compared to rest time, SD enhanced perisomatic
GLT1 apposition linked with sleep-promoting MCH neurons
and reduced GLT1 apposition related to wake-promoting orexin
neurons in the lateral hypothalamus. These findings indicate
that astrocytes can make subtle adjustments in two oppositely
functioning neuronal units associated with the sleep-wake cycle
via glutamate transport, which could be a significant intervention
prospect for treating sleep loss. Interestingly, astrocytic coverage
in the synaptic cleft decreases during sleep—a phenomenon linked
to neuronal synchronization during NREM sleep—and increases
during awakening (Bellesi et al., 2015).

2.1.1.3. Pro-inflammatory cytokines

Astrocyte-mediated inflammation is another important
mechanism involved in the regulation of sleep. Astrocytic tumor
necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine, is
an important sleep regulator. Several studies have shown that
astrocyte-derived cytokines, including TNF-α and interleukin
(IL)-1, support sleep and immunity (Krueger et al., 2011; Olivadoti
et al., 2011; Blum et al., 2021), even though the function of TNF-α
in sleep remains debatable (Szentirmai and Kapás, 2019). IL-6
can enhance adenosine A(1) receptor mRNA expression and
signaling in astrocytes (Biber et al., 2001), and as mentioned
above, adenosine is an established inhibitory neuromodulator that
supports sleep homeostasis. With an emphasis on the sphingosine
kinase 1/mitogen-activated protein kinase/protein kinase B (Akt)
pathway, astrocytic aquaporin 4 (AQP4) is involved in the release
of pro-inflamatmory cytokines (Dai et al., 2018). This suggests
another astrocytic molecule that may play a role in regulating sleep
normalization.

2.1.1.4. γ-aminobutyric acid

It is well-established that γ-aminobutyric acid (GABA) is a
primary inhibitory neurotransmitter that promotes longer sleep
duration and regulates sleep in a conserved manner. It has been
reported that somatostatin-expressing interneuron-derived GABA
can mediate Ca2+ elevation in astrocytes, revealing an astrocytic,
non-neuronal component of GABA-related inhibitory circuits
(Mariotti et al., 2018). Concomitantly, Ca2+ elevation can also
evoke gliotransmitter glutamate release promoting sleep (Toppila
et al., 1997; Xu et al., 2015). As GABA is known to have a significant
and conserved function in regulating sleep, GABAergic tone should
be strictly regulated in sleep circuits. Recently, the astrocytic GABA
transporter has been shown to reduce GABAergic tone, leading to
longer sleep latency and sleep homeostasis disruption, while the
hypomorphic gat33-1 mutant had the opposite effect (Chaturvedi
et al., 2022).

2.1.1.5. Lactate

Lactate is a critical energy substrate for neurons and a
signaling molecule that modulates neuronal excitability, plasticity,
and memory consolidation (Magistretti and Allaman, 2018). The
orexin system is well-known for controlling wakefulness and eating
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behavior (Tsujino and Sakurai, 2009), and lactate is important
in controlling the orexin system (Parsons and Hirasawa, 2010).
This suggests that lactate is also involved in regulating natural
sleep. Glymphatic system astrocytic AQP4 can clear excessive
brain lactate depending on sleep needs (Lundgaard et al., 2017).
Noradrenaline, a potential waking signal that functions via
activating astroglial β2-adrenergic receptors, is also reported to
be linked to sleep–wakefulness mechanisms by affecting astroglial
energy substrate metabolism to increase lactate production (Ingiosi
and Frank, 2022).

2.1.1.6. Others
Cis-oleamide (Cravatt et al., 1995), peptides such as urotensin

II (Huitron-Resendiz et al., 2005), and anandamide are all involved
in the sleep-induction process. Glial cells are known to process
monoamines to maintain sleep homeostasis (Nall and Sehgal,
2014). According to a recent report, modulation of the alpha1-
adrenergic receptors on astrocytes in the ventral periaqueductal
gray may influence arousal (Porter-Stransky et al., 2019). In
astrocytes, adrenaline is produced by monoamine oxidase, and a
release of Ca2+ from the endoplasmic reticulum happens after
the activation of phospholipase C by adrenaline (Novikova et al.,
2020). Furthermore, this calcium activity in astrocytes was found to
synchronize neurons and affect slow-wave activity. In Drosophila,
arylalkylamine N-acetyltransferase 1 (AANAT1) can acetylate and
inactivate monoamines; this also occurs in astrocytes and certain
subsets of neurons in the adult brain. When AANAT1 was knocked
down in astrocytes but not in neurons, flies in the knock-out group
displayed increased sleep recovery the day following an overnight
SD, demonstrating the significance of astrocytes in the regulation
of monoamines and homeostatic sleep (Davla et al., 2020).

2.1.2. Ion homeostasis
2.1.2.1. Ca2+

The development of one- and two-photon microscopy and
genetically encoded calcium indicators (GECIs) has allowed in vivo
detection of astrocytic Ca2+ activity (Guerra-Gomes et al., 2017;
Lim et al., 2021). Sleep regulates several astrocytic processes,
including rhythmic intracellular Ca2+ signaling (Burkeen et al.,
2011; Brancaccio et al., 2017). Communication between astrocytes
and neurons can be seen through intracellular calcium elevation
in astrocytes; this was recently demonstrated in in vivo studies
(Bojarskaite et al., 2020; Peng et al., 2020). Moreover, Ca2+

elevation in astrocytes can stimulate them to release numerous
chemical transmitters, such as glutamate, GABA (Parpura et al.,
1994; Araque et al., 2001; Stout et al., 2002; Lee et al., 2010), ATP,
and others (Marpegan et al., 2011; Svobodova et al., 2018; Figure 2).

Additionally, astrocytes are prevalent in the suprachiasmatic
nucleus (SCN), where they control the build-up of extracellular
ATP and connect ATP to intracellular Ca2+ signaling pathways
(Burkeen et al., 2011). Burkeen et al. (2011) showed that in rat
SCN2.2 cell cultures, rhythmic ATP build-up is accompanied by
intracellular Ca2+ level fluctuations, and maximum extracellular
ATP accumulation coincided with peak mitochondrial Ca2+

accumulation. Inositol trisphosphate (IP3)/Ca2+ signaling in
astrocytes controls theta rhythm and REM sleep, and genetically
lowering IP3 levels in astrocytes was reported to solely affect
REM sleep (Foley et al., 2017). At typical slow-wave sleep levels,
astrocytic Ca2+ signals are also critical (Bojarskaite et al., 2020).

Bojarskaite et al. (2020) reported that NREM sleep was disrupted,
and microarousals were more frequent in mice with a knocked-
out IP3 receptor type 2 (IP3R2). There could be several reasons for
this difference. First, although IP3R2 is the predominant receptor
subtype, IP3R1 and IP3R3 also contribute to rapid Ca2+-related
events in sleep processes (Tamamushi et al., 2012). IP3R2 is found
in the soma and major branches, whereas IP3R1 is more likely
to be localized in the peri-synaptic processes (Petravicz et al.,
2014; Takano et al., 2020). Constitutive IP3R2 knock-out may
not affect Ca2+ signaling in distal processes, which undergo the
most dynamic changes during sleep-wake cycles. Second, the tissue
distribution patterns of IP3 receptors in the body are complex.
IP3R1 is mostly expressed in the CNS, whereas IP3R2 and IP3R3 are
strongly expressed in the heart, pancreas, liver, and salivary glands
(Hisatsune and Mikoshiba, 2017). Generally, the IP3 receptor can
affect sleep-wake behavior; however, when it comes to specified
sleep types, it is necessary to analyze the functions of IP3 receptor
subtypes.

Humans have a compensatory mechanism to restore sleep
homeostasis after SD. Using two-photon microscopy, Ingiosi et al.
(2020) showed how astrocytes regulated sleep homeostasis after
SD: astrocytic Ca2+ concentrations were lowest during the sleep
phase but increased following SD in correlation with the demand
for sleep. Additionally, after SD, less astrocyte synchronization
occurred at both the network and single-cell levels during non-
rapid eye movement sleep (Ingiosi et al., 2020). Another study on
a Drosophila model indicated that specific astrocytic L-type Ca2+

channel-dependent Ca2+ signals increase to enhance sleep drive
so that sleep demand can be met; moreover, increased levels of
TyrRll (a monoaminergic receptor) in a Ca2+-dependent manner
following SD can evoke further elevation of astrocytic Ca2+ levels
and promote a positive feedback loop that contributes to sleep
homeostasis (Blum et al., 2021).

2.1.2.2. K+

Using an immunolabelling approach, Rusznák et al. (2004)
demonstrated that astrocytes express high levels of two pore-
domain acid-sensitive K+ channels (TASK-1 and TASK-3). TASK-3
channels are widely distributed in several brain regions, such as
the hippocampus, cortex, and cerebellum, as well as in specific
nuclei, including the locus coeruleus, paraventricular nucleus of
the thalamus, and dorsal raphe nucleus (Talley et al., 2001). TASK-
3 KO mice show apparent changes in both anesthetic sensitivity
and natural sleep behavior, suggesting that TASK-3 plays a role
in sleep-wake control (Pang et al., 2009); specifically, it is highly
likely that some TASK-3 channel-targeted substances are involved
in REM sleep homeostasis and the effects of antidepressant therapy
(Borsotto et al., 2015). Furthermore, astrocytic K+ channels can
clear superfluous extracellular K+ ions to modulate membrane
potential and neuronal excitability, which is crucial for maintaining
sleep homeostasis (Figure 2). Ding et al. (2016) showed that
decreased extracellular K+ during sleep was coupled with increased
volume in the extracellular space. The observed volume change is
attributed to a decrease in astrocyte volume, indicating a shift in
the proximity of astrocytes to synapses (McCauley et al., 2020).

Some studies have shown that SD reduces TASK-3 channel
activity, which results in the activation of cholinergic output
neurons in the medial habenula complex, a brain area associated
with negative affect-related behaviors, including fear, anxiety, and
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FIGURE 2

Schematic diagram on how astrocytes regulate sleep by influencing neuronal activity. (ATP, adenosine triphosphate).

stress (Ge et al., 2021), causing mood disorders. Longer sleep
latency and worse sleep quality have also been observed in
TASK-3-potassium-channel-knock-out animals (Pang et al., 2009).
Additionally, reducing TASK-3 channel activity may promote AD
progression (Borsotto et al., 2015). Neurological processes in HD
(Tong et al., 2014; Khakh et al., 2017) and PD (Hu et al., 2019;
Chen et al., 2021) are also linked to the clearance of excessive
extracellular K+ via astrocytic K+ channels, which may alter
membrane potential and neuronal excitability.

2.1.2.3. G-protein-coupled receptors

Astrocytes possess an array of G-protein-coupled receptors
(GPCRs) that help them sense neuronal sleep-wake signals by
activating astrocytes’ calcium activity. Conversely, elevated calcium
levels in astrocytes stimulate the release of neuroactive substances,
including glutamate and GABA, which modulate synaptic activity
via activating neuronal GPCRs. It has been reported that astrocytes
in mice can regulate different features of NREM sleep via two
different types of GPCRs: Gi-GPCRs, which are related to sleep
depth, and Gq-GPCRs, which are related to sleep duration (Lin
et al., 2019; Vaidyanathan et al., 2021). However, it remains
unknown whether the same is applicable to humans.

2.2. Metabolism

2.2.1. Glycogen metabolism
Astrocytes are the dominant source of glycogen in the brain in

homeostasis and exhibit high glucose uptake and glycolytic rates.
Gap junctions, which are formed by neighboring astrocytes at their
distal processes with minimal overlap between the arbors of each

cell, allow for the delivery of energy metabolites from arteries to
distant neurons supporting neuronal activity; they also support
glucose circulation throughout the brain (Rouach et al., 2008). As
an energy resource, glycogen supports neural energy consumption
(Belanger et al., 2011) and glutamatergic neurotransmission
(Sickmann et al., 2009; Mozrzymas et al., 2011). Brain glycogen
metabolism produces ATP (Zhang et al., 2021), and this metabolism
has been extensively studied in neurons and astrocytes. In 1995
(Benington and Heller, 1995), researchers proposed that some of
the extracellular sleep-inducing chemical adenosine derives from
the release of ATP, which is replenished during sleep but depleted
during waking (Bellesi et al., 2018). Namely, sleep can affect
glycogen turnover in astrocytes. Glycogen metabolism can regulate
sleep homeostasis. Overexpression of glycogen synthase kinase-3-
beta (GSK-3β) also contributes to increased NREM sleep (Ahnaou
and Drinkenburg, 2011). Some lactate derives from astrocytic
glycogen (Itoh et al., 2003; Magistretti and Allaman, 2018), which
may regulate sleep by controlling the orexin system (Parsons and
Hirasawa, 2010).

The effects of SD on transcription may explain why SD
increases glycogen concentration while decreasing the quantity
of accessible astrocytic glycogen (Petit et al., 2021). Moreover, a
decrease in astrocytic glycogen turnover leads to the collapse of
various downstream cellular mechanisms. For instance, decreased
glutamatergic neurotransmission and lactate production have
detrimental effects on mood regulation and sleep homeostasis.
There is evidence of a significant change in gene expression after
SD, particularly of the glycogen metabolism-related scaffold protein
known as protein targeting to glycogen (PTG) (Magistretti, 2006).
The regulation of glycogen metabolism is mainly carried out
by regulating the activities of glycogen synthase and glycogen
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phosphorylase. The PPP1c catalytic subunit of PTG colocalizes
with specific glycogen-metabolizing enzymes; it dephosphorylates
glycogen synthase and glycogen phosphorylase and increases
glycogen synthesis flux. Overexpression of PTG in astrocytes
increases glycogen accumulation by more than a hundred-fold,
whereas knocking it down causes glycogen accumulation to drop
by around 50% (Ruchti et al., 2016).

2.2.2. Lipid metabolism
Lipids play a vital role in many physiological processes in

the nervous system. Prostaglandin D2 (PGD2) is the most potent
endogenous sleep-inducing substance (Hayaishi, 2002; Urade and
Hayaishi, 2010) and functions via the PGD2-adenosine system
(Urade and Hayaishi, 2011).

One of the primary regulatory systems in the brain is the
endocannabinoid system (ECS), which has also been linked to
sleep modification (Hanlon et al., 2015; Hodges and Ashpole, 2019;
Kesner and Lovinger, 2020). Type 1 cannabinoid receptors are
one of the most abundant GPCRs in the CNS and have gained
considerable attention in recent years due to the variety of roles they
play in astrocytic processes. For instance, through Ca2+ elevation,
endocannabinoids can boost glutamate release from astrocytes and
long-term potentiation of transmitter release at synapses, both
of which contribute to neuronal synchronization and synaptic
plasticity (Navarrete and Araque, 2010; Gómez-Gonzalo et al.,
2015; Araque et al., 2017).

Fatty acid-binding proteins (FABPs) are associated with lipid
and energy metabolism, inflammatory mechanisms, and cognitive
dysfunctions (Furuhashi and Hotamisligil, 2008; Storch and
Corsico, 2008; Teunissen et al., 2011; Jiang et al., 2021). Fabp7 is
a kind of FABP expressed in mammalian astrocytes and neural
progenitors. Fabp7 was found to play an indispensable role in
normal sleep. Fabp7 can be regulated by the core circadian clock
transcription factor BMAL1 (Furuhashi and Hotamisligil, 2008;
Gerstner and Paschos, 2020). In both flies and humans, the
presence of a missense mutation in astrocyte FABP7.T61M leads
to fragmented sleep or SD (Gerstner et al., 2017).

Sleep deprivation can facilitate reactive astrocytic subtype
transition in the context of mild neuroinflammation, various
chronic neurodegenerative diseases, and brain injuries, leading to
further inflammatory reactions. For example, neuroinflammation
causes the induction of a neurotoxic reactive subtype, termed A1-
type astrocytes, by microglial cytokine release (Liddelow et al.,
2017), which can kill oligodendrocytes and neurons by secreting
toxic lipids. According to one study, saturated lipids, rather than
APOE and APOJ lipid granule proteins, mediate the toxicity
induced by reactive astrocytes and are crucial for astrocyte-
mediated toxicity. The specific knockout of the saturated lipid
synthetase ELOVL1 (the elongation of very-long-chain fatty acids
protein 1) in astrocytes reduced the toxicity of reactive astrocytes.
These findings highlight the critical function of astrocytes in the
response to CNS injury and neurodegenerative disorders, as well as
of lipids in CNS signal transmission (Guttenplan et al., 2021).

2.2.3. Energy metabolism: the glucose-lactate
shuttle

Over the past decade, our thinking of neuroenergetics has
changed from a neuron-centric viewpoint to a neuron-astrocyte

cooperation perspective. While it comprises only 2% of body mass,
the brain uses up to 25% of the body’s glucose and 20% of its
oxygen. A range of glucose-derived energy substrates, including
lactate, glutamate, glutamine, and pyruvate, are effectively utilized
by brain cells. Astrocytes cover blood vessels with their endfeet,
allowing them to take nutrients from the blood vessels into the
astrocyte network and deliver them to distal neurons. The integrity
of the astrocytic network correlates with the energy delivery chain
in neurons and influences long-term neuronal plasticity (Murphy-
Royal et al., 2020).

Specific gene expression profiles indicate that astrocytes can
consume large amounts of glucose for anaerobic glycolysis,
producing and releasing lactate into the extracellular space (Beard
et al., 2021). The genes essential for controlling neuronal energy
metabolism indicate that lactate is the preferred energy substrate
of neurons (Herrero-Mendez et al., 2009). These complementary
metabolic features provide a comprehensive energy supply chain
for the brain. Astrocytic pyruvate carboxylase converts glucose
into glutamate, and the specific glutamine synthase converts
glutamate into glutamine (Bélanger et al., 2011). The astrocyte–
neuron lactate shuttle (ANLS), essentially a glucose-lactic acid
shuttle, is thought to be the main pathway for the interaction
between neurons and astrocytes. The ANLS combines glutamate
transporter activity with the conversion of glucose to lactate, which
is then exported to the neurons for energy. Astrocytic lactate
is essential for memory function, sleep regulation, and synaptic
plasticity. Glutamate transporter activity is at the core of the ANLS.
Glutamate transport within astrocytes is closely associated with
increased intracellular Na+ concentration, which further activates
Na+/K+-ATPase to stimulate glycolysis, prompting the utilization
of glucose and the production of lactate (Gudkov et al., 2022).
This suggests that astrocytes play a significant role in several brain
energy metabolism processes critical for neurological function.

In mouse models, SD has been shown to increase the
transcriptional regulation of ANLS-related genes in cortical
astrocytes (Petit et al., 2013). Furthermore, patients with decreased
sleep quality showed lower expression of biomarkers such as
connexin-43 (a primary astrocytic gap junction protein), connexin-
30, and AQP4 (Yang et al., 2022). The delivery of energy substrates
may be hampered by decreased astrocyte gap junction coupling
with dominant-negative connexin-43; moreover, the same outcome
was observed when lactate outflow was impaired (Murphy-
Royal et al., 2020). As neuronal long-term plasticity and energy
metabolism can both be hampered by the disruption of the
astrocyte network (Murphy-Royal et al., 2020), altering glycogen
turnover and glutamatergic neurotransmission through the ANLS
may be a potential mechanism for identifying and ameliorating the
root causes of the vicious cycle of SD-related comorbidities.

2.3. Regulating the glymphatic system to
influence the sleep-wake cycle

There is substantial evidence that cerebrospinal fluid (CSF) in
the subarachnoid space can enter the brain through the perivascular
space (PVS) and mix with the interstitial fluid (ISF) (Iliff et al.,
2012). This system of extensive CSF-ISF exchange is also known
as the glymphatic system; its essential function is maintaining
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a healthy internal environment and providing neural cells with
optimal working conditions, as neural cells are highly sensitive to
changes in the surrounding milieu.

A crucial regulatory mechanism to promote glymphatic fluid
transfer is the polarization of AQP4 toward the vascular terminal
foot. Moreover, changes in both astrocytes and blood vessels in the
brain affect PVS regulation. Mestre et al. (2018) have shown that
the strong activation of reactive astrocytes observed in F-8xFAD
mice may lead to changes in PVS size, resulting in glymphatic flux
reduction. The glymphatic system is found in the brains of rodents,
pigs, and humans and plays an important role in clearing toxic
molecules from the brain, including degenerative disease-related
proteins—amyloid-β (Thal et al., 2002), α-synuclein (Ozansoy and
Başak, 2013), and abnormal tau phosphorylation (Martin et al.,
2013)—as well as inflammatory cytokines (Zbesko et al., 2018) and
excessive lactate (Lundgaard et al., 2017). The lymphatic system
depends substantially on the AQP4 water channels (Verkman
et al., 2006; Mestre et al., 2018), which are located on astrocytic
endfeet and are in contact with the vasculature, facilitating the
flow of CSF from the PVS to the brain parenchyma. Moreover,
the glymphatic system has been hypothesized to be more active
during sleep, as there is an approximately 60% increase in the
interstitial space during natural sleep or anesthesia compared to
that in the conscious state (Xie et al., 2013). Recent studies have
shown that the glymphatic system is regulated by circadian rhythms
rather than the sleep-wake cycle (Cai et al., 2020; Hablitz et al.,
2020). Even after the reversal of their ambient light-dark cycle,
rats exhibited the same redistribution pattern as normal light-dark
cycle rats, indicating that the glymphatic system may be affected
by endogenous hormones and not just sleep/wake states (Cai et al.,
2020). At the same time, the polarized distribution of astrocyte
endfeet AQP4 is also related to different time periods of the day, and
the ablation of the AQP4 gene effectively eliminates the circadian
regulation of CSF distribution (Hablitz et al., 2020). Taken together,
these findings prove the close association between the glymphatic
system and sleep-wakefulness cycle.

Endothelial cells, pericytes, neurons, microglia, and astrocyte
endfeet that surround an artery but are isolated from it by the
basement membrane make up the neurovascular unit, which
comprises cells intrinsic to the vessel wall. Astrocytes contribute
to the BBB by generating the glia limitans and sending paracrine
signals to endothelial cells, which are principally responsible for
establishing and maintaining BBB integrity. The proteins connexin-
43 and connexin-30 help to create plaques at gap junctions, which
can connect astrocyte endfeet. Astrocytic gap junctions also play
an important role in preserving the integrity and function of the
glymphatic system. It has been reported that BBB permeability and
AQP4 and connexin-30 arrangement on endfeet are determined by
the connexin-43 carboxyl-terminal domain (Cibelli et al., 2021).

Another tight barrier, composed of tanycytes and astrocytes, at
the circumventricular organs surrounding the brain ventricles may
prevent blood-borne substances from easily migrating to nearby
brain areas. Moreover, it has been shown that circumventricular
organ astrocytes play a crucial role in maintaining bodily fluid and
temperature homeostasis (Miyata, 2022).

Eide et al. (2021) used magnetic resonance imaging to
demonstrate that SD may affect human molecular clearance from
the brain. The glymphatic system mainly clears toxic substances
through astrocytic AQP4-dependent (Verkman et al., 2006; Mestre

et al., 2018) circulation of CSF (Iliff et al., 2012) to help
neurons function properly. Astrocytic AQP4 regulation of CSF
distribution and clearance rate follows the sleep rhythm. It has
been widely reported that SD impairs the glymphatic system
due to the accumulation of neurotoxic substances (Shokri-Kojori
et al., 2018). One proven manifestation is the impairment of
AQP4 expression or loss of AQP4 localization (Zeppenfeld et al.,
2017). Furthermore, some SD patients have been reported to
carry genetic mutations in the AQP4 gene (Iliff et al., 2012).
Glymphatic fluid also plays an important role in the delivery
and distribution of various substances in the brain (Achariyar
et al., 2016). Exploring dynamic subcellular AQP4 relocalization
(Salman et al., 2022) and developing astrocytic AQP4 agonists to
target clearance or delivery of substances (Achariyar et al., 2016)
to different brain regions, allowing recovery of their functions,
could be new treatment avenues in the future. Improper astrocytic
AQP4 expression results in BBB impairment, leading to weakened
brain defenses (Jeon et al., 2021), along with a series of astrocytic
AQP4 physiological functions (Nagelhus and Ottersen, 2013) being
affected as well. CD44 is a key factor in the regulation of BBB
function. SD-induced excessive CD44 expression in hippocampal
tissue astrocytes increase BBB permeability, resulting in cognitive
impairment (Sun et al., 2020). Recent research has shown that SD
causes central inflammation via the activation of astrocytes and
microglia (Chennaoui et al., 2015; Bellesi et al., 2017; Xue et al.,
2019), as well as an increase in peripheral inflammatory markers,
which may occur through the mediation of the gut microbiota-
inflammation-brain axis (Wang Z. et al., 2021) and the lung
inflammation-brain axis (Mao et al., 2022; Monje and Iwasaki,
2022). Improving the BBB may effectively prevent inflammation
from entering the brain, and astrocytes can be used to control
the development of inflammation in the CNS. The relationship
between astrocytic AQP4 and central inflammatory processes, as
well as the mechanisms by which the sleep-wake cycle or SD affects
AQP4, should be investigated in future studies.

2.4. Neuroinflammation and
astrocyte–microglia crosstalk

Accumulating evidence suggests that, as the stromal cells of
the brain, astrocytes support tissue-resident immune cells, mainly
microglia, which are the resident macrophages (Bohlen et al.,
2017; Vainchtein and Molofsky, 2020). Considerable information
regarding astrocyte–microglia interactions has emerged in recent
years (Liddelow et al., 2020; McAlpine et al., 2021; Rostami
et al., 2021; Rueda-Carrasco et al., 2021). In the context of
trauma, infection, neurodegenerative diseases, and even SD, diverse
responses of microglia and astrocytes can contribute to tissue repair
and promote CNS pathology or may exacerbate inflammatory
reactions and tissue damage. Atrooz et al. (2019) found that a
rise in inflammatory markers is seen in response to chronic SD
scenarios, pointing to a possible function for glia in aggravating
the injury and prolonging its consequences. The upregulation of
glial fibrillary acid protein is the characteristic and common feature
of reactive astrocytes in different species, which can be detected
at both the protein and mRNA levels. Possibly by modifying
the immunological signaling milieu, including the nuclear
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factor kappa-light-chain-enhancer of activated B cells pathway,
calcineurin pathway, mitogen-activated protein kinase pathway,
and Janus kinase/signal transducer and activator of transcription
3 pathway, SD can induce pro-inflammatory conditions in the
brain (Dumaine and Ashley, 2015; Atrooz et al., 2019; Ensminger
et al., 2022). For example, SD may activate the sympathetic nervous
system to increase vascular sheer stress causing inflammation.
However, a study also revealed that inflammation from SD acts
differently, probably independent of the renin-angiotensin system.
Bellesi et al. (2017) examined the effects of 6–8 h of sleep,
spontaneous awakening, SD, and chronic SD on brain cells. They
found that chronic SD potentially induced microglial activation and
astrocytic transformation to A1 phenotype, leading to impairment
in neuronal synaptogenesis and phagocytosis, and consequently
cell death in neurons and oligodendrocytes. The mild, sustained
microglial activation and astrocyte reactivity caused by chronic SD
resulted in hypersensitivity to secondary attacks, leading to further
damage (Bellesi et al., 2017).

Astrocytes are of great importance in the regulation of
neuroinflammation (Colombo and Farina, 2016). Disruption
of the gene encoding the circadian clock regulator BMAL1
led to significant astrocyte reactivity and inflammation in
a C57BL/6 mouse model (Musiek et al., 2013). Astrocytes
and tanycytes in the circumventricular organs (CVOs) of the
brain are involved in initiating lipopolysaccharide (LPS)-induced
inflammatory responses via toll-like receptor 4 (Miyata, 2022).

Astrocytes and microglia can act in concert to phagocytose
damaged cellular elements, thus contributing to a healthy
homeostasis in the brain, including the suprachiasmatic nucleus
(Damisah et al., 2020). Damisah at al. (2020) demonstrated that,
in this process, astrocytes will polarize rapidly and engulf many
small dendritic apoptotic bodies, and microglia will migrate and
engulf the apical dendrites and soma. Astrocytes and microglia are
also involved in neuroinflammation-induced neuronal death. IL-
1β and TNF-α can trigger the overproduction of astrocyte-derived
nitric oxide, leading to neuronal death (Waxman, 2003; Calabrese
et al., 2007; Colombo et al., 2012) by facilitating the activation
and translocation of NF-κB into the nucleus (Qian et al., 2007).
Similarly, microglia contribute to the excessive release of glutamate
by astrocytes via the stromal cell-derived factor 1-CXCR4-TNF-
α chemokine pathway, thus inducing neuronal excitotoxicity and
apoptosis (Bezzi et al., 2001). By secreting IL-1, TNFα, and
complement component 1q, microglia-induced neurotoxic A1
astrocytes cause neuronal death and worsen the progression of
neurodegenerative illnesses such as AD, HD, and PD (Liddelow
et al., 2017; Xu et al., 2018). If synaptic connections do not receive
sufficient support from neurotoxic astrocytes, circuit dysfunction
may worsen (Liddelow et al., 2017). Additionally, microglia-
induced A1 astrocytes can kill oligodendrocytes by secreting toxic
lipids (Guttenplan et al., 2021).

Increased expression of the tyrosine-protein kinase MER
(MERTK) protein and lipid peroxidation activate astrocytic
phagocytosis (Chung et al., 2013, 2015), which plays a critical role
in the synaptic remodeling underlying neural circuit refinement.
Notably, MERTK is also expressed in microglia (Chung et al.,
2013), and structural changes in the MERTK pathway can
become apparent after SD or long-time wakefulness (Bellesi et al.,
2015). Notably, it has been reported that caffeine and modafinil
ameliorated SD-induced neuroinflammation and emotional stress

and partially reversed the morphological structure [reactive state
of astrocytes can be described with abnormal hypertrophy as well
as hyperplasia, and increased expression of GFAP in injury and
diseases (Bennett and Viaene, 2021)] of astrocytes and microglia by
mediating microglial activation (Wadhwa et al., 2018). Astrocytes
and immune cells are known to interact dynamically under
neuroinflammatory conditions; however, the extent to which SD-
induced neuroinflammation might result in such interactions is
unclear. Standardized scales will be required to provide predictions
and estimate the degree of neural inflammatory changes in the
future.

2.5. Sexual difference in astrocytes

Female and male brains differ in their susceptibility to
neurologic disorders; patients with multiple sclerosis and
Alzheimer’s disease are more likely to be females (Seshadri
et al., 1997; Westerlind et al., 2014), while those with intellectual
disability, autism spectrum disorder, and Parkinson’s disease are
more likely to be males (Werling and Geschwind, 2013; Gillies
et al., 2014). Recently, multiple findings identified sex differences in
microglia, but sex differences in astrocytes remain elusive despite
their extensive interactions with microglia. There is an incomplete
list of genes preliminarily representing the evidence of sexual
dimorphism in human cortical astrocytes (Krawczyk et al., 2022),
but sex differences in astrocyte regulation of sleep are also rarely
reported. Sex differences in sleep disorder-related diseases should
be further discussed at the genetic level.

3. Role of astrocytes in
SD-comorbid brain disorders

Lack of sleep or SD is a major comorbidity of
neurodegenerative diseases (Kwon and Koh, 2020; Upadhya
et al., 2020; Li et al., 2021) as well as pain-related conditions and
several other brain disorders such as epilepsy (Li et al., 2019) and
mood disorders (Cao et al., 2013; Hines et al., 2013). Moreover,
SD may accelerate the development and progression of these
diseases, and the breakdown of glial cell homeostasis is the primary
cause of neuroinflammation in several neurological disorders.
When astrocytes acquire the A2 phenotype, they appear to act
protectively; however, when they develop hyperplastic bodies, they
are speculated to act as saboteurs (Pekny and Pekna, 2014; Kwon
and Koh, 2020). Controlling astrocyte subsets and functions may
be a novel strategy to regulate sleep and control the progression of
these diseases. Other factors, such as age (Yuan et al., 2021), and
distinct brain regions (Jha et al., 2022) alter astrocyte function in
certain diseases and cannot be disregarded either (Figure 3).

3.1. Alzheimer’s disease

Alzheimer’s disease is a multifactorial disease that causes
dementia associated with memory loss, progressive cognitive
impairment, and certain abnormal behaviors like aggression and
agitation. It is characterized by insoluble neurofibrillary amyloid
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FIGURE 3

Thess pictures show roles of astrocyte in AD. (A) SD leads to low levels of LRP-1 at the BBB and increased expression of RAGE. RAGE may encourage
an influx of peripheral Aβ into the brain across the BBB from the peripheral venous circulation. Low levels of LRP-1 reduce Aβ-degrading enzymes,
and finally lead to reduced cellular Aβ absorption and degradation. (B) APP can be cleaved into sAPPα and sAPPβ in astrocyte. sAPPα can enhance Aβ

phagocytosis via activating the SR-A, while sAPPβ can decrease the expression of sAPPα. SD was shown to increase the expression of sAPPβ, in
which SD may worsen AD progression. (C) Microglia increase their IL-3Rα (IL-3’s particular receptor). Astrocytes naturally release IL-3, which causes
microglia to undergo transcriptional, morphological, and functional reprogramming, giving them the ability to cluster and remove Aβ and tau
aggregates as well as an acute immune response program. (D) Astrocyte-derived extracellular vesicles (ADEVs) can have both pathogenic and
protective effects in AD. When subjected to Aβ aggregation, SD-induced inflammatory response, or neuronal damage, astrocytes can release
pathogenic extracellular vesicles, which further aggravate Aβ deposition, promote inflammation, and cause loss of neurons and synapses, thus
triggering a vicious cycle and promoting AD progression. Astrocytes can release protective EVs to carry a variety of molecular mediators that can
inhibit the accumulation of Aβ, promote neuronal survival and synaptic growth, and thus prevent and delay AD progression. (AD, Alzheimer’s disease;
APP, amyloid precursor protein; BBB, blood–brain barrier; LPR-1, low-density lipoprotein receptor-related protein 1; RAGE, receptors of advanced
glycation end products; sAPPα, soluble amyloid precursor protein; SR-A, class-A scavenger receptor; SD, sleep deprivation).

plaques, hyperphosphorylated tau tangles, aberrant mammalian
target of rapamycin activity (Rapaka et al., 2022), and neuronal and
synaptic loss, particularly in the hippocampus. Pericytes, astrocytes,
vascular endothelial cells, and tight junctions are the BBB structural
elements associated with AD pathogenesis.

Several behavioral symptoms and pathological signs of AD
have been demonstrated to worsen in response to persistent SD
in transgenic mouse models of AD (Zamore and Veasey, 2022).
Conversely, sleep enhancement may have a neuroprotective effect.
Total amyloid β-protein (Aβ) levels in the hippocampal interstitial
fluid were shown to be higher than usual following spontaneous
arousal or short-term (6 h) SD, and a similar result was observed in

clinical experiments (Kang et al., 2009; Shokri-Kojori et al., 2018).
Moreover, a randomized controlled study found that SD altered
amyloid levels and tau phosphorylation, suggesting a possible
mechanism by which SD increases the risk of AD (Barthélemy et al.,
2020).

Here, we outline numerous ways in which astrocytes participate
in slowing the course of AD:

(1) Astrocytic transcytosis of Aβ (Domínguez-Prieto et al.,
2018). Astrocytes express high levels of low-density lipoprotein
receptor-related protein 1 (LRP-1). Accumulating preclinical
studies show that LRP-1 not only controls how Aβ is metabolized
in the brain and peripheral tissues, but also maintains brain
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homeostasis, which is likely impaired and contributes to AD
development in Aβ-independent ways (Shinohara et al., 2017).
SD leads to low levels of LRP-1 at the BBB (Cai et al., 2018)
and increased expression of receptors of advanced glycation end
products (RAGE) in the hippocampus and prefrontal cortex, and
these changes significantly correlate with the transport and removal
of Aβ42, a core CSF biomarker for AD diagnosis (Zhao et al., 2019).
Liu et al. (2017) show that, in primary astrocytes, LRP-1 knockdown
reduced cellular Aβ absorption and degradation. Several significant
Aβ-degrading enzymes, including the matrix metalloproteases
MMP2 and MMP9, and insulin-degrading enzymes were also
downregulated in astrocytes after LRP-1 was silenced. Moreover,
conditional Lrp1 gene deletion in astrocytes from APP/PS1 mice
resulted in poor brain Aβ clearance, increased Aβ accumulation,
and accelerated amyloid plaque formation without impacting Aβ

production. By modulating various Aβ-degrading enzymes and
cellular pathways, astrocytic LRP-1 (Liu et al., 2017) and LRP-4
(Zhang et al., 2020) have been shown to be potential therapeutic
targets for controlling Aβ clearance in AD (Figure 3A).

(2) The astroglial subtype of metabotropic glutamate receptor
3 (mGlu3R) has neuroprotective effects in the AD course, which
are dependent on the secretion of soluble amyloid precursor
protein (sAPPα). Astrocytes express sAPPα, which can enhance Aβ

phagocytosis by activating the class-A scavenger receptor (SR-A).
Durand at al. determined that SR-A mediates mGlu3R- or sAPPα-
induced Aβ uptake, and sAPPα is the enhancer of SR-A-dependent
Aβ phagocytosis in the process of Aβ clearance by astrocytes. This
was proposed as a novel pathway for Aβ clearance (Durand et al.,
2019). However, SD was shown to increase the expression of both
sAPPβ and β-site APP-cleaving enzyme 1 in the hippocampus
and prefrontal cortex while decreasing the expression of sAPPα

(Zhao et al., 2019), which undoubtedly worsens AD progression
(Figure 3B).

(3) Astrocytic AQP4: SD impairs the glymphatic system by
disrupting the normal function of astrocytic AQP4-dependent CSF
(Verkman et al., 2006; Iliff et al., 2012; Mestre et al., 2018), leading
to BBB impairment, as well as the accumulation and aggregation of
neurotoxic substances like α-synuclein and Aβ.

(4) In the context of SD, activated microglia and microglia-
activated astrocytes mediate neuroinflammation (Park et al., 2021):
various types of damage caused by inflammation can lead to
increased degradation of α-synuclein and Aβ. Some possible
mechanisms include increased glutamate generation induced by
pro-inflammatory substances (such as TNF-α) (Santello and
Volterra, 2012), leading to brain excitotoxicity and increased
intracellular Ca2+ concentration promoting glutamate, ATP, and
GABA release (Parpura et al., 1994; Stout et al., 2002; Lee et al.,
2010). These processes are also involved in AD pathogenesis (Jo
et al., 2014). Thus, establishing reliable therapeutic interventions
targeting microglial- and astrocyte-driven molecular pathways in
AD progression could be an effective strategy for controlling
neuroinflammation (Singh et al., 2020).

(5) Recently, it has been reported that astrocytes and
microglia interact to speed up the breakdown of α-synuclein
and Aβ, with IL-3 identified as a critical facilitator of this
interaction. Microglia increase their IL-3Rα, which is IL-3’s
particular receptor, upon recognizing Aβ deposits, making them
more receptive to IL-3. Astrocytes naturally release IL-3, which
causes microglia to undergo transcriptional, morphological, and

functional reprogramming, allowing them to cluster and remove
Aβ and tau aggregates and an acute immune response program.
Therefore, IL-3-related mechanisms could be a possible target for
AD treatment (McAlpine et al., 2021; Rostami et al., 2021). This
also reveals the association between astrocyte–microglia cross-talk
and the cerebral pathology of AD/PD (Figure 3C).

(6) Alzheimer’s disease patients show dysregulation in sleep,
which can be regulated by the orexin system. Orexins promote
wakefulness and shorten the duration of REM and NREM sleep;
they can also inhibit Aβ clearance, phagocytosis, and autophagic
flux in microglia (An et al., 2017; Jones, 2020). Astrocytes regulate
the release of orexins (Burt et al., 2011), which have been proposed
to play a role in both AD and SD. Moreover, orexins upregulated
the Aβ level in the brain interstitial fluid after SD, which was
reversed after the infusion of a dual orexin receptor antagonist
(almorexant) (Kang et al., 2009). Although orexins and AD are
known to be closely associated, orexin levels vary greatly between
AD patients. Thus, detecting the releasement of orexin and sleep
state may be a supplementary means to keep track of the AD
patient’s progress (Liguori et al., 2020; Um and Lim, 2020; Treu and
Plante, 2021).

(7) Sleep deprivation can increase astrocytic extracellular ATP
concentrations (Schmitt et al., 2012), and ATP is hydrolyzed to
adenosine, which regulates sleep as well as synaptic plasticity,
cognitive function, information processing, and memory
consolidation (Gomez-Castro et al., 2021). Therefore, adenosine
receptor A2AR has been suggested as a promising candidate
molecule to interfere with the astrocytic ability to regulate
synaptic function and memory in rodent models and patients
with AD (Matos et al., 2015; Liu et al., 2019). A recent study also
indicated that A2AR can regulate dynamic Ca2+-related changes
in astrocytes via the intertwined P2 × 7R-/P2Y1R-mediated
mechanism, which has been shown to be disrupted in early AD,
leading to abnormal information processing (Dias et al., 2022).

(8) Biphasic modulation of astrocyte-derived extracellular
vesicles (ADEVs) in AD progression (Li B. et al., 2023). Specific
conditions and stimuli regulate ADEV number and characteristics
so that they can have both pathogenic and protective effects in
AD. When subjected to severe stimulation, such as Aβ aggregation,
chronic inflammatory response, or neuronal damage, astrocytes can
release pathogenic extracellular vesicles, which further aggravate
Aβ deposition, promote inflammation, and cause loss of neurons
and synapses, thus triggering a vicious cycle and promoting AD
progression. When subjected to unstimulated or mildly controlled
stimuli, astrocytes can release protective EVs to carry a variety
of molecular mediators that can inhibit the accumulation of Aβ,
promote neuronal survival and synaptic growth, and thus prevent
and delay AD progression. Li B. et al. (2023) summarized two
basic ideas for the clinical application of ADEVs: (i) preventing
pathogenic ADEVs from being secreted and (ii) encouraging
astrocytes to produce and secrete protective extracellular vesicles
in vivo or in vitro and even direct loading of therapeutic cargo onto
extracellular vesicles (Figure 3D).

(9) Dysregulation of glycolytic metabolism in astrocytes caused
synaptic damage in AD mice, which in turn caused cognitive and
behavioral abnormalities. This synaptic damage may have been
brought on by reduced I-serine synthesis in the glycolytic branch.
Studies have also demonstrated that I-serine supplementation can
be used to treat AD (Le Douce et al., 2020).
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3.2. Parkinson’s disease

Parkinson’s disease, the second most common
neurodegenerative disease worldwide, is a progressive
neurodegenerative disease influenced by environmental
variables and genetic predisposition. PD is characterized by
the accumulation of α-synuclein, formation of Lewy bodies and
neurites, progressive degeneration of dopaminergic neurons in the
substantia nigra pars compacta, and presence of motor and non-
motor symptoms, including hyposmia, autonomic dysfunction,
depression, and sleep disturbances. A growing body of evidence
indicates that sleep loss occurs in the early stage of PD and is a risk
factor that may accelerate the course of the disease and increase
the possibility of long-term cognitive decline (Mantovani et al.,
2018; Maggi et al., 2021). The emerging consensus is that glial cells
also participate in the progression of PD (Miyazaki and Asanuma,
2020) through the glymphatic system. In addition, Rostami
et al. (2021) discovered that in PD, astrocytes can stimulate the
production of MHCII and costimulatory molecules necessary for
T-cell activation. When human astrocytes and α-synuclein are
co-cultured, both increased MHCII expression and molecules
on costimulatory T-cells required for T-cell activation can be
found. These results are intriguing for the field of PD, although no
functional studies have been carried out to test if these astrocytes
may successfully activate T-cells by creating an immunological
synapse (Sutter and Crocker, 2022).

As mentioned previously, the glymphatic system is involved in
α-synuclein clearance, thus minimizing the pathological damage
in PD (Sundaram et al., 2019; Cui et al., 2021; Scott-Massey
et al., 2022). Conversely, the inflammatory response and AQP4
deficiency-induced permanent damage to the glymphatic system in
SD may lead to PD deterioration.

Non-neuronal cells should be considered when analyzing PD-
linked mutations that cause pathogenesis and disease progression,
and astrocytes are crucial participants in this process. Leucine-
rich repeat kinase 2 (LRRK2) mutations are the most common
cause of familial PD. They increase LRRK2 activity, which
impairs alpha-synuclein breakdown in neurons and may indirectly
affect PD development (Alessi and Sammler, 2018). In addition,
an LRRK2 mutation was reported to affect endo-lysosomal
capacity in astrocytes and astrocyte uptake or internalization
of α-synuclein (Streubel-Gallasch et al., 2021). Chronic SD
exposure has recently been demonstrated to worsen genetically
predisposed dopaminergic dysfunction in LRRK2 G2019S mice,
which is associated with a-synuclein aggregation in the brain and
irregular sleep patterns (Liu X. et al., 2022). Therefore, LRRK2-
targeted therapies benefit this type of PD, and small-molecule
LRRK2 kinase inhibitors are considered highly neuroprotective
(Tolosa et al., 2020). Autosomal recessive mutations in the
glucocerebrosidase gene, Beta-glucocerebrosidase 1 (GBA1), can
induce Gaucher’s disease, a lysosomal storage disorder. The GBA
gene encodes the lysosomal enzyme glucocerebrosidase, which
maintains glycosphingolipid homeostasis. Heterozygous carriers
of most GBA1 mutations have shown a significant increase in
PD incidence. Mutations in the GBA gene can lead to loss of
glucocerebrosidase activity and lysosomal dysfunction, potentially
impairing alpha-synuclein metabolism. Given the crucial role of
lysosomal dysfunction in PD pathogenesis, the interaction between

GBA1 and LRRK2 has gained attention, as both are enriched
in astrocytes (Cahoy et al., 2008). Evidence shows that LRRK2
inhibition may repair lysosomes and inflammatory abnormalities
caused by astrocytic GAB1 mutations (Sanyal et al., 2020).
Moreover, a study showed that GAB1 mutations strongly increase
the risk of REM sleep behavior disorder (Gelegen et al., 2022).
However, there are few reports on susceptibility to PD in carriers
of GAB1 gene mutations in SD. Nevertheless, it is clear that, as
important participants in these processes, astrocytes have great
value as therapeutic targets (Wang C. et al., 2021), even in the
context of SD.

3.3. Pain and mood disorders

3.3.1. Pain
Sleep deprivation is associated with increased pain sensitivity

in mice and is a risk factor for clinical pain (Alexandre et al.,
2017). Persistent pain seriously affects a patient’s quality of life, as
it is associated with a series of comorbidities, including depression,
cognitive decline, anxiety, and SD. SD also enhances the response
to pain in the primary sensory areas of the cerebral cortex
while impinging on the activity in other areas that regulate pain
processing, such as the striatum and insula (Krause et al., 2019).
Preoperative SD can also amplify the difficulties in managing
postoperative pain. Research has demonstrated that neuronal
activity and functional connectivity are suppressed in the nucleus
accumbens (a subregion of the ventral striatum) and ventrolateral
periaqueductal gray (Guo et al., 2022). Furthermore, a recent
study found that SD changed pain thresholds and oxidative stress
indicators in healthy males, whereas recovery sleep could raise pain
thresholds and reverse the effects of oxidative stress on the body
(Chen et al., 2022). Notably, in another study, SD was reported
to increase pain sensitivity and pain complaints accompanied
by an overnight mood improvement (Kundermann et al., 2008).
In healthy people with mild sleepiness, extended bedtime may
lead to increased sleep duration and decreased drowsiness, which
lowers their susceptibility to pain (Roehrs et al., 2012). The medial
prefrontal cortex (mPFC) is closely associated with sleep: in mice,
SD alters up to 12 circadian core clock genes in the mPFC
(Guo et al., 2019); in response to acute SD, microglia in mouse
prefrontal brains become active (Liu H. et al., 2022), triggering
inflammatory responses that can also result in oxidative stress and
lower glutathione levels. Moreover, clinical data indicated that SD
alters the anatomy of the mPFC in humans (Feng et al., 2018).
Finally, an animal study of adult male Sprague-Dawley rats showed
that the mPFC also plays a role in pain (Chen et al., 2022). As
stated above, alternative astrocytic pathways have not yet been
investigated except for neuroinflammation-induced hyperalgesia.

Migraines may also be associated with glial cell activation
(Bartley, 2009). It has been hypothesized that one of the causes
of migraine and depression may be SD-mediated insufficient
astrocytic glycogen turnover (Bellesi et al., 2018) that makes
the brain more susceptible to cortical diffusion depolarization
owing to the impaired extracellular clearance of potassium and
glutamate (Petit et al., 2021; Del Moro et al., 2022). Importantly,
sleep regulates the glymphatic system (Xie et al., 2013), which
is a brain fluid transport system that clears proteinaceous waste.
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The brain may be unable to eliminate these waste products due
to glymphatic dysfunction caused by astrogliopathy, which may
result in the accumulation of neuroinflammatory mediators and
persistent pain. Thus, studies aimed at addressing the role of
glymphatic function and dysfunction in pain remain an important
direction for future research. It is important that sleep should
be considered as a targeted therapy in clinical and external
hospital pain regulations. In addition, antioxidant and anti-
inflammatory pathways also contributed to the regulation of SD-
induced hyperalgesia (Figure 4).

3.3.2. Mood disorders
Mood disorders refer to a range of diseases, including major

depressive and bipolar disorders, that can lead to recurrent,
chronic, and disabling tendencies (Wittchen, 2012; Palagini et al.,
2022). SD and rhythm changes are core symptoms of these
diseases in almost all patients, and it has been reported that
SD has a complex bidirectional relationship with mood episodes
(Geoffroy, 2018). The antidepressant effects of SD have been
previously studied (Kundermann et al., 2008; Trautmann et al.,
2018), and astrocytes were found to function by activating medial
prefrontal cortex P2 × 2 receptors and synaptic adenosine
(A1) receptors (Hines et al., 2013), causing adenosine-mediated
antidepressant-like effects (Cao et al., 2013). In contrast, SD
may be a risk factor for mood disorders in healthy individuals
(Ablin et al., 2013). Rats exposed to SD have altered prefrontal
cortical 5-reductase expression and activity, impacting their mental
health (Frau et al., 2017). After SD, microglia and astrocytes
mediate neuroinflammation, which may predispose patients to
neuropathic progression in mood disorders by dysregulating
feed-forward on the hypothalamic-pituitary-adrenal axis (Palagini
et al., 2019), causing abnormal synaptic pruning, early synaptic
loss, and neurodegeneration (Madore et al., 2020). Specifically,
by generating pro-inflammatory substances, SD may directly
contribute to neuroinflammation and mediate glutamate-mediated
excitotoxicity and neuronal damage by activating microglia
through abnormal pruning and altering astroglia-neuron signaling.
These processes may then amplify the neuroinflammatory effects
of neurodegeneration, promoting mood disorders, cognitive
dysfunction, and memory impairment. Since this involves negative
glycogen turnover and impaired glutamatergic neurotransmission
through the ANLS, we may find a promising method to interrupt
the vicious cycle of sleep loss and improve mood disorders. Another
reported pathway of astrocyte-associated SD-induced depression
involves the activation of astroglial P2 × 7 receptors by SD,
triggering depression-like behaviors and selectively downregulating
astrocytic 5-HT2B receptors. P2 × 7R-knock-out mice showed
alleviated depression-like behaviors, suggesting that 5-HT2B
receptors can play a key role in targeted therapies aimed at SD-
induced depression (Xia et al., 2020). In addition, activated leucine-
rich repeat protein-3 (NLPR3) inflammasomes in astrocytes can
decrease brain-derived neurotrophic factor (BDNF) levels. This
is reported to be a crucial pathological event in depression-like
behavior after SD. Moreover, leptin has a synergistic effect on the
antidepressant effects of fluoxetine by increasing the expression
of astroglial 5-hydroxytryptamine receptor 2B (5-HT2B), which
enables fluoxetine to amplify the level of astrocyte-derived BDNF
(Li et al., 2018).

3.4. Other diseases

3.4.1. Traumatic brain injury
In both the cerebral cortex and hippocampus, activation of

astrocytes can mediate abundant astrogliosis, leading to increased
levels of the astrocytic marker GFAP after mild traumatic brain
injury (TBI) as well as a negative effect on the brain (Hazra
et al., 2014; Sabir et al., 2015). Astrocyte-derived GFAP in blood
has been reported to predict death after severe TBI (Vos et al.,
2004). SD may reprogram the transcriptome of genes involved
in plasticity, neuroprotection, and circadian rhythms in a way
detrimental to brain recovery after mild TBI, especially in the
cerebral cortex. In fact, SD has been shown to amplify the
damage caused by mild TBI, with an increase in astrocyte-derived
GFAP (Sabir et al., 2015), although astrocytes have mutually
contradictory effects on TBI. For example, they accelerate and
suppress neuroinflammation, promote and restrict neurogenesis
and synaptogenesis, and disrupt and repair the BBB through
multiple regulatory molecules. Although these effects have not been
shown to be associated with SD, astrocytes are novel and attractive
targets for therapeutic drugs for TBI (Michinaga and Koyama,
2021).

3.4.2. Stroke
Sleep deprivation can be a preexisting risk factor and direct

consequence of brain damage, such as stroke (Pérez-Carbonell and
Bashir, 2020). Astrocytes play a mixed role in stroke pathology—
the activated subtype provides neuroprotection while secreting
inflammatory molecules that aggravate stroke damage. Astrocytic
AQP4 also has a complex bimodal function in stroke pathology:
knockdown or inhibition of AQP4 in astrocytes can mediate
protective effects (Hirt et al., 2017; Wang et al., 2020) or
cause damage (Shi et al., 2012; Zeng et al., 2012). Although
their mechanisms of action remain incompletely understood, the
damage and repair effects of astrocytes in stroke pathology make
them a significant target for stroke treatment (Patabendige et al.,
2021). Whether improving sleep helps limit stroke damage remains
to be investigated.

3.4.3. Epilepsy
Nighttime epilepsy can seriously affect sleep quality, and in

turn, SD or the side effects of antiepileptic drugs can promote
the progression of epilepsy. The waste disposal assumption
explains how epilepsy causes astrocytes to deal with extracellular
glutamate and K+, leading to random neuronal hyperexcitability
(Rabinovitch et al., 2019). Similarly, it is hypothesized that SD-
induced negative glycogen turnover in astrocytes leads to a disorder
in extracellular K+ recycling, which may be a possible causative risk
for epilepsy (DiNuzzo et al., 2015). Furthermore, ADK in astrocytes
alters the inflammatory microenvironment in the epilepsy brain
(Aronica et al., 2013). Nevertheless, it is still unclear how SD and
ADK expression in astrocytes are related.

3.5. Circadian dysfunction and astrocytes

Endogenous circadian rhythms underlie neurobehavioral
processes, including physiological alertness and cognitive
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FIGURE 4

The complicate interaction between sleep deprivation and chronic pain. Sleep deprivation can cause activation of astrocytes, and release of glial
mediators as well as modulators to induce neuroinflammation. Both sleep deprivation and neuroinflammation can lead to glymphatic system
dysregulation and insufficient astrocytic glycogen turnover. These changes finally cause abnormal synaptic plasticity leading to chronic pain, make a
vicious circle into pain comorbidities including sleep deprivation (Created with BioRender.com).

functioning. The sleep homeostat and circadian drives are the
two mechanisms that regulate sleep (Saper et al., 2005). Circadian
dysfunction can lead to sleep deprivation, causing a range of
behavioral effects. Both acute and chronic SD can increase
homeostatic sleep drive and worsen waking neurobehavioral
functions, which are reflected in drowsiness, attention, cognitive
speed, and memory.

In recent years, a series of reports have shown that genes
in astrocytes regulated by the circadian rhythm play a role
in neurological diseases. Neuroinflammation is an important
component of many neurological diseases. Following REM sleep
deprivation, studies have reported an elevated expression of
BMAL1 and Per2 proteins, along with reduced Egr1 protein
expression in the hippocampus. This alteration is accompanied
by the activation of reactive astrocytes, which contribute to
neuroinflammatory impairments (Hou et al., 2019). Hou
et al. (2019) claimed that circadian genes Bmal1, Per2, and
Egr1 participate in the SD-related aggravation of hippocampal
neuroinflammatory impairments that activate reactive astrocytes;
however, the underlying mechanism remains unclear. The core
clock protein BMAL1 serves as the primary positive circadian
transcriptional regulator. In a C57BL/6 mouse model, disruption
of the gene encoding the circadian clock regulator BMAL1 resulted
in significant age-related astrogliosis and inflammation (Musiek
et al., 2013). Another circadian clock protein, Rev-erbα, a nuclear
receptor and circadian clock component, can mediate microglial
activation and inflammation. In the hippocampus, Rev-erbα

deletion caused spontaneous microglial activation and increased
the expression of proinflammatory transcripts by increasing basal
NF-κB activation and secondary astrogliosis. According to this
study, the circadian clock and neuroinflammation are linked by
Rev-erb, which is pharmacologically available (Griffin et al., 2019).

Recent studies have linked BMAL1 to protein degradation in
astrocytes within the brain. McKee et al. (2023) demonstrated
that deleting Bmal1, specifically in astrocytes, leads to a unique
cell-autonomous activation state. This activation phenotype not
only disrupts circadian function but also hampers the supportive
role of astrocytes to neurons while simultaneously increasing
extracellular protein degradation (McKee et al., 2023). In vitro,
increased endocytosis, lysosome-dependent protein cleavage, and
an accumulation of LAMP1- and RAB7-positive organelles (which
show increased lysosomal abundance) are all seen in Bmal1-
deficient astrocytes. In vivo, using electron microscopy, astrocyte-
specific Bmal1-knockout brains exhibit an accumulation of
autophagosome-like structures. While it is unclear how BMAL1
influences these astrocyte functions, McKee et al. (2023) claim that
Bmal1 deletion affects several genes related to the endolysosomal
system.

4. Potential interventions targeting
astrocytes to prevent or treat
sleep-associated brain disorders

4.1. Improving sleep quality

Improving sleep can help relieve the stress associated with
disease progression. Sleep health education, exercise (Jurado-Fasoli
et al., 2020), music therapy (Tang et al., 2021), light therapy (Brown
et al., 2022), melatonin (Zisapel, 2018), dietary habits (Pot, 2018),
sleep-induced substance replenishment, and hypnotic drug therapy
are common treatments that promote sleep quality.
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4.2. Regulating neuroinflammation by
pharmacological methods

A complex causal relationship exists between diseases, sleep
disorders, and neuroinflammation. Breaking any part of this link
may stop the vicious cycle and bring benign disease outcomes.
Suppression of inflammation is one of the most widely studied
therapeutic approaches. Agonists of the α7 nicotinic acetylcholine
receptor can activate downstream PI3K/Akt/GSK-3β, restrain the
increase of pro-inflammatory factors, and stabilize the expression
of anti-inflammatory factors, transcriptor Nrf-2, and antioxidant
enzyme HO-1 after SD (Xue et al., 2019). Farnesol, Caffeine
and Modafinil can ameliorate SD-induced neuroinflammation and
microglial activation (Wadhwa et al., 2018; Li Y. et al., 2023).
Sinomenine, or cocculine, is an alkaloid found in the root of the
climbing plant Sinomenium acutum, which is now considered
a beneficial treatment target for CNS diseases such as AD, PD,
depression, TBI, epilepsy, multiple sclerosis, cerebral ischemia,
and intracerebral hemorrhage (Hong et al., 2022). Mechanistic
investigations have revealed that the anti-inflammatory effects
of sinomenine in astrocytes involve the activation of astrocytic
dopamine D2 receptors. This activation leads to the nuclear
translocation of αB-crystallin (CRYAB), phosphorylation of STAT3,
and subsequent inhibition of astrocyte activation (Qiu et al.,
2016). It has been reported that Sinomenium can inhibit the
production of NO, IL-6, IL-18, IL-1β, TNF-α, and interferon-
γ (IFN-γ) in primary cultured human astrocytes and mouse
C8D1A astrocytic cell lines and monocyte chemoattractant protein-
1 (MCP-1), which was induced by oligomeric Aβ-mediated reactive
astrocytes in the brain of patients with AD (Singh et al., 2020).
Sinomenium suppresses astrocyte hyperplasia by inhibiting the
NLRP3 inflammasome in mouse spinal cord tissue, contributing to
the regulation of multiple sclerosis (Kiasalari et al., 2021).

Perioperative neurocognitive disorder (PND) involves brain
network disturbances in several different functional brain regions,
including brain regions associated with the sleep-wake rhythm,
subregions associated with context and fear memory, the septa-
hippocampus circuit, the hippocampal-amygdala circuit, and the
entorhinal hippocampal circuit. A recent isoflurane-mediated PND
animal study showed that enhanced gap junction connexin-43
in astrocytic gap linking could improve long-term isoflurane-
induced brain network dysfunction and cognitive impairment by
regulating oxidative stress and neuroinflammation. Namely, the
gap junction connexin-43-mediated astrocytic network could be
the neural circuit underlying the pathological mechanism of PND
(Dong et al., 2022).

4.3. Potential therapies for targeting
astrocytes

A decade ago, the use of induced pluripotent stem cells
derived from human somatic cells to treat neurological diseases
was widely proposed (Yuan and Shaner, 2013). Astrocyte-targeted
therapies for AD aim to prevent the transformation of reactive
astrocytes into type A1 astrocytes and encompass strategies such as
stem cell therapy, pharmacological interventions, and gene-editing
technologies (Bi et al., 2022). In the restorative treatment of PD,
co-grafting neural progenitors with engineered astrocytes, which

can provide a favorable brain environment for better maturation
as well as a better survival rate of the graft by overexpressing the
transcription factors Nurr1 and Foxa2, contributes to therapeutic
improvement (Tsai, 2018). Currently, there are promising clinical
methods for the remote and selective manipulation of astrocytes
to correct dysfunction without genetic modification, such as
magnetomechanical stimulation. Specially designed magnetic
devices are used to determine the mechanosensory threshold of
astrocytes and identify submicrometer particles for effective MMS.
Specifically, the mechanosensitivity of astrocytes enables placing
antibody-functionalized magnetic particles in a magnetic field to
trigger mechanogated Ca2+ and ATP signaling in astrocytes (Yu
et al., 2022).

Inwardly rectifying Kir4.1 channels in astrocytes play a novel
role in regulating the expression of BDNF, and inhibition of
Kir4.1 channels was found to elevate the expression of BDNF
and extracellular glutamate and K+ levels at synaptic clefts. These
changes may contribute to the elevation of synaptic plasticity and
neuronal connectivity and highlight the therapeutic potential of
Kir4.1 channels in brain diseases such as depression and epilepsy
(Ohno et al., 2021). Furthermore, mesencephalic astrocyte-derived
neurotrophic factors have been reported to have great potential for
restoring dopaminergic neural circuits. Although limited efficacy
has been reported, improved techniques may help us further
understand their therapeutic value as neurorestorative agents
(Domanskyi et al., 2015). From the perspective of the relationship
between astrocyte glycolysis and the course of AD, glucagon-
like peptide-1 has been shown to provide neuroprotection in
patients, with the underlying mechanism involving activation of
the PI3K/Akt pathway, which also provides us with a means to
intervene in the progression of AD through astrocytes (Zheng
et al., 2021). As stated previously, the inhibitory effect of fluoxetine
on the NLRP3 inflammasome in astrocytes is mediated by 5-
HT2B receptors, which increase the release of BDNF and have
been proven to reduce depression-like behaviors in mice. Leptin
enhances the effect of fluoxetine on 5-HT2B receptors by increasing
5-HT expression. All these studies demonstrate the therapeutic
value of astrocytes in antidepressants induced by SD (Li et al.,
2018).

5. Conclusion

Astrocytes have a variety of functions in SD and SD
comorbidities that are not yet clearly understood. We aimed to
explore better therapeutic interventions for SD comorbidities by
elaborating on the specific pathological changes in astrocytes under
normal physiological sleep and SD, including those related to ion
homeostasis, brain metabolism, the glymphatic system, astrocyte–
microglia cross-talk, and neuroinflammation. Additionally, we
discussed the potential functions of astrocytes in several SD-
comorbid brain disorders, including AD, PD, pain, mood disorders,
TBI, stroke, and epilepsy. The findings highlight the need to
clarify the complicated roles of astrocytes in the brain under both
normal and pathophysiological conditions. Further, we discussed
the potential roles of astrocytes in preventing or treating sleep-
disorder-related brain diseases. Addressing these issues will open
the door to understanding the cellular and circuit processes
underlying the pathologies of SD-associated comorbidities.
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6. Discussion

The high prevalence of SD in daily life reminds us of the
necessity to more clearly search for the role of astrocytes in SD
and SD-related comorbidity. SD upregulates most of the astrocyte
genes, which are associated with metabolism and neuroglial
interactions. Furthermore, except for the known genes related
to the sleep-wake cycle, further research would investigate the
mechanisms underlying how astrocytes act in neural circuits and
regulate the brain.
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