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Power generation and transmission infrastructure is vulnerable to the interaction
of various Distributed Generations (DG), which leads to the imbalance of power
system operation, frequent voltage drops or spikes, and even power outages. This
phenomenon not only wastes energy, but also affects grid security. The main
reason is a delayed feedback of circuit failure and load changes, and the
optimization of energy management system and path is an effective way to
solve the above problems. In this paper, a method of multi-objective
optimization based on ANFIS algorithm is proposed which can help to improve
the demand response, energy storage and management of smart power grid,
reduce the volatility of DGs, reducing electricity costs and improving energy
efficiency. Firstly, based on the ANFIS algorithm, the distributed power
generation control mode, inverter control, real-time electricity price
calculation method, energy transfer and storage scheme are improved, and the
optimization path of the energy management system is defined. Secondly, the
advantages of ANFIS algorithm in response speed and running stability are verified
by comparing with other algorithms. Finally, a distributed energy microgrid is
constructed for simulation verification. The results show that :(1) ANFIS
optimization algorithm has good adaptability in smart grid, and has advantages
in large amount of data processing and information transmission; (2) The
verification model based on ANFIS has strong elasticity and efficient response
speed. The research results will help solve various problems in the smart grid,
including establishing a clear energy management system path, maintaining the
stable operation of the power system, providing users with more reasonable
power plans and the lowest cost of electricity.
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1 Introduction

Smart grid uses advanced sensing, measurement, communication, control, and other
technologies to achieve flexible, efficient, safe and reliable, and green economic integrated
goals of power generation, transmission, distribution, and electricity consumption (Marris,
2008), and has become the main direction for future development. (as shown in Figure 1).
However, with the uncertainty of user distribution, the problems of long-distance power
transport loss (Kamruzzaman, 2021), low conversion rate of traditional power supply, and
inflexible power supply leading to high electricity costs began to become prominent. At
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present, all countries in the world are facing the pressure of reducing
carbon emissions (Granado et al., 2020), and the types of distributed
energy resources (DER) have increased greatly, for example,
renewable energy sources (RES), battery energy storage systems
(BESS), photovoltaic (PV), wind turbines and other new distributed
energy (Ding et al., 2022; Wang et al., 2023); New energy vehicles
(EV), intelligent buildings and other new electricity units (Zielińska,
2020). Smart Grid Framework 4.0 (Gopstein et al., 2020) will
undoubtedly rely on distributed energy resources to meet low
energy consumption expectations and achieve the global target of
42% renewable energy generation (U.S. Energy Information
Administration, 2021). Based on the above background, both
supply and demand sides of the smart grid show the
characteristics of diversity, intermittence, randomness, and
flexibility. Rapid demand response, system stability, flexible
power supply mode, and reduced electricity costs are the main
development directions of smart grid in the future (Ghiasi et al.,
2018; Akbary et al., 2019; Mohammad et al., 2023).

However, due to the unpredictable nature of distributed energy
resources, it can significantly alter the voltage curve of the grid
system and hinder the performance of traditional on-load tap switch
control systems, which poses risks to the operation of a smart grid
(Marchi et al., 2019). As a result of the forced use of these
technologies, problems such as reduced power quality, energy
imbalances, reduced operational reliability, reduced system
security, and regulatory concerns (including unfair distribution of
benefits to customers) have arisen (Zhang et al., 2021). As an
important part of a smart grid, an intelligent power distribution
system is confronted with many challenges in the process of energy
development, such as energy resource limitation, renewable energy
generation uncertainty, multi-energy flow coupling complexity, and

privacy information security (Madhuri et al., 2022; Dzobo et al.,
2021). Adopting a more efficient operation algorithm and energy
management strategy is the key to ensuring the economic and
efficient operation of an intelligent power distribution system
under distributed power supply.

For a long time, a large number of studies have tried to figure out
how to achieve low-cost, high-efficiency, and stable energy
management in smart grids. An energy management system
(EMS) is “a computer system comprising a software platform
that provides essential support services and a set of applications
that provide the functions required for the efficient operation of
power generation and transmission facilities to ensure the security of
energy supply at the lowest cost” (IEC 61970) (Arcos-Aviles et al.,
2018; Gan et al., 2018; Hussain et al., 2019) (Figure 2). In order to
solve the problems brought by DER, it is necessary to change the
traditional passive distribution mode (Martinez et al., 2017) into
active distribution mode. In addition, it is also necessary to change
the transfer and storage mode of energy (Ali et al., 2021), solve the
load fluctuation caused by DER to the power system, reduce the
severity of some negative problems, and improve the stability and
reliability of the power system load. At present, there are many
research directions on EMS.

Reasonable energy management system is the basic framework
to solve the above problems. The construction of a real-time demand
response framework (Yu et al., 2020) can effectively alleviate the
periodic fluctuations of the power grid, not only reduce the peak
demand of users and the power generation cost of the power
supplier but also save the electricity cost of residential users and
increase social welfare. Nowadays, in order to better deal with energy
scheduling and management problems, many optimization
strategies are proposed and implemented. For example, in order

FIGURE 1
Schematic diagram of smart grid structure.
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to reduce the cost of energy use, Ref. (Adam et al., 2022; Martins
et al., 2022). proposes an energy management method based on
mixed integer linear programming (MILP) and establishes a power
management strategy suitable for RES by optimizing the operating
system. In order to ensure stable energy transmission and sharing,
Ref. (Fagundes et al., 2022). proposes a coordinated and
decentralized control structure of DC microgrid (MG) powered
by fuel cells (FC) and energy storage units (ESUs), which realizes
energy sharing and transmission under stable state through
complementary behavior under the fuzzy controller. In order to
enhance the elasticity of SGs and MGs, Ref. (Ghiasi et al., 2023).
proposed a variety of schemes to improve the elasticity of networks
of cyber-physical systems (CPS) in the system design stage. In the
process of reducing electricity costs, reducing energy waste, and
maintaining SG stability, the quick feedback and judgment of
information play a key role in EMS. A correct algorithm can
improve the efficiency of the system.

In order to make the smart grid meet the needs of different
scenarios, different optimization algorithms are used in different
links of the power grid system. Ref. (Shi et al., 2023). presents an
enhanced biogeography-driven optimization algorithm for
optimizing the operations and sizes of battery ESSs (BESSs).
Particle swarm optimization (PSO) is often used to optimize SG
systems. For example, Ref. (Ghiasi, 2018). proposed an optimal
design scheme of intelligent microgrid based on multi-objective
particle swarm optimization (MOPSO) hybrid RESs. Ref. (Mahdi
et al., 2018). proposed a quantum-inspired particle swarm
optimization (QPSO) technique to solve the multi-objective
environmental economic scheduling (EED) problem. In addition,
Ref. (Ghiasi et al., 2021). proposed an improved multi-objective
differential evolution (IMODE) optimization algorithm, and applies
it to the multi-operation energy management form of intelligent
smart microgrid (MG) system. These different optimization

methods help build more efficient energy management systems.
At present, the energy management system of the smart grid mainly
faces threats from unstable distributed energy and harsh
environment. The key to solving this problem is how to deal
with load fluctuation and load prediction quickly.

The load prediction of SG involves many factors and has
fuzziness and nonlinearity, so it is difficult to establish an
accurate mathematical model. ANFIS has the fuzzy processing
capabilities of complex factors and adaptive learning solutions,
which are especially suitable for complex load prediction. Ref.
(Panagiotou and Dounis, 2022). compared artificial neural
networks, adaptive neural fuzzy reasoning systems (ANFIS), and
long-short term memory (LSTM) as three load forecasting methods.
ANFIS is superior to all other models and can deal with complex
nonlinear problems well. Ref. (Ghenai et al., 2022). proved the ability
of the ANFIS model to predict power load quickly, and verified the
accuracy and reliability of the model in microgrid power systems.
Ref. (Bilgundi Srishail et al., 2022). proposed a PI current controller
optimized by ANFIS, which can improve the control of DG. Ref
(Gupta et al., 2020) designed a multi-objective inverter based on an
ANFIS controller and an overall power management strategy to
manage the power transmission between RES, loads, and the grid.

The applicability of ANFIS in energy management systems has
been proven. At present, there are still some functional defects in the
construction of a smart grid. For example, the construction of
terminal power metering, severe weather warning, two-way
communication, and other systems is still not perfect. The
construction of a smart grid system requires efficient
collaboration among various supporting equipment. Therefore,
the optimization method of ANFIS in a multi-factor coupled
environment needs further study. A multi-objective optimization
method of ANFIS based on an ant colony algorithm is proposed in
this paper. The rest of this paper is organized as follows: Section 2.0

FIGURE 2
Smart grid energy management flow chart.
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introduces the researchmethods and theories; Section 3.0 introduces
the system optimization methods of DGs utilization and
management, inverter control, power cost control, and other
links, and makes a detailed energy scheduling strategy. Section
4.0 discusses the rapid response capability of ANFIS and the
accuracy of load prediction of different algorithms. Section 5.0
discusses the shortcomings of the research and the applicable
scenarios. Finally, the conclusion is given in Section 6.0. The goal
of the energy management strategy is to improve energy
management efficiency, information accuracy and reduce
electricity costs by optimizing DGs and energy scheduling.

2 Methodology

2.1 ANFIS model and DGs load prediction
method

ANFIS was proposed by scholar Jang Roger in 1993 (Jang,
1993), which combines fuzzy theory and neural networks
organically. On the one hand, the fuzzy system can be used to
solve the problem of complex nonlinear prediction models, and the
fuzzy processing of some complex factors can improve prediction
accuracy. On the other hand, the adaptive membership function of
the fuzzy system is constructed by using the information storage
ability and learning ability of the neural network, so as to construct
the nonlinear mapping relationship between input and output
which can approximate complex solving problems. Compared
with other neural fuzzy systems, ANFIS is convenient and
efficient, and is particularly suitable for complex distributed
power grid load prediction (Leonori et al., 2019). The typical
ANFIS structure is shown in Figure 3, which consists of five
layers: Input layer, Fuzzy layer, Fuzzy inference layer, Anti-
fuzzy layer, and Output layer.

It is generally acknowledged that the load variation in DGs is
nonlinear, and it is difficult to express its main change mode by a
single linear model. However, ANFIS utilizes the dual characteristics
of fuzzy algorithms and neural networks, which is conducive to
solving this complex problem. In the ANFIS structure and approach,
the key indicator is the input variable of the model, which needs to
be determined in conjunction with the actual problem. Specific
methods and steps are as follows.

(1) The first step is to determine the input variables and attribution
functions required to solve the problem. In this system, the load
varies greatly with the different seasons and the number of
equipment outside the system, and this variability has certain
rules to follow. However, under the premise of large rules, the
specific data at every moment is affected by various factors.
Therefore, when constructing an ANFIS input set, the system
needs various data for learning and training.

(2) The second step is to use the function to train ANFIS to get the
predicted value.

(3) The third step is to validate the ANFID-generated values with
real-world data to generate the prediction model.

In this study, the advantages of ANFIS were utilized to optimize
the energy management system with multiple objectives to achieve
the following goals: 1) Try to enhance the elasticity of the power
system and ensure the stability of the power system by optimizing
the functions of photovoltaic, wind and battery energy systems
under different Settings (controlled by ANFIS, adaptive controller
and battery respectively); 2) The overall optimization scheme will
consider the comprehensive benefits of multiple related objectives,
not limited to the benefits of a single objective; 3) Enhance the
elasticity and power quality of the power grid, and reduce the risk
caused by random factors such as rain, load reduction, and bad
weather.

FIGURE 3
ANFIS model structure.
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2.2 ANFIS parameter optimization method

The training process of ANFIS generally adopts a mixed
learning algorithm, which includes forward and backward
processes (Sowinski, 2021). In this process, the accuracy of
input parameters in ANFIS is the key to solving the problem,
so taking a certain way to optimize the parameters is a
prerequisite for a more accurate prediction model. To further
improve the accuracy of prediction, this paper uses an ant colony
algorithm to correct the input data (Ogunsina et al., 2021). The
basic principle of the ant colony algorithm is to make use of the
relationship between the independent behavior of a single ant
and the group restriction to carry out a process of continuous
iteration, and then make the group’s actions gradually accurate.
Therefore, the ant colony algorithm is an intelligent behavior
constructed by simple cooperation between ants to obtain the
optimal solution process. After optimizing input parameters by
the ant colony algorithm, these parameters can be used to train
the ANFIS network, find out the hidden relationship between
input and output values of distributed load based on smart grid,
and form these parameter values into training data for accuracy
correction, so as to form an ideal model. Finally, the actual data
can be used as input data for model calculation, and then realize

the calculation of the corresponding load. The flow chart is
shown in Figure 4.

3 Models and methods

3.1 DGs networkmanagement ANFIS control
scheme

The intelligent management mode of DGs plays a positive role in
improving the stability of power systems, power quality, and power
generation efficiency. DGs in grid-connected and island modes are
often affected by extreme weather and elastic demand. Although the
traditional FCL control mode can deal with nonlinearity, it has low
operating efficiency and difficulty in obtaining clustering
conclusions when the computation is large. ANFIS can optimize
FLC membership functions and rules for better performance (Nafeh
Abdelnasser et al., 2022). ANFIS (FLC) has high computation speed,
a high probability of convergence to the global optimal solution, and
obvious computational advantages for multi-load systems. In smart
grids, each component (Sun, wind, battery, load, etc.) is critical to the
overall operation. In this paper, the smart grid control system is
optimized by improving the control mode and improving the
operation efficiency of DGs: 1) A new operating mode based on
ANFIS control is used to control solar power generation, wind
power generation, and supercapacitor power generation in DGs. 2)
Using ANFIS to optimize photovoltaic maximum power point
tracking technology and improve solar energy utilization efficiency.

The new control mode will improve emergency, energy-saving,
and regular modes: 1) A bidirectional converter keeps the DC
connection and allows power to flow in both directions,
satisfying both the source and the sink. 2) The intelligent system
relies on the ANFIS algorithm to calculate the power demand of the
system and control the energy acquisition and output of DGs. It can
improve power management by optimizing power factors and
automatic identification/switching of the network. Under this
mode, DGs will reduce battery loss or overcharging and improve
battery life and power system performance. The control strategy is as
follows (Figure 5).

(1) If both solar and wind power generation are between 0% and
30% (NL), the system will switch to emergency mode. (NL)

(2) If the combined solar and wind output is less than 30% (NL) or
30%–60% M), an emergency mode will be engaged (NL)

(3) When the percentage of renewable energy sources is between 0%
and 30% (NL) or 60% and 100% (PL), the energy savings mode
kicks in M)

(4) When solar output is poor and wind speeds are low (NL),
emergency mode kicks in (NL)

(5) Power conservation kicks in when the combined capacity of
solar and wind is between 30% and 60%. M)

(6) The PL is in the typical range when there is 30%–60% sunshine
and 60%–100% wind (PL)

(7) In the range of 30%–60% (NL) of total energy production from
solar and wind, energy conservation mode kicks in M)

(8) When the amount of solar energy is between 60% and 100% and
the amount of wind energy is between 30% and 60%, normal
operation is initiated (PL)

FIGURE 4
Flow chart of ANFIS optimization model based on ant colony
algorithm.

Frontiers in Energy Research frontiersin.org05

Liu et al. 10.3389/fenrg.2023.1202904

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1202904


(9) Once the combined output of solar and wind energy reaches
60%–100% (PL), normal operation is achieved (PL)

Photovoltaic maximum power point tracking (MPPT)
technology is an important way to effectively utilize solar energy.
In this paper, adaptive neuro-fuzzy interface systems (ANFIS) are
used to replace the traditional fuzzy logic controllers (FLC). Since
ANFIS does not necessitate an exact mathematical model, it is inputs
are variable. The ANFIS have three separate steps: fuzzification, rule-
based database lookup, and defuzzification. In fuzzification,
membership functions are used to translate quantitative inputs
into qualitative ones expressed in human-understood language. It
is common for the MPPT ANFIS to accept either the error E) or its
evolution (E′) as an input. At the outset of the ANFIS input
procedure, error E) and delta-E are determined (CE). It is
common knowledge that the duty ratio (represented by the
modification of the duty cycle D)) at FLC outputs varies. The
workflow is shown in Figure 6.

3.2 Inverter ANFIS control scheme

Modern power grids connect a large number of nonlinear loads
and various types of DGs, resulting in continuous changes in grid
frequency (Bilgundi et al., 2022). The adaptive intelligent nonlinear
controller can solve the influence of frequency change, voltage
distortion, and nonlinear load at the same time, and enhance the
power quality of the grid. The basic function of the inverter is to
convert the direct current (DC) to alternating current (AC), safely
and reliably connecting solar panels to the power grid. In this paper,
fuzzy logic controller (FLC) and adaptive neural fuzzy inference
system (ANFIS) are proposed to control voltage. These controllers
help keep the output voltage constant even when the inverter input
voltage changes. The controller can control power network
fluctuation mainly by monitoring voltage deviation. In this
model, the voltage deviation is obtained by calculation (divide
the observed d-q current value after the Park transformation by
the expected value e. k)). If the deviation is too large, ANFIS (FLC) is

FIGURE 5
A system model for resilient distributed energy resources control system in a smart grid framework.

FIGURE 6
Anfis with MPPT control schemes.
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immediately notified to adjust the current in the device (the current
in the d and q directions is controlled by the two FCLS respectively).
To synchronize with the initial frequency of the grid, the node uses a
phase-locked loop (PLL). The inverter receives and controls voltage
from the controller via a pulse width modulation (PWM) block
(Muralikumar and Ponnambalam, 2021). Figure 7 describes the
inverter control scheme based on ANFIS (FLC).

In this scheme, the properties of ANFIS themselves (fuzzy theory
and neural network) are superior to previous fuzzy derivation
techniques. ANFIS is used because it allows fuzzy systems to learn
from the data they represent (by adjusting membership function
parameters). The input and output information of FLC is used to train
and verify the ANFIS model and improve the overall performance of
the controller. The control scheme shown in Figure 7 can dynamically
control the inverter to inject/absorb the appropriate power to regulate
the voltage of the grid system and provide a robust response to any
system worst-case and grid failure.

3.3 Energy storage and scheduling strategy

Facing the unstable and uncontrolled characteristics of RES, the
development of an energy storage mode can make up for the shortage
of new energy power generation and realize energy transfer through
peak cutting and valley filling (Qinglai et al., 2017). Therefore, it is of
great significance to study the comprehensive energy management
system under the mode of “new energy + storage”.

In the electricity system, there are many traditional energy storage
methods, such as pumped storage, electrochemical energy storage
(fuel cells), thermal energy storage, supercapacitor energy storage, and
so on. Electrochemical storage (fuel cell) and thermal storage (fluids)
are used more frequently than any other combination of storage
methods in photovoltaic (PV) facilities and concentrated solar power
(CSP) plants, respectively (Liu andDu, 2020). The production of solar
energy is less reliable than that of fossil fuels and other forms of
energy. Depending on the local climate, it may change with the
seasons and even throughout the course of a single day. Thus,

unnecessary energy waste and power system security problems are
caused. Figure 8 shows the changes in the relationship diagram
between photovoltaic power and energy utilization in a power system.

Figure 8 visually shows the difference between energy load and
energy supply. The impact at a particular time (peak load) can be
mitigated if larger energy loads can be delayed or predicted until the
power system is ready to accommodate additional demand. For
example: Time Shift is an online store that offers several different
types of energy storage solutions, including residential and
commercial energy storage. For businesses and factories, Time
Shift has energy storage options. Peak shaving is one of the most
exciting uses of Energy Storage for the future of the smart grid. Peak
shaving is a method of managing rapidly fluctuating demand that
helps keep peak capacity from being over-provisioned. Peak
Demand Shift with Energy Storage is depicted in Figure 9. In this
process, through the analysis of the structural characteristics of the
integrated energy system, the photovoltaic, fan, CHP, and energy
storage battery in the power grid system are the normal dispatching
objects in the power system, and provide power supply for the
system. According to the power generation characteristics and

FIGURE 7
Inverter ANFIS control scheme flow chart.

FIGURE 8
The relationship between PV power and energy consumption.
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power load characteristics of distributed energy, detailed energy
scheduling strategies are formulated, as shown in Figure 10.

3.4 Implementation of energy management
logic

In order to reduce the output fluctuation of fan and photovoltaic
caused by environmental factors, improve the absorption rate of

distributed renewable energy, reduce the pollution emission caused
by diesel generators, coordinate the output of various power
generation technologies, and ensure the stability and economy of
the system operation, it is necessary to develop flexible and reliable
energy systems and efficient and intelligent scheduling strategies.
The goal of this approach is to supply the load with enough energy
while limiting its reliance on the grid. The model is also supposed to
supply the load with energy generated by renewable resources like
solar panels, batteries, fuel cells, and windmills. The ANFIS-
optimized energy management system model is depicted in
Figure 11. In this model, an energy storage component control
method considering demand response is proposed. According to the
real-time power demand measurement results, the operation state
and energy storage mode of DGs are controlled.

3.5 Variable electricity cost optimization
method

Under a variable energy tariff, your energy provider has complete
control over the per-unit gas and electricity rates you’ll be charged. In
most cases, early termination fees are not applied, and the parameters of
a contract with a variable interest rate are more negotiable. The price of
electricitymight change several times in a singleminute. However, most
consumers have seasonal price changes in their electricity bills. Also
included are fuel prices and the number of DGs operating, which tend

FIGURE 9
Peak Demand Shift using Energy Storage.

FIGURE 10
Power dispatching strategy.
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to cause fluctuations in electricity prices. However, most consumers
have seasonal price changes in their electricity bills. Also included are
fuel prices and the number of DGs operating, which tend to cause
fluctuations in electricity prices. Electricity usage costs also depend on
the type of customer. For example, utility customers often have fixed
electricity bills because they have to pay them at all times. However, the
randomness of residential electricity consumption is large, and the
dominant power of the customer is the main factor. Therefore, making
a reasonable energy scheduling strategy according to energy production
and load changes can effectively reduce the cost of electricity.

Figure 12 shows the cost of electricity as a function of energy
supply. When the energy supply is sufficient but the load of the grid is
low, the cost of electricity in the period of high load can be reduced
through energy storage and transfer. Therefore, peak transfer is an

effective way to reduce electricity costs. This paper calculates the most
reasonable electricity price through ANFIS optimization.

The goal of this method is to reduce the consumer’s
international electricity bill the following day. By imposing the
following constraints, we can calculate the optimal residential
power pricing for time period T. It is possible to demonstrate
that Formula-(1): The overall cost of consuming power with a
changeable price can be reduced by:

C � ∑N
k�0

Cgrid k( )Egrid k( ) (1)

Where C is the grid’s total charge and E is the sum of the energies
of all k-intervals up to N-timescales. Both the amount of energy
going into and out of the battery, and the equilibrium between the
two, will be limits. The notation for constraint a) is Formula-(2),
whereas that for b) is Formula-(3). In addition, according to the
change in energy supply and the load of the grid, Formula-(4) also
gives the change function of electricity price T).

Ebattery k( ) � Ebattery k( ) − 1 + Pbattery Δk( ) (2)
Ppv k( ) + Pgrid k( ) + Pbattery k( ) � Pload k( ) (3)

x( ) � a0 +∑∞
n�1

an cos
nπx
L

+ bn sin
nπx
L

( ) (4)

3.6 Linear program-based ANFIS
optimization

When a mathematical model’s needs are expressed as linear
relationships, the ANFIS optimization technique of linear
programming can be used to maximise (or minimise) an objective
function. The goal of linear programming is to determine what values

FIGURE 11
ANFIS-optimized energy management system model Framework.

FIGURE 12
Factoring in variable electricity cost.
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can be assigned to the variables so as to maximise or minimise the
objective function. Linear programmes (LPs) typically take the
following standard structure, as seen in Formula- (5):

min f txx A.x ≤ b{
Aeq.x � Beq

(5)

The optimization of the LP ANFIS requires a specific set of
states, denoted by x.

Pgrid 1: N( )Power f rom the grid used f rom time step 1 to N
Pbatt 1: N( )Power f rom battery

Ebatt 1: N( )Energy stored in the battery
x � Pgrid 1: N( )Pbatt 1: N( ) Ebatt 1: N( )[ ]

(6)
Equivalent constraints are given as:

INxN 0NxN 0NxN

0NxN INxN 0NxN

0NxN γNxN INxN

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦x �
Pload 1: N( ) − Ppv 1: N( )

Ebatt 1( )
0N − 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (7)

Inequivalent constraints are given as:

INxN 0NxN 0NxN

0NxN INxN 0NxN

0NxN γNxN INxN
INxN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦x ≥ ≥

Pmax
−Pmin
Emax
−Emin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

3.7 Evaluation metrics

The system will be evaluated on the following metrics.

(1) loss of power supply probability (LPSP)

The loss of power supply probability (LPSP) is a statistic that indicates
how likely it is that the PV and energy storage system will fail to provide
the associated load in the case of a power failure. It is a great tool for testing
the system’s responsiveness under both known and hypothetical loads.

(2) cost of electricity

The total cost of running an appliance is calculated by
multiplying the tariff rate (say 20 cents/kWh) by the item’s
electricity consumption (kWh) (in dollars). Multiply the
appliance’s kW or W output by the number of hours you use it
to get its kWh consumption.

4 Results

Considering the factors of system stability and electricity cost,
the above contents provide energy management paths and system
optimization methods for different links in EMS. Through the above
methods, the main objectives are: 1) Through the optimization of
linear ANFIS, achieve fast feedback of multiple load management
and low cost of flexible power consumption; 2) Balance the supply
and demand relationship between the two ends of the smart grid
through rational energy distribution, reduce the risk of power grid
interruption, so as to realize the stable operation of the power grid.
ANFIS is used to optimize the power grid system, mainly to improve

the response speed, enhance the robustness of the power system, and
the accuracy of the power grid load prediction. Next, this paper will
verify the feasibility of ANFIS to achieve the above goals in some
cases.

4.1 Load management using ANFIS
optimization

There are a series of constraints in the optimization between
energy management and demand response of smart grids, so the
method based on optimization theory is often used to solve this
problem. ANFIS optimization algorithm obtains global information
by communicating with neighbors without the need for a centrally
scheduled CPU, thus greatly reducing network communication and
computing burden. Therefore, compared with the centralized
optimization algorithm, the ANFIS optimization algorithm has
huge advantages in terms of computation, operation cost,
scalability, and so on. It can be used to solve large-scale
optimization problems which are difficult for centralized algorithms.

A swarm of particles finding the best answers to problems in
computational science via ANFIS optimization requires iteratively
improving the quality of potential solutions. The linear ANFIS
optimization algorithm is based on the principle of iteratively
improving candidate solutions in computer problem-solving.
Recently, it has been found that ANFIS optimization can be
carried out with less complicated algorithms. In order to reduce
power usage on a regional or national scale, demand-side
management (DSM) is an integral part of a smart grid energy
management system. As part of energy management for smart
grids, this study investigates a novel approach to demand-side
load shifting. Figure 13 shows an actual example of an iterative
process through ANFIS optimization. Through the optimization of
evaluation indicators (Cost and LPSP), optimization results can be
obtained through fewer iterations in a short time, and a good load
management effect is obtained.

With this method, consumption curves can be optimized for
customers in the residential, commercial, and industrial markets.
The ANFIS algorithm can prioritize and schedule loads based on
user preferences, keeping costs to a minimum. One of the many
benefits of this demand-side management (DSM) is reduced
electricity consumption and lower energy waste; The other is that
low-cost, variable models encourage more new customers to join the
grid. Increased demand from household appliances and individual
consumers can contribute to the sustainable development of the
electricity market. The goal of demand-side management is to
reduce overall energy use, with peak cutting, strategic
conservation, and valley fill being the most common techniques
for controlling loads.

4.2 Verification of energy consumption load
prediction accuracy of ANFIS

In addition to the requirement of fast convergence to the best
performance, its optimized accuracy should also meet the expected
requirements. In order to verify the accuracy of ANFIS optimization
results, we selected the actual load data samples of a microgrid in a
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recent year (8,760 h). The samples are divided into a training set and
a test set, which are randomly selected. 80% of the samples are used
in the training set (7,008 data points), and the remaining 20% are
used in the test set (1752 data points). In order to compare the
differences between ANFIS and other meta-heuristic algorithms,
GA-ANN and PSO-ANN are added as comparison schemes.

The scheme is divided into two steps: 1) All neural networks
(GA-ANN, PSO-ANN) and ANFIS have 24 inputs, representing the
hourly load over the past 24 h, and one output, which is the load
forecast for the next hour. The results of the training were compared
and analyzed. 2) In addition, samples of 1 day (24 h) are selected as
actual data to compare the load prediction results of different
algorithm models. These models were created, trained, and tested
using MATLAB R2020b software.

The result shows: (1) ANFIS performs better than ANN trained
by the meta-heuristic algorithm, and obtains significantly better

results in all performance indexes (Table 1). The performance is
ANFIS > PSO-ANN > GA-ANN. The meta-heuristic algorithm
training model has a wider range of CI, indicating that the accuracy
of the model is lower than other models. The MBE of ANFIS is very
small (−0.0011551), indicating that the prediction accuracy of the
model is high. 2) Figure 14 shows the curve variation trend of ANFIS
and GA-ANN load prediction results and actual load. The ANFIS
prediction is almost in accordance with the actual load curve, while
the GA-ANN predicted load is quite different from the actual load.

4.3 ANFIS optimization simulation for grid
resilience mechanism

In order to verify the effectiveness of the method in Section
3.0 for establishing the elastic mechanism of the power grid, this

FIGURE 13
The optimization process of evaluation index (Cost and LPSP) with ANFIS.

TABLE 1 Comparison of load training results of ANFIS and other algorithms.

Predictor MSE R R2 MAPE % MAPE with 95% CI MBE

GA-ANN 2,871.6 0.96895 0.9389 6.85 6.79–6.91 2.3268

PSO-ANN 1234.6 0.98675 0.9737 4.19 4.14 4.23 0.089787

ANFIS 442.98 0.99526 0.9905 2.10 2.07–2.13 −0.0011551

1) MSE: mean square error. The lower the value, the more accurate the prediction.

2) R is approximately 1 indicating that there is a strong correlation between the observed variables and the prediction variables, indicating that the model is well fitting. R2 indicates the extent of

the energy load.

3) The average absolute percentage error (MAPE) can be used as a measure to compare different models, and the smaller the percentage, the higher the prediction accuracy.

Confidence interval (CI) can represent data fluctuation, and the smaller the value, the more concentrated the data distribution.

Note: MAPE, confidence intervals were computed using the standard deviation of the absolute percentage errors for each prediction–observation pair.

4) MBE (Mean Bias Error):the smaller the value, the higher the prediction accuracy of the model.
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paper conducts modeling based on the IEEE33-bus standard
network and ANFIS controller. In the case of the constructed
distributed energy MGs, two renewable distributed generators
are connected to the grid at important buses in order to improve
the existing AC power flow situation. The reliability of the model

was greatly enhanced by the incorporation of two energy storage
devices. A small diesel generator is used to provide robust and
reliable operation of the microgrid, and it is built to serve as many
loads as possible in the event of a malfunction. In the model, three
different scale distributed energy sources (DER) are installed,

FIGURE 14
Comparison of ANFIS and GA-ANN load prediction results and actual load.

FIGURE 15
Microgrid setup with distributed energy resources (DERs) present: a case study.
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including a 1,400 kw diesel generator, a 2,000 kw solar panel, and
a 1,500 kw wind turbine. Sodium-sulfur (NAS) batteries are used
in both ESSs, with maximum capacities of 5,500 and 4,000 kW.
The simulation platform was built in Matlab R2017a/Simulink, as
shown in Figure 15.

The load equipment of the experimental scheme includes six
types: computer, lighting equipment, automobile charging pile,
elevator equipment, air conditioning equipment, and residence.
Detailed information on each type of equipment is shown in
Table 2. In order to enhance the reliability of the experimental
scheme, the equipment type with high change frequency and
large randomness was selected for the case. In addition, 24 h is
selected as a cycle to verify the performance of ANFIS. We refer
to the operation rules and load changes of each equipment type in
real cases (Figure 16).

Figure 17 displays a variety of projections for a hypothetical
microgrid system, such as load profiles, renewable generation
forecasts, a diesel generator dispatchable schedule, and ESSs
curves. Energy in its Active and Passive States. The case study
microgrid with NAS battery’s resilience index is estimated using
the ENS index and normal/faulty operation indications in two
situations of isolated and grid-connected modes, and factoring in
critical conditions due to storms and severe weather. The
simulation results show that the most critical loads (also known
as sensitive loads) receive uninterrupted power during the elastic
period. In the condition of power and no power, the system

resistance to external interference performance is high, and the
case system is in a stable operation state. In the process of state
switching, the response time of the system is short, which can meet
the high-efficiency requirements of the energy management
system.

5 Discussion

In this study, ANFIS is used in the optimization of smart grid
energy management systems, including the optimization of DGs
operation mode, inverter control mode, and real-time variable
electricity price. In addition, the paper makes suggestions on
energy scheduling schemes, such as energy storage and grid
elasticity mechanism. Finally, in order to verify the significant
advantages of ANFIS in energy management system
optimization, the performance of other algorithms (GA, PSO)
was compared. The results show that ANFIS has obvious
advantages in system response speed, load prediction accuracy,
and network robustness.

This paper discusses how to ensure the stable operation of power
systems under extreme climates and unstable voltage environments.
The ANFIS optimization method and energy scheduling strategy
adopted by the method are applicable to smart power grids in
different scenarios. 1) In DGs, “clean, efficient, distributed” is the
main feature. This paper has proved that the method has good
performance. Especially in the power grid system with large
amounts of computing data and various types of power sources,
the expected goals can be achieved by using ANFIS ‘own advantages
and energy transfer strategies. 2) In the smart grid with “long
distance and large capacity transmission” as the main feature, the
performance of this method is not significant. But ANFIS ‘rapid
response and adaptive control capabilities can help stabilize power
grids in severe weather. The energy dispatching strategy can also
provide suggestions for the energy management of this type of grid.
3) Most of the isolated island and grid-connected microgrids use
RES as the main energy source of the grid. Similarly, this type of
power grid will be affected by input voltage fluctuations, and ANFIS
is also applicable to this type of power grid. To sum up, energy

FIGURE 16
System running load and 24 h change curve.

TABLE 2 Experimental scheme load equipment information.

No. Type of load equipment Rated power

Load-1 5-Groups computer equipment (30 PCS/group) 36 kW/group

Load-2 5-Groups lighting equipment 32 kW/group

Load-3 3-car charging posts 120 kw/unit

Load-4 4-Groups elevators 30 kW/group

Load-5 6-Groups air conditioning equipment 36 kW/group

Load-6 30-unit residence 12 kW/unit

Frontiers in Energy Research frontiersin.org13

Liu et al. 10.3389/fenrg.2023.1202904

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1202904


management systems optimized based on ANFIS have a wide range
of applications and can help most smart grids.

Although this study proposed an energy management system
optimization method (ANFIS) for DGs, this method focuses more
on the system optimization of different links and lacks the analysis of
mutual constraints and influences of each link. In addition, due to
the limitation of objective conditions, the influencing factors are not
fully considered in themicro-case analysis. In the following research,
the influence of various factors on power grid operation security and
more algorithm analysis based on ANFIS should be further
discussed.

6 Conclusion

Based on the ANFIS algorithm, this paper’s optimization
strategies and schemes are proposed for several key objectives,
such as reducing electricity cost, ensuring stable operation of the
power grid under bad conditions, and energy storage and
transfer. The specific methods and conclusions are as follows:
1) Using the fuzzy control characteristics of ANFIS (FLC),
MPPT technology is optimized by setting control parameters,
which helps distributed energy to quickly cope with various
changes in power grid load; 2) Establish a demand response

strategy model and calculate the optimal residential electricity
price in time period T. In the model, the energy storage system
will conduct charge and discharge scheduling according to the
difference in electricity price, charging at a low price and
discharging at a high price, so as to achieve peak cutting and
valley filling and reduce electricity cost. 3) Establish an energy
management framework to balance the different demands at
both ends of the smart grid through reasonable energy
distribution, reduce energy waste and help avoid the safety
problems caused by the uncertainty of distributed energy
generation. Finally, the feasibility and effectiveness of the
proposed method are verified by simulation. The optimization
measures proposed in this paper do not operate independently,
and the above objectives should be achieved through the
coordination of various measures. The results of the study
will help build energy management systems with clear
management paths and sustainability.
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FIGURE 17
Load and supply curve variation of microgrid system under Active and Reactive Power conditions.

Frontiers in Energy Research frontiersin.org14

Liu et al. 10.3389/fenrg.2023.1202904

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1202904


Author contributions

Conceptualization, PL; methodology, PL, YW, and SW;
software, SW; investigation, SW; data curation, YW;
writing—original draft preparation, SW and PL; writing—review
and editing, PL, YW, and SW; supervision, YW and PL; funding
acquisition, PL. All authors contributed to the article and approved
the submitted version.

Funding

This study received funding from Shaanxi Provincial Land
Engineering Construction Group Co., Ltd. (Grant number DJNY-
YB-2023-6). The funder was not involved in the study design,
collection, analysis, interpretation of data, the writing of this
article or the decision to submit it for publication.

Conflict of interest

Author PL is employed by Shaanxi Provincial Land Engineering
Construction Group Co., Ltd. and Shaanxi Dijian Real Estate
Development Group Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Adam, H., Miroslav, Ž., and František, F. (2022). Impact of the splitting of the
German–Austrian electricity bidding zone on investment in a grid-scale battery energy
storage system deployed for price arbitrage with gray and green power in Austrian and
German day-ahead power markets. Energy Rep. 8, 12045–12062. doi:10.1016/J.EGYR.
2022.09.045

Akbary, P., Ghiasi, M., Pourkheranjani, M. R. R., Alipour, H., and Ghadimi, N. (2019).
Extracting appropriate nodal marginal prices for all types of committed reserve.
Comput. Econ. 53, 1–26. doi:10.1007/s10614-017-9716-2

Ali, A. Y., Hussain, A., Baek, J. W., and Kim, H. M. (2021). Optimal operation of
networked microgrids for enhancing resilience using mobile electric vehicles. Energies
14 (1), 142. doi:10.3390/en14010142

Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., and Guinjoan, F. (2018). Fuzzy
logic-based energy management system design for residential grid-connected
microgrids. IEEE Trans. Smart Grid 9 (2), 530–543. doi:10.1109/TSG.2016.2555245

Bilgundi, S. K., Sachin, R., Pradeepa, H., Nagesh, H. B., and Likith Kumar, M. V.
(2022). Grid power quality enhancement using an ANFIS optimized PI controller for
DG. Prot. Control Mod. Power Syst. 7, 3. doi:10.1186/s41601-022-00225-2

Bilgundi Srishail, K., Sachin, R., Pradeepa, H., Nagesh, H. B., and Likith Kumar, M. V.
(2022). Grid power quality enhancement using an ANFIS optimized PI controller for
DG. Prot. Control Mod. Power Syst. 7 (1), 3. doi:10.1186/S41601-022-00225-2

Ding, S., Zeng, J., Hu, Z., and Yang, Y. (2022). A peer-2-peer management and secure
policy of the energy internet in smart microgrids. IEEE Trans. Ind. Inf. 18 (8),
5689–5697. doi:10.1109/tii.2021.3133458

Dzobo, O., Malila, B., and Sithole, L. (2021). Proposed framework for blockchain
technology in a decentralised energy network. Prot. Control Mod. Power Syst. 6 (1), 31.
doi:10.1186/s41601-021-00209-8

Fagundes, T. A., Fuzato, G. H. F., Ferreira, P. G. B., Biczkowski, M., and
Machado, R. Q. (2022). Fuzzy controller for energy management and SoC
equalization in DC microgrids powered by fuel cell and energy storage units.
IEEE J. Emerg. Sel. Top. Industrial Electron. 3 (1), 90–100. doi:10.1109/JESTIE.
2021.3088419

Gan, L. K., Hussain, A., Howey, D. A., and Kim, H.-M. (2018). Limitations in energy
management systems: A case study for resilient interconnected microgrids. IEEE Trans.
Smart Grid 10 (5), 5675–5685. doi:10.1109/tsg.2018.2890108

Ghenai, C., Al-Mufti, O. A. A., Al-Isawi, O. A. M., Amirah, L. H. L., and Merabet,
A. (2022). Short-term building electrical load forecasting using adaptive neuro-
fuzzy inference system (ANFIS). J. Build. Eng. 52, 104323. doi:10.1016/j.jobe.2022.
104323

Ghiasi, M., Niknam, T., Dehghani, M., Siano, P., Haes Alhelou, H., and Al-Hinai, A.
(2021). Optimal multi-operation energy management in smart microgrids in the
presence of RESs based on multi-objective improved DE algorithm: Cost-emission
based optimization[J]. Appl. Sci. 11 (8), 3661. doi:10.3390/APP11083661

Ghiasi, M., Ahmadinia, E., Lariche, M., Zarrabi, H., and Simoes, R. (2018). A new
spinning reserve requirement prediction with hybrid model. Smart Sci. 6 (3), 1–10.
doi:10.1080/23080477.2018.1460890

Ghiasi, M. (2018). Detailed study, multi-objective optimization, and design of an AC-
DC smart microgrid with hybrid renewable energy resources. Energy 169, 496–507.
doi:10.1016/j.energy.2018.12.083

Ghiasi, M., Wang, Z., Niknam, T., Dehghani, M., and Ansari, H. R. (2023). “Cyber-
physical security in smart power systems from a resilience perspective: Concepts and
possible solutions,” in Power systems cybersecurity. Power systems. Editors
H. Haes Alhelou, N. Hatziargyriou, and Z. Y. Dong (Cham: Springer).

Gopstein, A., Nguyen, C., O’Fallon, C., Wollman, D., and Hasting, N. (2020). Nist
framework and roadmap for smart grid interoperability standards release 4.0.
Gaithersburg, MD: National Institute of Standards and Technology.

Granado, P., Resch, G., Holz, F., Welisch, M., Geipel, J., Hartner, M., et al. (2020).
Energy Transition Pathways to a low-carbon Europe in 2050, the degree of cooperation
and the level of decentralization. Econ. Energy Environ. Policy 9, 1. doi:10.5547/2160-
5890.9.1.pcre

Gupta, S., Garg, R., and Singh, A. (2020). ANFIS-based control of multi-objective grid
connected inverter and energy management. J. Inst. Eng. India Ser. B 101, 1–14. doi:10.
1007/s40031-020-00425-0

Hussain, A., Bui, V. H., and Kim, H.M. (2019). Microgrids as a resilience resource and
strategies used by microgrids for enhancing resilience. Appl. Energy 240, 56–72. doi:10.
1016/j.apenergy.2019.02.055

Jang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference system. IEEE
Trans. Syst. Man, Cybern. 23 (3), 665–685. doi:10.1109/21.256541

Kamruzzaman, M. M. (2021). “New opportunities, challenges, and applications of
edge-AI for connected healthcare in smart cities,” in 2021 IEEE Globecom Workshops
(GC Wkshps), Madrid, Spain, December 07-11, 2021.

Leonori, S., Martino, A., Mascioli, F. M. F., and Rizzi, A. (2019). ANFIS microgrid
energy management system synthesis by hyperplane clustering supported by
neurofuzzy min-max classifier. IEEE Trans. Emerg. Top. Comput. 3, 193–204.
doi:10.1109/tetci.2018.2880815

Liu, Y., and Du, J.-l. (2020). A multi criteria decision support framework for
renewable energy storage technology selection. J. Clean. Prod. 277, 122183. doi:10.
1016/j.jclepro.2020.122183

Madhuri, N. S., Shailaja, K., Saha, D., Revathy, P., Glory, K. B., and Sumithra, M.
(2022). IOT integrated smart grid management system for effective energy
management. Meas. Sensors 24, 100488. doi:10.1016/J.MEASEN.2022.100488

Mahdi, F. P., Vasant, P., Abdullah-Al-Wadud, M., Watada, J., and Kallimani, V.
(2018). A quantum-inspired particle swarm optimization approach for environmental/
economic power dispatch problem using cubic criterion function. Int. Trans. Electr.
Energy Syst. 28, e2497. doi:10.1002/etep.2497

Marchi, B., Ferretti, I., Pasetti, M., Zanoni, S., and Zavanella, L. E. (2019). “The
disruptive potential of blockchain technologies in the energy sector,” in ECEEE
Industrial Summer Study on Industrial Efficiency, Belambra presqu’île de giens,
France, June 3-8, 2019, 899–906.

Marris, E. (2008). Energy: Upgrading the grid. Nature 454, 570–573. doi:10.1038/
454570a

Martinez, C. M., Hu, X., Cao, D., Velenis, E., Gao, B., and Wellers, M. (2017). Energy
management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles
perspective. IEEE Trans. Veh. Technol. 66 (6), 4534–4549. doi:10.1109/TVT.2016.2582721

Martins, M. A. I., Rhode, L. B., and De Almeida, A. B. (2022). A novel battery wear
model for energy management in microgrids. IEEE Access 10, 30405–30413. doi:10.
1109/access.2022.3160239

Frontiers in Energy Research frontiersin.org15

Liu et al. 10.3389/fenrg.2023.1202904

https://doi.org/10.1016/J.EGYR.2022.09.045
https://doi.org/10.1016/J.EGYR.2022.09.045
https://doi.org/10.1007/s10614-017-9716-2
https://doi.org/10.3390/en14010142
https://doi.org/10.1109/TSG.2016.2555245
https://doi.org/10.1186/s41601-022-00225-2
https://doi.org/10.1186/S41601-022-00225-2
https://doi.org/10.1109/tii.2021.3133458
https://doi.org/10.1186/s41601-021-00209-8
https://doi.org/10.1109/JESTIE.2021.3088419
https://doi.org/10.1109/JESTIE.2021.3088419
https://doi.org/10.1109/tsg.2018.2890108
https://doi.org/10.1016/j.jobe.2022.104323
https://doi.org/10.1016/j.jobe.2022.104323
https://doi.org/10.3390/APP11083661
https://doi.org/10.1080/23080477.2018.1460890
https://doi.org/10.1016/j.energy.2018.12.083
https://doi.org/10.5547/2160-5890.9.1.pcre
https://doi.org/10.5547/2160-5890.9.1.pcre
https://doi.org/10.1007/s40031-020-00425-0
https://doi.org/10.1007/s40031-020-00425-0
https://doi.org/10.1016/j.apenergy.2019.02.055
https://doi.org/10.1016/j.apenergy.2019.02.055
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/tetci.2018.2880815
https://doi.org/10.1016/j.jclepro.2020.122183
https://doi.org/10.1016/j.jclepro.2020.122183
https://doi.org/10.1016/J.MEASEN.2022.100488
https://doi.org/10.1002/etep.2497
https://doi.org/10.1038/454570a
https://doi.org/10.1038/454570a
https://doi.org/10.1109/TVT.2016.2582721
https://doi.org/10.1109/access.2022.3160239
https://doi.org/10.1109/access.2022.3160239
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1202904


Mohammad, G., Taher, N., Wang, Z., Mehran, M., Moslem, D., and Noradin, G.
(2023). A comprehensive review of cyber-attacks and defense mechanisms for
improving security in smart grid energy systems: Past, present and future. Electr.
Power Syst. Res. 215, 108975. doi:10.1016/J.EPSR.2022.108975

Muralikumar, K., and Ponnambalam, P. (2021). Comparison of fuzzy and
ANFIS controllers for asymmetrical 31-level cascaded inverter with super
imposed carrier PWM technique. IEEE Access 9, 82630–82646. doi:10.1109/
ACCESS.2021.3086674

Nafeh Abdelnasser, A., Heikal, A., El-Sehiemy, R. A., and SalemWaleed, A. A. (2022).
Intelligent fuzzy-based controllers for voltage stability enhancement of AC-DC micro-
grid with D-STATCOM. Alexandria Eng. J. 61 (3), 2260–2293. doi:10.1016/J.AEJ.2021.
07.012

Ogunsina, A. A., Petinrin, M. O., Petinrin, O. O., Offornedo, E. N., Petinrin, J. O., and
Asaolu, G. O. (2021). Optimal distributed generation location and sizing for loss
minimization and voltage profile optimization using ant colony algorithm. SN Appl. Sci.
3 (2), 248. doi:10.1007/S42452-021-04226-Y

Panagiotou, D. K., and Dounis, A. I. (2022). Comparison of hospital building’s energy
consumption prediction using artificial neural networks, ANFIS, and LSTM network.
Energies 15, 6453. doi:10.3390/en15176453

Qinglai, W., Shi, G., Song, R., and Liu, Y. (2017). Adaptive dynamic programming-
based optimal control scheme for energy storage systems with solar renewable energy.
IEEE Trans. Industrial Electron. 7. doi:10.1109/tie.2017.2674581

Shi, Y., Cheng, S., Chen, C., Luo, Y., Zhao, J., and Ghiasi, M. (2023). Modified
biogeography optimization strategy for optimal sizing and performance of battery
energy storage system in microgrid considering wind energy penetration. Batteries 9,
254. doi:10.3390/batteries9050254

Sowinski, J. (2021). The impact of the selection of exogenous variables in the ANFIS
model on the results of the daily load forecast in the power company. Energies 14, 2.
doi:10.3390/EN14020345

U.S. Energy Information Administration (2021). Annual energy outlook 2021
(AEO2021). Available at: https://www.eia.gov/outlooks/aeo/pdf/AEO_Narrative_
2021.pdf.

Wang, X., Liu, Y., Hou, J., Wang, S., and Yao, H. (2023). Medium- and long-term
wind-power forecasts, considering regional similarities. Atmosphere 14, 430. doi:10.
3390/atmos14030430

Yu, D., Zhang, T., He, G., Nojavan, S., Jermsittiparsert, K., and Ghadimi, N. (2020).
Energy management of wind-PV-storage-grid based large electricity consumer using
robust optimization technique. J. Energy Storage 27, 101054. doi:10.1016/j.est.2019.101054

Zhang, Y., Chen, J., and Yu, Y. (2021). Distributed power management with adaptive
scheduling horizons for more electric aircraft. Int. J. Electr. Power Energy Syst. 126,
106581. doi:10.1016/j.ijepes.2020.106581

Zielińska, A. (2020). Application possibilities of blockchain technology in the energy
sector. E3S Web Conf. 154, 07003–07008. doi:10.1051/e3sconf/202015407003

Frontiers in Energy Research frontiersin.org16

Liu et al. 10.3389/fenrg.2023.1202904

https://doi.org/10.1016/J.EPSR.2022.108975
https://doi.org/10.1109/ACCESS.2021.3086674
https://doi.org/10.1109/ACCESS.2021.3086674
https://doi.org/10.1016/J.AEJ.2021.07.012
https://doi.org/10.1016/J.AEJ.2021.07.012
https://doi.org/10.1007/S42452-021-04226-Y
https://doi.org/10.3390/en15176453
https://doi.org/10.1109/tie.2017.2674581
https://doi.org/10.3390/batteries9050254
https://doi.org/10.3390/EN14020345
https://www.eia.gov/outlooks/aeo/pdf/AEO_Narrative_2021.pdf
https://www.eia.gov/outlooks/aeo/pdf/AEO_Narrative_2021.pdf
https://doi.org/10.3390/atmos14030430
https://doi.org/10.3390/atmos14030430
https://doi.org/10.1016/j.est.2019.101054
https://doi.org/10.1016/j.ijepes.2020.106581
https://doi.org/10.1051/e3sconf/202015407003
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1202904

	Administration strategy of energy management in smart grid: system view and optimization path
	1 Introduction
	2 Methodology
	2.1 ANFIS model and DGs load prediction method
	2.2 ANFIS parameter optimization method

	3 Models and methods
	3.1 DGs network management ANFIS control scheme
	3.2 Inverter ANFIS control scheme
	3.3 Energy storage and scheduling strategy
	3.4 Implementation of energy management logic
	3.5 Variable electricity cost optimization method
	3.6 Linear program-based ANFIS optimization
	3.7 Evaluation metrics

	4 Results
	4.1 Load management using ANFIS optimization
	4.2 Verification of energy consumption load prediction accuracy of ANFIS
	4.3 ANFIS optimization simulation for grid resilience mechanism

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


