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ABSTRACT: 
 
Nowadays, many efficient technologies have been developed with the aim of collecting digital images and other metric data, greatly 
optimising the acquisition procedures and techniques. However, processing this data can be onerous and time-consuming, and 
increasingly often, there is a need to develop new strategies to enhance the level of automation of these processes. Using artificial 
intelligence, and particularly Convolutional Neural Networks, it is possible to automate processing tasks such as classification and 
segmentation. However, a significant challenge is represented by the necessity of obtaining sufficient training data to properly train a 
deep learning model. These datasets are composed of a significant amount of data and need to be annotated, which sometimes 
represents an onerous and challenging task. Synthetic data can represent an effective solution to this problem, significantly reducing 
the time and effort required to manually create annotated datasets and can be particularly useful when studying objects characterised 
by specific features and high complexity, requiring tailored solutions and ad hoc training. The presented research explores the 
opportunity of using synthetic datasets – generated from photogrammetric 3D models – for deep-learning-based heritage digitisation 
applications. The use of synthetic data generated from textured 3D models derived from SfM photogrammetric processes is proposed, 
with the aim of enhancing automatic procedures in the framework of heritage processes. 
 
 

1. INTRODUCTION 

In the last decades, we have witnessed impressive technological 
signs of progress and improvements, which led to the 
development of very effective and efficient solutions in the 
framework of heritage digitisation. Nowadays, numerous 
effective and efficient solutions are available for collecting 
digital images, dense points clouds and other metric data, 
allowing rapid and sustainable acquisitions. 
However, despite the development of these new technologies, 
different open issues still limit the efficiency of these digitisation 
processes. If, on the one hand, the acquisition phase has become 
increasingly faster, thanks to solutions that greatly enhance the 
rapidity of the primary data collection, on the other side, it should 
be underlined that these new technologies are extremely onerous 
from both a computational point of view and, above all, in terms 
of resources required from the operator during the processing of 
the data. 
As a matter of fact, these procedures are often repetitive and time-
spending, requiring manual operations that are often 
unsustainable when applied in the framework of massive 
digitisation projects. 
Artificial Intelligence (AI) has established itself as a powerful 
and effective solution to improve the automation levels in the 
framework of the processing involving heritage datasets, 
especially concerning classification or semantic segmentation 
tasks (Grilli & Remondino 2019; Fan et al. 2018, Zia et al. 2022; 
Adamopoulos 2021). 
In particular, in the framework of image processing, 
Convolutional neural networks (CNN) have been demonstrated 
to be one of the most effective – and efficient – techniques for 
these kinds of tasks, outperforming traditional methods in several 
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application fields (semantic segmentation, classification, object 
detection, etc.) (Gu et al. 2018; Garcia-Garcia et al. 2018). 
However, a significant limitation in efficiently utilising deep 
learning-based approaches – for optimising and enhancing the 
processing of heritage datasets – is represented by the necessity 
of a significant amount of input data to train the neural networks 
adequately (Ridnik et al. 2021). This represents a crucial aspect, 
considering that the heritage field is traditionally underfunded, 
and most researchers working in the conservation and 
valorisation field often have limited resources and consequently 
may not dispose of similar datasets. In this case, the complexity 
of the operation is not only related to the acquisition of the 
primary data – the digital image – but also to the need to perform 
annotation procedures (almost always involving manual 
procedures), exponentially increasing the time required to 
generate similar datasets. 
It is important to consider the possibility of using existing 
datasets, if available, and modifying or integrating them 
according to the required tasks. This can significantly reduce the 
time and effort required to manually create annotated datasets. 
The increasing availability of benchmark datasets can represent 
an effective solution, considering that many of these datasets are 
often composed of a very high number of images (Kirillov et al. 
2023; Matrone et al. 2020), and they are often shared and made 
available to different scientific communities for research and 
experimentation purposes. 
However, it should be underlined that in many cases and 
application fields, such as heritage, the studied objects are 
characterised by high specificity, and the tasks required from the 
training of neural networks to support experts working in the 
framework of restoration and conservation, such as providing 
automatic methods for recognition and classification of decay, 
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are extremely complex (Hatır et al. 2021). For these reasons, these 
benchmark datasets may not always be entirely sufficient for the 
efficient training of deep learning models that accurately perform 
these tasks. 
There is a crucial need to develop new techniques and strategies 
to deal with this problem focusing on the significant features of 
the objects and the tasks connected to the heritage studies, which 
always require tailored approaches and solutions. Specifically, 
the automatic generation of artificial training datasets can 
represent a viable solution (de Melo et al. 2021; Tremblay et al. 
2018). It is worth mentioning the emergence of GAN (Generative 
Adversarial Network), which has enabled the production of 
realistic synthetic data and thereby made it possible to artificially 
augment training data (Bowles et al. 2018). 
 
1.1 Motivation of the research 

Despite the possible solutions mentioned in the previous section, 
the problem of generating training datasets and, above all, 
adequate labels represents a significant obstacle to the efficient 
use of deep learning in the field of cultural heritage, especially 
when the analysed objects are characterised by very specific 
features are when very specific tasks are required. 
In particular, the main aim of this contribution is to propose a 
replicable methodology for generating a high amount of 
annotated synthetic images exploiting textured 3D models 
derived from SfM-based (Structure-from-Motion) 
photogrammetric processes, generating rendered images of 
textured photogrammetric 3D models. The goal is the generation 
of synthetic training datasets with the purpose of facilitating 
deep-learning-based applications without the onerous manual 
work required from labelling operations. 

 

2. METHODS 

The primary data have been collected in the framework of the 
B.A.C.K. TO T.H.E. F.U.T.U.RE. project (Lo Turco et al. 
2018a). During the course of this project – carried out by a 
multidisciplinary research group from the Politecnico di Torino 
– a collection of wooden maquettes representing ancient 
Nubian temples (‘Expedition models of Egyptian 
architectures’) has been digitised using an image-based 
approach. The dataset comprises 2908 digital images 
(resolution: 8688 x 5792 pixels) of the different maquettes 
belonging to the collection (composed of 26 pieces, 
characterised by similar features in terms of size, morphology 
and material consistency), preserved in the Museo Egizio of 
Torino (Lo Turco et al. 2018b). The images have been acquired 
using a Canon EOS 5DS R DLSR camera (sensor: CMOS 50.3 
Mpx; sensor size: 36 x 24 mm2; focal length: 50 mm). 
The data acquisition has been carried out as described in 
Patrucco & Setragno 2021, following photogrammetric criteria 
(overlap between adjacent images >80-90 % and high 
convergence of the cameras) with the final goal of performing 
a photogrammetric SfM-based 3D reconstruction of the 
wooden models. 
Starting from these images, two different strategies have been 
developed in the framework of this research with the aim of 
training a model able to automatically identify and perform a 
pixel-based classification of the maquettes within a digital 
image. 
For this reason, two neural networks have been trained 
following different strategies as regards the generation of the 
training datasets. The adopted strategies are as follows: 
- In the first case, the first deep learning model has been 

trained using the digital 2908 images acquired as described 

in the previous paragraphs. The images have been manually 
annotated in order to generate adequate labels for the 
training. This dataset will be referred to as Dataset A. The 
results of the training performed using this dataset have 
been assumed as a ground truth to evaluate those obtained 
using the strategy proposed in the following paragraph. 

- In the second case, the deep learning model has been trained 
from a dataset (which will be referred to as Dataset B) 
composed of rendered images of a photogrammetric 3D 
model (derived from the SfM-based processing of Dataset 
A). 

The number of images and the resolution of each image are the 
same for both the considered datasets. The flowchart of the 
two proposed workflows can be observed in Figure 1. 

 

 
Figure 1. Flowchart of the two workflows presented in the 

current research. 
 
While Dataset A has been generated following a standard 
approach, the generation of Dataset B required some less 
established operations. In the following section, it will be 
explained in detail how these synthetic data have been 
generated and annotated to make them suitable for use as input 
data for neural network training. 
 

2.1 Generation of the synthetic dataset 

The second dataset has been generated starting from the 
photogrammetric 3D model of each maquette. Specifically, a 
textured mesh is required in order to generate the rendered 
images that compose the synthetic dataset. The proposed 
workflow is as follows: 
• Step 1. For each maquette dataset, a standard SfM-based 

workflow has been followed. The photogrammetric 
software used for the 3D reconstruction is the Agisoft 
Metashape platform (build 1.8). Specifically, the following 
methodology was adopted: interior orientation 
(determination of principal distance, principal point, lens 
distortions and affinity parameters) by self-calibration 
approach during the bundle adjustment (Granshaw 2020) 
and tie points generation by means of relative orientation. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-2-2023 
29th CIPA Symposium “Documenting, Understanding, Preserving Cultural Heritage: 

Humanities and Digital Technologies for Shaping the Future”, 25–30 June 2023, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1181-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1182



 

The obtained model has been then scaled using scale bars 
placed on the acquisition stage during the collection of the 
digital images; 

• Step 2. Depth maps generation and subsequent generation 
of a dense point cloud; 

• Step 3. Triangulation of a high-resolution 3D mesh and 
generation of a UV map  (Figure 2) from the projection of 
the oriented images. 
 

 
Figure 2. (a) Texture 3D model (‘Dendur portal’ wooden 

model); (b) UV map. 
 

• Step 4. Automatic generation of the synthetic rendered 
training dataset using open-source modelling software 
Blender and a Phyton script. By exporting the model in 
COLLADA format (.dae), the 3D mesh preserves the 
information related to the position and orientation of the 
cameras (Figure 3). Blender is able to read this information 
and use it to generate a virtual camera for the generation of 
the rendered images (Figure 4); 

 

 
Figure 3. Oriented photogrammetric block of aligned images 

imported into the Blender platform as virtual cameras for 
generating the rendered dataset. 

 

 
Figure 4. Example of rendered images generated from the 

textured photogrammetric 3D model. 

• Step 5. Automatic generation of the rendered multi-class 
(class 1: wooden maquette; class 2: background) labels (by 
subtracting the pixels belonging to the background, 
automatically identified – using a script – according to an 
RGB-based selection); 

• Step 6. Reclassification procedure to convert the rendered 
multi-class labels in a properly formatted ground truth for 
the training. Starting from the rendered images, it was 
possible to generate binary labels and automatically achieve 
the labels necessary for the training as ground truth (Figure 
5). 
 

 
Figure 5. Example of automatically generated labels. Each 

label corresponds to a rendered image from the training 
dataset. 

 
2.1 Neural network training 

Once both datasets – and relative labels – were obtained, it was 
possible to proceed with training aimed at achieving a deep 
learning model capable of automatically recognising the objects 
of interest (the wooden maquettes) within an image. Both 
neural network training procedures have been performed using 
the same architecture (DeepLab V3+) (Chen et al. 2017), the 
same parameters and the same data augmentation strategies (in 
particular, among others, changing artificial backgrounds to 
improve the capability to identify the object of interest). 
Concerning both datasets, 90% of the images have been used as 
training data, while the remaining 10% has been employed as 
validation datasets for the assessment and evaluation of the 
trained models’ effectiveness. 
 
2.2 Strategies for training enhancement 

Different strategies have been followed in order to improve the 
effectiveness of the training. First of all, different data 
augmentation strategies were applied. As a matter of fact, very 
often, the number of available images to perform training is 
limited (as in the case presented in this research), and this may 
affect the effectiveness of the trained model and the 
generalisation capability. This represents a common criticality 
for many research groups that often do not have the resources 
to acquire and annotate an adequate dataset. In these cases, 
different data augmentation strategies have been developed in 
the last few years (Wang & Perez 2017; Mikołajczyk & 
Grochowski 2018) with the aim of increasing the volume of the 
dataset and diversifying its features in order to improve the 
generalisation capability of the training. Traditional methods 
have been used (as described in the previous experience, 
reported in Patrucco & Setragno 2021): 

- Random rotation; 
- Random cropping; 
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- Horizontal flipping; 
- Vertical flipping; 
- Random brightness changes; 
- Random occlusions. 
- Random background changes. 

The latter strategy listed above was particularly important for 
Training B since the rendered images are characterised by the 
presence of a white background. In this case, adding an 
artificial background is almost mandatory since otherwise, 
there would be a risk that the model learns to recognise the 
object only when that feature is identified, and clearly, this 
cannot happen when the classification task is applied not to 
artificial images, but to real images. 
For this reason, two different typologies of artificial 
background have been used to provide context for the wooden 
models during the training: 

- Generic backgrounds randomly downloaded from the 
internet (Figure 6a); 

- Realistic empty backgrounds acquired using a DSLR 
camera (Figure 6b). 

 

 
Figure 6. Example of artificial backgrounds used during the 

training procedures: (a) Artificial background randomly 
downloaded from the internet; (b) Empy background acquired 

with a DSLR camera. 
 
Additionally, another strategy has been implemented with the 
aim of improving training performance and avoiding out-of-
memory errors caused by the high resolution of the images 
acquired with a DSLR camera (8688 x 5792 pixels). A common 
issue during training is the risk of out-of-memory errors caused 
by high-resolution images. To avoid this, a common strategy is 
to downsample the original images. However, in this project, a 
different approach was tested: each digital image was divided 
into different tiles of 512 x 512 pixels rather than simply 
downsampling the images. This prevented memory errors and, 

at the same time, allowed to exploit the original high spatial 
resolution of the images maintaining the level of detail. 
Additionally, another advantage is represented by the fact that, 
by following this strategy, the number of images composing the 
training dataset increases significantly. 
However, to ensure the network could learn features from the 
contextualisation of each tile, a subsampled version of the 
original image was added to the cropped tiles, creating a 
multiband raster (Figure 7). As a result, each image in the 
training dataset has a resolution of 512 x 512 pixels and is 
composed of the following six bands: 

- First band: Red band (original resolution); 
- Second band: Green band (original resolution); 
- Third band: Blue band (original resolution); 
- Fourth band: Red band (downsampled image); 
- Fifth band: Green band (downsampled image); 
- Sixth band: Blue band (downsampled image). 

 

 
Figure 7. (a) Tiles subdivision of the original image raster; (b) 
Example of multiband raster used as input training dataset: (1) 
Red band, original resolution (cropped tile); (2) Green band, 

original resolution (cropped tile); (3) Blue band, original 
resolution (cropped tile); (4) Red band, downsampled image; 

(5) Green band, downsampled image; (6) Blue band, 
downsampled image. 

 
3. RESULTS 

3.1 Validation of the trained models 

The following performance evaluation metrics have been 
considered for evaluating the quality and the effectiveness of 
the neural networks training: Accuracy, IoU (Intersection over 
Union), Precision, Recall and F1-score. These metrics – which 
are the ones traditionally used to define and evaluate the overall 
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quality and effectiveness of training in the deep learning field 
– are defined as:  
  

Accuracy =
TP + TN

TP + FN + TN + FP
 

  

IoU =
Area of Overlap
Area of Union  

 

Precision =
TP

TP + FP
 

 

Recall =
TP

TP + FN
 

 

F1 − score =
2 x Precision x Recall

Precision + Recall
 

 
where  TP = True Positive (pixels correctly predicted as 

belonging to a specific class) 
TN = True Negative (pixels correctly predicted as not 
belonging to a specific class) 
FP = False Positive (pixels erroneously predicted as 
belonging to a specific class) 
FN = False Negative (pixels erroneously predicted as 
not belonging to a specific class) 

 
After both trainings, the performances of the two neural 
networks have then been compared and evaluated in order to 
assess the effectiveness of this strategy. At first, validation 
was performed by considering, for each predictive model, the 
reference evaluation dataset, consisting of 10% of the overall 
image dataset. In both cases, the results highlight high 
performances, indicating that in both cases, the neural 
network training produced a predictive model capable of 
adequately performing the given task. The performance 
evaluation metrics are reported in Table 1. As it is possible to 
observe (Figure 8), the results obtained from the training 
developed from the synthetic dataset are completely 
consistent with those obtained from the traditional manually 
annotated dataset. 
 

 
Figure 8. (a) Original digital image belonging to Dataset A; 

(b) Synthetic rendered image belonging to Dataset B; (c) 
Predicted classified image derived from the algorithm trained 
with Training A; (d) Predicted classified image derived from 

the algorithm trained with Training B. 

 
 Training A 

(traditional 
dataset) 

Training B 
(synthetic 
dataset) 

Mean IoU 88% 88% 
Accuracy 93% 97% 
Precision 90% 94% 

Recall 97% 91% 
F1-score 93% 92% 

Table 1. Comparison between the performance evaluation 
metrics of the two different training procedures. 

 
4. DISCUSSION 

In the previous section, it was observed how the performance of 
both trained models is adequate with respect to the expectations 
and requirements for the considered task (identification and 
segmentation of the object of interest, i.e., the wooden models).  
From the comparison between the performances of the two 
trained neural networks (Table 1) and from a visual inspection of 
the generated predicted classified images (Figure 8), it is clear 
that the strategy of generating rendered synthetic images for the 
automatic production of training datasets can represent a 
successful alternative to onerous and time-spending manual 
labelling operations. 
However, the goal of Training B (trained using synthetic images) 
is to recognise – with a good level of accuracy – not only the 
rendered images (that compose the validation dataset of Dataset 
B) but also real images. Therefore, the validation dataset of 
Dataset A was processed using the deep learning model derived 
from Training B. In Figure 9, it is possible to observe four images 
(belonging to the ‘Temple of Abu Oda’ wooden model dataset) 
classified using the trained model B, while the evaluation 
performance metrics achieved on the evaluation dataset A are 
reported in Table 2. 
 

        
Figure 9. Examples of images belonging to the evaluation 

dataset of Dataset A classified using the model trained from 
the synthetic images of Dataset B. (A) Original digital image; 

(B) Classified image. 
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Training B 
Evaluation dataset 

belonging to the traditional 
dataset (Dataset A) 

Mean IoU 80% 
Accuracy 89% 
Precision 72% 

Recall 98% 
F1-score 83% 

Table 2. Performance evaluation metrics observed on the 
classification of the validation dataset (belonging to the 

traditional dataset) using the deep learning model derived 
from Training B. 

 
The first observation that emerges from the analysis of these 
pieces of evidence is that most of the results show a similar 
order of magnitude, evidencing that the model is able to fulfil 
the task of recognising and segmenting the wooden maquettes. 
Based on the performance evaluation metrics observed in Table 
1 (concerning Training A) and in Table 2, it appears that both 
deep learning models achieved good results in terms of mean 
IoU, Accuracy, Recall, and F1-score. However, there is some 
discrepancy between the two models in terms of Precision. 
The deep learning model A achieved a Precision score of 90%, 
which means that out of all the predicted positive instances, 
90% were actually true positives. This can be considered a good 
result, indicating that the model made relatively few false 
positive predictions. 
In contrast, the deep learning model B – when processing real 
images – achieved a Precision score of 72%, which means that 
a higher number of false positive predictions were made. This 
indicates that the model may not have performed as well in 
terms of identifying only relevant instances. 
Overall, the second model performed slightly worse than the 
first one in terms of all the metrics except for Recall, where it 
achieved a higher score. This means that the second model was 
better at correctly identifying all instances of the object of 
interest in the image but at the cost of a higher number of false 
positives. 
In a deep learning model, having lower Precision but high 
Recall means that the model is able to identify a high number 
of relevant instances (i.e., true positives) but also a high number 
of irrelevant instances (i.e., false positives). 
It's important to underline that the synthetic images used to train 
the second model may not have perfectly represented the real 
images that the model was applied to, which could have 
affected its performance. Therefore, there is still room for 
improvement to enhance the synthetic dataset and, 
consequently, increase the efficiency of the trained model in 
terms of automatic recognition. 
However, generally, from the analysis of these metrics, it can 
be deduced that the obtained results are adequate compared to 
the expectations, and the model is able to perform the desired 
task (automatic detection and segmentation of the object of 
interest). Additionally, the approach based on the generation of 
synthetic datasets for the training of CNNs is considerably 
advantageous concerning the time required for annotating the 
datasets. In order to properly annotate Dataset A with manual 
procedures, considering approximately 1-2 minutes for the 
generation of each label, 50-100 hours were necessary for the 
annotation procedures. In the case of Dataset B, the labels were 
generated in a few minutes (with an inference time <1 second 
for each label), requiring minimal operator involvement. This 
represents a significant advantage both in terms of increasing 
efficiency and optimisation in the processes related to the 
processing and analysis of heritage-related datasets and for the 
contribution required from the operator who, following the 

presented strategy, avoids a time-consuming and repetitive 
procedure. 
 

5. CONCLUSIONS AND FUTURE PERSPECTIVES 

In the presented paper, a methodology for the automatic 
identification and segmentation of heritage datasets 
(specifically, in the case of the current research, wooden 
maquettes belonging to a museum collection) from synthetic 
images was developed and tested. Classification and semantic 
segmentation represent critical tasks in the field of cultural 
heritage nowadays. The obtained results showed that both 
models achieved good performances in terms of the evaluation 
metrics used. However, the second model – trained on synthetic 
images – showed slightly lower metrics (in particular, in terms 
of Precision), compared to the first model, with the exception 
of the Recall, which is higher. This may suggest that the 
synthetic dataset may not have perfectly represented the real 
images, indicating a potential area for improvement. 
However, the proposed strategy – and, in general, the new 
increasingly developed strategies involving the use of 
automatically generated artificial data – may potentially 
represent a step ahead towards an automated approach, helping 
in optimising – from a time and cost savings perspective – many 
processes involving heritage datasets. The proposed 
methodology can be extended and applied to other heritage 
domains, facilitating the identification and classification of 
objects of interest in images. 
Additionally, an opportunity that should be considered is 
represented by the abundance of 3D models of heritage assets 
derived from photogrammetric surveys within the geomatics 
scientific community. If properly shared – through appropriate 
platforms or online 3D viewers – these models could represent 
a valid starting point for generating synthetic datasets to be used 
for the training of deep learning models, with the aim to 
perform tasks supporting the study, the investigation and the 
analysis of built heritage assets. 
Additionally, future perspectives include the exploration of 
new strategies for generating synthetic datasets that better 
represent the real object of interest, investigating the 
generalisation capabilities of the models on different datasets, 
and developing a more comprehensive methodology that 
integrates different techniques for image analysis and deep 
learning. Overall, the proposed methodology represents a 
promising approach to support the preservation and analysis of 
cultural heritage. 
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