
TYPE Original Research
PUBLISHED 26 June 2023| DOI 10.3389/fdgth.2023.1163386
EDITED BY

Timo Jämsä,

University of Oulu, Finland

REVIEWED BY

Stephanie Paige Goldstein,

Brown University, United States

Boris C. Rodríguez-Martín,

International University of La Rioja, Spain

*CORRESPONDENCE

Simon Ginzinger

simon.ginzinger@fh-salzburg.ac.at

RECEIVED 13 February 2023

ACCEPTED 31 May 2023

PUBLISHED 26 June 2023

CITATION

Schneidergruber T, Blechert J, Arzt S,

Pannicke B, Reichenberger J, Arend A-K and

Ginzinger S (2023) Predicting food craving in

everyday life through smartphone-derived

sensor and usage data.

Front. Digit. Health 5:1163386.

doi: 10.3389/fdgth.2023.1163386

COPYRIGHT

© 2023 Schneidergruber, Blechert, Arzt,
Pannicke, Reichenberger, Arend and Ginzinger.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Digital Health
Predicting food craving in
everyday life through
smartphone-derived sensor and
usage data
Thomas Schneidergruber1, Jens Blechert2,3, Samuel Arzt1,
Björn Pannicke2,3, Julia Reichenberger2,3, Ann-Kathrin Arend2,3

and Simon Ginzinger1*
1Department Creative Technologies, University of Applied Sciences Salzburg, Salzburg, Austria,
2Department of Psychology, Paris-Lodron-University of Salzburg, Salzburg, Austria, 3Centre for Cognitive
Neuroscience, Paris-Lodron-University of Salzburg, Salzburg, Austria

Background: Food craving relates to unhealthy eating behaviors such as
overeating or binge eating and is thus a promising target for digital
interventions. Yet, craving varies strongly across the day and is more likely in
some contexts (external, internal) than in others. Prediction of food cravings
ahead of time would enable preventive interventions.
Objective: The objective of this study was to investigate whether upcoming food
cravings could be detected and predicted from passive smartphone sensor data
(excluding geolocation information) without the need for repeated questionnaires.
Methods: Momentary food craving ratings, given six times a day for 14 days by 56
participants, served as the dependent variable. Predictor variables were
environmental noise, light, device movement, screen activity, notifications, and
time of the day recorded from 150 to 30 min prior to these ratings.
Results: Individual high vs. low craving ratings could be predicted on the test set
with a mean area under the curve (AUC) of 0.78. This outperformed a baseline
model trained on past craving values in 85% of participants by 14%. Yet, this
AUC value is likely the upper bound and needs to be independently validated
with longer data sets that allow a split into training, validation, and test sets.
Conclusions: Craving states can be forecast from external and internal circumstances
as these can be measured through smartphone sensors or usage patterns in most
participants. This would allow for just-in-time adaptive interventions based on
passive data collection and hence with minimal participant burden.

KEYWORDS
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1. Introduction

Overeating and unhealthy food choice have evolved into a major health system

challenge, as prevalence of overweight and obesity continues to rise globally (1).

Overeating is partially due to excessive availability of energy-dense, ready-to-eat, highly

palatable foods. A key determinant of unhealthy food intake is food craving, the intense

desire to consume a specific type of palatable food (2). Food craving covaries strongly

with hunger around main mealtimes but can substantially deviate otherwise (3), like the

craving for a palatable sweet desert after a filling savory main meal.
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1Primary outcomes of the trial were intervention-based changes in EMA

eating behavior, especially regarding successful implementation of one’s

intentions to eat “in line with one’s goal.”
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Being related to snacking (4), thoughts about eating (4),

breaches of weight loss dieting (5, 6), and binge eating (7, 8),

food craving is likely a pivotal construct in unhealthy and

disordered (over)eating and thus a central target for intervention

and prevention. Food craving can vary rapidly across the day and

responds strongly to environmental temptations, such as to cues

associated with food and eating (e.g., food outlets) or to (digital)

food advertisements. Also, social context may matter as the

presence of others can either facilitate or inhibit overeating (9).

Yet, food craving can also covary with internal states such as

emotions and stress (10, 11). Some situations such as noisy

environments or episodes with frequent swift location changes

might impact craving indirectly through its effects on stress or

emotions (12), that, in turn, trigger cravings.

How could one intervene in a state that is as variable as food

craving? Smartphone-delivered “just-in-time adaptive interventions”

(JITAI) (13) intervene in real time and in everyday life, can adapt

to the given (digital) context, and might thus be applicable to food

cravings. Yet, to allow individuals to take preventive measures, i.e.,

to avoid certain cues or context, it would be useful to predict food

cravings ahead of time, i.e., before craving translates into actual

unhealthy overeating or even binge eating behavior. Thus,

preventive JITAIs require prediction of food craving trajectories

into the near future. Two types of studies can be delineated that

attempt to do so: (a) ecological momentary assessment (EMA)

studies and (b) smartphone data-based studies. Regarding the first

case, EMA studies repeatedly assess not only the outcome variable

(e.g., food craving) through smartphone-based self-report but also

potential trigger states such as negative emotions, stress, various

external events, and then predict the outcome variable from those

trigger states. Spanakis et al. (14), for example, used 15 EMA

questions assessed every 2 h (including food craving) for several

weeks to develop decision trees that predict craving and choice of

unhealthy foods. Large interindividual differences were noted by

the authors and, thus, they used clustering algorithms to

distinguish six types of eaters with different sets of predictor

importance for unhealthy eating in each cluster. Forman et al. (15)

and Goldstein et al. (16) used 21 EMA items to predict dietary

lapses (eating more than planned) achieving an accuracy of 72%.

Our own group used 18 EMA items in healthy individuals that

were motivated to improve their diet (17). Using EMA items as

predictors yielded an AUC of 0.63 in predicting food craving as

rated on the next questionnaire, 2.5 h later. Interestingly, in our

study, similar accuracies could be reached with only time- and

smartphone-derived predictors, pointing to the potential of EMA-

independent, purely passive predictor models.

The second type of prediction studies resort to sensor and

smartphone usage data as “background data” that do not require

active collaboration from the participants for predictor variable

sampling. On the one hand, this has the clear advantage of

strongly reducing the burden on participants. On the other hand,

the clinical interpretability of the relationships between predictor

variables and the dependent variable may be reduced as the

predictor variables mostly serve as proxy variables for

psychological or contextual states. Along these lines, Crochiere

et al. (18) recently studied 23 adults with overweight/obesity who
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completed a 6-week commercial app-based weight loss program.

They used 17 lapse-trigger EMA questions to predict subsequent

dietary lapses (exceeding the intended eating goal in a weight

watchers’ program) and achieved an accuracy of 70%. Using only

four passive sensors (GPS, physical activity, sleep, and time), they

reached an AUC of 61% and thus less than with EMA, but this

was found to be clearly less burdensome by participants. Yet,

their operationalization of dietary lapses does not directly speak

to the experience of cravings (other reasons might lead to

exceeding an eating goal), prediction accuracies were rather

modest, and GPS tracking imposes privacy issues.

Thus, the present study set out to predict food craving ahead of

time as a potential basis for preventive JITAIs using solely

smartphone-derived, non-GPS predictor variables to allow a

background assessment with minimal participant burden.

Specifically, we used accelerometer, noise, and light sensors as

well as phone usage patterns (notifications, screen activities) and

time of day to predict upcoming food craving (assessed through

EMA). In this work, we designed a strongly individualized

machine learning approach, given the known interindividual

differences in eating behavior, on the one hand, and of

smartphone usage patterns, on the other. Specifically, we

individualized the split point on which each individual’s craving

distribution was categorized as high or low and employed a data-

driven selection of one out of six machine learning approaches.

We then compared this against a prediction model based on past

craving values but without sensor information. We expected to

reach classification accuracies like ours [63%, Kaiser and Butter

(17)] and others’ research (61%, Crochiere et al. (18)]. We

further explored which prediction sensors were most useful and

graphically illustrate representative cases.
2. Materials and methods

2.1. Participants

Participants included in the present secondary data analysis

came from a larger randomized control trial (DRKS,

DRKS00017493).1 Other parts of the data have previously been

used in the studies by Pannicke et al. (19) and Kaiser and Butter

(17). Participants were recruited to be motivated to maintain or

reduce their body weight. Hence, the inclusion criterion was that

participants agreed to one of the following two questions: (1)

“Do you currently pay attention to your nutrition to maintain or

reduce your body weight?” and (2) “Do you currently cut down

on your food intake to maintain or reduce your body weight?”.

Additionally, participants were only included if they owned an

Android smartphone to run the application. From the control
frontiersin.org
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group of this intervention trial (no interventions delivered), we

included 83 participants, out of which 27 participants were

excluded from the analysis because of insufficient data (e.g.,

answering less than 50% of all EMA questionnaires, not

providing processable sensor data) or technical problems, leaving

the data of 56 participants for the analysis of the present study.

Participants exhibited a mean age of 22.6 and were

predominantly female (83%). All participants received oral and

written information on the purpose of the study and signed an

informed consent form approved by the Ethics Committee at the

University of Salzburg, Austria.
2.2. Procedure

During individually arranged telephone calls, participants were

instructed how to use the “SmartEater” application. The app was

developed by the research group specifically for the purposes of

conducting scientific studies by collecting passive smartphone

background sensor data as well as EMA questionnaire data. The

development was performed solely for the Android operating

system as in this system the tracking of background data is much

more flexible as compared to iOS devices. Three-day pre- and

post-assessment EMA phases enclosed the main 14 day EMA

phase (which served as the “treatment” phase for the active

group with regular eating-related tips, respectively, as the control

group) that served as the database for the current paper.
2.3. EMA measures

Participants received six signal-contingent EMA questionnaires

per day in ±15 min time slots calculated from fixed time points

(9:00 a.m., 11:30 a.m., 2:00 p.m., 4:30 p.m., 7:00 p.m., and

9:30 p.m.) for 14 consecutive days (i.e., 84 EMA questionnaires

in total) by app notifications. All questionnaires were thus

separated by semi-random time intervals of 150 (±15) min.

Participants were able to answer questionnaires for up to 60 min

after the initial notification of its availability. Additionally,

participants were reminded about the availability of a new

questionnaire every 15 min of this 60-min period. After this

period, the questionnaire was marked as unanswered. Several

psychological variables such as momentary affect, stress, and

eating-related measures were assessed with at least 19 questions

per prompt but were not used for the present study.2 However,

one item queried momentary food craving (“How strong is your

urge for specific, palatable food at the moment?”) on a

horizontal visual analog scale from 0 (=not at all) to 100 (=very

much) that served as a dependent variable.
2Primary analyses mainly used the eating-related variables to examine

changes across the intervention period in comparison to the control group.
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2.4. Sensor data

In addition to the EMA functionality described above, the

SmartEater application collected data of a multitude of sensors in

the background out of which the following were used in this

study: Accelerometer: every 5 min, the average change in

acceleration was collected from raw accelerometer data where a

principal component analysis was used to continuously (re-)

identify the direction of strongest acceleration change; Audio

Volume: mean, minimum, and maximum decibel (dB) values of

10 s recorded with the phone’s microphone every 15 min; Light:

mean, minimum, and maximum light values of 10 s recorded by

the phone’s light sensor every 15 min; Notifications: time and app

name of incoming notifications of other smartphone applications.

For privacy reasons, notification contents are neither read nor

processed; Screen-On-Time: timestamps of when the screen was

turned on or off; Time of day: while this input is not directly

collected by a separate sensor, it is an additional entry of each

sensor. The raw sensor data were first processed directly on the

device before it is securely transmitted to the server backend in

periodic time intervals for further storage and processing. The

application does not require a constant internet connection for

this functionality to work. Data are stored locally until a

connection to the internet is re-established, and it is successfully

sent to the server. There is no way known to us to test the sensor

measurement precision of individual phones.

To compile the lagged explanatory variables from each usage or

sensor data source for our models, we aggregated the data for time

windows of 30 min. The windows’ boundaries are defined based

on the time when a (craving) questionnaire was answered by a

participant (T0). The first window starts at T0–150 min, the

second window starts at T0–120 min, the third window at T0–

90 min, and the fourth window at T0–60 min. The data starting at

T0–30 min are not used for the prediction as we aim to be able to

predict craving values 30 min into the future. This was the

shortest time window that we considered sufficient for preparation

of an intervention or a craving-preventive action in case of a real-

time implementation of the present prediction approach.
2.5. Descriptive statistics

On average, the data set has about 70 (SD = 11.1, range 41–85)

craving ratings per subject. The mean value of these craving values

is 21.9 with a standard deviation of 26.7 (range: 0–100). It is worth

mentioning that the craving data of most study participants exhibit

a relatively severe skewness. The average skewness of the craving

data is equal to 1.28 (SD = 0.98, range −0.97 to 3.26). Our train-

test split of about 75% (10 days)/25% (4 days) results in test sets

that average about 19.34 (SD = 3.07, range 12–25) data points.

The average craving ratings per person, as well as other

statistical key figures, are presented in the Supplementary

Material. Furthermore, on average, 84.8% (SD = 16.59, range

24.37%–99.76%) of all sensor data is available. The supplement

also includes participant-specific breakdowns.
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2.6. Individualized modeling

This study attempts to improve the prediction of food cravings

through individualization. Individualization is performed with

respect to three aspects: (a) individual separation of craving

values in two classes (low and high) with three different

thresholds, (b) individual decision whether to apply outlier

detection and removal to the data, and (c) individual choice

from six different prediction models. This procedure resulted in

36 (3 × 2 × 6) different possible combinations per study

participant. From all these combinations, the best fitting

individual combination of classification threshold, application of

outlier detection, and choice of prediction model were

determined as described in the following.

Individual craving classes. Classification algorithms require

partitioning of numerical craving data into discrete classes. Due

to strong individual skewness of the craving data (both positive

and negative skew) craving ratings were classified as being

either low or high using the 25%, the 50%, or the 75%

quantile, generating three different splits for each participant.

This approach gives the model selection procedure the chance

to select individual thresholds that balance the classes in the

data, thereby creating models with higher within-person

generalization.

Outlier treatment. As self-reporting can be influenced by a

multitude of factors, possible outliers, which do not fit into the

general craving patterns of a person, have to be considered.

Therefore, we allowed predictions with and without outlier

detection and removal based on the isolation forest (20) method.

Individual algorithm selection and training/test data split.

Training and test data were split in an approximate 75%

(10 days)/25% (4 days) ratio. The training/test data split was

done day-wise (not signal-wise) to retain typical diurnal patterns.

Furthermore, selecting the last four consecutive days or selecting

random days resulted in a more imbalanced test set for most

participants. Supplementary Appendix D illustrates this issue.

Based on these observations, we refrained from using a cross-

validation approach and resorted to a single train-test split. The

selection of the days defining the test set was performed by a

“greedy algorithm.” This algorithm iteratively selects 4 days for

the test set. In each step, that single day is chosen that minimizes

the difference between the growing test set and the complete set

with respect to the high vs. low craving ratio.3 The

corresponding python code is provided in Supplementary

Appendix E.
3To ensure that our “greedy” procedure does not result in an unrealistic

evaluation, we recalculated the results using the last 4 days as a test set.

The mean AUC of these models is 0.78. However, a closer inspection

showed that in this case many test sets were highly imbalanced (four

participants even had only one craving class in the test set). This severe

imbalance results in models that predict only one class and are, therefore,

of no practical use.
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All 36 models were then applied to the remaining 10 days

(individualized training data set). We used Logistic Regression,

Decision trees, Support Vector machines, ADA-Boost, XG-Boost,

and a Multi-layer Perceptron and thus some of the most popular

algorithms applied to such use cases [Zhang et al. (21)]. After

the training phase, all of these 36 models were applied to the

individualized test set. This led to 36 results per participant. The

model that achieved the highest score on the test set, i.e., the one

that generalized best from all 36 models, was selected. All further

analyses were then conducted with this model for the given

participant.
2.7. Comparison against a baseline model

To measure the craving-related information that sensors and

usage patterns are able to add, the individualized prediction

approach was further validated against a “baseline model”

without sensor data. For that baseline model, we chose a time

series prediction based on the past four consecutive craving

values (which might include values of the previous day). We

applied the same preprocessing and prediction pipeline as above,

except that no individual craving split point was applied. Thus,

we again trained six algorithms with or without outlier detection

yielding 12 AUC values, out of which the highest was chosen.

The confidence intervals for the individual AUC scores were

calculated according to the method of Hanley and McNeil (22)

and are provided in the Supplementary Material.
2.8. Feature importance and illustrative
cases

To obtain an overview of the general importance of each

feature for prediction, permutation importance (23) was used on

each participant and then averaged for descriptive purposes.

Feature importance is defined through the loss of AUC if feature

values are randomly shuffled over the columns, thereby breaking

any (if existent) relationship between the feature and the

dependent variable. This concept is called permutation

importance and was first introduced by Breiman in 2001 (23).

Due to the inherently random nature of this measure, the feature

importance was calculated 50 times and then averaged.

Furthermore, SHapley Additive explanation (SHAP) (24) plots

were used to illustrate the contribution of different features to

classifications for three exemplary cases. In these plots, predictors

are ranked from the strongest predictor (top) to the weakest

predictor (bottom). The horizontal deviation shows how each

predictor contributes to the separation of high vs. low craving

scores. Each row of data in the test data set containing the

respective values of the features corresponds to a line in the plot.

For each data point, the corresponding SHAP value is calculated,

and the sign and the magnitude of this value determine the

strength of the deflection of the line. Depending on the

underlying prediction model, it is possible that there are identical

lines. The intersection of each of these lines with the x-axis at
frontiersin.org
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the top of the graph, determined by the sum of all SHAP values,

corresponds to the predicted probability indicating either a high

or low craving value. The magnitude of the slope for each feature

visualizes the importance of that feature for the prediction. The

order in which the features are listed on the y-axis corresponds

to the sum of the magnitudes of their SHAP values over all data

points. This means that the features are ordered according to the

strength of their influence/importance.
3. Results

3.1. General evaluation and comparison to
baseline model

AUC (22) and Brier (25) scores were used for evaluation. AUC

scores averaged at 0.78 (SD = 0.10, range 0.58–0.97), while Brier

scores averaged at 0.23 (SD = 0.05, range 0.11–0.41). In

comparison, the baseline model achieved an average AUC score

of 0.64 (SD = 0.11, range 0.39–0.92), i.e., 0.14 less. The average

90% confidence interval for the sensor-based model is 0.59–0.96

and that of the baseline model is 0.41–0.88. We also performed a

Mann–Whitney U-test between the results of the two models

that were highly significant, U = 2587.5, n1 = n2 = 56, p = 4.3 ×

10−10 two-tailed, median of the sensor model = 0.77, and median

of the baseline model = 0.64.

The results of the baseline model suggest that craving time

course can be predicted to some degree from previous values and
FIGURE 1

The difference in individual AUC scores between the sensor-based prediction
craving values. AUC, area under the curve.
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we are thus confident that the baseline model is a fair alternative

against which the sensor model has to compete. Figure 1 depicts

the advantage (or disadvantage) of the sensor model against the

baseline model across all participants. It is evident that for the

majority of participants (48 of 56, 85%), sensor data prediction

outperformed the baseline prediction.
3.2. Feature importance

To obtain an overview of the general importance of each

feature for prediction, permutation importance (23) was

used on each participant and then averaged for descriptive

purposes.

Figure 2 depicts the importance of the utilized features.

The three most important features were SCREEN, AUDIO,

and ACC. The decrease in importance over all features is

relatively constant; thus, each feature seems to have positive

contributions to the prediction at least in a subset of

participants.
3.3. Feature importance assessed with SHAP
scores

As outlined in the introduction, smartphone usage, digital

environments, and craving experience differ strongly between

individuals and therefore call for an individualized analytical
(without previous craving values) vs. the prediction solely based on past
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FIGURE 2

Permutation importance of the utilized features. The y-axis corresponds to the loss in AUC if this feature is permuted. AUC, area under the curve.
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approach. To depict some of these between-participant

differences and to illustrate the decision-making process of the

prediction models, Figures 3–5 display three exemplary SHAP

(24) plots.

The SHAP decision plot for study participant 27006 in

Figure 3 illustrates the importance of movement (ACC) for

separating high from low craving scores, followed by Audio and

Light. These might be proxies for external situational context

changes that triggered craving episodes in this user, e.g., when

returning home from work (putting smartphone on the table)

and experiencing craving due to availability of tempting foods at

home. By contrast, craving values of user 38016 (Figure 4)

seemed to be sensitive to time of the day, with some daytimes

being highly predictive of—relatively few—high craving scores.

The audio predictors might indicate environmental context

changes (e.g., outside–inside transitions) and screen activities

point to smartphone use.

User 38015 (Figure 5) presents yet another type of feature that

is related to craving. Here screen activity is most prominent, which

could be translated to the simplified formula: smartphone usage =

craving.
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4. Discussion

The aim of this study was to explore whether food cravings

could be predicted through passively collected smartphone sensor

and usage data only using individualized prediction approaches.

The information conveyed in the smartphone data increased

craving prediction accuracy by 14% over accuracies derived from

past craving data. Advantages for sensor-based models over

craving-based models were seen in 85% of participants.

Based on our results, a maximal accuracy of 78% seems

possible even though this might contain some residual degree of

overfitting. We accepted some degree of uncertainty here as our

14 days of data did not allow a split into independent training,

validation, and test datasets that would each have reasonable

distributions of low vs. high craving data (see Supplementary

Appendix). For reference, predictions have reached higher values

with other problematic health behaviors, e.g., an accuracy of 87%

was reached in the prediction of smoking using only

accelerometer and GPS data (26). An accuracy of 90.9% was

reached in the detection of alcohol consumption (27) using

sensor data [day and time, accelerometer, gyroscope,
frontiersin.org
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FIGURE 3

SHAP plot for user 27006.
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communication behavior, and data indicating psychomotoric

constraints (e.g., typing speed)]. The fact that food craving is a

fleeting subjective state and not an observable behavior may

explain the typically lower prediction accuracy for food cravings

compared to other health behaviors.

Our approach always requires individual model training on at

least 14 days of data before actual predictions of future craving

values can be made. For faster predictions based on passive

sensing—i.e., without a full 2 weeks of craving recording, one

would have to classify participants into groups with associated

pretrained prediction models based on single questionnaires or at

least fewer days of data recording. This relates to the well-known

cold-start problem in recommended systems. A classification in
Frontiers in Digital Health 07
the groups was described in detail by Spanakis et al. in 2017

(14). Our SHAP decision plots illustrated these interindividual

differences, possibly stemming from both differences in

smartphone use and food craving experience. Despite the

differences in feature importance for our three exemplary users,

between-participant clustering might be possible to allow for use

of the same model for participant groups. This assumption is

based also on the combinatorial argument that by using six types

of sensor data there are only 15 different combinations to choose

the two most important types of data per participant.

Regarding predictors, screen-on-time was a highly relevant

predictor contributing positively to food craving prediction in

many individuals. This might be related to the associated active
frontiersin.org
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FIGURE 4

SHAP plot for user 38016.

Schneidergruber et al. 10.3389/fdgth.2023.1163386
interaction of the user with the smartphone as well as its high

frequency. Environmental noise and movement proved useful

across many users. This is also supported by data from earlier

studies where especially noise related to the perceived stress scale

(12). Usage of GPS data may prove useful in future studies, albeit

privacy issues with these data are very sensitive and must be

solved by local on-device classification of the location data,

thereby eliminating the need for coordinate storage.

The present results have clear practical and clinical implications:

being able to derive potential real-time predictions of upcoming

food craving peaks can be used to trigger interventions on such

states. Since food craving is related to snacking (4), breaches of

weight loss dieting (5, 6) and binge eating (7, 8) such as in the

moment interventions could have a significant impact. Interventions

could include mental distraction (food-unrelated imagery),

substitution of unhealthy by healthy snacks, goal reminders, and

“urge surfing” techniques, among others (28, 29). Such

interventions could be applied in healthy individuals with an

intention to increase healthy eating as well as to patients with eating
Frontiers in Digital Health 08
and weight disorders in outpatient care (where binge eating might

be predicted) (30). Short motivational SMS-based interventions have

been successfully applied already a decade ago (31). Additionally,

prediction-timed interventions are available (15). Yet, final

evaluations of such protocols in micro-randomized and classical

randomized controlled trials are still pending.
5. Limitations

Conclusions are limited by the fact that we had insufficient data

to use a validation and a test set as compared to using only one test

set, which might result in a residual amount of overfitting.

Furthermore, limitations are inherent in the sample, so

generalization to other populations carries some uncertainty.

Finally, craving, though a relevant mediator of unhealthy eating,

is not an actual behavior. Future research would need to

demonstrate whether JITAIs should best be targeted at craving or

actual eating behavior.
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FIGURE 5

SHAP plot for user 38015.
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