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Impact Statement 

Whether extinction is random or selective is important for understanding the history of 

biodiversity and for better predicting the outcomes of anthropogenic extinction.  Analysis of 

patterns of extinctions in morphospace can aid in understanding form and function interact 

with extinction processes in a selective way. Morphospaces are mathematical spaces 

constructed from variables that represent the form of organisms. If carefully constructed, 

the distribution of species in a morphospace summarizes their functional properties and 

ecological roles. The morphospace pattern of species that succumb to extinction can provide 

clues about the factors that make extinction more likely. This paper reviews strategies for 

analyzing extinctions in morphospace, it explains some of the most common ways in which 

misinterpretations can arise from the mathematical properties of morphospace, and it 

makes suggestions how to avoid misinterpretations. 
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Abstract 

Processes of extinction, especially selectivity, can be studied using the distribution of 

species in morphospace. Random extinction reduces the number of species but has little 

effect on the range of morphologies or ecological roles in a fauna or flora. In contrast, 

selective extinction culls species based on their functional relationship to the altered 

environment and, therefore, to their position within a morphospace. Analysis of the 

distribution of extinctions within morphospaces can thus help understand whether the 

drivers of the extinction are linked to functional traits. Current approaches include 

measuring changes in disparity, mean morphology, or evenness between pre- and post-

extinction morphologies. Not all measurements are straightforward, however, because 

morphospaces may be non-metric or non-linear in ways that can mislead interpretation. 

Dimension-reduction techniques like principal component analysis – commonly used with 

highly multivariate geometric morphometric data sets – have properties that can make the 

center of morphospace falsely appear to be densely populated, can make selective 

extinctions appear randomly distributed, or can make a group of non-specialized 

morphologies appear to be extreme outliers. Applying fully multivariate metrics and 

statistical tests will prevent most misinterpretations, as will making explicit functional 

connections between morphology and the underlying extinction processes.  
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Introduction 

Whether extinctions are random or selective remains an important question in ecology and 

evolutionary biology. The standing diversity of species at any time (t) and place (m) is a 

balance between the rate of extinction () and the rate of origination ()such that mt = ae(-

)t, where a is the standing diversity at an earlier time t = 0 (Raup 1985). Thus, the nature 

of extinction – constant or episodic, random or selective, ecologically intrinsic or driven by 

external processes – is key to understanding the processes that control biodiversity past 

and future (Yule, 1925; MacArthur and Wilson, 1963; Raup and Sepkoski, 1984; Raup, 

1994; McKinney, 1997; Droser et al., 2000; Cimpaglio, 2001; Lyons et al., 2004; Koch and 

Barnosky, 2006; Roy and Goldberg, 2007; Jablonski, 2008; Jackson, 2008; Lockwood, 2008; 

Gill et al., 2009; Pereira et al., 2010; Alroy, 2015).  

Morphospaces order species by their morphological traits in ways can be used to assess 

randomness or functional patterns by which taxa succumb to extinction.  For example, 

morphospaces can help distinguish stochastic extinction from interspecific competition as in 

the Red Queen hypothesis (Van Valen, 1973) from non-random extinction linked features 

associated with trophic level, body size, geographic range, dietary or locomotor 

specialization, phylogenetic relationship, or physiological tolerance (e.g., Buzas and Culver, 

1984; McKinney, 1997; Jablonski, 2005; Leighton and Schneider, 2008; Lockwood, 2008; 

Fritz and Purvis, 2010; Payne et al., 2016). Indeed, analyses of morphospaces themselves 

can reveal evolutionary constraints, many-to-one functional mappings, and patterns of 

convergence that may themselves feed into extinction processes (e.g., Raup, 1966; 

Mitteroecker and Hetteger, 2009; Hallgrímmson et al., 2017; Gerber, 2014, 2017; Polly, 

2008, 2017). The increasing ease of obtaining morphometric data has allowed the role of 

morphological specialization in extinction to be more widely studied (e.g., Johnson et al., 

1995; Hopkins, 2013; Wilson, 2013; Halliday and Goswami, 2016; Grossnickle and 

Newham, 2016; Hopkins and Gerber, 2017; Siebert et al. 2018; Polly, 2020; Bazzi et al., 

2021; Ali et al., 2023).   

Here I review the concept of morphospaces, ways of measuring patterns of extinction within 

morphospaces, pitfalls for interpreting patterns in high-dimensional morphospaces like 

those derived from geometric morphometrics, and remedies to avoid those pitfalls. 
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Morphospaces and the study of extinction 

A morphospace is any mathematical space defined by morphological variables. The simplest 

morphospaces are univariate, but they can have any number of dimensions defined directly 

by variables like length, width, and height, by transformed variables like principal 

components axes, or by axes derived from pairwise distances as in principal coordinates 

spaces (Thompson, 1917; Blackith and Reyment, 1971; Mardia et al., 1979; Mitteroecker 

and Hutteger, 2009; Chartier et al., 2017). Geometric morphometric morphospaces can have 

dozens or even thousands of dimensions. 

Morphospaces can be derived theoretically from principles of embryonic development, 

geometry, or functional properties, or they can be constructed empirically from a measured 

sample (McGhee, 1999, 2007). Raup’s logarithmic shell coiling equations are a classic 

example of theoretical morphospace that represents mantle-based ontogenetic shell 

accretion using four parameters (aperture shape, whorl expansion, aperture translation, 

and the distance of the aperture from the coiling axis) to define a space of all possible shell 

shapes (Raup and Michelson, 1965; Raup, 1966). Most morphospaces, however, are derived 

from empirical data centered on the sample mean with unspecified limits of biologically 

plausible variation within their mathematically infinite bounds. Geometric morphometric 

morphospaces are empirical, as are multivariate spaces based on linear measurements or 

Fourier coefficients (e.g., Sokal, 1961; Rohlf, 1986, 1993). A simulated example of an 

empirical morphospace of brachiopods is shown in Fig. 1. Rarely morphospace axes are 

based on categorical variables, such as Stebbins’ (1951) floral space or Thomas and Reif’s 

(1993) skeleton space. As discussed below, the mathematical properties of these 

morphospaces are varied—not all have orthogonal axes, not all are Euclidean, and not all 

are linear transformations of one another even when they are constructed for the same 

objects. Perceived patterns of extinction can therefore depend in part on the choice of 

variables and ordination.  

Regardless, morphospaces order—or ordinate—species such that their spatial positions 

indicate similarity and differences that can be used to detect patterns of randomness or 

selectivity. Generalized statistical models of morphospace occupation exist that balance 

trait evolution, speciation, and extinction (Slatkin, 1981; Gavrilets, 1999; Pie and Weitz, 

https://doi.org/10.1017/ext.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/ext.2023.16


Accepted Manuscript 

6 

2005), as do studies of statistical issues associated with measuring morphospace occupation 

(Ciampaglio et al., 2001). 

 

Extinction and morphospace distributions 

By removing a subset of species, extinction transforms the distribution of taxa within 

morphospace, leaving a signature of the extinction process (Korn et al., 2013; Ali et al., 

2023). Random (non-selective extinction) will reduce the total number of taxa (Fig. 1c, 2a) 

but should have little statistical effect on the moments of their distribution within the 

space. Selective extinction, however, may change the moments of the distribution, 

especially the mean and variance (variance in morphospace is one measure of 

morphological disparity (Foote, 1997)). If only certain kinds of specialized morphological 

outliers are more vulnerable (Fig. 1d), both the disparity and the mean will be affected 

(Fig. 2b), but if all morphologically distinctive species are likely to be culled, then the 

disparity will decrease but the mean will be unchanged (Fig. 2c).  

Non-selective extinctions in morphospace are expected not only under a truly random ‘field 

of bullets’ scenario (Raup, 1984), but also when the selective filter is unrelated to the 

variables that define the morphospace (Fig. 1e), when the sample does not fully represent 

the range of selectivity of the extinction process (e.g., extinction differentially affects high 

trophic levels and only carnivores are included in the study), or under the Red Queen model 

in which all species are continually competing for limited resources and eventually lose 

(Van Valen, 1972). Selective extinction can occur when highly derived and ecologically 

specialized morphologies at the peripheries of morphospace are susceptible, when one part 

of the morphospace represents adaptations to an environment that is hit by the extinction 

process, or similar scenarios. Contraction of niche space is example cause of selective 

extinctions that would reduce morphological disparity (Valentine, 1995; Bush and Pruss, 

2013). Geographic range size and niche breadth have been shown to be factors in selective 

extinction processes, but their connection to morphological traits (and thus morphospace) is 
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indirect and varies from clade to clade (Jablonski 2008, 2017; Harnik et al., 2012; Huang et 

al., 2015; Saupe et al., 2015).  

As an example, Cole and Hopkins (2021) using morphospaces derived from discrete 

character data sets found that the Late Ordovician mass extinction of diplobathrid crinoids 

was random with respect to morphology and ecology, and that post-extinction recovery in 

this clade re-filled previously occupied regions of morphospace rather than exploring 

previously unrealized morphologies. The non-selectivity of the mass extinction was notably 

different from background extinctions in the same clade through the Paleozoic which 

selectively removed species with specific filtering strategies and habitats, especially those 

that were highly specialized (Baumiller, 2003; Liow, 2004). In contrast, Wilson (2013) found 

using morphospaces derived from geometric morphometrics that the end Cretaceous 

extinction was highly selective on the dietary specializations of mammals, preferentially 

removing larger bodied taxa with carnivorous and specialized herbivorous diets suggesting 

that the extinctions were caused by depressed productivity in the aftermath of the asteroid. 

Korn and colleagues (2013) used the expected changes in disparity and mean morphology to 

distinguish selectivity and asymmetry in extinction. They used standardized versions of the 

range of morphological disparity, its total variance, and the change in the position of the 

mean morphology (centroid) to define an “extinction space”. To take into account the 

correlation between range and variance metrics, they used principal components to reduce 

their space to a “selectivity” axis driven by change in disparity and an “asymmetry” axis 

driven by shifts in mean morphology (Fig. 2a-c).  

Ali and colleagues (2023) pointed out that some extinction processes might selectively 

remove species that lie clustered within the overall distribution of taxa leaving a “hole” in 

the morphospace (Fig. 2d). Disparity and mean morphology will usually be affected by such 

extinctions, but they will produce smaller changes on the selectivity and asymmetry axes of 

extinction space than when extinction differentially affects the periphery of morphospace. 

Nevertheless, selective extinction of morphologies on the interior of morphospace 

distributions could be just as easily produced as selective extinction at the edges by 

reductions of ecospace or culling of taxa at certain trophic levels. 
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Ali and colleagues (2023) also argued that random extinction may reduce disparity when 

species are concentrated near the center of morphospace (e.g., if they are multivariate 

normal). They therefore argued that the density distribution of species in morphospace is 

also an important metric for assessing extinction selectivity. If measured as variance, 

disparity would drop in this scenario only when the risk of extinction is distributed 

uniformly across the morphospace (because more rare species at the periphery would be lost 

than in the dense central region), but not if each species had an equal probability of 

extinction (range-based disparity would decrease in either scenario). Note that expectations 

are contingent on the peculiarities of the mathematical properties of the morphospace, the 

complexity of the distribution of species within it, and sample size (e.g., Ciampaglio et al., 

2001). Regardless, the density distribution of species within a multivariate morphospace is 

more complex than it might appear as discussed below. Clumpiness or evenness statistics 

can be used to determine whether extinctions are clustered within limited regions of 

morphospace, regardless of whether at the periphery or in the interior (e.g., Heip et al., 

1998; Tuomisto, 2012). 

 

Potential pitfalls 

Gerber (2017) warned that the mapping between morphospaces derived from different 

quantifications of the same morphologies can be complex and non-intuitive. The topological 

relationships between alternative morphospace projections – the apparent relationships 

between taxa, the proportionality of their spacing, and their apparent location with respect 

to the center and periphery of the morphospace – is partly due to their morphology and 

partly due to the mathematical properties of the space. Careful attention should therefore 

be paid to how the morphospace is constructed and what can unambiguously be inferred 

from it. 

Mitteroecker and Huttegger (2009) reviewed the mathematical and geometric properties of 

morphospaces constructed from several types of data and methods. Some are composed of 

many kinds of variables—linear caliper measurements, angles, volumes, areas, counts of 
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structures, or matrices of meristic character states—that do not share a common unit of 

measurement. These spaces are referred to as non-metric because standard concepts of 

“direction” and “distance” are ambiguous: the scaling of one axis might be measured in 

radians and another in centimeters making the proportional relationship of the axes and 

the units of multivariate distance undefinable. Measures of evenness are likely to be quite 

ambiguous in non-metric spaces.  

The theoretical morphospace defined by Raup’s shell coiling parameters (Fig. 3a; Raup, 

1966) is an example of a non-metric space whorl expansion, translation, and distance 

parameters are measured in different units making it difficult to equate change in one 

direction relative to another. The morphospace defined by geometric morphometrics of the 

same shells, in contrast, is a metric space where change in all directions is measured in the 

same Procrustes shape units (Fig. 3b; Gerber, 2017; Polly, 2017). In the non-metric space, 

the measured disparity is dependent on arbitrary scaling between the incommensurate 

axes, but in the metric space the measured disparity is more objective. Measuring the 

asymmetric component of an extinction in non-metric space is problematic because the 

magnitude of a shift in one direction cannot be compared to a shift in a different direction, 

but asymmetry in metric space is invariant to direction.  

Some spaces are metric but non-Euclidean (i.e., curved, bounded, or non-parallel; 

Mitteroecker and Hutteger, 2009). Constraints or covariances between variables can reduce 

the morphospace’s dimensionality causing it to be curved or otherwise non-linear analogous 

to the surface of a sphere. Geometric morphometric spaces, for example, are non-Euclidean 

Riemannian hyperspheres whose dimensionality is reduced because of the translation, 

rotation, and scaling steps of Procrustes superimposition (Kendall, 1984; Dryden and 

Mardia, 1998). Distances and symmetry can be ambiguous in these spaces. In geometric 

morphometric morphospaces, shapes are identical at all of the spaces’ peripheral edges, 

which would cause an extreme asymmetrical extinction (Fig. 2b) to look like a peripheral 

model (Fig. 2c). 

More than one morphospace can often be constructed for the same species, like the snail 

shells in Fig 2. In this example, the same shell shapes are described by non-metric Raup 

coiling parameters in Fig. 3a and by metric semilandmarks in Fig. 3b. Both morphospaces 

are valid representations, but the mapping between them is non-linear (because of the 
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logarithmic component of Raup’s equations). The same pattern of extinction has different 

mathematical properties in each space: a uniformly random pattern in the Raup space 

would be non-uniform (i.e., selective) in the shape space and vice-versa; likewise, an 

extinction that culled the periphery of the Raup space would also cull the periphery in the 

shape space, but as a result the mean snail shell would change in shape space but not in 

Raup space.  This seeming paradox is not a problem in the strict sense—it simply means 

that whatever the root cause of the extinction might be, it “sees” coiling geometry 

differently than overall shell shape—but the details are important for drawing 

interpretations about the extinction process from the observed pattern.  

Multivariate morphospaces are common in studies of extinction, and they are usually 

constructed using either principal components analysis (PCA) from data consisting of 

metric variables or principal coordinates analysis (PCO) when the data are meristic or 

categorical. PCAs constructed from covariance matrices—appropriate when all of the 

variables have the same units like in geometric morphometrics—are simple rigid rotations 

of the data that maintain the original spacing and distance between the objects. In 

principle, PCA space is identical to the original variable space except for the coordinate 

system, but some consequences of the transformation may seem counter intuitive when 

only two or three dimensions are visible. For more background on multivariate ordinations, 

including PCA, readers are referred to longer explanations in the literature (Tatsuoka, 

1988; Hammer and Harper, 2006; Legendre, 2012; Polly et al. 2013; Polly and Motz, 2017). 

Properties like peripherality, position of the mean shape, and the distribution of species 

may differ markedly when the original variable space and PCA morphospace are viewed in 

typical two-dimensional projections.  

Fig. 4 shows the first two dimensions (X & Y) of a five-variable space, each with a flat 

distribution that creates a rectilinear morphospace for the 10,000 random points shown 

here (Fig. 4a,b). Because these variables have the same mean and variance, each accounts 

for about one-fifth (20%) of the total variance. When rotated to principal component (PC) 

space, the distribution projected onto the first two PCs counterintuitively appears to be 

circular (Fig. 4c) with a greater density of points near the center of the morphospace (Fig. 

4d). Because the original variables of this example are uncorrelated, each PC axis also 

explains about one-fifth (20%) of the total variance. Despite being a rigid rotation, the 
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relative distribution of points in PC 1 & 2 space appears to have no correspondence to their 

relative positions in the original X & Y space (Fig. 4e).  

The apparent differences between the original and ordinated PCA morphospaces are optical 

illusions stemming from the way the multidimensional space is projected onto a plane. In 

the full dimensionality, the spacing between objects in the two spaces is identical (the PC 

space is a rigid rotation of the original variable space), but the axes of the first space are 

univariate, whereas the axes of the PC space are linear combinations of all five variables. 

By definition, the first PC axis is the axis of greatest variance in the original variable space, 

the second axis is orthogonal (at right angles) to the first and drawn through the next 

greatest axis of variance, and so on (Hotelling, 1933). The scattered points on the periphery 

of the PC space are those that have consistently high or low values on each of the original 

variables. The greatest Euclidean distance between two points in the original five-

dimensional space is 22.67 (e.g., between a point lying at -10.0 on all five axes from one at 

10.0 on all five) and it is the chance sampling of points that lie at distances close to this that 

define the principal component structure of this data set. Only a small number of points are 

peripheral on all five variables, even though the frequency of points at the extreme (e.g., 10) 

is identical to the frequency of points precisely at the center (0) on any single variable. Most 

points that fall at an extreme on one variable fall between extremes on the other four. 

Consequently, the distribution of points projected onto the PC axes is denser at the center 

than at the periphery and points that appear to be on the periphery in a space defined by 

two of the original variables may lie in the center of the PC 1 & 2 space. The PC 

distribution appears circular simply by chance sampling; if 500,000 points had been used 

instead of 10,000 one would see that the edges of the PC distribution are actually straight, 

forming a polygon with four to ten sides depending on the orientation of the major axes of 

the sample, essentially the “shadow” of a five-dimensional hypercube cast in one direction 

or another.  

The consequences of these transformational illusions are profound if an analysis of 

morphospace is conducted on only a subset of axes instead of the distribution in the fully 

multivariate space. First, a finite sample measured in any subspace of a principal 

component morphospace (e.g., on the first two PC axes) is quite likely to have a higher 

density in the center regardless of whether the data actually have a flat or multinormal 
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distribution. Tests for density or evenness should therefore be performed on all axes, not 

just the first few PCs. Second, measures of disparity and asymmetry also need to be 

assessed with all the axes, not just a couple. Fig. 5 shows what three models of selective 

extinction with respect to the original variables look like projected onto the first two PCs 

and vice versa. What is actually a selective extinction of extremes on two of the five 

variables that reduces disparity appears to be randomly distributed in the space defined by 

the first two PCs with no change in overall disparity, but one that is actually peripheral on 

the first two PCs also appears to be peripheral (but fuzzier) in the original variable space 

(Fig. 5a-b). Extinctions that are actually localized in the central part of either morphospace 

may appear to be asymmetrically peripheral in its counterpart space (Fig. 5e-f). In all 

cases, the seeming contradiction between the distribution of the same extinction in the two 

spaces is an illusion caused by viewing a multivariate distribution in just two dimensions.  

Conclusion 

Because of the growing ease and speed with which morphological data can be collected (e.g., 

Boyer et al., 2015; Riley et al., 2015; Elder et al, 2018; Goswami et al., 2022), it is 

increasingly feasible to study processes of extinction using the lens of its selectivity within 

morphospace. From the distribution of extinctions in a morphospace it may be possible to 

infer the causal links between extinction processes, environments, and organismal function 

that will lead to a better understanding of what differentiates background extinctions from 

the escalating events that produce of mass extinctions.  

Morphospaces can have mathematical ambiguities that may confound interpretations, 

however, including their metric properties, non-linear mappings between morphospaces 

represented by different sets of variables, and the distorting effects of dimension reduction 

techniques. Many of potential pitfalls can be easily circumvented. Several authors have 

made recommendations how to avoid the potentially misleading consequences of ignoring 

the full dimensionality of morphospace (Bookstein, 2013, 2016; Polly et al., 2013; Goolsby, 

2015; Uyeda, 2015; Polly and Motz, 2017; Adams and Collyer, 2018; Cardini et al., 2019). .  

Disparity, asymmetry, and evenness statistics performed multivariately on all five 
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dimensions of the space should produce identical results if calculated on the original 

variables or the PC scores; fully multivariate tests will therefore get around most problems. 

Arguably, interpretations about extinction processes are most effectively framed in terms of 

biological or ecological significance of the specific variables that define the space rather 

than on the general pattern—some variables may be relevant to the selective extinction 

process, others may be correlated with the relevant variables, and yet other variables may 

be random (uncorrelated) with respect to those that are. Focusing on the functional roles of 

the morphology will also circumvent many of the mathematical ambiguities between 

different projections of shape space described above. For example, Hebdon et al. (2022) 

recently used performance spaces, in which multivariate shape is regressed onto 

independent measures of functional performance to estimate functional gradients in the 

shape space (Polly et al., 2016), to study the selectivity of the Triassic-Jurassic extinction 

relative to swimming performance and life strategies in ammonites. If carried out 

multivariately, such an approach would come to the same conclusion about whether the 

extinction was selective relative to morphological function regardless which projection of 

morphospace was used, or even whether a Raup space or geometric morphometric had been 

used.  
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Figure Captions 

Figure 1. A simulated brachiopod morphospace (a) of valves evolved on a random 

phylogeny (b). The morphospace arranges the valves by convexity and hinge angle 

(strophic and astrophic). Three examples of extinction are illustrated: non-selective 

extinction (c), selective for strongly biconvex morphologies (d), and a selective by sub-

clade (e).  Colored dots in b-e show extinct species.  Simulation follows procedures 

described by Polly and Motz (2017). 
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Figure 2. Four scenarios of how extinction affects morphospace distributions. Random 

extinctions (a) are spread stochastically across the morphospace leaving disparity high 

and mean morphology unchanged, corresponding to low selectivity and asymmetry in 

extinction space. Selective extinction at the negative end of one morphological axis (b) 

lowers disparity and shifts mean morphology, raising selectivity and asymmetry in 

extinction space. Selective extinction of all extreme morphologies (c) drops disparity 

drops but leaves mean morphology unchanged, corresponding to high selectivity but 

low asymmetry. Selective extinction of a non-peripheral subset of species (d) produces 

minor changes in disparity and mean morphology, with little or no change in extinction 

space.  
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Figure 3. Two shell morphospaces, one expressed in Raup’s shell coiling parameters (a) 

and the other expressed with geometric morphometric representations of the shell 

shapes (b). The color scheme of the points shows the position of the same shell in the 

two spaces (four peripheral points are illustrated with shells). W = whorl expansion 

rate; D = distance of whorl from coiling axis; T = rate of translation of whorl along 

coiling axis.  
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Figure 4. Comparison between the first two out of five dimensions of original variable 

space (a) where each variable has a uniform distribution (b) with a projection of the 

same data onto their first two principal components (PC1 & PC2) (c) where the density 

of points is greater near the center (d). A mapping of randomly selected points between 

the two spaces demonstrates that some that appear to be peripheral in the original 

variable space fall in the central region of PCA space and vice versa.  
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Figure 5. The apparent transformations of extinction selectivity between trait space and 

principal component (PCA) space when viewed in two dimensions. Extinction of 

peripheral morphologies in trait or PCA spaces can appear either random or fuzzily 

peripheral when transformed to the other space (a,b), asymmetrical extinctions may 

appear fuzzily asymmetrical (c,d), and extinctions of a small range of non-specialized 

morphologies may appear to affect a broad range of specialized morphologies (e,f). 
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