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The phenotyping of Pinus massoniana seedlings is essential for breeding,

vegetation protection, resource investigation, and so on. Few reports regarding

estimating phenotypic parameters accurately in the seeding stage of Pinus

massoniana plants using 3D point clouds exist. In this study, seedlings with

heights of approximately 15-30 cm were taken as the research object, and an

improved approach was proposed to automatically calculate five key parameters.

The key procedure of our proposed method includes point cloud preprocessing,

stem and leaf segmentation, and morphological trait extraction steps. In the

skeletonization step, the cloud points were sliced in vertical and horizontal

directions, gray value clustering was performed, the centroid of the slice was

regarded as the skeleton point, and the alternative skeleton point of the main

stem was determined by the DAG single source shortest path algorithm. Then,

the skeleton points of the canopy in the alternative skeleton point were removed,

and the skeleton point of the main stem was obtained. Last, the main stem

skeleton point after linear interpolation was restored, while stem and leaf

segmentation was achieved. Because of the leaf morphological characteristics

of Pinus massoniana, its leaves are large and dense. Even using a high-precision

industrial digital readout, it is impossible to obtain a 3D model of Pinus

massoniana leaves. In this study, an improved algorithm based on density and

projection is proposed to estimate the relevant parameters of Pinus massoniana

leaves. Finally, five important phenotypic parameters, namely plant height, stem

diameter, main stem length, regional leaf length, and total leaf number, are

obtained from the skeleton and the point cloud after separation and

reconstruction. The experimental results showed that there was a high

correlation between the actual value from manual measurement and the

predicted value from the algorithm output. The accuracies of the main stem

diameter, main stem length, and leaf length were 93.5%, 95.7%, and 83.8%,

respectively, which meet the requirements of real applications.
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Introduction

Pinus massoniana is the main timber tree species in southern

China; its roots are rich in resin and can be used for flavor synthesis,

which is widely used in the construction, papermaking, and

artificial fiber industries. After the standardized cultivation of

Pinus massoniana seedlings, the obtained adult plants provide

high economic benefits. Pinus massoniana is one of the main tree

species for afforestation in barren hills in China, and its wood is also

used to make furniture and landscape decorations. At present, one

of the most important problems in ecology is the local-scale

coexistence mechanism driving plants of the same genus

(Silvertown, 2004). By researching the phenotypic parameters of

Pinus massoniana, the coexistence mechanism can be investigated,

which is significant in ecological research. Simultaneously, the

phenotypic morphology of Pinus massoniana seedlings can be

used to predict the future growth of plants by selecting healthy

seeds for cultivation. However, manually measuring phenotypic

parameters is time-consuming and laborious and errors can easily

occur. Three-dimensional (3D) plant models and automatic

phenotypic algorithms provide an efficient and convenient

method for plant structural digitization. Therefore, developing an

automated method to obtain plant phenotypic parameters from 3D

plant models greatly improves measurement efficiency.

In phenotypic applications, two-dimensional (2D) images or

3D point clouds are widely used to characterize the individual

morphology of plants (Vázquez-Arellano et al., 2016). 2D images

have been widely used in phenotypic analysis; however, due to the

limitation of dimensions, 2D images cannot accurately include

plant information as well as 3D data (Kaminuma et al., 2004;

Gibbs et al., 2018). In particular, phenotype measurements of the

leaf area, stem diameter, stem volume, and other parameters require

3D information on plants to obtain more accurate results. Usually,

there are two methods of obtaining the 3D phenotypic data of

plants. One method is to reconstruct 3D models by synthesizing

multi-view 2D images (Park, 2005), and this method has been

successfully applied to the 3D reconstruction of wheat and paddies

(Pound et al., 2014). However, the limitation of this method is that

the 3D reconstruction of the plant surface lacks information from

texture and light changes (de Moraes Frasson and Krajewski, 2010).

Another approach is to obtain the 3D modeling of plant phenotypes

directly from 3D-based sensors, such as lidar, 3D laser scanners,

time-of-flight (ToF) cameras, and structured light cameras. These

devices have the advantages of high precision, high signal update,

and strong robustness. Applications of lidar include extracting plant

skeletons from images captured by lidar scanners to estimate the

leaf length, leaf inclination, leaf tip length, leaf azimuth (Jimenez-

Berni et al., 2018; Wu et al., 2019), leaf area index (LAI) (Zhao and

Popescu, 2009), and stand volume (Dziubich et al., 2016). Laser

scanners are used to estimate the leaf area, leaf angle, chlorophyll

content (Eitel et al., 2010), plant height, leaf width, and main stem

volume (Paulus et al., 2014), while the ToF camera is used to

evaluate plant traits (Xiang et al., 2019) and classify crops (Li and

Tang, 2018). Some research groups have reported that structured
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light cameras are also a useful tool to extract plant phenotypic data

(Nguyen et al., 2015) and predict farm crop growth conditions

(Rosell-Polo et al., 2015).

According to the actual environment and the phenotypic

features of plants and compared with the 3D images of plants

obtained by cameras based on different principles, it was found that

the 3D images obtained by ToF cameras were more suitable for our

study. The Microsoft Azure Kinect camera, which has high color

and depth resolution and performs well in displaying 3D images of

Pinus massoniana in plant phenotype applications, is a common

camera that is based on the ToF principle. Teng et al. (2021)

developed a 3D image acquisition system for oilseed rape plants

using an Azure Kinect camera. This system collected point cloud

images from six angles and obtained complete point cloud images of

plants by rotating the registration. Combined with this system and

the hardware facilities of the experimental environment, a set of

similar image acquisition devices that obtain three-dimensional

images of different plants through non-destructive methods

was built.

In agricultural and forestry applications, such as plant biomass

analysis, some phenotypic parameters, such as plant height, stem

diameter, and leaf length, are important indicators for evaluating

plant health, growth status, and effective photosynthesis ability.

Because of the morphological characteristics of Pinus massoniana,

its leaves grow along the main stem. To obtain the phenotypic

parameters of leaves and stems, separation is very important in the

whole extraction process. Some algorithms, such as the locally convex

connected patches (LCCP) algorithm (Hu et al., 2020), random

sample consensus (RANSAC) cylinder fitting algorithm (Fischler

and Bolles, 1981), color-based region growth segmentation

algorithm (Tang, 2010), curvature-based region growth

segmentation algorithm (Besl and Jain, 1988), and skeletonization-

based methods, are widely used in leaf and stem segmentation. Wang

et al (2020). used the LCCP algorithm to segment the registered

vegetable seedlings and then calculated the length, width, and surface

area of segmented leaves. However, the limitation of this method is

that some leaves cannot be separated from the main stem and require

manual segmentation. Another segmentation method is to use

RANSAC to fit the cylinder as the main stem of plants

(Ghahremani et al., 2021). This method has a good effect on direct-

stem plants; however, the main stem of Pinus massoniana is bent, and

part of the main stem can be extracted by this method. This method

also needs to manually set the RANSAC searching radius without

knowing any main stem information, which is still difficult to

perform. The application of curvature-based region growing

segmentation is to calculate the curvature of the leaf and stem and

set a threshold to separate the leaf and stem (Lin et al., 2016). This

method will set different thresholds for different individuals of the

same plant; thus, this method cannot be universally used. Regarding

skeletonization, recent developments adopt slice clustering as the

skeleton points of a plant. Then, a Hough plane (Dalitz et al., 2017) is

searched according to the skeleton points, and the distance threshold

to the Hough plane is used to find the main stem (Xiang et al., 2019).

Another application of skeletons is to use the Laplace transform (Cao
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et al., 2010) to shrink the point cloud of plants to obtain the skeleton

graph (Wu et al., 2019). There are also some novel algorithms, such as

the raindrop algorithm, that also achieve leaf and stem separation

(Zermas et al., 2020). All the above algorithms provide a reference for

the phenotypic analysis of Pinus massoniana seedlings.

Since they have a special morphological structure, Pinus

massoniana has significant structural differences from traditional

woody plants. At present, most of the phenotypic measurements of

Pinus massoniana and plants with similar structures can be made

through manual estimation. In a small number of papers, the plant

height, ground diameter, and crown width parameters are simply

estimated using depth cameras. However, the XOY plane is used in

these papers as the projection plane to calculate the stem diameter.

Because the near soil part of the stem of Pinus massoniana is not

parallel to the soil plane, selecting the XOY plane as the projection

plane will cause a position shift of the stem on the plane and

ultimately cause the low accuracy of the ground diameter, with a

value of approximately 75%. Moreover, no research on the other

phenotypic parameters of the leaves has been conducted in these

studies. Therefore, in our research, we aim to find a more accurate

method to predict these parameters and improve the prediction

performance. Moreover, effectively estimating the leaf length and

leaf number is proposed in our study.

In this study, based on the idea of the skeletonization of slice

clustering, slices in the horizontal direction were added, and slices

with skeleton points of the main stem were selected with grayscale

values. Combining the idea of the projection method, the regional

leaf length and leaf number of Pinus massoniana seedlings were

estimated. Finally, an automated method for obtaining plant

phenotypic parameters from the 3D models of plants is proposed.

The overall objective of this study is to automatically extract

phenotypic parameters of Pinus massoniana seedlings through 3D

point cloud analysis. The specific objectives are (1) to reconstruct a

3D point cloud model of plants; (2) to develop a set of processing

flows to analyze the structural characteristics of plants; and (3) to

automatically extract phenotypic parameters, including plant

height, stem diameter, main stem length, leaf number, and

regional leaf length.
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Materials

A set of non-destructive 3D image collection devices, including

an Azure Kinect camera, precision rotary table, bracket, black curtain,

and computer, was obtained and assembled by our research group.

The configuration of the computer was Intel CPU E5-2670/16G/1TB/

Quadro K2000 4G DDR4, the operating system was Windows 10

Professional, and the required software was Microsoft Visual Studio

2017, OpenCV4.5.3, and PCL1.8.1. The Aruze Kinect camera

integrated a color camera of 4096×3072 pixels, a depth camera of

1024×1024 pixels, and an infrared camera of 1024×1024 pixels, and it

was based on the principle of ToF (L. J. T. w. p. Li, 2014). The point

cloud collection device is shown in Figure 1. The camera position was

fixed, and the Pinus massoniana seedlings were placed on the

turntable, while the camera height was set to 0.5 meters, and the

camera angle at the bracket was adjusted to 20 degrees down to the

horizontal plane. The distance between the camera and the plant was

approximately 0.4-0.5 meters. The whole plant was in the center of

the camera vision view, and appropriate adjustments were made

artificially according to different plants. The distance between the

turntable and the curtain was 1.2-1.5 meters, and the back shadow of

the plant was within the scope of the black curtain to reduce other

background interference. The point cloud image was acquired every

180 degrees, and two point clouds were obtained for one plant by

registration. The whole acquisition was completed by the self-

developed program based on the software development kit (SDK)

of the camera.
Methods

The pipeline for phenotypic parameter acquisition involved

three main steps, namely, (1) point cloud preprocessing, (2) stem

and leaf segmentation, and (3) morphological trait extraction.

Among them, the point cloud preprocessing step used pass-

through filtering, RANSAC fitting plane and removal, radius

filtering method to remove the background, experimental

platform, and flowerpots. Then, the improved iterative closest
FIGURE 1

Nondestructive 3D image acquisition setup. (A) Curtain. (B) Plant placement. (C) Experimental platform. (D) Rotary table. (E) Yunteng691 bracket. (F)
Aruze Kinect camera. (G) Computer.
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point (ICP) algorithm based on feature point consistency was

proposed to register the point cloud images of two angles, and

complete plant point cloud images were obtained. In the stem and

leaf segmentation step, the slices in the vertical direction and

horizontal direction were sliced, and the skeleton points were

extracted by clustering each slice. Then, the alternative skeleton

points of the main stem were extracted by the directed acyclic graph

(DAG) longest path algorithm, and the canopy length was

estimated by local plane projection and convex hull fitting. The

skeleton points of the canopy contained in the alternative skeleton

points of the main stem were removed according to the canopy

length, and the remaining skeleton points were regarded as points at

the main stem. Finally, the skeleton points of the main stem were

interpolated, and the point cloud of the main stem was obtained by

k-nearest search to perform stem and leaf separation. In the

morphological evaluation step, five phenotypic parameters (plant

height, stem diameter, main stem length, regional leaf length, and

leaf number) were estimated from the point cloud after stem and

leaf separation. Our research used the Point Cloud Library (Rusu

and Cousins, 2011) and OpenCV Library (Bradski and Kaehler,

2008) to implement these steps in our program.
Point cloud preprocessing

The pipeline presented involved six steps, namely, (1) 3D point

cloud generation, (2) background removal, (3) experimental

platform removal, (4) discrete point removal, (5) soil and

flowerpot removal, and (6) registration. In the first process, the

depth image obtained by the image acquisition device was

converted into 3D point cloud data. In the second step, the

background curtain was removed by pass-through filtering. The

third step extracted and removed the experimental platform by the

RANSAC fitting plane. The fourth stage used the radius filter

method to remove the discrete points in the image. The fifth

stage removed the soil and the parts below the soil. Finally, the

point clouds processed in the first five stages were registered by the

improved ICP algorithm.

3D point cloud generation
The image acquisition device obtained the depth image of the

plant. For further analysis and study, the depth image was

transformed into 3D point cloud data according to Equations (1)

to (3) through coordinate axis transformation.

Y   =   d (1)

X   =  Z(x − cx)=fx (2)

Z   =  Z(y   −   cy)=fy (3)

where x and y represent the 2D coordinates provided by the

depth image according to the camera coordinate system, d

represents the depth value information directly provided by the

depth image, cx and cy represent the coordinates on the X-axis and

Y-axis of the lens aperture center, respectively, and fx and fy are the
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focal lengths on the X-axis and Y-axis of the camera, respectively.

The three-dimensional coordinates (X,  Y ,  Z) of the corresponding

cloud points could be obtained by combining the above formula, the

X-axis represents the horizontal information of the point cloud, the

Z-axis represents the height information of the point cloud, the Y-

axis represents the depth information of the point cloud. The real

image of the plant is shown in Figure 2A, and the depth image of the

plant is shown in Figure 2B. The point cloud image of the plant is

shown in Figure 2C.

Background removal
The main object was the plant, but the point cloud data

generated contained some background objects, such as

background curtains, loading platforms, and flowerpots. These

background objects were not the targets to be measured and

interfered with the point cloud analysis of subsequent plants. The

background was removed by pass-through filtering. The upper and

lower boundaries of the pass-through filtering were obtained using

Equations (4) and (5):

PTlb     =  maxPt : z (4)

PTub     =   (dcc  −   dcp)=dcc ∗maxPt : z (5)

where PTlb  and PTub  represent the near-far boundary in the

depth direction of the direct filtering, as well as the distance between

the lens to the curtain and the distance between the loading

platform to the curtain, respectively. dcc represents the distance

between the camera and the experimental curtain, dcp represents the

distance between the camera and the plant, andmaxPt : z represents

the maximum value of the depth direction of all points in the point

cloud. Hence, PTlb  and PTub  were two boundaries, and the point

clouds outside of the boundaries were removed. Data obtained from

the above two formulas were used as the input parameters to

perform direct filtering to remove the background. The

background removed point cloud image is shown in Figure 2D.

Experimental platform removal
The loading platform, which is considered an irrelevant

variable, had no effect on the measurement process and interfered

with the point cloud analysis of subsequent plants. The point cloud

of the experimental platform was detected by RANSAC plane fitting

(Fischler and Bolles, 1981). The experimental platform removed

point cloud was obtained by subtracting the background removed

point cloud from the experimental platform point cloud. The

experimental platform removed point cloud image is shown

in Figure 2E.

Discrete point removal
Due to the limitations of the camera accuracy and the RANSAC

plane fitting algorithm, the point cloud without the background and

loading platform objects contained some sparse noise points, which

had low point density. A radius-based outlier filter was used to

remove these discrete noise points. The setting parameters of the

radius filter were a custom search radius r and the number of

adjacent points k in the search radius r. If the number of points in
frontiersin.org
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the search radius was less than the specified value k, the point was

removed as a noise point (Dziubich et al., 2016). In this study, r   =

  0:01m and K   =   10 were tested to effectively reduce the number of

noise points without damaging the original point cloud image

structure. The point cloud after removing discrete points by

radius filtering is shown in Figure 2F.

Soil and flowerpot removal
In the next registration step, the method of feature point

consistency was used; however, the flowerpots interfered with the

registration step, and it was necessary to remove the soil of the plant

and the flowerpots below the soil. The height of the flowerpots was

fixed at 0.12 m in our experiment, and 0.07 m to 0.12 m above the

experimental platform was selected as the soil area for pass-through

filtering. The points above the soil, which are regarded as the point

cloud area after the soil and flowerpot were removed, were the

inputs of the registration step, as shown in Figure 2G.

Registration
This step registered point clouds collected from two angles after

the preprocessing step. The registration step processed coarse

registration first and then fine registration. Two preprocessed
Frontiers in Plant Science 05
point clouds, the source point cloud, and the target point cloud,

were the input of the registration step. In the coarse registration

process, the KD-tree search method was used to find k adjacent

points at a point in the point cloud, and the k points were fitted to

the minimum quadratic plane, where the k value was set to 10.

Principal component analysis (PCA) (Feng et al., 2014) was applied

to the cloud points of the quadratic plane, and the normal vector

corresponding to the nonzero minimum eigenvalue was considered

the local normal vector. The above steps were looped until all points

of the source and target point clouds were traversed. After the

normal vectors of all points were obtained, the angle of normal

vectors between the self-point and its adjacent points was

calculated, and the mean value of these angles was obtained at the

same time. The appropriate angle mean threshold was set, and if the

angle mean was greater than the threshold, the point was used as the

feature point in the source point cloud and the target point cloud.

The fast point feature histogram (FPFH) descriptors of the feature

point cloud were calculated, and the coarse registration of the target

point cloud was carried out using the sampling consistency method

(SAC-IA) (Rusu et al., 2009).

Improved ICP registration based on the KD-tree adjacent

search algorithm was used for fine registration of the target point
D
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FIGURE 2

Image of point cloud preprocessing. (A) Real image. (B) Depth image. (C) 3D point cloud image. (D) Background removed point cloud image. (E)
Experimental platform removed point cloud image; parts of discrete points are marked by red circles. (F) Discrete points removed point cloud
image. (G) Soil detect image; point clouds in the soil are marked in red. (H) Registered point cloud image of 0 degrees. (I) Registered point cloud
image of 180 degrees.
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cloud after coarse registration (Zhang, 1994). Finally, the target

point cloud and source point cloud after registration and rotation

were combined into a complete point cloud image. The registered

point clouds of 0 degrees and 180 degrees are shown in Figures 2H,

I, respectively.
Stem and leaf segmentation

The pipeline presented involved four steps, namely, (1)

skeletonization, (2) main stem alternative skeleton point

extraction, (3) main stem skeleton point extraction, and (4) main

stem cloud point restoration. In the first stage, the preprocessed

point cloud was sliced, clustering was performed on each slice, and

the slice of the stem was selected by grayscale values. In the second

stage, the minimum spanning tree (MST) was established according

to the skeleton points, and the alternative skeleton points of the

main stem were extracted by the DAG longest path algorithm. In

the third stage, the length of the plant canopy was estimated by the

local projection method. According to the length of the canopy, the

canopy skeleton points contained in the alternative skeleton points

of the main stem were removed, and the skeleton points of the main

stem were obtained. Finally, the skeleton points of the main stem

were interpolated, and the point cloud of the main stem was

obtained by k-nearest search searching. The remaining point

cloud was regarded as the area in which the leaf part was located

to perform stem and leaf segmentation.

Skeletonization
An improved skeletonization method based on the phenotypic

characteristics of Pinus massoniana seedlings was proposed. First,

the slice along the Z-axis of the point cloud was performed, and a

total of 30 slice layers were obtained. Then, Euclidean clustering was

applied to the point clouds of each slice layer, and the

corresponding clusters in each slice layer were obtained (Rusu

and Cousins, 2011). However, due to the structural characteristics

of Pinus massoniana, the clusters of Z-axis slices involved leaves

and main stem parts. It was difficult to distinguish whether the

cluster was from the leaf part or the main stem part, while the

centroid was extracted from the different clusters of the slice layer.

Therefore, further processing was needed at the slice layer along the

X-axis.

The maximum differential value of the X-axis coordinates of the

point cloud along the Z-axis of each slice layer in the cluster was

calculated, and the corresponding cluster along the Z-axis slice

layer, whose differential value was greater than the threshold, was

sliced twice along the X-axis direction (the number of slices along

the X-axis was 5). The slicing point cloud image along the Z-axis

and its horizontal direction subdivision for each Z-axis slice layer is

shown in Figure 3A. The average grayscale values of all slice layers

in the same cluster along the X-axis were calculated. The slice layer

with the largest average grayscale value of five horizontal slice layers

was taken as the main stem location. The centroid of this X-slice

layer was calculated and used as the skeleton alternative point of the

corresponding cluster for the main stem of Pinus massoniana on
Frontiers in Plant Science 06
this Z-axis slice. If the maximum differential value of the X-axis

coordinates was less than the threshold, the centroid of the cluster

was directly calculated and used as the skeleton alternative point of

the cluster corresponding to the main stem of Pinus massoniana on

this Z-axis slice. According to the above steps, traversing all slice

layers along the Z-axis, the skeleton alternative points of the main

stem were collected. The algorithm for skeletonization is shown

in Figure 4.

Nomenclature in Algorithm1

Zmax

Zmin

Maximum and minimum of the Z-axis values in the preprocessed
point cloud

Xmax

Xmin

Maximum and minimum of the X-axis values in the point cloud

Pc Preprocessed point cloud

Sw Slice layer width
Main stem alternative skeleton point extraction
The alternative skeleton point clouds obtained after the

skeletonization step were discrete, and it was necessary to establish

adjacent relationships between the skeleton points. The MST was

used to establish this relationship for alternative skeleton point

clouds, and the Kruskal algorithm (Kruskal, 1956) was used to

build the MST of all alternative skeleton point sets of the main

stem. By searching up from the root node of the MST, the directed

acyclic graph between the points was generated according to the

adjacent relation formed by theMST. The diagram of the relationship

between the skeleton points is shown in Figure 3B. Then, the DAG

longest path algorithm was used to search the longest path from the

root node in a directed acyclic graph (Healy and Nikolov, 2001). The

skeleton points in the longest path were set as the skeleton points of

the main stem with canopy, which is shown in Figure 3C.
Main stem skeleton point extraction
As shown in Figure 3C, the top of Pinus massoniana is a

canopy, and it did not belong to the main stem part. As a result, it

was necessary to remove the canopy part involved in the skeleton

points of the main stem with the canopy. Therefore, according to

the distance information between the skeleton points provided by

the MST, the canopy length was estimated, and the skeleton points

in the canopy range were removed from the top based on the

estimated length. Thus, the skeleton points of the main stem and the

canopy were separated.

In this study, the number of point clouds of the main stem skeleton

with a canopy was investigated. It was found that the boundary point

between the canopy and the main stem was near the fourth or fifth

point of the skeleton points with the canopy from top to bottom in our

samples. Therefore, the fifth point was selected as the center of the

following local projection method. The highest point of the point cloud

in the main stem skeleton without the canopy was the starting point,

and the MST was traversed down to the position of the fifth skeleton
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FIGURE 3

Image of the stem and leaf segmentation. (A) Point cloud slices along the Z-axis and X-axis with adjacent slice layers distinguished by different
colors. (B) Diagram of the relationship between the skeleton points. The green point, red point, and blue point represent the junction, vertex, and
internal node, respectively. (C) Skeleton points of the main stem with the canopy; the red circle represents the canopy. (D) The green line represents
a normal composed of a fifth skeleton point and the adjacent skeleton points above it. The gray normal represents a projection plane perpendicular
to the normal. (E) The red part represents the projection of the top canopy on the tangent plane. (F) Skeleton point of the main stem after removing
the canopy. (G) Main stem skeleton points before interpolation. (H) Main stem skeleton points after interpolation. (I) Point cloud after removing the
main stem.
FIGURE 4

Algorithm for skeletonization.
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point. Then, the plane was formed under the centroid of the fifth

skeleton point and the skeleton point above it, which was perpendicular

to the normal. The normal and projection planes are shown in

Figure 3D. The point cloud above the plane was projected onto the

plane. Points projected onto the plane are shown in Figure 3E. The

convex boundary of the 2D projection point cloud was extracted based

on the convex hull algorithm (Cupec et al., 2020). The average distance

from all points on the boundary to the search center (fifth point) was

determined to be the threshold of the specified canopy length. From the

top of the skeleton point set of the main stem with the canopy, the sum

of the paths between the skeleton points according to the distance

relationship provided by the MST was calculated. During searching, if

the sum of the paths was greater than the threshold, the search was

stopped. The skeleton point from this point to all the collections from

the top was discarded, and the remaining skeleton points were the

skeleton points of the main stem. The skeleton point of the main stem

is shown in Figure 3F. The algorithm for main stem skeleton point

extraction is shown in Figure 5.

Nomenclature in Algorithm2

pi The i-th point of the alternative main stem skeleton point from top to
bottom

Line() The line between two points

Pc Preprocessed point cloud

Mas Main stem alternative skeleton point set

Mas.len The length of the main stem alternative skeleton point set

pf Dividing point of the canopy and main stem part
F
rontiers in
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Main stem point cloud restoration
The purpose of this step was to restore the main stem according

to the skeleton point cloud of the main stem. The k-nearest search

method was used to search the point cloud along the skeleton points

of the main stem within the set radius range, and if the search radius

was set too large, the point cloud of the leaf part might be wrongly

restored to the main stem. The distance between the main stem

skeleton points was uniform, and the large distance caused leaf

point cloud loss in the search. Therefore, in this study, the main

stem skeleton points were interpolated to solve the above problem.

Because the near-soil parts of the main stem of Pinus

massoniana had no leaves, the point cloud of the main stem

extracted by the k-nearest search method did not involve the leaf

point cloud, and the diameter of the main stem in this region was

calculated using the algorithm mentioned in the morphological

evaluation step and used as an interpolation step length. The

number of new skeleton points inserted between the two skeleton

points was determined from the distance between the two skeleton

points divided by the interpolation step length, then linear

interpolation was carried out. All the adjacent skeleton points

were traversed to complete the interpolation expansion of the

whole skeleton point set. The main stem skeleton points before

and after interpolation are shown in Figures 3G, H. For the

expanded main stem skeleton points after interpolation, a k-

nearest search was used to search the points within the radius

(the search radius was the main stem diameter), and all the searched

points could be regarded as the main stem part. When the

preprocessed point cloud was subtracted from the point cloud of

the main stem, the point cloud of leaves was obtained, and the stem

and leaf segmentation step was realized. Point clouds that did not

contain the main stem are shown in Figure 3I. The algorithm for

main stem point cloud restoration is shown in Figure 6.
FIGURE 5

Algorithm for main stem skeleton point extraction.
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Nomenclature in Algorithm3

pi The i-th point of the main stem skeleton point from top to bottom

Pc Preprocessed point cloud

Ms Main stem skeleton point set

Ms.len The length of the main stem skeleton point set

Me Expanded main stem skeleton point set
F
rontiers in Pl
Morphological trait extraction

Five phenotypic parameters, including the plant height, stem

diameter, main stem length, regional leaf length, and leaf number,

were calculated automatically using the point cloud in the output of

the stem and leaf segmentation step. The stem diameter was

calculated using the local projection method. Part of the main

stem was projected onto the tangent plane formed along the

skeleton point above the soil. The stem diameter was represented

by the short axis length of the ellipse by 2D ellipse fitting. The main

stem length was obtained by calculating the distance between

adjacent skeleton points. For the regional leaf length, we took a

region along the skeleton point of the main stem every 5 cm, and the

point cloud in the region was projected to the local tangent plane.

The convex hull method was used to estimate the length of the

projection boundary to the center, and the estimated length was

used as the local leaf length. The number of leaves can also be

determined by searching along the main stem skeleton point, and

every 5 cm was regarded as a region. The distance density of this

region was calculated, and the number of leaves in this region was

estimated by the linear relationship between the distance density

and leaves. Then, the total number of leaves was estimated from

the density.

Plant height
The plant height was defined as the distance between the soil

plane and the top of the canopy, which is a useful and frequently
ant Science 09
measured trait in agronomic research (Moles et al., 2009). Using the

highest point of the whole plant as the top of the plant, the plant

height was calculated using Eq. 6:

H   =  Zmax   −  Zsoil (6)

where Zmax and Zsoil represent the Z-axis of the highest point of

the point cloud after preprocessing and the Z-axis of the soil

plane, respectively.
Stem diameter
The measurement position of the stem diameter was close to the

soil, and the measurement value of this position was for the whole

stem. The routine method selected the part 2-5 cm above the soil

and sliced along the Z-axis with a thickness of 1 cm. The point cloud

of each selected slice layer was projected onto the XOY plane, a 2D

ellipse was fitted using these 2D projected points, and the minor

axis of the ellipse was taken as the estimated value of the stem

diameter. However, the slice layer of the plant along the Z-axis was

not perpendicular to the XOY plane, leading to a certain deviation

of the points on the XOY plane. Therefore, we proposed an

improved algorithm for skeletonization and projection and for

calculating the stem diameter.

The expanded skeleton points of the main stem were used, and

all skeleton points in the 2-4 cm region above the lowest skeleton

point were selected. At the initial stage, the normal was formed by

the skeleton point at the lowest position. Then, the plane that was

perpendicular to the normal was generated while the lowest

skeleton point was the center, and the generated plane was

denoted as the lower plane. The skeleton point above the lowest

skeleton point was taken as another center, and the normal was

generated with the skeleton point above another center. Another

plane perpendicular to the normal was generated and was denoted

as the upper plane. The upper and lower planes are shown in

Figures 7A, B, respectively. The points between the upper plane and

the lower plane were projected to the lower plane after the

preprocessing step. Every 1 cm was sliced as a layer. Then, the 2D

ellipse fitting operation was performed on these projection points,

the short axis length of the fitted ellipse was used as the diameter,
FIGURE 6

Algorithm for main stem point cloud restoration.
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and the average value of the diameters was the stem diameter of the

main stem. The projection of points is shown in Figure 7C.

Main stem length
The stem is an important organ that connects the transport

path; Pinus massoniana seedlings have only one main stem, and

leaves grow around the main stem (Zhuo et al., 2010). The main

stem skeleton point cloud is shown in Figure 7D. By traversing from

the lowest point of the skeleton to the highest point, the distance

between the adjacent points in the MST was determined, and the

sum of all the distances was the main stem length.
Regional leaf length
Since the growth conditions of different parts of Pinus

massoniana were different, the average leaf length of different

parts was estimated in this study. The region of the skeleton

point cloud of the main stem was taken every 5 cm along the

main stem direction. The lowest position of the skeleton points in

the region and its adjacent skeleton points were selected and used to

form one normal vector. Then, the plane that was perpendicular to

the normal vector was generated where the lowest position skeleton

point was the center and was denoted as the lower plane. The

highest skeleton point of the region was the center, with its adjacent

skeleton points below the form of a normal vector, generating a

plane perpendicular to the normal that is denoted as the upper

plane. The points between the upper plane and the lower plane were

vertically projected to the lower plane, as shown in Figure 7E. The

convex boundary of the 2D projection point cloud was extracted by
Frontiers in Plant Science 10
the convex hull algorithm (Cupec et al., 2020), which is shown

in Figure 7F.

The average distance from all points on the boundary to the

center of the lower plane was determined, and the calculated stem

diameter was the threshold. If the average distance was greater than

the threshold, the average distance was used for the average leaf

length of the region. If it was less than or equal to the threshold, it

was considered that there were no leaves in this region. The above

algorithm could be used to estimate the average leaf length of the

parts below the canopy of Pinus massoniana along every 5 cm

interval of the main stem.

Leaf number
The Pinus massoniana leaves were dense and large in number. It

was difficult to obtain separate leaf images even using a high-

precision scanner. The point cloud distance density is an important

analysis index and can be used to analyze plant phenotypic

characteristics. For example, by using the different densities of the

point clouds of stems and leaves in the horizontal direction, the

support vector machine can be applied to classify the stems and

leaves by density (Liu et al., 2020). In our study, the same regional

segmentation method as the regional leaf length step was used to

calculate the average distance density of the point cloud in different

segmentation regions, and the number of leaves in corresponding

regions was counted. It was found that the distance density of the

point cloud had a certain linear relationship with the number of

regional leaves. Based on this relationship, we proposed a plant leaf

estimation algorithm based on the distance density method (C.-H.

Lin et al., 2018). Moreover, the average distance density of the point
A
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FIGURE 7

Image of the morphological traits extraction. (A) Upper plane. (B) Lower plane. (C) 2D projection of the main stem point cloud, short-axis of the
ellipse as the stem diameter. (D) Main stem skeleton points for calculating the main stem length. (E) 2D points projected onto the lower plane.
(F) Convex boundaries and links between the boundaries and center point.
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cloud can be expressed by Eq. 7 and Eq. 8:

dp   = min(dis(p, q)),q = 1⋯N ,p ≠ q (7)

�d   =  
1
No

N
p=1dp (8)

dis(p, q) represents the Euclidean distance between Point p and

any other point q in a point cloud with N point numbers, and dp is

the minimal value of all the distances. The smaller �d is, the sparser

the point cloud distribution; the larger �d is, the denser the point

cloud distribution. Based on the above formula, the algorithm for

calculating the number of each leaf was as follows. The skeleton

point cloud region of the main stem was used for estimating every 5

cm along the main stem, and the lowest position of the skeleton

points in the region was selected as the center. With one upper

adjacent skeleton point, a normal vector can be formed, and the

plane that was perpendicular to the normal vector was generated

and denoted as the lower plane. If there were leaves in this region

(the determination method was the same as the determination

method in the local leaf length step), the average distance density

between these points can be calculated. Through the linear

relationship between the average distance density and the number

of regional leaves, the number of leaves in this region can be

obtained. The leaf number of each region was calculated, and the

total leaf number of Pinus massoniana was obtained by the

summation of all the regions.
Results

Figure 8 shows the stem and leaf segmentation results of three

representative Pinus massoniana plants with height ranges of 25-30

cm, 20-25 cm, and 15-20 cm. The three-dimensional surface

visualization found that the 3D model was close to the real

sample, and the skeleton of the main stem from the point cloud

model is mostly consistent with the skeleton of the actual plant. We

can note that the skeleton points of the third plant in Figure 8 have a

small deviation from the real stem because this deviation has many

leaves and shelters the main stem. Thus, the skeleton points of this

part that were found by the grayscale value clustering deviate;

however, no more than 5% of the skeleton points had this

deviation, and the actual impact was not significant. Overall, the

results show that the stem and leaf segmentation algorithm could

effectively separate the main stem and leaf from the 3D point cloud

of Pinus massoniana plants.
Accuracy assessment

In this study, 100 Pinus massoniana seedlings at 15–30 cm were

collected as part of the experiment. The accuracy of the algorithm

was evaluated by the correlation coefficient (R), root mean square

error (RMSE), and mean absolute error (MAE). RMSE and MAE

were defined as Eq. 9 and Eq. 10.
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RMSE =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean(est  −   act)2

p
  (9)

MAE   =  mean( est  −   actj j) (10)

where est and act denote the estimated values and actual values

from manual measurements, respectively.

A comparison of the estimates and manual measurements of

the phenotypic parameters is shown in Figure 9. The results showed

that this set of algorithms was suitable for the phenotypic parameter

extraction of Pinus massoniana seedlings, especially for plant

heights and main stem lengths. Among them, the R between the

estimated plant height and the artificially measured value was 0.96,

and the RMSE and MAE were 1.35 cm and 1.21 cm, respectively;

the R between the estimated plant height and the artificially

measured value was 0.93, and the RMSE and MAE were 2.27 mm

and 2.07 mm, respectively; the R between the estimated main stem

length and the artificially measured value was 0.95, and the RMSE

and MAE were 2.21 cm and 2 cm, respectively; the R between the

estimated leaf numbers and the artificially measured value was 0.75,

and the RMSE and MAE were 52 cm and 48 cm, respectively; the R

between the average leaf length 0-5 cm below the canopy and the

measured values was 0.74, and the RMSE and MAE were 1.13 cm

and 0.96 cm, respectively; the R between the average leaf length 5-10

cm below the canopy and the measured values was 0.78, and the

RMSE and MAE were 1.16 cm and 1.04 cm, respectively; the R

between the average leaf length 10-15 cm below the canopy and the

measured values was 0.73, and the RMSE and MAE were 0.89 cm

and 0.8 cm, respectively; the R between the average leaf length 15-20

cm below the canopy and the measured values was 0.79, and the

RMSE and MAE were 0.63 cm and 0.58 cm, respectively.

Regarding the plant height, the regression line of the data points

was in good agreement with the reference line of the diagonal (R =

1), as shown in Figure 9A, which verified that the algorithm was

suitable for measuring the plant height of Pinus massoniana. The

average height of all artificially measured plants was 21.75 cm, and

the average absolute error was 5.5% of the average. The reason for

this error was that the soil plane was slightly uneven, resulting in the

overestimation or underestimation of the lowest soil plane.

However, this error can be ignored.

Regarding the stem diameter, Figure 9B shows that the

estimated value of the system is generally greater than the

measured value, which was caused by the ToF principle of

the Aruze Kinect camera. Moreover, the reflection of the edge

leads to the expansion of the point cloud around the stem.

Regarding the stem diameter calculation step, we have shown

that the average absolute error of the stem diameter calculated by

selecting the tangent plane of the local skeleton point of the main

stem as the projection plane was 26.6% of the manual measurement

average, while the average absolute error of stem diameter

calculated using the XOY plane as the projection plane was 42.2%

of the manual measurement average. Therefore, using the

projection plane used in this study to calculate stem diameter

greatly improves the accuracy.

Regarding the length of the main stem, Figure 9C shows that the

correlation between the estimates and manual measurements is

close to 1. The average length of the main stem of all plants
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FIGURE 8

Stem and leaf segmentation procedure visualization of different heights. (A) Input cloud point. (B) Slice in the X-axis and Z-axis. (C) Extracting
alternative skeleton points of the main stem according to the centroid and generating MST according to the skeleton points. (D) DAG longest path
algorithm searches for the skeleton points of the main stem with a canopy. (E) Main stem skeleton points after removing the canopy. (F) Main stem
skeleton points after interpolation expansion. (G) After removing the main stem point cloud, the plant point cloud only contains leaves.
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measured manually was 25.6 cm, and the average absolute error was

7.8% of the average. It was proven that this algorithm is applicable

to the length of the main stem. The random error may be caused by

the following two reasons. First, the main stem might be partially

blocked by the leaves, resulting in a deviation between the slice layer

of the main stem selected by the grayscale value and the slice layer of

the actual main stem. Second, the grayscale of withered Pinus

massoniana leaves was similar to that of the main stem, thus

interfering with the system. However, the object of this study was

to analyze the seedling stage, with few or no withered leaves, and

this impact factor can be ignored.
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Regarding the leaf number, we proposed the density method to

estimate the leaf number of Pinus massoniana. The regional leaf

number and density of Pinus massoniana seedlings were calculated,

and the linear relationship between the leaf number and density was

obtained using the least square method. The relationship between

the estimates and manual measurements is shown in Figure 9D.

Because of the least square method (linear relationship), the

number of leaves deviated from the actual value for the nonlinear

relationship. The average number of leaves measured by hand was

259, and the average absolute error was 18.5% of the average

measured by hand. It was proven that this estimation method had
B
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A

FIGURE 9

Comparison of the six phenotypic parameters system estimates and manual measurements. (A–H) line of regression represents the straight line
fitted by the estimated value. r = 1 represents estimated value is equal to actual value and regards as a reference line.
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certain feasibility. This method could avoid the high cost caused by

using a high-precision scanner and reduce the time consumed by

manual measurement.

Regarding the regional leaf length, Figure 9E–H shows the

average leaf length of 0-5 cm, 5-10 cm, 10-15 cm, and 15-20 cm

below the canopy. The average absolute errors were 22.2%, 22.3%,

20.1%, and 23% of the average manually measured values,

respectively. The main reason for these errors was that there are

few long leaves, and these leaves would be included by the convex

hull method, causing corresponding errors. In general, the

estimated leaf length of the system was close to the actual leaf

length, which also proved that the algorithm in this study

was feasible.

We also used a box plot for analysis. However, in the

measurement of each phenotypic parameter, there were mostly

no discrete points with values that were too large or too small. The

line chart could show all the information of the box plot and

showed some information that the box plot did not have. Therefore,

in this paper, we used a line chart for analysis.
Discussion

In this study, a set of automated methods that measure the

phenotypic parameters of Pinus Massoniana seedlings was

developed to process images collected by a 3D image acquisition

device through non-destructive means. The five parameters of

interest were plant height, stem diameter, main stem length,

regional leaf length, and leaf number, and they were automatically

obtained from the original image. Because of the complex

phenotypic characteristics of Pinus massoniana, there have been

few studies on such plants. Our study focuses on the stem-leaf

separation steps and phenotypic parameter extraction.

As an important step, stem and leaf segmentation could provide

great convenience for the extraction of phenotypic parameters of

subsequent plants. We also used three kinds of skeletonization

methods to analyze Pinus massoniana seedlings based on skeleton

contraction, local feature, and slicing. One of the typical skeleton

contractions was Laplace skeletonization, and the core idea of

Laplace skeletonization was to search the plant point cloud in the

stem direction through matrix transformation, which had a good

effect on gramineous plants, but it is not applicable for curved main

stem. The second kind of skeletonization method was based on

feature; however, the leaf part and stem part of Pinus massoniana

were overlapping, and it was difficult to find the proper feature. The

third type was based on slicing. However, the main stem of Pinus

massoniana was curved, and some of the skeleton points of the

main stem were out of the range of the extracted Hough plane,

resulting in some main stem skeleton points being missed

(comparative tests are included in the Supplementary Materials).

However, the idea of slicing provided much inspiration for our

skeletonization, for Pinus massoniana, the Z-axis slice layer

contained both the stem part point cloud and the leaf part point

cloud. Then, slice subdivision was performed along the X-axis. We

compared the features of each slice layer and found the

characteristics of the slice layer where the main stem was located.
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Regarding the phenotypic parameters, the accuracy of the plant

height, stem diameter, and main stem length reached 96.3%, 84.9%,

and 95.7%, respectively. Regarding the leaf length, the leaves in

different regions of this study were analyzed. The growth direction

of Pinus massoniana leaves was mostly perpendicular to the main

stem, so the projection method was used to project the 3D point

cloud to 2D for calculation to reduce the complexity of

the calculation.

Although we could not obtain the accurate regional leaf length,

the estimation accuracy was 83.8%, which proved that our

estimation method still had feasibility. Regarding the leaf number,

by comparing the local density and local leaf number of multiple

groups of samples, it was found that there was a certain linear

relationship between the density and leaf number. Thus, an

algorithm based on distance density was designed to estimate the

leaf number. Overall, there would be approximately a 15% error, but

the Pinus massoniana seedling itself had hundreds of leaves; even if

artificially counted, there was still approximately a 10% error. Thus,

this range of error was reasonable.
Conclusion

In this study, a low-cost 3D phenotypic system based on the

Azure Kinect camera was built, and an automatic measurement

method for five phenotypic parameters of Pinus massoniana with a

height range of 15–30 cm was proposed. The experimental results in

this study provide an efficient and economical solution for plant

phenotypic feature extraction, which could promote genome

research and plant breeding programs.

Our future work will focus on applying this algorithm to a

three-dimensional imaging platform developed by our group. In the

growth process of Pinus massoniana, our algorithms were unable to

handle certain lateral stems. Moreover, if there are multiple plants

in the platform at the same time and the leaves of the plants overlap,

the accuracy of the algorithm will also be affected. Due to the

imaging technique itself, the problem of overlapping plants and the

distance between the plants and the camera is far, the information

of plants collected by the imaging technique will be lacked. In this

regard, we may select cameras with higher imaging accuracy,

optimize the algorithms to solve the problem of overlapping

stems, or use segmentation methods. This set of proposed

algorithms can be applied to plant seedlings with similar

structures to Pinus massoniana, such as black pine, cedar, and

Pinus quinquefolius. It was proven that these algorithms can be

used for these plant seedlings with some feasibility. However, every

structure of plant seedlings still has slight differences, and it is also

necessary to optimize the internal parameters of the algorithm and

carry out more tests to improve the approaches for each

plant seedling.
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