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network for predicting
microvascular invasion of
hepatocellular carcinoma
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Background and purpose: The presence of microvascular invasion (MVI) is a

crucial indicator of postoperative recurrence in patients with hepatocellular

carcinoma (HCC). Detecting MVI before surgery can improve personalized

surgical planning and enhance patient survival. However, existing automatic

diagnosis methods for MVI have certain limitations. Some methods only

analyze information from a single slice and overlook the context of the entire

lesion, while others require high computational resources to process the entire

tumor with a three-dimension (3D) convolutional neural network (CNN), which

could be challenging to train. To address these limitations, this paper proposes a

modality-based attention and dual-stream multiple instance learning(MIL) CNN.

Materials and methods: In this retrospective study, 283 patients with

histologically confirmed HCC who underwent surgical resection between April

2017 and September 2019 were included. Five magnetic resonance (MR)

modalities including T2-weighted, arterial phase, venous phase, delay phase

and apparent diffusion coefficient images were used in image acquisition of each

patient. Firstly, Each two-dimension (2D) slice of HCC magnetic resonance

image (MRI) was converted into an instance embedding. Secondly, modality

attention module was designed to emulates the decision-making process of

doctors and helped the model to focus on the important MRI sequences. Thirdly,

instance embeddings of 3D scans were aggregated into a bag embedding by a

dual-stream MIL aggregator, in which the critical slices were given greater

consideration. The dataset was split into a training set and a testing set in a 4:1

ratio, and model performance was evaluated using five-fold cross-validation.
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Results:Using the proposedmethod, the prediction of MVI achieved an accuracy

of 76.43% and an AUC of 74.22%, significantly surpassing the performance of the

baseline methods.

Conclusion: Our modality-based attention and dual-stream MIL CNN can

achieve outstanding results for MVI prediction.
KEYWORDS

hepatocellular carcinoma, microvascular invasion, multiple instance learning, attention
mechanism, MRI
Introduction

Hepatocellular carcinoma (HCC) is a prevalent cancer that ranks

as the third leading cause of cancer-related death (1). Even with

treatment such as hepatic resection surgery or liver transplantation,

patients still face a high risk of recurrence. Microvascular invasion

(MVI) has emerged as a critical prognostic factor for HCC, with

patients having MVI exhibiting earlier recurrence than those without it

(2, 3). Early identification of MVI before surgery is pivotal in

determining suitable treatment strategies and preoperative adjuvant

therapy (4). Nonetheless, traditional identification methods rely on

postoperative pathological examination, thus making preoperative

assessment a challenge. Hence, there is an urgent need to develop

new methods for preoperatively assessing MVI.

Numerous prior studies have investigated the application of

radiomics in predicting MVI in patients with HCC. In a two-center

study, Tian et al. (5) utilized gadolinium ethoxybenzyl

diethylenetriamine pentacetic acid-enhanced MRI to assess MVI in

small, solitary HCC (<= 3 cm). Matteo et al. (6) identified radiomic

MVI predictors in nodules by analyzing the zone of transition from

contrast-enhanced computed tomography, while Jiang et al. (7)

explored the contribution of F-18-fluorodeoxyglucose positron

emission tomography/computed tomography (F-18-FDG PET/CT)

radiomic features in HCC and intrahepatic cholangiocarcinoma

(ICC) classification and MVI prediction prior to surgery. These

studies have all demonstrated promising performance. Despite their

favorable outcomes, radiomics methods have several limitations.

Precise segmentation of lesions and the selection of hand-crafted

features, which rely on expert knowledge and require significant

annotation time, are some examples.

In recent years, deep learning-based methods have gained

popularity for analyzing medical images, including tasks such as

lesion classification (8), segmentation (9), and detection (10). These

methods have the advantage of extracting informative features with

minimal preprocessing, allowing for autonomous end-to-end

predictions (11). Several studies have explored the use of deep

learning for predicting MVI in HCC patients. Gao et al. (12)

proposed an ensemble learning algorithm based on the lesion patch

of HCC non-contrast T1 weighted MRI. Zeng et al. (13) developed an

attention-based deep learning model for MVI prediction using the

intra-voxel incoherent motion model of diffusion-weighted MRI. Liu
02
et al. (14) used a deep learning model with a combination of CT images

of arterial phase and patients’ clinical factors to assess MVI status.

However, these methods only take into account a single slice or patch

of medical images, thereby overlooking the overall contextual

information of the lesion. To address this limitation, some studies

have focused on incorporating partial or entire lesion portions as input

with 3D CNN. Zhou et al. (15) demonstrated the effectiveness of a

deeply supervised CNNwithmultiple stages of contrast-enhancedMRI

3D blocks forMVI prediction. Zhang et al. (16) built a fusion 3Dmodel

combining three MR sequences for the noninvasive prediction of MVI

in HCC. Jiang et al. (17) developed a Radiomics-Radiological-Clinical

Model and 3D-CNN models based on three CT phases of the volume

data to generate the MVI assessment. Nevertheless, these methods

come with drawbacks such as high GPU memory consumption and

difficulty in training due to their large number of parameters and high

complexity (18). As a result, these methods are often designed with

shallow 3D network layers, which may limit their ability to extract

informative features.

To overcome the limitations of prior research, we introduce a novel

approach called the modality-based attention and dual-stream MIL

CNN. Our method addresses the issue of overlooking vital contextual

information by leveraging all the slices from 3D lesions. What’s more,

unlike 3D CNNs that can be computationally demanding and difficult

to train by directly inputting the entire tumor, our approach uses a 2D

feature extractor to initially process each lesion slice and then

aggregates these features to represent the entire lesion. This strategy

balances computational efficiency with adequate lesion information

extraction. Additionally, our model includes a modality attention

module to help it focus on important MRI sequences, and a dual-

stream MIL aggregator to prioritize critical slices. These modules

emulate the decision-making process of doctors, making our model

more explainable.
Methods

Study participants

This retrospective study was approved by the Ethics Committee

of the Local Imaging Diagnostic Center. The study aimed to analyze

the MRI characteristics of HCC patients who underwent surgery
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between April 2017 and September 2019 for MVI prediction. A total

of 415 consecutive patients diagnosed with HCC by pathological

results were enrolled. Patients with/without MVI was 146 and 137.

The T2-weighted, arterial phase, venous phase, delay phase, and

apparent diffusion coefficient MRI were collected from each eligible

patient for further analysis.

To be eligible for the study, patients had to meet certain criteria,

including a histopathologically diagnosed HCC with confirmed

MVI status and an effective dynamic-contrast enhanced MRI

available within one month before surgery. Patients who had

undergone antitumoral therapies or hepatectomy, had more than

one liver tumor, or had low MRI quality that could affect the

delineation of the region of interest (ROI) were excluded from the

study. Finally, a total of 283 patients were included and

the recruitment process is as shown in Figure 1.The clinical

information of each patient including age, sex, ratio of maximum

to minimum tumor diameter (Max/Min-TD), and tumor location

were collected by clinicians with more than 5 years of clinical

experience. Clinical information was shown in Table 1. The

requirement for written informed consent was waived by the

institutional review board.
Data preprocessing

All MRI used in this study were acquired from Siemens medical

image workstation (syngo.via) for post-processing. The contrast-

enhanced MRI consisted of images of T2-weighted, arterial phase,

venous phase, delay phase, and apparent diffusion coefficient

(Figure 2). Prior to the training process, four preprocessing steps

were performed (Figure 3).

Firstly, A radiologist with five years of experience utilized the

ITK-SNAP software (https://www.radiantviewer.com) to delineate

the ROI and generated a mask for each layer of the arterial phase

MRI. The delineation was then reviewed and confirmed by a

radiologist with 20 years of experience. Each ROI was a bounding

box that approximately 10mm larger than the tumor boundary and

centered on the tumor. This delineation method not only covered

the tumor boundary which would helpful to MVI prediction, but
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also saved a considerable amount of annotation time compared to

fine labeling along the tumor edge. Secondly, to integrate

information from all modalities, the delay phase, venous phase,

apparent diffusion coefficient and T2-weighted MRI were aligned

with the arterial phase through image registration. Thirdly, the five

MRI modality were tailored according to the mask to obtain the 3D

lesion area. Fourthly, the pixel value of each slice was normalized

using Z-score standardization, and each slice was uniformly scaled

to 64×64 pixels before input to the network. During the training

stage, data augmentation was performed by applying a random

horizontal rotation and flip with a probability of 0.5. Overall, the

preprocessing steps were aimed at improving the quality of the

input data and augmenting the dataset to enhance the performance

of the neural network used in this study.
Multiple instance learning

The process of diagnosing diseases by doctors can be effectively

simulated through the use of MIL, which is a type of weakly

supervised learning approach (19). In this approach, the unit of

training and testing is a “bag” composed of multiple instances, with

each instance having an uncertain label (20). The label of a bag is

usually known, and it is considered positive if it contains at least one

positive instance, and negative otherwise. This method mirrors the

diagnostic process used by doctors, who carefully examine all slices

of a 3D medical image. If any abnormalities are detected in a single

slice, the patient can be diagnosed with a problem.

In the field of computer-aided diagnosis, the MIL framework is

widely used in histopathologic whole-slide images (21) and (22).

For binary classification, given a bag B = {(x1, y1),…, (xn, yn)}, where

xi is an instance and yi is the corresponding instance label, with

yi∈{0, 1}, the relationship between the bag labels and the instance

labels can be expressed by the following formula.

c(B) =
0,      iffoyi = 0

1,          otherwise

( )
Proposed framework

Our model is inspired by the process of disease diagnosis

performed by doctors. During this process, doctors examine all

MRI slices, and if at least one slice shows abnormalities, they

determine the presence of a disease; otherwise, they conclude that

there is no disease. This process bears a resemblance to the concept

of MIL, which is why we adopted a MIL approach in our model.

Additionally, when dealing with multi-modal MRI, doctors focus

on certain important MRI modalities and, finally, pay attention to

specific crucial MRI slices. These aspects also serve as inspiration for

our model construction.

Our proposed architecture of this paper was shown in Figure 4

and can be divided into three main parts: a feature extractor, a

modality attention module, and a dual-stream instances feature

aggregation module. The feature extractor is responsible for
FIGURE 1

Flowchart of patient recruitment. HCC, Hepatocellular carcinoma;
MR, Magnetic Resonance.
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extracting instance features, while the modality attention module

emulates the decision-making process of doctors and helps the

model to focus on the most important MRI sequences. The dual-

stream instances feature aggregation module aggregates the features

of all instances into bag features, allowing the model to concentrate

on the critical MRI slices.

In this study, the MRI of a patient’s tumor is treated as a bag,

with each slice of the lesion considered an instance. After

preprocessing, the five MRI modalities of one patient, each with a

dimension of s×64×64, are simultaneously input into the network.

Here, s represents the number of slices in the MRI volume, and 64

represents the width and height of the slice. Each MRI modality is

first processed by a feature sharing extractor, which produces

a feature tensor with a dimension of s×128. After concatenating

the feature tensors of the five MRI modalities, the dimension of the

instance feature tensor is still 1×128. The tensor is then fed into the
Frontiers in Oncology 04
modality attention module, which assigns higher weights to the

MRI modality with the highest predictive effect. The features of the

instances are then aggregated to form the bag features, which are

used to produce the final prediction results.
Feature extractor

Figure 5 illustrates the architecture of the feature extractor,

which comprises five convolutional layers and one fully connected

layer. Each convolutional layer is accompanied by a rectified linear

unit activation function, a batch normalization layer, and a pooling

layer. The purpose of the batch normalization layer is to expedite

model convergence, the relu layer enhances the model’s

nonlinearity, and the pooling layer decreases the size of the

feature map. Specifically, every convolutional layer has a
DA B EC

FIGURE 2

MRI modality of one HCC Patient. (A) Arterial Phase; (B) Delay Phase; (C) Venous Phase; (D) T2-Weighted; (E) apparent diffusion coefficient.
FIGURE 3

Flowchart of preprocess for MRI. ROI, Region of interest.
TABLE 1 Clinical characteristics in the MVI positive and MVI negative groups.

Variables MVI+ (N= 146) MVI- (N= 137) P Value

Sex, no.(%) 0.968

Male 122(83.56) 118(86.13)

Female 24(16.44) 19(13.87)

Age (years), mean ± SD 53.12 ± 12.40 51.54 ± 10.18 0.486

Max/Min-TD, mean ± SD 3.21 ± 0.87 1.83 ± 0.52 0.003

Tumor location, no. (%) 0.146

Right lobe of liver 125(85.61) 116(84.67) .874

Left lobe of liver 21(14.39) 17(15.33)
fron
MV represent MVI positive; MVI, represent MVI negative; Max/Min-TD, the ratio of maximum to minimum tumor diameter.
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convolutional kernel size of 3×3 and the maxpool is 2×2. The

number of channels in each convolutional layer is 16, 32, 64, 128,

256. The neurons of fully connected layer is 128.

In the feature extractor, the input is a 1×64×64 MRI slice, and

after five convolutional layers, the output feature dimension is

256×2×2. Upon flattening, the feature map’s dimension from the

convolutional layers is 4096, which is reduced to 128 by a fully

connected layer.
Modality attention module

Doctors usually rely on multiple MRI modalities to make

diagnostic decisions. In order to replicate this process, a modality

attention module was introduced, as shown in Figure 4, building

upon previous research (23) and senet model (24). This module

replaces the channels in senet with the MRI modality number used

in this study, allowing for automatic perception of the importance

of different MRI modalities. The module consists of three main

operations: squeeze, excitation, and reweight.
Frontiers in Oncology 05
Here, Let M = {m1,m2,m3, m4,m5} refers to the features of five

MRI modalities. mk ϵR S×128 (k = 1, 2, 3, 4, 5) denote the modal

feature tensor of the kth modality, where s represents the number of

slices and 128 represents the feature tensor of each slice. a global

average pooling was used to squeeze a modality-wise descriptor, as

follows:

dk=
1

s�128o
s

i=1
o
128

j=1
mk(i,j)

where mk(i,j) represents the jth element in the ith slice of

mk.The excitation operator maps the descriptor to a set of modality

weights. it was simulated SENet by two fully connected layers and a

relu structure. It can be described as follow:

a=W2relu(W1d)

where d = {d1,d2,d3,d4,d5} is the modality-wise descriptor vector,

W1 and W2 are the weight vector of the two fully connected layers,

and a = {a1,a2,a3,a4,a5} is the attention vector.

The reweight operator ensures that specific MRI modalities are

emphasized by multiplying the attention vector a = {a1,a2,a3} with

the original multi-modality features M = {m1,m2,m3, m4,m5}. It can
FIGURE 4

The framework of the proposed method.
FIGURE 5

The architecture of the extractor. (s, 1, 64, 64) represent the number, channels, length, and width of slice in MRI respectively.
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be described as follow:

~m=o
5

i=1
aimi

Where ~m represents the features of five MRI modalities

after reweighting.
Dual-stream instance multiple
instance aggregator

Apart from the imaging modality, doctors also pay close

attention to the key MRI slices, as these slices provide a clearer

view of lesion information. To replicate this process, we

incorporated the dual-stream MIL aggregator module (25) into

our framework, which was initially designed to operate on

pathological image patches (as illustrated in the Figure 6). Let B =

{x1, …, xn} represent a bag of MRI slices of a particular modality,

where xi represent the instance i. After xi passing through the

feature extractor module and modality attention module, it can be

projected onto an embedding of hi∈ R128×1. The first stream of the

module employs an instance classifier on each instance embedding

and performs MIL max-pooling on the scores to obtain the critical

instance hm and the highest score cm:

cm(B) = max W0h0,…,W0hn−1f g (1)

where W0 is a weight vector of fully connected layer and

represents a classifier. W0himeans get the prediction scores of hi
by classifier. Then the max{W0h0,…,W0hn-1} means get the max

score in W0hi.

The second stream combines all instance embeddings to

generate a bag embedding, which is scored by a bag classifier.

Specifically, each instance embedding hi (including hm) were

converted into two vectors, query qi∈ R128×1 and information vi∈
R128×1 by:

qi = Wqhi,  vi = Wvhi · ·i = 0,…, n − 1 (2)
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where Wq and Wv is a weight matrix, query qi and query vi are

another information representation of hi by linear operation of

Wqhi and Wvhi. Then a similarity U(hi, hm) between an instance to

the critical instance was defined by

U(hi, hm) =
exp ( 〈 qi, qm 〉 )

o
N−1

k=0

exp( 〈 qk, qm 〉 )
(3)

qi, qm   represents the inner product of any vectors qi and critical

instance vectors qm, also it represent the cosine similarity of qi and

critical instance vectors qm. Then a softmax layer to calibrate the

weights of all U(hi, hm) to ensure that their sum was 1. The bag

embedding, denoted by b, is obtained by performing a weighted

element-wise sum of all instances’ information vectors vi, where the

weights are determined by their similarity to the critical instance.

b = o
N−1

i
U(hi, hm)vi (4)

The bag score cb is then determined by:

cb(B) = Wbb (5)

whereWb is a weight vector for binary classification.Wbbmeans

get the prediction scores of b by classifier Wb. The final bag score is

the average of the two streams’ scores:

c(B) =
1
2
(cm(B) + cb(B)) (6)

Where cm(B) represent the max instance score, cb(B) represent

the bag score, and cm(B) represent final bag score for prediction.
The implementation

We utilized the Pytorch open-source deep learning framework

to implement the proposed framework. All experiments were

conducted on a Dell T640 tower server deep learning workstation,

which had two independent NVIDIA GeForce RTX 2080Ti

graphics cards and two Intel Xeon Silver 4110 CPUs. For the

experiments, we employed the cross-entropy loss function and

the Adam optimizer. The gradient descent method used an initial

learning rate of e-4, with a decay rate of 5e-3. The batch size of each

iteration was set to 1, and the number of training epochs was 100.
Statistical analysis

In this study, the dataset was divided into a training set and a

testing set in a ratio of 4:1. Five-fold cross-validation was employed

to evaluate model performance, enhancing stability and reducing

evaluation bias. Categorical variables were statistically analyzed

using the chi-square test and continuous variables were analyzed

using the student’s t test to determine significant differences

between the MVI and non-MVI groups. To assess the

performance of the models, five performance metrics: accuracy,

sensitivity, specificity, positive predictive value (PPV), negative
FIGURE 6

Overview of the dual-stream MIL aggregator.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1195110
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1195110
predictive value (NPV) and area under the curve (AUC) were

computed. The 95% confidence intervals (CIs) for AUC was

estimated using the DeLong method. The performance of

different models were compared using the student’s t-test, and a

P-value of less than 0.05 was considered as indicative of significant

difference. Statistical computing was implemented with the Scipy

package, an open-source data processing tool based on the Python.
Result

Patient characteristics

The clinical characteristics of the cases are presented in Table 1.

Among the 283 cases, 146 (53.4%) were positive for MVI, while 136

(46.6%) were negative for MVI. There were no significant

differences in terms of sex, age, and tumor location between the

MVI positive and MVI negative groups. However, the ratio of

maximum to minimum tumor diameter (Max/Min-TD) was

significantly higher in the MVI positive group (3.21 ± 0.87)

compared to the MVI negative group (1.83 ± 0.52) with a P-value

of 0.003.
Performance analysis of different
module included

The ablation experiments were conducted to demonstrate the

effectiveness of our method. The benchmark were obtained by

removing the framework’s modality attention and dual-stream

instance aggregator module. Then, these two modules were added

to the benchmark, either separately or together. The results were

displayed in Table 2.

The benchmark achieved an accuracy of 67.14% and an AUC of

0.6710. Upon adding the modality attention module, the accuracy

and AUC improved to 69.64% and 0.7023, respectively. Similarly,

adding the dual-stream instance aggregation module resulted in an

accuracy and AUC of 75.71% and 0.7336. Combining both modules

yielded the best prediction performance, with an accuracy of 76.43%

and an AUC of 0.7422. Notably, this represents a 13.84% and 10.61%

improvement in accuracy and AUC compared to the benchmark.

This ablation experiments confirmed the importance of the modality

attention and dual-stream instance aggregator modules in improving

prediction performance. Specifically, combining both modules
Frontiers in Oncology 07
yielded the greatest improvement in accuracy and AUC,

demonstrating the efficacy of our proposed method.
Performance with different convolutional
layers of feature extractor

In order to extract features from 2D slices within the bag, we

designed a simple CNN as a feature extractor. However, the number

of layers within the CNN can significantly impact the model’s

performance. Therefore, we conducted experiments to determine

the optimal number of layers to use. The performance of the CNN

was evaluated with varying numbers of convolution layers, as

shown in Table 3. Specifically, we tested the CNN with 3, 4, 5, 6

and 7 layers, which resulted in AUC values of 0.7093, 0.7339,

0.7422, 0.7417 and 0.7317, respectively. Overall, setting the number

of layers to 5 yielded the best results. When the number of layers

was less than or greater than 5, the performance deteriorated.

Therefore, it is advisable to use 5 layers for optimal results.
Performance with individual MRI modality

Different modalities of MRI can reveal distinct characteristics of

tumors (26), and physicians tend to focus on specific modalities to

make informed decisions. In order to assess the correlation between

the model’s performance and realistic clinical diagnosis, we

evaluated the model’s results under individual MRI modalities. As

shown in Table 4, the arterial phase MRI was found to be the most

effective modality for predicting MVI, with accuracy, sensitivity,

NPV, and AUC values of 72.50%, 76.73%, 76.19%, and 0.6974,

respectively. The venous phase MRI was the second most effective

modality, followed by the ADC, Delay MRI, and T2 MRI in

descending order of effectiveness. The best results were obtained

when all MRI modalities were added with accuracy, specificity,

PPV, and AUC values of 76.43%, 80.36%, 81.74% and 0.7422.
Performance of data augmentation

In this study, a data augmentation strategy was employed,

including random horizontal and vertical flips within 90°, due to

the limited size of the dataset. To assess the impact of this strategy,

the performance of the model was compared with and without data
TABLE 2 Model performance of different modules included in the proposed framework.

Benchmark Attention DS Aggregator Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

NPV
(%)

PPV
(%) AUC

✓ 67.14 73.89 60.30 67.38 67.77 0.6710

✓ ✓ 69.64 72.22 65.93 70.45 69.80 0.7023

✓ ✓ 75.71 69.29 81.18 72.93 83.09 0.7336

✓ ✓ ✓ 76.43 71.41 80.36 74.16 81.74 0.7422
frontie
Values in bold black font represent the best performance in each column.
rsin.org

https://doi.org/10.3389/fonc.2023.1195110
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1195110
augmentation. The results, presented in the Table 5, indicate that

the model performs significantly better when data augmentation is

utilized. This improvement may be attributed to the fact that the

combination of random data augmentation for each instance

greatly increases the number of bags, leading to a more diverse

and robust dataset.
Comparison with other methods

In order to further validate the effectiveness of our proposed

method for diagnosing MVI, we conducted a comparative analysis

with four representative MVI diagnostic approaches based on deep

neural networks. However, since each study utilized different

datasets, directly comparing the results would have been unfair.

Therefore, we reproduced these methods on our datasets to ensure a

fair comparison. Specifically, in reproducing Liu et al. (14), we

employed a five-branch network of ResNet18 (27) to extract

features from the largest slice of each MRI modality, including

T2-weighted, arterial phase, venous phase, delay phase, and

apparent diffusion coefficient. The output features of each
Frontiers in Oncology 08
network were then combined for the final prediction. Similarly,

models following Zhou et al. (15), Jiang et al. (17), and Zhang et al.

(16) with five-branch network were constructed. In reproducing

Zhou’s approach, the entire HCC tumor was inputted instead of

using 3D block lesions. Additionally, deep supervision was included

for each network by employing the cross-entropy loss function. The

results of the comparative analysis are presented in Table 6 and

Figure 7, and it is clearly displayed that the proposed method

outperformed the others in terms of accuracy, specificity, PPV, and

AUC. Although there was no significant difference in the values of

AUC, superior performance across multiple metrics was achieved

by the proposed approach.
Discussion

The presence of MVI is a significant predictor of postoperative

recurrence in HCC patients, and its identification before surgery

can improve personalized surgical planning, ultimately enhancing

patient survival. While radiomics and deep learning have been used

to predict MVI in HCC, they have limitations. Radiomics relies on
TABLE 4 Model performance under individual MRI modality.

Modality Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

NPV
(%)

PPV
(%) AUC

Arterial 72.50 76.73 68.81 76.19 72.30 0.6974

Delay 68.57 68.15 69.38 69.16 72.99 0.6303

Venous 70.00 75.80 63.52 70.69 70.44 0.6813

ADC 70.00 60.86 77.98 66.65 75.35 0.6323

T2 64.64 65.82 62.56 64.78 66.65 0.5756

combined 76.43 71.41 80.36 74.16 81.74 0.7422
frontie
Values in bold black font represent the best performance in each column.
TABLE 5 Model performance with data augmentation.

Data augmentation Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

NPV
(%)

PPV
(%)

AUC
(%)

No 70.71 70.26 70.22 69.75 72.30 0.6804

Yes 76.43 71.41 80.36 74.16 81.74 0.7422
Values in bold black font represent the best performance in each column.
TABLE 3 Model performance of different convolutional layers for Feature Extractor.

Conv-Layers Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

NPV
(%)

PPV
(%) AUC

3 71.79 73.16 69.79 73.75 72.60 0.7093

4 73.93 78.46 69.07 74.91 73.31 0.7339

5 76.43 71.41 80.36 74.16 81.74 0.7422

6 75.00 72.92 77.22 73.80 77.73 0.7417

7 74.29 77.77 70.72 76.97 74.38 0.7413
Values in bold black font represent the best performance in each column.
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laboriously hand-crafted feature extractors, leading to redundant

extracted features. Meanwhile, deep learning with single slice or

volume data inputted lacks information on the entire lesion or is

computationally expensive. To address these challenges, we

developed a dual-stream multiple instance CNN with modality

attention and achieved good performance.

The MRI was utilized to predict MVI in HCC due to its ability

in multimodal and multidirectional evaluation of lesions, providing

more precise insights into soft tissue characterization, atomic signal

intensity, lesion enhancement, and tissue function. Moreover, five

commonly used MR sequences including T2-weighted, arterial

phase, venous phase, delay phase, and apparent diffusion

coefficient images were incorporated. The superior results were

achieved by combining these modalities compared to using a single

modality alone. To further enhance our approach’s clinical

relevance, an attention mechanism was employed to prioritize the

crucial modality. The performance of various MRI modalities were

assessed and the results were consistent with the doctors’ experience

that the arterial phase sequence exhibited better performance

compared to the delay phase, venous phase, ADC, and T2

sequence. A possible explanation is that the arterial phase of
Frontiers in Oncology 09
contrast-enhanced MRI displays changes in MVI and

surrounding tissue enhancement features (28), which can be

captured by our model. However, the quality of the arterial phase

image can be affected by many factors, such as the doctor’s

manipulation, the patient’s blood flow status, and the amount and

rate of contrast agent injection. Multi-arterial phase image can not

only avoid the above problems, but also obtain abundant blood flow

information (29). Therefore, using multi-arterial phase image for

microvascular prediction might obtain better prediction results.

In MIL, instance-wise max-pooling (30) and average pooling

(31) are two widely used methods for aggregating information from

instances within a bag. Specifically, max-pooling only retains the

instance embedding with the highest score, while average pooling

treats each instance as equally important. However, neither of these

methods considers the relationships between instances during MIL

inference (32). The dual-stream aggregator in this study modeled

the instance-to-instance relationships by calculating the similarity

between two queries using a trainable distance measurement. As a

result, instances that are more similar to the critical instance were

given greater consideration.

The performance of a model can be greatly affected by the

choice of feature extractor, especially when working with small

medical image datasets. Some studies (23, 33) have used pre-trained

backbones on natural images as feature extractors, but this

approach may not always yielding optimal results. In our study,

we attempted to use a pre-trained ResNet as a feature extractor, but

found unsatisfactory results, potentially due to overfitting caused by

the network’s depth. Instead, we found that a 5-layer CNN designed

as a feature extractor performed better. This finding is consistent

with research (34) which demonstrated that a shallow CNN trained

from scratch can outperform a pre-trained deep model. By

customizing the feature extractor to the specific task, we achieved

superior results in predicting MVI for HCC patients.

Compared to radiomics, deep learning methods usually do not

require precise lesion annotation, saving time and labor. In our

study, we utilized a square bounding box that fit the entire tumor

and covered the ROI during image preprocessing. Previous studies

(35) have suggested that peritumoral features may indicate the

presence of MVI, but the effect of the margin used to crop the region

is not yet confirmed. A small margin may sacrifice important MVI-
TABLE 6 Comparison with other methods.

Methods Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

NPV
(%)

PPV
(%) AUC(95% CI) P value

Liu (14) 66.79 73.05 61.35 67.88 67.65
0.6720

(0.5884, 0.7629)
0.0572

Zhang (16) 70.00 70.87 68.89 69.52 70.90
0.6988

(0.6624, 0.7384)
0.1207

Jiang (17) 70.36 76.29 63.69 72.13 70.32
0.6999

(0.6272, 0.7785)
0.1065

Zhou (15) 72.50 82.14 62.35 76.92 70.81
0.7225

(0.6810, 0.7946)
0.2494

Ours 76.43 71.41 80.36 74.16 81.74
0.7422

(0.6878, 0.7981)
-

fron
Values in bold black font represent the best performance in each column.
FIGURE 7

ROC curves of our method and other methods.
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related information, while a large margin may introduce redundant

information that could affect model performance. In Liu’s research

(14), margin was defined as the scale of the edge length of the

labeled bounding box, and experiments were conducted with

marginal values ranging from 0.6 to 1.0. The best performance

was achieved with a margin of 0.8. Although we did not extensively

study the impact of margin, we observed that utilizing a bounding

box that is approximately 10mm larger than each tumor boundary

significantly improved the outcomes compared to a uniform size

(based on the maximum tumor size) for locating areas of interest

across tumors.

In the comparison with other methods, we did not directly

compare the results due to the use of different datasets and the

incorporation of both medical image and clinical factors in some

studies. Instead, to ensure fairness, we replicated all methods on our

dataset and compared their performance. Furthermore, all methods

were designed with five branches for feature extraction from five

MRI modalities, which were then combined for MVI prediction. Liu

et al. (14) only used a single slice of the lesion as input, ignoring

contextual information about the lesion. While Zhang et al. (16),

Jiang et al. (17), and Zhou et al. (15) inputted information about the

entire or partial volume of the lesion, the 3D CNNs used were

usually designed to be shallow due to high computational resource

requirements and difficulty in training, which may result in

insufficient feature extraction. Table 6 showed that although there

was no significant difference in AUC, our method overall

performs better.

There are several limitations in our study that need to be

addressed in future research. Firstly, the dataset used in our study

was relatively small, which might have impacted the performance of

our model. Therefore, it is necessary to obtain larger samples to

improve the robustness of the model. Secondly, our model was

trained and evaluated in a single-center setting with a single MRI

scanner, which could potentially introduce data and model bias. To

enhance the generality of the model, it is crucial to include more

diverse and variable data frommultiple centers and scanners. Thirdly,

our study only focused on analyzing MRI images and did not

consider important clinical information such as age, gender, AFP,

Child-Pughscore, HBsAg, or HCsAg, which are potential indicators

of MVI. Future studies should take these clinical factors into account

to improve the accuracy and reliability of the model.

In conclusion, we developed a modality-based attention and

dual-stream multiple instance CNN for predicting MVI of HCC.

This method overcomes the limitations of previous studies with

single slice or entire volume lesion inputted and exhibits promising

performance, suggesting its potential as a supportive tool in

clinical diagnosis.
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