
TYPE Original Research
PUBLISHED 26 June 2023
DOI 10.3389/fphys.2023.1180713

OPEN ACCESS

EDITED BY

Zhuhuang Zhou,
Beijing University of Technology, China

REVIEWED BY

Qi Zhang,
Shanghai University, China
Zhenwei Peng,
The First Affiliated Hospital of Sun
Yat-sen University, China

*CORRESPONDENCE

Jie Yu,
jiemi301@163.com

Qinghua Huang,
qhhuang@nwpu.edu.cn

†These authors have contributed equally

to this work and share first authorship

RECEIVED 06 March 2023
ACCEPTED 31 May 2023
PUBLISHED 26 June 2023

CITATION

Tian H, Cai W, Ding W, Liang P, Yu J and
Huang Q (2023), Long-term liver lesion
tracking in contrast-enhanced
ultrasound videos via a siamese network
with temporal motion attention.
Front. Physiol. 14:1180713.
doi: 10.3389/fphys.2023.1180713

COPYRIGHT

© 2023 Tian, Cai, Ding, Liang, Yu and
Huang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Long-term liver lesion tracking in
contrast-enhanced ultrasound
videos via a siamese network
with temporal motion attention

Haozhe Tian1†, Wenjia Cai2†, Wenzhen Ding2, Ping Liang2,
Jie Yu2* and Qinghua Huang3*
1School of Computer Science, Northwestern Polytechnical University, Xi’an, China, 2Department of
Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, China, 3School
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Propose:Contrast-enhanced ultrasound has shown great promises for diagnosis
and monitoring in a wide range of clinical conditions. Meanwhile, to obtain
accurate and effective location of lesion in contrast-enhanced ultrasound videos
is the basis for subsequent diagnosis and qualitative treatment, which is a
challenging task nowadays.

Methods: We propose to upgrade a siamese architecture-based neural network
for robust and accurate landmark tracking in contrast-enhanced ultrasound
videos. Due to few researches on it, the general inherent assumptions
of the constant position model and the missing motion model remain
unaddressed limitations. In our proposed model, we overcome these limitations
by introducing two modules into the original architecture. We use a temporal
motion attention based on Lucas Kanade optic flow and Karman filter to model
the regular movement and better instruct location prediction. Moreover, we
design a pipeline of template update to ensure timely adaptation to feature
changes.

Results: Eventually, the whole framework was performed on our collected
datasets. It has achieved the average mean IoU values of 86.43% on 33 labeled
videos with a total of 37,549 frames. In terms of tracking stability, our model has
smaller TE of 19.2 pixels and RMSE of 27.6 with the FPS of 8.36 ± 3.23 compared
to other classical tracking models.

Conclusion:We designed and implemented a pipeline for tracking focal areas in
contrast-enhanced ultrasound videos, which takes the siamese network as the
backbone and uses optical flow and Kalman filter algorithm to provide position
prior information. It turns out that these two additional modules are helpful for
the analysis of CEUS videos. We hope that our work can provide an idea for the
analysis of CEUS videos.
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contrast-enhanced ultrasound, tracking, optical flow, kalman filter, motion, attention,
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1 Introduction

CEUS requires the use of ultrasound contrast agents (UCA)
to perfuse the lesion area. UCA in the vessels interacts with
sound waves, producing a nonlinear harmonic response signal (Xu,
2009). With the assistance of contrast-specific imaging technology,
CEUS can obtain the vascular distribution in the tissue and
more microcirculation blood flow information than traditional
ultrasound (Leen, 2001), which is particularly suitable for liver
imaging due to the liver’s dual blood supply system (Brannigan et al.,
2004). The CEUS process is typically divided into the arterial phase
(AP), portal venous phase (PVP), and delay phase (DP) based on
UCA perfusion time. Various categories of FLLs exhibit distinct
enhancement and washout patterns in different phases (Liu et al.,
2007). Therefore, accurate diagnosis of FLLs can be achieved by
observing the enhanced state of the lesion tissue throughout the
entire CEUS process. Nevertheless, focused observation for a long
time increases the workload of physicians.

Currently, a wide variety of computer-aided diagnosis (CAD)
systems have been created to help physicians categorize, segment,
and diagnosemedical images (Huang et al., 2021;Huang et al., 2022;
Luo et al., 2022), particularly in ultrasound images (Huang et al.,
2020a; Huang and Ye, 2021; Xu et al., 2022b; Li et al., 2022).
Some research focuses on migrating research from the traditional
imaging field to medical imaging (Xu et al., 2022a; Yan et al., 2022;
Huang et al., 2023). Although CEUS has the benefit of producing
no radiation or invasive problems (Beckmann and Simanowski,
2020), the quality of CEUS images might not always meet the
requirements to train models for CAD systems. This is due to
the presence of shadows and similar structures outside the target
lesion area, causing significant noise interference. Furthermore,
it is impractical to supply large numbers of video with manual
annotations for model training due to the large number of frames
during long-term scanning and the significant changes in texture
and morphology. Consequently, owing to the limited quantity of
CEUS images and the difficulty of accurate labeling, it is essential
to track and extract the region of interest (ROI) of lesions in
CEUS videos. Unfortunately, few researchers have recognized this
issue. To address this problem, the most convenient approach is
to refer to the studies on object tracking in traditional natural
images.

In broad terms, object tracking is to determine the whereabouts
of a designated object in subsequent frames with the given initial
placement in the first frame. Correlation filter algorithms and
siamese networks have emerged as the primary approaches to
address this challenge. Correlation-based trackers accomplish this
by resolving the ridge regression in the Fourier domain, which offers
favorable adaptivity and efficiency, such as MOSSE (Bolme et al.,
2010), CSK (Henriques et al., 2012), KCF (Henriques et al., 2014)
and DSST (Danelljan et al., 2016). While correlation filter methods
perform well for real-time tracking, they face many challenges
such as scale variation, occlusion and boundary effects. Since 2016,
siamese networks, like SiamFC (Bertinetto et al., 2016), SiamRPN
(Li et al., 2018), have gained considerable traction by treating the
tracking objective as a template matching operation. In general,
current prevailing tracking methods can be summarized as a three-
parts architectures, containing 1) a backbone to extract generic
features, 2) an integration module to fuse the target and search

region information, 3) heads to produce the target states. Siamese
network is considered as the most popular pipeline for tracking.
However, due to different features between medical images and
natural images, general algorithms and models on the latter cannot
be transformed well to deal with the former.

Meanwhile, many CAD analysis studies about CEUS keep
appearing, but relatively few investigations have centred on object
tracking in CEUS videos. Sirel et al. (Sirbu et al., 2022) evaluated
a series of conventional trackers based on Boosting Algorithms
and Analysis of optical flow, concluding that the KCF algorithm
is suitable for CEUS imagery owing to its capacity to handle
significant noise and low contrast. Wang et al. (Wang et al., 2020)
developed a semi-automatic software that employs point-based
registration techniques to track ROIs in CEUS cine-loops. While
the software is user-friendly and efficient, its tracking efficacy
is limited due to its reliance on key-point detection algorithms
from MATLAB and its maximum frame limit of 400, which
impairs its ability to process collected CEUS videos in real medical
scenarios.

In real CAD scenarios, object tracking in CEUS videos is usually
to better serve other research on medical diagnosis, such as benign
and malignant classification and lesion segmentation. In many
cases, obtaining the precise bounding box of a lesion is essential
to discern its features. However, manual delineation in each frame
can be arduous and time-consuming for physicians.Therefore, some
researchers attempted to analyze only the optimal reference frames
or focus on a specific position in the video within a short interval
to extract image features (Seitz et al., 2010; Friedrich-Rust et al.,
2013; Huang et al., 2020b). Nevertheless, these simplifications are
inadequate to fully harness the underlying information present in
CEUS sequences.

With the rapid advancements in deep learning research,
significant progress has been made in target object tracking in
medical images such as B-mode ultrasound images, CT, MRI,
and so on. However, tracking the target object, such as a liver
lesion, in CEUS videos is different from traditional medical images
because the features of the target object will undergo significant
changes during the increase and dissipation of the UCA. This
mainly manifests in changes in brightness and contrast with the
background, as shown in Figure 1A. In most frames, the target
object’s features are extremely inconspicuous, and some other
tissues may even have features similar to those of the target
lesion in previous frames, leading to misrecognition, as shown
in Figure 1B. Furthermore, the lesion may experience short-term
irregular displacement within a frame sequence due to the patient’s
breathing or possible body movement. This can result in a large
area of instantaneous shadow appearing in some frames, affecting
the accuracy of traditional tracking algorithms, as illustrated in
Figure 1C. These characteristics significantly increase the difficulty
of long-term tracking and may even result in the misrecognition of
the location area with large offsets.

In this work, we proposed amodel based on the siamese network
to assist track FLLs in long-term CEUS videos better. The main
contributions of this work can be summarized as follows.

• We processed CEUS tracking tasks based on the idea of feature
matching, used the classic siamese network as the backbone of
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FIGURE 1
Examples of CEUS video frames (the target lesion is surrounding with the red solid line box) (A) Brightness of tumor region is increasing with the
contrast agent coming from upper to lower (B) Tissue in the red dotted line box is similar to the real tumor in two frames (C) From 25 s to 26 s large
area of shadow occurs in the video frames (from upper to lower).

the model, and mined the connotation of score map to provide
the necessary basis for improving the module.
• Based on the motion trend information provided by optical
flow, the Kalman filter method was used to model the focal
motion system. We designed temporal motion attention to
provide motion prior information to guide position prediction
and reduce the influence of abnormal conditions in the long
time tracking process.
• In view of the obvious changes in the features of lesions and
surrounding tissues during CEUS, we designed a template
updating mechanism for siamese network and updated
strategies for possible abnormal situations, so as to better
guarantee the effectiveness of template matching.

2 Methods

In this section, we describe the proposed framework in more
detail. We first introduce the pipeline of the whole framework, and
then present the three main modules. The whole model is shown in
Figure 2.

The whole framework is based on siamese-branch structure.
First, we train a siamese network on our collected CEUS images
which have been validated by experienced doctors to extract features
of the template and the search region in each frame. Then, for each
frame, the optic flow between current frame and the last frame is
calculated and modeled along with times to estimate the possible
location of the target FLL. With the prior knowledge, a region can
be cropped in current frame as the search region to put into the

trained siamese network. With the template, a response map can be
obtained for each frame, on which the maximum response region
is considered as the location of the target FLL. During the process
of the whole video, the template is updated online according to the
correlation score between the template and the best-matching region
in each frame. Finally, with the prior knowledge of position provided
bymotion estimationmodule and the constantly updated templates,
the matching task is accomplished well.

2.1 Siamese model

As previously stated, the overarching concept of object tracking
can be interpreted as a task of templatematching between sequential
frames. As for the location prediction, the model tackles it as
a feature cross-correlation between the reference template and
the candidate search regions. Moreover, to calculate the degree
of likeness between the template and the candidate region in
an iteration, a cost function is required, such as mean absolute
difference (MAD), mean squared error (MSE), or cross correlation.
This idea is exemplified by the remarkable achievements of siamese
networks.

To elaborate further, siamese networks comprise two branches.
The template branch is responsible for extracting the features of the
tracked object from labeled images, which can then guide the search
task in consecutive frames. The search branch, on the other hand, is
tasked with extracting the features of the target search area within
the current input image. The search area is typically a larger region
of the potential location of the target. With the embedded features
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FIGURE 2
Overview of the proposed model. There are mainly four modules (A) The siamese network extract the features from both the template and search
region in current frame, and then calculates the correlation between them (B) The temporal motion attention provides a prior knowledge about
possible location based on optical flow (C) The template is updated online to satisfy the comparison (D) The eventual predicted location is generated
by a head based on the integrated score map.

from each branch, a similarity score is computed using a correlation
function, resulting in a score map. Finally, the position of the target
is predicted by locating the best matching position in the score
map.

As a pioneer of siamese network, the SiamFC network is
primarily composed of two main branches, whereby an identical
CNN is applied to both branches. The CNN is responsible for
extracting representative embeddings in a common feature space
for each branch, which is trained offline and evaluated online.
The template branch takes the target region z in the initial frame
as input, while the search branch takes a more extensive search
area x in the current frame as input. A cross-correlation is then
conducted between the two branches to quantify the degree of
similarity.

s (z,x) = ϕ (z) ⋆ϕ (x) , (1)

Where ϕ(⋅) is the identical CNN. Since the search region is larger
than the template z, the output of this network is a score map
corresponding to the number of candidate regions within the search
region. The backbone of SiamFC is shown in Figure 3.

As mentioned earlier, training of SiamFC in was done in an
initial off-line phase using the dataset of annotated videos. We

selected a 5-layer full convolutional network for feature extraction,
with channel numbers of 16, 32, 64, 128 and 64 respectively, and
conducted training on the data set we collected. For details, please
refer to section 3.1 and 3.3.

2.2 Temporal motion attention

As previously mentioned, SiamFC does not make any
assumptions about object motion between consecutive frames.
Consequently, the candidate frame (i.e., the current frame) is
cropped using the previous target position as the center. It is
evident that this assumption of a stationary object is not accurate,
particularly for the US images, where there may be substantial
motion between consecutive frames. Consequently, before the
cropping phase, it is necessary to adjust the location of the target
object. Therefore, we consider and analyze the motion state of the
target to design the temporal motion attention, which provides a
priori guidance for target positioning.

Observing the CEUS videos obtained from actual scans, it
can be found that lesion tissues typically undergo only positional
translation. Therefore, we focus primarily on two aspects - the
target’s motion speed calculation and state transition. Considering
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FIGURE 3
Structure of SiamFC backbone network. The features from the two branches are eventually fed into a correlation based on a convolution layer to
generate the score map.

that CEUS images contain more light and shadow information
compared to traditional US images, we use optical flow to compute
the target’s movement direction, Then, we model the entire system
by Kalman filter, and eventually predict the displacement with the
temporal information. The whole pipeline is shown in Figure 4.

Let u(t) be the coordinates of the observable points in the image
at time t, and I (u(t), t) be the intensity of the points u(t). Since the
tracking target moves in a very small range in a short time, the
impact brought by the deformation and movement of the tissue is
very small, and it can be considered that the observable points in the
image are only displaced, while the intensity remains constant. After
a very short time δt, the measured intensity of the corresponding
pixels stays equal, that is, I (u(t+ δt), t+ δt) = I (u(t), t). Linearizing
the log-intensity function I of time using the first-order Taylor
approximation yields

I (u (t+ δt) , t+ δt) ≈ I (u (t) , t)) + ∂I
∂u

∂u
∂t

δt+ ∂I
∂t
δt. (2)

Hence, we can obtain the constraint for the intensity change

∂I
∂t
(u (t) , t) +∇I (u (t) , t) u̇ (t) = 0, (3)

Which associates the change in intensity over time with the spatial
change in intensity over the displacement of points. The term
∇I (u(t), t) is regarded as the optical flow at time t.

Furthermore, the change in intensity over a short time interval
Δt can be approximated as follows.

ΔI (u, t) = I (u, t+Δt) − I (u, t) ≈
∂I (u, t)

∂t
Δt. (4)

According to Eq. 3, 4 the intensity change can be rewritten as

ΔI (u, t) ≈ −∇I (u, t) u̇Δt, (5)

Which explains the intensity change ΔI generated by the flow
displacement of points with u̇ along the intensity gradient ∇I (u, t)
in the time interval Δt.

Therefore, in turn, by calculating the optical flow information
and intensity changes of the image, the displacement of points can be
obtained. In order to calculate the optical flow, Lucas–Kanade (LK)
algorithm is applied.

The LK optical flow method is an efficient algorithm to
calculate the optical flow between two consecutive frames. In
a real continuous tracking scene, the distance of observation
points moving between adjacent frames is small. According to the
assumption of spatial coherence of optical flow, the neighboring
observation points in the image have similar motion behavior in the
local range. Therefore, the velocity value of the central pixel can be
calculated based on the surrounding pixels. A set of equations can
be established based on Eq. 5 to describe the points pi (i = 1,… ,n)
belonging to a observation window in the 2D ultrasound image

[[[[[[[

[

Ix (p1) Iy (p1)

Ix (p2) Iy (p2)

⋮ ⋮

Ix (pn) Iy (pn)

]]]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
U

[

[

ux
uy
]

]
=

[[[[[[[

[

−It (p1)

−It (p2)

⋮

−It (pn)

]]]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
V

, (6)

which explains that the optical flow of this observation window can
be obtained by observing and tracking some selected neighboring
points in the window. Applying the least squares method, the above
equation can be solved

[

[

ux
uy
]

]
= (U⊤U)−1 (U⊤V) . (7)

The LK algorithm is also referred as the local flow estimation,
which only focuses the local movement and can avoid the global
error propagation. In real practice, each frame is divided in small
patches to satisfy the assumptions of the same brightness and
smoothness. By solving a system of linear equations based on the
constant intensity model, the velocity vector of each pixel in the
image grid can be calculated.

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2023.1180713
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Tian et al. 10.3389/fphys.2023.1180713

FIGURE 4
Temporal motion attention generated by optical flow and Kalman filter modeling.

In theory, the trajectory of a rigid body’s motion in a short
period of time can be viewed as a smooth curve, often exhibiting
regular back-and-forth movement due to the patient’s breathing.
However, in actual clinical scenarios, the motion trajectory of the
target may experience some jitter due to the physician’s unstable
scanning technique, especially when encountering shadows, similar
backgrounds, or other interferences, which may cause tracking
failures. To address this issue, we model the entire measurement
systemusing aKalmanfiltermethod, which incorporates themotion
direction information provided by optical flow to correct and predict
the target displacement.

Let us denote x(t) = [u(t),v(t)]⊤ as the state of the target tracking
area, where u(t) = [ax(t),ay(t)]

⊤ and v(t) = [vx(t),vy(t)]
⊤ are the

position and velocity of particle at time t, respectively. Considering
the actual displacement as a linear system with Gaussian noise, the
state model of the target can be expressed as

x (t) = At−1x (t− 1) +ωt−1, (8)

Where At−1 is the state transition from x(t− 1) to x(t), and
ωt−1 ∈ N (0,Q) is the process noise with the covarianceQ.

For every detection measurement of x(t), the obtained state is

z (t) =Htx (t) + σt, (9)

Where Ht is the measurement transition from true state to the
measured state, and σt ∈ N (0,R) is the measurement noise with the
covariance R.

After the initial state estimation, let the covarianceP−t denote as a
noise distribution tomeasure the reliability of the Kalman filter final
state estimation. The parameter should be updated by covariance at
time t− 1

P−t = At−1P̂t−1A⊤t−1 +Q (10)

Next, the Kalman gain Kt at time t is calculated based on the
covariance of the prediction results and the uncertainty R of the
observation process as follows:

Kt = P−t H
⊤
t (HtP−t H

⊤
t +R)

−1 (11)

After obtaining the Kalman gainKt at time t, the estimated state
is updated as

x̂ (t) = x̂ (t− 1) +Kt (z (t) −Htx̂− (t)) (12)

Finally, the noise distribution of the estimation is updated

P̂t = (I−KtHt)P−t (13)

By using Kalman filter to model the measurement process of the
system, the predicted system state, namely, the displacement and
motion state of the focus, can be obtained. Based on this, we use
Gaussian probability model to model around the predicted location

AttM = exp−
d2i
2σ2

(14)

Where di = ‖li − lc‖2 represents the moving distance between the
location of point pi and the location of the predicted location pc
in the current frame. σ is the standard deviation of the moving
distance of the objects in 10 frames before the current frame. Take
the facts into account, we limit σ between 3 and 9, forwhich too small
variance will cause the judging strategy of the object movement to
be very conservative, while too large variance will make the judging
strategy invalid. In addition, we set the probability threshold to 1e-4,
and probabilities lower than the threshold are deemed invalid.

The application of this mechanism can adaptively limit
and correct the object position of current frame according to
object’s movement state in current time, solving the problem of
misrecognition and permanent object loss.

2.3 Online adaptive template update

SiamFC is a tracking model based on the idea of similar
matching, which can predict the movement of the target by looking
for the position that is most similar to the template feature in the
candidate region of searching branch. Therefore, the tracking effect
of this network depends heavily on the validity of the template. If
the template features do not reflect the tracking target effectively, the
matching will be invalid, resulting in the loss of the target. In the

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2023.1180713
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Tian et al. 10.3389/fphys.2023.1180713

process of CEUS, the filling and fading of contrast agent will make
tissues and organs show dynamic process of light and dark changes
with the assistance of imaging technology. Therefore, if the image
marked in the first frame is always used as a template, it will not be
able to represent the target that changes in light and shade later.This
challenges the tracking model. Therefore, to solve this problem, we
design a template adaptive update mechanism to constantly update
the image of the template branch.

The conventional template linear update approach employs
fixed update weights to update the weights. Despite its limitations,
this strategy has been the norm for online updating due to its
acceptable results (Zhang et al., 2019). However, evidently, this
approach continuously weakens the influence of the true target
features in the first frame, potentially leading to severe template
pollution issues in subsequent frames and causing the tracking
performance to deteriorate over time. This issue is particularly
pronounced in long-duration video object tracking scenarios. In
accordance with the mechanism proposed above, we have made a
simple improvement to the conventional template online updating
approach.

Considering that the purpose of template updating is to
better guide the matching, we set a coefficient γ related to the
similarity between the two feature maps as the weight of the linear
superposition of features

T̂ = (1− γ) T̂ − + γZi−1, (15)

where T̂ − is the previous template, and Zi represents the template
generated from the ith frame. γ is a evaluation criteria for the
similarity between the template and the current frame. It depends on
the intensity of the pixels in the images. As for the diagnosis using
CEUS videos, a curve measuring intensity along time, called TIC, is
often used as a crucial criteria. γ is the growth rate of image intensity
in the two region, which is adaptive to individual videos according
to the TIC.

Another important issue with template updates is determining
whether the update operation needs to be triggered. In general,
we chose to update the template every 5 frames, considering that
the actual videos usually have an FPS of 15. At the same time, we
have developed strategies to deal with abnormal situations that often
occur during the long tracking process.

Due to the complexity of the actual collection, the quality of
the collected video is mixed. Therefore, before the experimental
test, we fully considered several common situations and carried out
targeted detection processing, in order to expect that the proposed
model can be better applied in the actual diagnosis scenario. Invalid
frames produced for short periods of darkness can contaminate the
original feature if template updates are also performed. Therefore,
in view of this situation, we recorded the intensity of the moving
area of the lesion in the image during the tracking process, like the
TIC recording process. When the overall intensity was lower than
the threshold η, abnormal conditions were indicated, and tracking
and template updating were not carried out at this time. After
the intensity rise image was recovered, the location of the lesion
was repositioned according to the previously calculated motion
information.

Through this simple improvement, we can continuously absorb
key useful features, and reduce the pollution of ineffective features.

3 Experiments

3.1 Datasets

To examine the proposed model, we obtained 33 CEUS videos
with a total of 37,549 frames from our partner medical institutions.
All the videos were collected under the recommendations of
the CEUS parameters from related manufacturers as a reference.
Under the guidance of the standard protocol (Dietrich et al., 2020),
CEUS examines were performed by a convex probe and a dual
screen format with low-mechanical index, after a bolus injection of
2.0–2.4 mL of SonoVue (Bracco SpA,Milan, Italy) in the antecubital
vein and a following flush by a 5-mL saline. From the time the
bubble first appeared until 120 s after injection, the CEUS cine
loops were constantly captured. Once the microbubbles had cleared
entirely from the index lesion, the lesion was sporadically scanned
and filmed in 5-s cine loops every 30 s for 5 min. All imaging data
was stored in DICOM format. All the images are 800× 600 and then
cropped out the CEUS area according to the coordinate labels in
DICOM raw file.

All videos were annotated by medical professionals. During
labeling, the first frame was taken as the moment when the lesion
site first appeared in the visual field. After that, the location of the
lesion was marked every 10 frames, amd finally a total of 3,524
annotated frames were obtained. In addition, to meet the model
training requirements, we used data from an additional 875 cases,
each containing 7CEUS images (3 frames inAP, 2 frames in PVP and
2 frames inDP)with annotated information.All datawere annotated
and checked by two or more physicians.

3.2 Evaluation metrics

To comprehensively evaluate the proposed network
segmentation performance, we use three different evaluation
metrics, namely, TE, RMSE, IoU and FPS. TE and RMSE measure
location accuracy and tracking robustness from both horizontal
and longitudinal perspectives. IoU evaluates accuracy from the
perspective of actual tracking effect. FPS measures how efficiently a
model is executed.

TE. Given the ground-truth annotations pj and tracked outputs
p̂j, the tracking error for a given target i is calculated as

TE(i)j (t) = ‖pj − p̂j‖ , (16)

where ‖ ⋅ ‖ represents the Euclidean distance between the estimated
landmark position pi and its ground-truth annotation p̂i.

RMSE. In order to comprehensively evaluate the overall
deviation, we calculate the average RMSE between the centroid of
the predicted bounding box and that of the ground-truth.TheRMSE
is calculated both in the lateral and the axial directions as well. For
the ith video, the RMSE along the direction k is calculated as

RMSE(i)k = √
1

M(i)
∑
M(i)
(p̂k;j − pk;j)

2, (17)

Where M(i) is the total number of labelled frames in video i. p̂k;j
represents the predicted horizontal or vertical coordinates in the jth
frame, and pk;j is the groundtruth label.
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TABLE 1 Quantitative comparison of different generic methods andmodels.
Themethods contains the related work and other classical models.

Methods mIoU (%) TE RMSE FPS

Wang et al. (2020) 69.57 26.7 110.4 4.35 ± 1.41

CSK 55.89 45.3 136.2 32.67 ± 2.48

KCF 81.44 24.6 53.8 30.51 ± 8.43

DSST 80.36 22.1 49.5 17.51 ± 4.26

SiamFC 71.63 21.2 67.5 19.42 ± 3.81

SiamRPN 72.34 19.8 70.4 13.23 ± 2.17

Ours 86.43 19.2 27.6 8.36 ± 3.23

IoU.While TE and RMSE are important for localization, larger
values of IoU are desirable for accurately enclosing the carotid
artery. IOU is defined as the intersection between the predicted and
ground-truth bounding boxes. We calculate the mean IOU of each
video and get the average mIoU as the metric for the accuracy of
bounding box. The IoU for the ith video is formulated as

IoU(i) = 1
M(i)
∑
M(i)

Ĝj ∩Gj

Ĝj ∪Gj
, (18)

Where Ĝj is the predicted bounding box in the jth frame, and Gj is
the groundtruth.

FPS. Another important evaluation metric on whether the
model can really be applied to real-world scenarios is the processing
speed. So, we record the processing time and calculate average FPS,
and then compare it with the original frame rate of each video. In this
way we can test whether the model processing can deal with online
tasks.

3.3 Implementation details

In terms of the siamese network, the model was implemented
with pytorch and was trained and tested on a server using one
single TITAN RTX GPU on Ubuntu 20.04.2 LTS platform.We use a
SGD optimizer with 0.9 of momentum and 5e-4 of weight decay for
training. Based on initial empirical tests, we employed a batch size of
8 video clips, a learning rate of 1e-7, and trained for 200 epochs with
the Adam optimizer. We explored the collected videos and selected
0.7 as the coefficient of the template module to update the template
continuously.

3.4 Comparative study

We compared our results with existing generic methods. Since
there are few related works about lesion tracking in CEUS videos,
we compared our proposed framework with some classical models
commonly used in other medical images. CSK (Henriques et al.,
2012), KCF (Henriques et al., 2014) and DSST (Danelljan et al.,
2016) are the classical correlation filter algorithms. SiamFC
(Bertinetto et al., 2016) and SiamRPN (Li et al., 2018) are the most
popular siamese networks nowadays. All models were replicated

in the comparison experiments section using the official code. To
ensure fair comparisons among the models, no pretraining weights
were employed for any of them.

As shown in Table 1, our model produced the mIoU of 86.43%,
higher than the results of other methods. The smallest TE of 19.2
pixels and RMSE of 27.6 demonstrates that the trajectory predicted
by our framework is smoother which exactly corresponds to the
generally regular movement of the FLLs. Although the FPS of the
model has decreased due to the introduction of additional modules,
it can basically meet the practical auxiliary medical applications.

Figure 5 shows the tracking results of our model and other
models. We can see that at the beginning of the tracking stage, the
background has not been filled with contrast agent, so the focus
and background are clearly distinguished, and the tracking effect
of most models is good. However, as the background gradually
brightened, the feature difference between the lesion and the
background became smaller and smaller, and the detection-based
tracking method SiamFC could no longer accurately find the target.
After the transient loss of the target, the KCF algorithm, which is
strictly based on the previous frame, presents the prediction frame
drift problem, which is due to the pollution of the target features
caused by forced matching. Due to the use of temporal motor
attention, our model models the movement trend of the focus, so
that when target loss occurs, the original target can be found to a
certain extent under the guidance of attention.

3.5 Ablation experiments

To illustrate that the core modules in the proposed network
are effective, we conduct ablation experiments of the proposed
framework on our dataset. As shown in Table 2, we drop the
proposed two additional modules respectively in the proposed
network and measure the tracking metric of the remaining model.

Table 2 demonstrates that the proposed model has the greatest
impact on network performance due to the two designed modules.
The TMA module captures the motion law of the lesion area and
provides the location prediction probability, which provides another
mode prior knowledge guidance for the selection of the search area.
Thus, the whole motion pattern is smoother and more in line with
the actual situation, so that the RMSE decreases. The TU module
constantly updates the template to ensure that the template features
are as close as possible to the features of the focal area in the current
frame, thus maintaining the premise assumption of the tracking
model to a certain extent, as a result the tracking error decreases.

To further demonstrate the effectiveness of temporal motor
attention, we recorded the movement trajectories of focal centers.
Figure 6 represents an example of tracking a landmark in a randomly
chosen image sequence from the dataset. The two graphs represent
the displacement of the landmark along with lateral and axial
directions, respectively, for a set of consecutive frames. Landmark
locations obtained by our framework, ground truth, and the no
tracking methods are plotted. For better visualization of the regular
movement, we also display a set of images with annotations for the
landmark location obtained by the ground truth, our framework,
and no tracking methods. The locations corresponding to the
annotations in these images are also plotted in the two graphs.
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FIGURE 5
Visualization of segmentation results for different models.

TABLE 2 The ablation experiments of the proposedmodel. Thesemainly
includes the experiments of the temporal motion attention (TMA)module
and the template update (TU) module.

Methods mIoU (%) TE RMSE FPS

SiamFC 71.63 21.2 67.5 19.42 ± 3.81

SiamFC + TMA 80.47 20.2 35.9 10.15 ± 2.31

SiamFC + TU 81.61 19.6 54.7 17.58 ± 2.71

Ours 86.43 19.2 27.6 8.36 ± 3.23

4 Discussion

In this paper, two modules are designed on the basis of siamese
network, so that the tracker can maintain good tracking effect in the
complex scene of CEUS videos to some extent. Temporal motion
attention uses optical flow information to predict the displacement
by calculating the movement trend of the target, and uses Kalman
simulation to measure the motion state of the target in the presence
of noise, hoping to better fit the real scene. Attention provides
priori information for the location of the lesion and guides the
determination of the target location in the score map. In the
process of CEUS treatment, the characteristics of the lesion and its
surrounding tissues showed obvious characteristic changes with the
filling and fading of contrast agent. Considering this feature of CEUS
video, we designed a template adaptive update mechanism, which
updates the template features gradually with the help of score map
reflecting thematching situation. It turns out that template updating
mechanism is very necessary for CEUS video analysis.

According to the experiment results, the proposedmodules have
provided a solution to solve thementioned problems in Figure 1.The
images of changing intensity are fed into the model and extracted
the target area as the template continuously.The TUmodule ensures
the validity of matching between template and the current frame.
The TMA module provides a prior instruction to locate the target
and narrow the search area. Therefore, the identification of similar
targets and the target disappearance due to shadows existence can be

solved. These modules enhance the method to select the candidate
search region.

In our initial study, we tried the classical siamese architecture
model in the field of target tracking, but eventually found that the
siamese family of methods was not as effective as the KCF algorithm
(as shown in Table 1). The KCF algorithm searches each frame
based on the position of the target in the previous frame, while
the basic siamese model is based on the initial template, which
makes it difficult to accurately match the target position when the
target brightness and color are constantly changing. This makes it
difficult to match the target position accurately when the target
brightness and color are changing. However, due to this feature of
KCF algorithm, in the case of short-time darkness, the correct target
features will be lost due to the forced matching, and finally the
target will be lost. Therefore, this paper adds two modules to the
SiamFC network in order to better integrate the advantages of the
two methods.

As for the RPN-based siamese models, we think the bad
performance mainly attributes to the following two reasons. First,
the RPN module is a universal target detection structure based on
the idea of classification. Thus, the generated candidate anchors
themselves may be inaccurate, and as a result, the best candidate
frames after selection are definitely not accurate enough. In addition,
during the detection of each frame, the RPN module performs
generally independently, which can handle rapid changes for
traditional images. But for CEUS videos, where the shape of the
FLL changes little and the position moves regularly, it cannot give
full play to its advantages, and instead, due to the independence
of each frame detection, the mutual reference information is lost.
Consequently, the location of the all predicted bounding boxes
moves not smoothly.

At present, our model mainly deals with the three main
abnormal situations observed, adds the template updating
mechanism for the feature changes to ensure the establishment
of the tracking hypothesis, and introduces the motion information
of the target to guide the disappearance of the target. In view of
the lack of attention in the current research on this issue, the
model we proposed is also a preliminary attempt at present, and
there are still many problems that need to be improved in the
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FIGURE 6
An example showing the reciprocating motion of the lesion. The actual numerical statistics can prove the hypothesis of the temporal motor attention
model, and further verify the validity of the model.

future. For example, in the portal pulse stage, the lesion area is
too similar to the background, which is difficult to effectively locate.
Because the quality of the collected video cannot be guaranteed, it is
recommended to evaluate the quality of the video in advance before
the actual application. As we all know, applying a designed model
to a real world scenario requires sufficient robustness of the model,
and this part needs to be further improved.

5 Conclusion

In this article, we addressed two major limitations of the
siamese architecture-based object tracker on CEUS videos. By

introducing the template update module, we resolved the constant
position model issue and improved the robustness of SiamFC
against deforming landmarks. We mined the motion law of the
focus, aiming at the difficulty of location in the multi-similar
background, modeled the motion state of the focus using Kalman
filter method based on the optical flow information, and finally
introduced the time sequencemotion attention to guide the location
prediction. Our proposed model achieved an overall mean IoU of
86.43% that is comparable to other baseline methods. The whole
framework also provided promising results against synthetically
induced occlusions demonstrating the potential for accurate and
robust landmark tracking. For our future work, we intend to
improve the detection module of the siamese network. Using region
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proposals along with siamese architecture and combining it with the
two modules introduced in this article could significantly improve
tracking accuracy. In addition, we also intend to develop nonlinear
motion models tailored to the needs of specific FLL motion.
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