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Recently, most agrarian countries have witnessed either declining or stagnant crop 
yields. Inadequate soil organic matter (SOM) due to the poor physical, chemical, 
and biological properties of the soil leads to an overall decline in the productivity 
of farmlands. Therefore, the adoption of integrated nutrient management (INM) 
practices is vital to revive sustainable soil health without compromising yield 
potential. Integrated nutrient management is a modified nutrient management 
technique with multifarious benefits, wherein a combination of all possible 
sources of plant nutrients is used in a crop nutrition package. Several studies 
conducted in various parts of the world have demonstrated the benefits of INM in 
terms of steep gain in soil health and crop yields and at the same time, reducing 
greenhouse gas emissions and other related problems. The INM practice in 
the cropped fields showed a 1,355% reduction in methane over conventional 
nutrient management. The increase in crop yields due to the adoption of INM 
over conventional nutrient management was as high as 1.3% to 66.5% across the 
major cropping systems. Owing to the integration of organic manure and residue 
retention in INM, there is a possibility of significant improvement in soil aggregates 
and microbiota. Furthermore, most studies conducted to determine the impact of 
INM on soil health indicated a significant increase in overall soil health, with lower 
bulk density, higher porosity, and water-holding capacity. Overall, practicing 
INM would enhance soil health and crop productivity, in addition to decreasing 
environmental pollution, greenhouse gas emissions, and production costs.
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1. Introduction

The increasing human population and their consequent need for food, combined with the 
depletion of healthy soil, have led to unprecedented damage to natural resources, making it 
difficult to meet the global demand for food. In the developing world, achieving food security 
through sustainable systems is a big task, yet it is vital for poverty alleviation. To get around this 
problem, farmers have resorted to overusing specific inputs like chemical fertilizers and 
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pesticides, which have already begun to harm the ecosystem. During 
the initial days of fertilizer usage, the impact of crop fertilization with 
inorganic fertilizers has been prominent in world agriculture (Hossain 
and Singh, 2000). In most countries of agrarian background, 
manufacturing and service of chemical fertilizers have been practiced 
as prime agenda in securing nations’ food and nutritional security. 
India, a populous agrarian country, is the world’s third-largest 
producer and consumer of chemical fertilizers (Tandon and Tiwari, 
2007). As per recent reports, the Indian fertilizer market reached a 
value of Rs. 887 billion and is expected to grow at a compound annual 
growth rate of 5.5% by 2026 [IFA (International Fertilizer Association), 
2020]. Food production must increase significantly while agriculture’s 
environmental impact must decrease greatly to fulfill the world’s 
future food security and sustainability needs (Foley et al., 2011).

India is a country with diverse cropping practices. The nutrient 
mining by various crops and cropping systems is far higher than the 
nutrient additions annually through fertilizers (Kumar et al., 2015). 
For the past 40 years, a nutrient gap of 8 to 10 million tons of nitrogen 
(N), phosphorus (P), and potash (K) per year have been documented 
(Tandon, 2004). This condition is analogous to depleting the soil’s 
nutritional reserve. Long-term negative impacts of imbalance and 
indiscriminate use of inorganic fertilizers, particularly NPK-based 
formulations, have irreversibly damaged the soil resource base of 
many agroecosystems (Prasad et al., 2002; Singh et al., 2014). Despite 
the tremendous improvement in crop productivity in numerous crops 
due to improved varieties and increased use of agrochemicals, the goal 
of ensuring food and nutritional security remains challenging (Nath 
et al., 2018). The ever-increasing food demands of the burgeoning 
population have continuously exerted pressure on the agroecosystems. 
In the process of increasing agricultural production, the agriculture 
production units significantly contribute to environmental pollution 
(Wheeler and von Braun, 2013; Wu and Ma, 2015). For future 
generations, the goal is no longer to enhance agricultural production 
but also to optimize nutrients, energy, and water usage while 
minimizing environmental impact. Over-exploitation of nutrients 
from the soil and poor nutrient loss replenishment, depleted nutrients 
from the soil are often unable to be  replenished by artificial crop 
fertilization, resulting in an imbalance in the soil nutrients pool 
(Paramesh et al., 2013a,b, 2014, 2020). Hence, the huge increase in 
global greenhouse gas (GHG) emissions by the agriculture sector, 
primarily due to the use of synthetic fertilizers and pesticides in recent 
years, both of which are rapidly expanding. One of the primary causes 
of environmental pollution, such as eutrophication and GHG 
emissions is the injudicious use of fertilizer, particularly nitrogen 
(Davidson et al., 2014). Thus, it is high time to search for innovative 
practices that guarantee higher yields with the least amount of 
additional environmental damage possible, especially for 
developing countries.

No single source of plant nutrients, such as chemical fertilizers, 
organic manures, crop residues, and bio-fertilizers, can meet the entire 
nutrient need of a crop in today’s intensive agriculture systems 
(Mahajan and Gupta, 2009). In this context, the integration of all 
possible sources of nutrients is ideal for enhancing the soil resource 
base besides contributing to crop productivity (Nath et al., 2018). 
Findings of various studies (Selim and Al-Owied, 2017; Selim, 2018; 
Wang et  al., 2019; Song et  al., 2020) suggest integrated nutrient 
management (INM) is a tool that can offer good options and economic 
choices to supply macro and micronutrients of plants and also 

contribute to reducing the dependence on externally purchased 
chemical fertilizers besides protecting soil health. Physical properties 
related to soil structure, are greatly influenced by adding organic 
manures (Das et al., 2014). An increasing number of research have 
suggested that INM has an impact on crop production, soil quality, 
and the environment while balancing food security and GHG 
mitigation. Numerous earlier studies largely examined how INM 
affected crop productivity, soil quality, or environmental performance. 
It is currently unknown how INM will affect crop productivity, soil 
bulk density, microbial biomass carbon, and the environment as a 
whole. This review addresses the synergistic effects of different 
nutrient sources and their combinations. This includes exploring the 
interactions between organic and inorganic fertilizers, biofertilizers, 
and crop residues on crop productivity and soil quality. By 
understanding how different nutrient sources interact, the researcher 
can develop more effective nutrient management strategies that 
optimize nutrient use efficiency and minimize environmental impacts. 
Further, this review highlights the long-term impacts of INM on soil 
quality parameters such as SMBC, bulk density, and dehydrogenase 
activity. This review article helps in understanding how INM affects 
soil quality, productivity, and environment. The researchers can 
develop more sustainable soil management practices that protect and 
improve soil health, and can develop more effective fertilizer 
recommendations and minimize nutrient losses. Finally, we can help 
farmers and policymakers make informed decisions about 
nutrient management.

2. Fertilizer consumption in India and 
the need for INM

Global use of inorganic fertilizers have increased almost fivefold 
since 1960 and have significantly supported population growth (FAO, 
2017). The present world’s demography will change in many folds in 
the near future and will require the production of 70% extra food, 
fodder and fuel to meet the demands of the ever-growing population 
(FAO, 2017). On the contrary, the natural base resource required for 
additional food production is shrinking. A study conducted by FAO 
(2017) indicated that the growth of agriculture between 1960 and 2015 
exhibited about a 28% increase in the production of 174 crops 
cultivated all over the world. This phenomenal gain in production over 
the past few decades has not only tripled production but also paved 
the way for land degradation by hampering the soil’s physical, 
chemical, and biological resource base (Power, 2013). High-input-
driven and resource-intensive farming practices have caused massive 
and irreparable damage to soil and water resource in the agro-
ecosystem and deteriorations in soil health besides contributing 
enormously to GHG emissions. Among agricultural practices, nutrient 
management is one such practice that plays a critical role in crop 
productivity and soil health. Additionally, after the green revolution, 
an over-reliance on fertilizers led to a decline in the efficiency of 
nutrient use and an increase in GHG emissions. The use of fertilizers 
can have implications for the accumulation of heavy metals in the soil 
and plants, which can subsequently enter the food chain, leading to 
potential pollution of water, soil, and air. Some mineral/chemical 
fertilizers contain low quantities of heavy metals and radionuclides, 
and their excessive application in agriculture can pose environmental 
problems. For example, the excessive use of urea has been identified 
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as a major contributor to increased nitrate (NO3−) levels in drinking 
water and river systems. Studies in agricultural districts of Srikakulam 
in Andhra Pradesh, located in the Vamsadhara river basin, revealed 
elevated nitrate concentrations ranging from traces to 450 mg NO3−/L 
of water, particularly following fertilizer applications (Rao, 2006).

The current consequences of nitrate pollution in freshwater bodies 
in India reflect the detrimental effects of historical and ongoing 
excessive use of fertilizers and manures. The transport of phosphatic 
fertilizers through surface water flow can also contribute to increased 
phosphate content in drinking water and rivers. The rising levels of 
dissolved N and P loads are primarily associated with increased losses 
from agricultural and sewage systems. Moreover, the excessive 
application of nitrogen fertilizers has implications for GHG emissions. 
The relative contribution of fertilizer nitrogen application to total 
GHG emissions has increased from 8% in 1970 to 23% in 2010. NH3 
volatilization from rice fields is higher when N fertilizers are surface-
broadcasted, leading to reduced nitrogen use efficiency (Ladha et al., 
2005). Additionally, excessive N fertilizer application can negatively 
affect soil health by degrading soil carbon and affecting the structure 
and function of soil biological communities. Long-term application of 
N fertilizer alone has been shown to significantly reduce soil pH at 
various experimental sites in India.

Further, phenomenal loss in nutrient use efficiency of various crops 
and cropping systems has gradually encouraged farmers to apply higher 
doses of nutrients (Figure 1). As a result, this injudicious practice of 
nutrient management has paved the way to impair soil health due to less 
or no use of organic manure, residue retention, and bioinoculant-
mediated fertilizer management. This has strongly distracted the 
complementarity between bio-geo cycles of the agroecosystem and is the 
main reason for multiple nutrient deficiencies, declining fertilizer 
response, and crop productivity. To address the current challenges 
associated with excessive fertilizer use, including the potential 
accumulation of heavy metals, pollution of water sources, GHG 
emissions, and adverse effects on soil health. Implementing sustainable 
nutrient management practices that optimize fertilizer use, minimize 

losses, and protect both the environment and human health is 
imperative. Hence, INM is necessary to bring back harmony in the 
agroecosystem besides sustaining the productivity of crop and soil health.

The INM primarily refers to the judicious, efficient, and integrated 
use of all available sources of organic, inorganic, and biological 
components to combine traditional and modern techniques of nutrient 
management into an environmentally sound and economically optimal 
agricultural system (Janssen, 1993). To synchronize nutrient demand by 
the crop and its release in the environment, it optimizes all elements of 
the nutrient cycle, including N, P, K, and other macro- and micronutrient 
inputs and outputs. The INM techniques reduce losses due to leaching, 
runoff, volatilization, emissions, and immobilization while maximizing 
nutrient use efficiency (Zhang et al., 2012). Additionally, INM aims to 
improve the physical, chemical, biological, and hydrological aspects of 
the soil to increase agricultural production and reduce land degradation 
(Janssen, 1993; Esilaba et al., 2005). There is now a deeper understanding 
that INM may concurrently and very invisibly protect soil resources 
while also increasing crop yield. Farmyard manures, farm wastes, soil 
amendments, crop residues, chemical fertilizers, green manures, cover 
crops, intercropping, crop rotations, fallows, conservation tillage, 
irrigation, and drainage are all used in its methods to increase plant 
nutrition and preserve water (Janssen, 1993). The INM practice also 
promotes methods designed to reduce nutrient losses and enhance plant 
uptakes, such as the deep placement of fertilizers and the use of inhibitors 
or urea coatings (Zhang et al., 2012). Instead of merely concentrating on 
yield-scaled profit, these techniques urge farmers to focus on long-term 
planning and offer scope for the reduction of environmental impact.

2.1. Nutrient mobilization/mineralization in 
soil under INM practice

Farmers generally apply significant amounts of N fertilizer at the 
time of sowing or planting under conventional practice. Typically, 80% 
of the total N fertilizer is applied as a basal dressing, and the remaining 
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Annual fertilizer consumption in India (Fertilizer Association of India, 2021).
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N is applied within the first 10 days after transplanting for rice or within 
the first 30-days after the date of seeding for wheat, maize, and sorghum 
(Peng et  al., 2002; Chen et  al., 2011). Due to the inefficient 
synchronization between the soil’s supply and crop demand caused by 
this N application pattern, a significant amount of inorganic N is 
available in the soil before it is needed by rapidly growing crops (Chen 
et al., 2006). However, a material with a high N content (fertilizers) 
favors net mineralization, whereas one with a low N concentration 
(manures) results in net immobilization. Interestingly, Reddy et  al. 
(2008) stated that organic manures (farmyard manure-FYM) with a C:N 
ratio of 29% to 33% immobilized N during the initial 40 days of 
incubation. This caused net N mineralization to begin during the first 
week of incubation, and then urea fertilizer has been added to lower the 
C:N ratio to 18%–22%. Therefore, a rapid increase in the mineral N near 
the end of incubation was the result of the combined application of 
fertilizer with FYM. The combined usage of organic manures with that 
of chemical fertilizer assures the continuous supply of nutrients by 
acting as a multi-nutrient pool, further during organic matter 
mineralization nutrients release slowly and gradually so that the crop 
enjoys the soil nutrient pool throughout its requirement. Consequently, 
the continual application of inorganic fertilizers in combination with 
FYM or lime, significantly altered soil microbial biomass carbon, soil N 
and P, fulvic acid (FA), and humic acid (HA; Srinivasarao et al., 2020). 
In addition, integrated use of fertilizer, manure, and lime application in 
soybean-wheat rotation led to improvements in soil water retention, soil 
aggregates, microporosity, and water holding capacity as well as a 
decrease in the soil’s bulk density (BD) in the top 30 cm of the soil when 
compared to fertilizer application alone (Hati et al., 2008). Thus, the use 
of organic manures enhances fertilizer use efficiency and serves as an 
alternative source of nutrients (Dwivedi et al., 2016). The INM system 
synchronizes the nutrient demand set by plants, both in time and space, 
with the supply of nutrients from the labile soil pool and applied nutrient 
sources (Cassman et al., 2002). As INM encourages the split application 
of N fertilizers during critical stages of crop growth in small quantities 
it has the potential to increase crop productivity and quality and also 
reduce nutrient losses (Tilman et al., 2002; Witt and Dobermann, 2004).

2.2. Data collection and rice equivalent 
yield

The key data collected from the publications that qualified for 
review included grain yield, soil bulk density (BD), SOC, soil 
microbial biomass carbon (SMBC), dehydrogenase (DHA), GHG 
emission. In this analysis, change (δ) in measured variables between 
the conventional and INM practice was expressed as a percentage, i.e., 
δ = 100*(INM − Conventional)/Conventional because of its ease of 
interpretation. To compare different monocrops and cropping 
systems, rice equivalent yield (REY; equation 1) was determined by 
converting the economic yield of different crops on the basis of their 
marketable price prevailing during the period for each crop, including 
rice, and expressed in ton per unit area.

 

REY kg

Yield of component crop kg

Price of component cro
( ) =

( )
× pp Rs kg

Price of rice Rs kg

−

−

( )
( )

1

1

 

(1)

3. Effect of INM on crop productivity, 
soil bulk density, microbial biomass 
carbon, and reducing environmental 
impact

3.1. Crop yield

Yield is the utmost concern in agriculture production systems. 
To achieve a desirable yield, a plant nutrient management system is 
one of the prime agro-practices. The impact of integrated nutrient 
management on rice equivalent yield was synthesized by taking into 
consideration of yield obtained under INM-treated plots against the 
conventional nutrient management of various crops and cropping 
systems and presented in Table 1. The results of rice equivalent yield 
indicated the gain in productivity of most of the cropping systems. 
The increment in crop yields under INM over conventional nutrient 
management across the cropping system studied was 1.3% to 66.5%. 
Furthermore, significant improvement in crop yields was more 
noticeable in field crops, especially rice, wheat, and soybean. 
However, vegetable crops like okra, tomato, and onion crops also 
demonstrated increased yields under INM. A long-term field 
experiment in India from 1973 to 2004, observed a substantial 
decrease trend in soybean yield for both the control and NPK 
treatments whereas the NPK + FYM treatment had a statistically 
significant (p < 0.05) increase in yield over time (Bhattacharyya 
et al., 2008). Increased microbial activity, better supply of macro- 
and micronutrients like S, Zn, C, and B, which are not supplied by 
NPK (straight) fertilizers, and lower nutrient losses from the soil are 
some of the additional benefits of organic matter over N, P, and K 
supply that may have contributed to the higher yields of soybean 
and wheat obtained with the FYM + NPK treatment. Therefore, INM 
system enhances the yield potential of crops over and above 
achievable with recommended fertilizers. In the future, there are 
several promising areas of work that can be explored in INM to 
further enhance crop yield. One avenue is the development and 
utilization of precision nutrient management techniques. As 
precision nutrient management uses advanced technologies such as 
remote sensing, geospatial analysis, and machine learning 
algorithms to assess crop nutrient requirements at a fine-scale level 
and deliver precise and site-specific nutrient applications. This 
approach minimizes nutrient loss and ensures that crops receive 
nutrients when and where they are most needed. Another important 
issue to be addressed is the exploration of microbial interventions 
in nutrient management. Microbial interventions in nutrient 
management use beneficial microorganisms like mycorrhizal fungi, 
rhizobacteria, and other plant growth-promoting microbes to 
improve nutrient availability and uptake efficiency, and enhance 
crop productivity. Scope of INM should be extended to the use cover 
crops and crop rotations to build soil fertility, enhance nutrient 
cycling, and crop yield.

3.2. Greenhouse gas emission

Globally, agriculture and its associated systems are viewed as a 
massive contributor of GHG emissions (Ravikumar et al., 2021). To 
reduce its contribution, reduction in excess nutrient application and 
balanced application are the key mitigation strategies (Sapkota et al., 
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TABLE 1 Comparison of grain yield in conventional and integrated nutrient management system.

S no. Country
Crop/cropping 
system

Nutrient 
management system

Rice equivalent 
yield

% change from 
conventional system

References

1 India Maize
Conventional 8.2

39.9 Damse et al. (2014)
INM 13.7

2 India Maize
Conventional 7.7

1.2 Verma et al. (2018)
INM 7.7

3 India Maize
Conventional 5.1

29.7 Kalhapure et al. (2013)
INM 7.3

4 Zimbabwe Maize
Conventional 1.5

1.3 Nyamadzawo et al. (2017)
INM 1.5

5 China Maize
Conventional 9.2

−4.4 Nyamadzawo et al. (2017)
INM 8.8

6 India Wheat
Conventional 3.4

32.9 Singh et al. (2019)
INM 5.1

7 India Wheat
Conventional 3.4

32.9 Singh et al. (2018)
INM 5.1

8 India Wheat
Conventional 5.3

14.5 Sharma et al. (2013)
INM 6.2

9 India Wheat
Conventional 2.1

54.1 Argal (2017)
INM 4.5

10 India Wheat
Conventional 1.3

66.5 Sharma U. et al. (2016)
INM 3.8

11 China Wheat
Conventional 6

7.7 Zhang et al. (2012)
INM 6.5

12 India Wheat
Conventional 4.3

8.4 Majumdar et al. (2002)
INM 4.7

13 China Wheat
Conventional 7.2

8.1 Nyamadzawo et al. (2017)
INM 7.8

14 India Rice
Conventional 5.9

16.2 Swarup and Yaduvanshi (2000)
INM 7

15 India Rice
Conventional 5.4

8.0 Garai et al. (2014)
INM 5.9

16 China Rice
Conventional 8.6

21.6 Zhang et al. (2012)
INM 11

17 West Bengal Rice
Conventional 5.4

8.0 Garai et al. (2014)
INM 5.9

18 India Rice
Conventional 3.9

23.1 Das and Adhya (2014)
INM 5

19 India Rice
Conventional 4.5

38.6 Sharma U. et al. (2016)
INM 7.3

20 China Rice-wheat
Conventional 7.7

54.6 Ma et al. (2010)
INM 16.9

21 India Soybean
Conventional 3

3.4 Verma et al. (2017)
INM 3.1

22 India Soybean
Conventional 2.1

44.9 Chaudhari et al. (2019)
INM 3.8

23 India Soybean
Conventional 4.5

26.6 Farhad et al. (2017)
INM 6.1

24 India Soybean
Conventional 6.5

20.2 Chaturvedi et al. (2012)
INM 8.1

25 India Lime tree
Conventional 8.9

26.9 Lal and Dayal (2014)
INM 12.2

26 India Cauliflower
Conventional 31.5

4.25 Sangeeta et al. (2014)
INM 32.9

(Continued)
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TABLE 2 Comparison of GHG emissions from the conventional and integrated nutrient management system.

S no. Country
Crop/cropping 
system

Nutrient management 
system

GHG emission 
(kg CO2 eq./ha)

% change from the 
conventional system

References

1 Zimbabwe Maize Conventional 110 −17.1 Nyamadzawo et al. (2017)

INM 94

2 China Maize Conventional 338 −75.0 Nyamadzawo et al. (2017)

INM 193

3 India Rice Conventional 90 −20.2 Sharma S. K. et al. (2016)

INM 75

4 China Wheat Conventional 252 −10.6 Nyamadzawo et al. (2017)

INM 228

5 India Wheat Conventional 383 −43.2 Majumdar et al. (2002)

INM 268

6 China Rice-wheat Conventional 9,300 −1267.6 Ma et al. (2010)

INM 680

7 India Mustard Conventional 30,016 −1354.5 Nyamadzawo et al. (2014)

INM 2,064

2021). Enhancing crop yields by application of plant nutrients become 
an ambiguous practice in most farmlands (Garnett et al., 2013). On 
the contrary, the imbalanced application of fertilizer in croplands is a 
major source of anthropogenic greenhouse gas emissions (Sutton 
et al., 2013). Therefore, to keep these anthropogenic GHG emissions 
under control, devising, and practicing proper fertilizer management 
is essential (Carlson et al., 2017). Of the several means of nutrient 
management, INM is proven better at minimizing GHG emissions. 
The work conducted by Nyamadzawo et al. (2017) in Zimbabwe in 
maize indicated practicing INM reduced about 17.1% GHGs over 
conventional nutrient management (Table 2). Another study in China 
demonstrated a significant (p < 0.05) reduction (1,268%) in GHG 
emissions against conventional nutrient management in the rice-
wheat cropping system (Ma et al., 2010). Similarly, several studies 

conducted in India indicated a considerable reduction in GHG 
emissions (20%–1,355%) in rice, wheat, and mustard crops (Majumdar 
et al., 2002; Nyamadzawo et al., 2014; Sharma et al., 2019).

Uncontrolled use of fertilizers increases emissions into the 
atmosphere and groundwater leaching of nutrients. The INM 
promotes high agricultural yields while reducing N losses and 
associated detrimental consequences on the environment (Gruhn 
et al., 2000). The ultimate fate of applied fertilizers is a combined 
effect of crop nutrient intake, immobilization, and soil residues, as 
well as nitrogen losses to the environment as ammonia volatilization, 
NOX emissions, denitrification, N leaching, and runoff (Wu and Ma, 
2015). Additionally, the pattern of N application, crop features, soil 
characteristics, climate, and management approaches affect the 
efficacy of applied fertilizers. INM thus recommends deep urea 

TABLE 1 (Continued)

S no. Country
Crop/cropping 
system

Nutrient 
management system

Rice equivalent 
yield

% change from 
conventional system

References

27 India Sapota
Conventional 11.9

62.40 Baviskar et al. (2011)
INM 31.7

28 India Okra
Conventional 3.5

12.0
Jat et al. (2017)

INM 4

29 India Onion Conventional 30.3 6.8 Jat et al. (2017)

INM 32.5

30 India Guava Conventional 193.1 10.9 Dwivedi (2013)

INM 216.8

31 India Tomato Conventional 34.9 15.7 Prativa and Bhattarai (2011)

INM 41.3

32 India Mustard Conventional 2.6 25.9 Pati and Mahapatra (2015)

INM 3.5

33 India Brasssica napus Conventional 2 25.9 Nyamadzawo et al. (2014)

INM 2.7

34 India Cotton Conventional 61.3 11.8 Marimuthu et al. (2014)

INM 69.4

35 China Vegetable species Conventional 69.5 19.0 Zhang et al. (2012)

INM 85.9
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placement, which can greatly boost N-use efficiency with low NH3 
volatilization and reduces nitrate-leaching (Jambert et al., 1997). 
Because nitrification occurs mostly following fertilizer N application 
(Ma et al., 2010) and irrigation, the use of nitrification inhibitors 
can also minimize N2O emissions (Ju et al., 2011). Additionally, 
INM supports the use of organic nutrient sources since they provide 
both greater potential for agriculture’s sustainability and more 
immediate environmental advantages. Combining organic manure 
with other management techniques, such as incorporating 
agricultural residues and creating conservation tillage (such as 
no-till or reduced-tillage practices), can also help to lower GHG 
emissions, enhance soil quality, and boost carbon sequestration 
(Huang and Sun, 2006).

Reducing environmental pollution can be achieved by developing 
precision nutrient management techniques, promoting nutrient 
recycling and reuse strategies, exploring the use of cover crops and 
diversified cropping systems. Precision nutrient management 
techniques minimize nutrient losses to the environment by refining 
nutrient application methods, such as incorporating controlled-
release fertilizers or using site-specific technologies to target nutrient 
placement. In INM, nutrient recycling and reuse strategies efficiently 
capture and recycle nutrients from various sources, such as agricultural 
residues, livestock manure, and wastewater. Practices like anaerobic 
digestion, composting, and biochar production can be used to convert 
these nutrient-rich materials into valuable organic amendments. 
Intercropping and crop rotation can also be made an integral part of 
INM systems that incorporate nitrogen-fixing crops can also reduce 
the need for synthetic nitrogen fertilizers and decrease nitrogen runoff.

3.3. Carbon sequestration

Soil OM is the most important indicator of soil fertility, quality, and 
productivity, and is usually estimated by determining SOC (Rasmussen 
et al., 1998). It is generally believed that fertilizer application increases 
residues, including roots, returned to the soil, and as a result, can 
increase SOM content and C sequestration (Lu et al., 2009; Paustian 
et  al., 2019). The INM through green manuring, crop residue 
incorporation and other animal-based manures has a profound 
influence on soil carbon stock. From their study, Sujata et al. (2007) 
revealed application of inorganic fertilizers in combination with 
organic manure has a positive influence on all soil properties, especially 
soil organic carbon. Similar, observations were also made by Singh 
et al. (2009) where the addition of inorganic fertilizers with various 
organic manures in rice-wheat system enhanced the soil particle 
aggregation which in turn resulted in higher storage of soil organic 
carbon content. For instance, several studies conducted in India to 
know the effect of integrated nutrient supply on soil organic carbon 
status indicated significant gain in soil organic carbon, especially under 
intensive cropping systems like rice-wheat (Singh et al., 2000; Nayak 
et al., 2012; Ramteke et al., 2017), maize-wheat (Paramesh et al., 2014, 
2020), maize-mustard (Saha et al., 2010; Moharana et al., 2012), and 
rice-groundnut (Prasad et al., 2002; Table 3).

The direct application of organic manure to the soil, which 
encouraged the development and activity of microorganisms, as well 
as improved root growth, which led to increased biomass output, crop 
stubbles, and residues, are both associated with increasing the amount 
of organic carbon in the INM (Yilmaz and Alagöz, 2010; Singh et al., 

2011; Moharana et al., 2012). The increased carbon content of the soil 
have been caused by the eventual decomposition of these components. 
Additionally, the inclusion of FYM facilitated the synthesis of humic 
acid, which subsequently raised the soil’s organic carbon content 
(Bajpai et  al., 2006). Further, they opined that increased residue 
return, and minimum or zero tillage practices as the contributing 
factors to increasing SOC under INM practice.

A review of the long-term fertilizer experiment in China by Lu 
et al. (2009) observed linear relationships between the amount of N 
application and straw incorporation to soil C sequestration. Contrary 
to this belief, Khan et  al. (2007) observed a decline in SOC after 
50 years of chemical fertilizer application despite crop residue 
incorporation due to excessive N removal by crops to the tune of 
60%–190%. The possible reasons for the decrease in SOC under 
continuous chemical fertilizer application were (i) acid forming 
ammonium fertilizers application delay soil C decomposition, (ii) 
enhancement in the activities of heterotrophic soil microorganisms 
that use C derived from crop residues (Mack et al., 2004; Khan et al., 
2007), and (iii) decrease in C:N ratio lead to bacterial-dominated 
microbial communities, this further results in faster decomposition of 
SOC (Moore et al., 2003). Increased decomposition of SOC will result 
in more dissolved organic C, which can be  lost through leaching 
(Mack et al., 2004; Van Kessel et al., 2009).

TABLE 3 Variation in soil organic carbon due to conventional and 
integrated nutrient management system in India.

S 
no.

Crop/
cropping 
system

Nutrient 
management 
system

SOC 
(%)

References

1 Rice Conventional 3.02 Yaduvanshi (2017)

INM 3.70

2 Rice Conventional 11.1 Bharali et al. (2017)

INM 17.8

3 Rice-wheat Conventional 1.25 Kumar et al. (2015)

INM 1.33

4 Rice-wheat Conventional 5.10 Yaduvanshi (2017)

INM 6.80

5 Rice-wheat Conventional 5.50 Nayak et al. (2012)

INM 6.30

6 Rice-wheat Conventional 5.60 Nayak et al. (2012)

INM 7.70

7 Rice-wheat Conventional 8.40 Nayak et al. (2012)

INM 9.90

8 Rice-wheat Conventional 0.37 Walia et al. (2010)

INM 0.54

9 Maize-wheat Conventional 3.67 Hazra et al. (2019)

INM 4.50

10 Pearl millet-

wheat

Conventional 8.50 Moharana et al. 

(2012)INM 11.08

11 Maize-mustard Conventional 2.07 Saha et al. (2010)

INM 2.41

12 Field pea Conventional 0.45 Kumari et al. (2012)

INM 0.49

13 Guava Conventional 0.67 Sharma et al. (2013)

INM 0.71
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TABLE 4 Variation in soil bulk density due to conventional and integrated 
nutrient management system of India.

S 
no.

Crop/
cropping 
system

Nutrient 
management 
system

B.D 
(Mg/
m3)

References

1 Maize Conventional 1.54 Kannan et al. (2013)

INM 1.44

2 Maize Conventional 1.33 Kalhapure et al. 

(2013)INM 1.31

3 Rice-wheat Conventional 1.41 Kannan et al. (2013)

INM 1.35

4 Rice-wheat Conventional 1.42 Nayak et al. (2012)

INM 1.41

5 Rice-wheat Conventional 1.46 Nayak et al. (2012)

INM 1.38

6 Rice-wheat Conventional 1.37 Nayak et al. (2012)

INM 1.35

7 Rice-wheat Conventional 1.46 Bharali et al. (2017)

INM 1.38

8 Rice-wheat Conventional 1.48 Sandhu et al. (2020)

INM 1.31

9 Rice-wheat Conventional 1.34 Sandhu et al. (2020)

INM 1.25

10 Maize-

mustard

Conventional 1.45 Saha et al. (2010)

INM 1.38

11 Sorghum-

wheat

Conventional 1.30 Kharche et al. (2013)

INM 1.21

12 Potato Conventional 1.55 Nath et al. (2012)

INM 1.40

13 Tomato-

moong-toria

Conventional 1.35 Salahin et al. (2011)

INM 1.40

Enhancing carbon sequestration through integrated nutrient 
management can be achieved by exploring soil management practices, 
investigating the role of plant–soil-microbial interactions, exploring the 
integration of agroforestry practices, developing precision nutrient 
management techniques, and using modeling tools and decision 
support systems. Soil management practices that promote carbon 
sequestration include the use of organic amendments, cover crops, and 
crop rotations. These practices can help to increase soil organic matter, 
which is a major sink for atmospheric carbon. Beneficial soil 
microorganisms, such as mycorrhizal fungi, can help to improve 
nutrient uptake, promote root growth, and enhance soil aggregation. 
These activities can create conditions that are favorable for carbon 
sequestration. Agroforestry systems can provide multiple benefits, 
including increased biomass production and carbon storage. Precision 
nutrient management techniques can indirectly contribute to carbon 
sequestration by improving nutrient use efficiency and minimizing 
nutrient losses. Adaption of modeling tools can consider factors such as 
soil type, climate conditions, and crop management practices to estimate 
carbon sequestration rates and provide recommendations for optimizing 
nutrient management strategies that enhance carbon sequestration.

3.4. Soil properties

Crops grow better under friable and well-aggregated soils with 
optimum soil bulk density as it greatly influencing crop root growth 
and nutrient uptake. Practicing long-term INM brings a favorable 
difference in soil bulk density (Saha et al., 2010). The main reason for 
decreasing bulk density under INM was aggregation of soil particles 
due to increasing organic matter as well as stability of aggregates which 
leads to an increase in the total pore space in the soil. Islam et al. (2012) 
also concluded that the addition of organic matter through organic 
manure decreases the bulk density of soil. Integration of organic 
sources of nutrients such as crop residue and organic manures has a 
significant effect on soil bulk density (Celik et al., 2004). Nevertheless, 
studies undertaken to know the influence of integrated nutrient 
management on soil bulk density indicated favorable and convincing 
results. A study conducted by Nayak et  al. (2012) in rice-wheat 
cropping systems at various places indicated significantly lower values 
of soil bulk density in the plots treated with integrated nutrient 
management systems over conventional chemical fertilizers. Similarly, 
Saha et al. (2010) and Salahin et al. (2011) also revealed the positive 
benefits of integrated nutrient management on soil bulk density in 
maize-mustard and tomato-mung-toria cropping sequence (Table 4). 
A long-term fertilizer experiment conducted in a rice-wheat cropping 
system at Chattisgarh, India ascertained that the incorporation of 
organic sources with chemical fertilizer application decreased bulk 
density, increased infiltration rate, and available NPK status of the soil 
(Bajpai et al., 2006). Significant reduction of bulk density in INM may 
be due to better soil aggregation (Singh et al., 2000), higher organic 
carbon, and more pore space (Selvi et al., 2005). A similar reduction in 
bulk density of soil due to the application of FYM with 100% NPK was 
also observed by Bellakki et al. (1998) and Bhattacharyya et al. (2010).

Table 5 shows an increase in SMBC and DHA under INM over 
conventional chemical fertilization. The increase in microbial biomass 
is mostly driven by the microbial biomass found in the organic 
byproducts and the addition of carbon from the substrate, both of 
which encourage the naturally occurring soil microbiota. The 

combined effect of FYM and chemical fertilizers in raising the SMBC 
under the maize-wheat system was also highlighted by Verma and 
Mathur (2009). The application of biofertilizers is known to create a 
variety of growth-promoting compounds in addition to their basic 
effects, which help explain the rapid expansion of microbial growth. 
Additionally, the crops’ rhizodeposition (Jones et al., 2009) contributed 
to the elevated SMBC under INM practice. Nayak et  al. (2007) 
similarly demonstrated enhanced dehydrogenase activity with both 
compost and inorganic fertilizer application under continuous rice-
growing situations and explained a significant relationship between 
SMBC. The addition of fly ash and FYM to a rice-wheat cropping 
system in Alfisol and Vertisol significantly enhanced the microbial 
biomass carbon and dehydrogenase activity in soil (Ramteke et al., 
2017). Kanchikerimath and Singh (2001) found that the inorganic 
fertilizer (NPK) increased crop yield, SOC, total N, mineralizable C 
and N, microbial biomass C and N, and dehydrogenase, urease, and 
alkaline phosphatase activities, while manure applied together with 
inorganic fertilizer increased these parameters more strongly. However, 
when more organic residues are added to the soil, they undergo 
microbial decomposition, which releases organic compounds like 
polysaccharides, which act as a strong binding agent in the formation 
of large and stable aggregates that help to improve the physical 
properties of soil (Manickam, 1993). Accordingly, Yuhui et al. (2004) 
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highlighted the significance of organic manure addition with chemical 
fertilizers to improve yield, and soil health, and enhance the earthworm 
population in the soil. In another long-term experiment in Germany, 
Marhan and Scheu (2005) observed an increase in earthworm biomass 
by 42.8% in NPK + FYM treatment, with a decrease of 9.4% in NPK 
treatment. They ascertained an increase in earthworm biomass in 
NPK + FYM could be due increased utilizable SOM pool.

Future research in integrated nutrient management can prioritize 
enhancing soil quality, a critical aspect of sustainable agriculture. One 
promising area is the exploration of practices that enhance soil organic 
matter content and composition. Efforts can focus on identifying 
effective organic amendments, cover crops, and crop rotations that 
facilitate the accumulation of stable organic matter in soils. 
Understanding the interactions among nutrient management practices, 
organic matter dynamics, and soil microbial communities will provide 
valuable insights for optimizing soil quality enhancement. Additionally, 
research should emphasize nutrient management strategies that 
promote soil nutrient cycling and enhance nutrient use efficiency. This 
involves investigating the synergistic relationships between organic and 
inorganic fertilizers, biofertilizers, and soil microorganisms in nutrient 

cycling processes. Developing nutrient management approaches that 
minimize nutrient losses through leaching, volatilization, and runoff, 
while simultaneously ensuring sufficient nutrient availability for crops, 
will improve nutrient use efficiency and contribute to soil quality 
enhancement. Moreover, such practices will help mitigate 
environmental pollution associated with nutrient runoff.

3.5. Integrated nutrient management on 
soil health and crop quality

The current review has shown a positive effect of Integrated 
nutrient management (INM) on yield, soil microbial activity, SOC, 
and BD over conventional chemical fertilizer application. These 
summarized results further highlighted reduction in use of chemical 
fertilizer under INM practices, this in turn resulting in reduction of 
environmental burden associated with fertilizer production, transport, 
and its use. The main objective of INM is to wisely utilize its three 
primary components. These include harnessing the existing synergy 
between dual-purpose microbes (which promote growth and control 

TABLE 5 Variation in SMBC and dehydrogenase activity due to conventional and integrated nutrient management system.

S no.
Crop/cropping 
system

Nutrient 
management system

SMBC  
(kg/m3)

Dehydrogenase  
(μg TPF g−1 h−1)

References

1 Wheat Conventional 51.7 12.43 Argal (2017)

INM 62.9 45.49

2 Cabbage Conventional 318.5 - Swami et al. (2020)

INM 414.8

3 Onion Conventional 80 6.42 Gupta et al. (2019)

INM 143 11.42

4 Sorghum Conventional 266.9 0.31 Sharma U. et al. (2016)

INM 303.9 0.33

5 Rice Conventional 80 - Bharali et al. (2017)

INM 170

6 Rice-niger Conventional 75.8 - Gogoi et al. (2010)

INM 136.2

7 Rice-toria Conventional 124 198.0 Nath et al. (2012)

INM 222.8 257.30

8 Rice-wheat Conventional 49.6 64.63 Nath et al. (2011)

INM 167.7 152.94

9 Rice-wheat Conventional 147.9 - Borase et al. (2021)

INM 250

10 Rice-chickpea Conventional 161.5 - Borase et al. (2021)

INM 258

11 Rice-wheat-moong Conventional 203.1 - Borase et al. (2021)

INM 292.3

12 Rice-wheat-rice-

chickpea

Conventional 167.3 - Borase et al. (2021)

INM 241.2

13 Maize-mustard Conventional 266.8 - Saha et al. (2010)

INM 317

SMBC, soil microbial biomass carbon; INM, integrated nutrient management.
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soil-borne pathogens), limiting the use of chemical fertilizers, 
promoting the multiplication of native soil microbial diversity through 
organic substrates, and maintaining a nutrient inflow that exceeds 
outflow. Additionally, the aim is to ensure that production economics 
are favorable in the market. Nevertheless, there are still several crucial 
areas that require urgent attention to make INM a globally dynamic 
nutrient management approach. Through enhancement of SOC and 
soil microbial activity INM increases soil nutrient availability and it is 
having positive impact on crop quality.

4. Conclusion

Farmers have rich experiences in integrated and efficient 
utilization of different sources of organic materials to produce modest 
crop yields and maintain soil fertility using traditional farming 
practices. However, during the last two decades, to achieve food 
security with declining land and other resources, this practice is 
gradually being abandoned, and nutrient management is being shifted 
to over-reliance on chemical fertilizers. Over-application of N has 
become more common in intensive agricultural regions, leading to 
low nutrient-use efficiency and environmental pollution, which 
threaten the long-term sustainability of the agricultural system. Many 
factors might have contributed to the over-application problems 
including obtaining higher yields as a top priority, small land holding, 
lack of nitrogen management, and lack of effective extension systems. 
A review of experiments conducted globally indicates that chemical 
fertilizers alone are not enough to improve yield and soil quality at 
high levels. Further, the review also highlighted the negative effects of 
the continuous use of synthetic N fertilizers on soil organic carbon, 
bulk density, soil enzymatic activity, SMBC, and the environment. 
Crop yield responses to nutrient management may vary significantly 
from year to year due to variations in weather conditions and 
indigenous N supply, and thus the commonly adopted prescriptive 
approach to N management needs to be replaced by a responsive 

in-season management approach based on the diagnosis of crop 
growth and N status and demand.
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