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stress with bio-sensing: a survey
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Music therapy is used to treat stress and anxiety in patients for a broad range

of reasons such as cancer treatment, substance abuse, addressing trauma, and

just daily stress in life. However, access to treatment is limited by the need for

trained music therapists and the di�culty of quantitatively measuring e�cacy in

treatment. We present a survey of digital music systems that utilize biosensing

for the purpose of reducing stress and anxiety with therapeutic use of music.

The survey analyzes biosensing instruments for brain activity, cardiovascular,

electrodermal, and respiratory measurements for e�cacy in reduction in stress

and anxiety. The survey also emphasizes digital music systems where biosensing

is utilized to adapt music playback to the subject, forming a biofeedback loop.

We also discuss how these digital music systems can use biofeedback coupled

with machine learning to provide improved e�cacy. Lastly, we posit that such

digital music systems can be realized using consumer-grade biosensing wearables

coupled with smartphones. Such systems can provide benefit to music therapists

as well as to anyone wanting to treat stress from daily living.

KEYWORDS

therapeutic music systems, music therapy, biofeedback, machine learning, ECG, EEG,

binaural beats

1. Introduction

Stress and anxiety are considered a health epidemic in the twenty-first century, according
to the World Health Organization (WHO). Both stress and anxiety have been estimated to
cost $300 billion worldwide per year in costs (Fink, 2016). There are numerous ways to cope
with and address stress and anxiety, but one often overlooked tool is the therapeutic use of
music. Music has been used as a healer and form of therapy across cultures for centuries and
has evolved as a methodology since the 19th century. Musicians, physicians, philosophers,
and religious leaders, such as priests, have attempted to identify efficacy (Kramer, 2000).
Notable figures from the 19th century include Czech physician Leopold Raudnitz, who
conducted work with patients in a Prague insane asylum, and clergyman and musician
Frederick Kill Harford who is considered a pioneer of music therapy (Kramer, 2000).

The therapeutic use of music addresses the psychophysiological relationship between
body and mind, which is crucial knowledge given that stress and anxiety can lead to
comorbidity (Johnson, 2019) and increase the likelihood of anxiety disorders later in life
(Essau et al., 2018). Studies have demonstrated the positive effects of using music as a
therapeutic tool, including a reduction in cortisol levels, heart rate, and arterial pressure (de
Witte et al., 2022b). A meta-study examining the use of music therapy for stress and anxiety
treatment found significant effects across various dimensions, including psychological and
physiological impacts, individual vs. group therapy settings, the use of treatment protocols,
and the tempo and beat choices of the music (de Witte et al., 2022b).

However, the success of therapeutic use of music has limits in scale of treatment and
research. Any activity involving participants also requires a trained music therapist to guide
the session. Amusic therapist’s role is multi-faceted, being witness, sound engineer, producer,
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and co-creator (Stensæth and Magee, 2016). This limits therapy
options and research to a restricted environment involving subject
matter experts that can prepare the environment, control the
session, and perform analysis on data collected. This makes it more
difficult for subjects to find therapy opportunities.

Music therapists and researchers have traditionally used
questionnaires before and after a therapeutic music session
to gauge efficacy. Scales such as the Visual Analog Scale for
Anxiety (VAS-A) and State-Trait Anxiety Inventory (STAI) are
available to therapists and researchers. But questionnaires provide
limited quantitative data when researching emotions—such as
stress and anxiety. This limitation has been linked to the
ordinal nature of emotions, where variance from participants
can affect accuracy (Kersten et al., 2012; Yannakakis et al.,
2021).

A more recent option has been to use medical-grade biosensing
equipment to record psychophysiological data. For example, an
Electrocardiogram (ECG) machine can record heart rate and
other cardiovascular measurements. And an Electroencephalogram
(EEG) headset can record brain waves. Both of these types of
devices are useful in helping researchers detect and measure
stress and anxiety (Lampert, 2015; Katmah et al., 2021). But
these types of medical-grade equipment cost thousands of dollars,
furthering the limitation in accessibility of therapeutic use
of music.

With the recent advent of consumer-grade biosensing
wearables such as Apple Watch for heart rate and the BrainBit
headband for brain waves, music therapists and researchers
now have more options. These devices are relatively inexpensive
and are coupled with easy-to-use software. From a music
therapist’s perspective, these digital systems can act as non-human
co-therapists, or “cooperative elements” (Kjetil, 2021).

And these consumer-grade biosensing devices are paired, via
Bluetooth, to smartphones–Android phones or Apple iPhones.
This allows portable recording of real-time biosensing data and
provides music therapists and researchers with more accessible
technology for therapeutic use of music. Another recent direction
with therapeutic use of music is digital systems that utilize Machine
Learning (ML) to classify biosensing data. Using ML can allow a
digital music system to adapt to a subject’s individual preferences
such as tempo, music genre, and other characteristics—based on
the biosensing data.

If inexpensive biosensing wearables and more-advanced AI are
paired with smartphones, what relationship will this have with
music therapy? Thus, our research questions for this survey are:

(1) Can therapeutic use of music be conducted with wearable
biosensing computing devices?

(2) Can digital music intervention systems yield results that can
address stress and anxiety?

Lastly, we discuss how digital music therapy is evolving with
solutions that can detect and treat stress and anxiety. As well,
we analyze how these digital music systems utilize biosensing
to detect effects of music stimuli. We finish with a posit of the
future of therapeutic music systems where ML and consumer-
grade biosensing wearables provide the public with easily accessible
solutions to address stress and anxiety.

FIGURE 1

Circumplex emotion model.

2. Background

In this section we present key concepts related to therapeutic
use of music. The first topic examines the subtle differences
between stress and anxiety, followed by a clear distinction
between music therapy and music medicine. The section also
covers the general results of music interventions, highlighting
the importance of using digital music systems. Furthermore, we
delve into the role of binaural beats in addressing stress and
anxiety and explore how instruments and measurements can be
valuable in a therapeutic music environment. Lastly, we discuss
biosensing technology in recent methodologies for therapeutic use
of music.

2.1. Stress vs. anxiety and the emotion
model

In the digital music systems that we surveyed, the terms
stress and anxiety are treated synonymously. And while they do
share overlap in psychophysiological effects on the body, there are
differences, one being their duration in time. Stress is caused by
external factors such as conflict, pressure (e.g., time constraint) or a
challenge imposed. These external factors are known as stressors.
Response to stressors is relatively short-lived (e.g., minutes, or
hours) and goes away once a stressor is no longer present.

Anxiety is an internal reaction from previous events, such as
stressors just mentioned (Spielberger and Sarason, 1991; Adwas
et al., 2019). Unlike stress’s immediate effect—and dissipation,
anxiety manifests well after any initial external factor and may not
dissipate over time. Anxiety can affect a patient over a period of
months or even years. However, since the digital music systems that
we surveyed treat stress and anxiety synonymously, we will use the
term stress to refer to both.
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The emotional response to stress has been used in studies
where researchers are interested in psychophysiological changes in
emotion (e.g., distressed, upset). A common emotion model is Dr.
James Russell’s emotional state wheel, known as the Circumplex

Model, shown in Figure 1 (Russell, 1980). Dr. Russell’s emotion
model comprises of a two-dimensional wheel where the x axis is
valence, and the y axis is arousal. Low valence is unpleasantness and
high valance is pleasantness. The positive y is arousal and negative
y is deactivation.

The circumplex model has been used in therapeutic use of
music with results from brain activity via Electroencephalogram
(EEG) headset electrodes. In one experiment, researchers utilized
an EEG headset with a fractal-based emotion recognition algorithm
to record participants’ emotions while listening to soundscape
sounds from the International Affective Digitized Sounds (IADS)
database (Sourina et al., 2012). Researchers were able to detect
emotions in real-time. In another research project, researchers
changed various facets of music playback—including tempo, pitch,
amplitude, and harmonic mode. Participants wore EEG headsets
and brainwave data was used to influence the generated music
playback. While no significance was found, the study demonstrated
work toward users’ ability to change music based on their emotion
(e.g., happy or sad) (Ehrlich et al., 2019).

2.2. Music therapy vs. music medicine

There are two approaches when it comes to therapeutic use of
music: (1) Music Therapy (MT) and (2) Music Medicine (MM).
We note the distinctions specifically between MT and MM to
avoid ambiguity and misrepresentation since using the terms
synonymously has been considered diluting of MT (Wheeler et al.,
2019) and showing insensitivity (Gold et al., 2011).

While both are considered helpful for symptom management
of stress (Bradt et al., 2015), MT requires a credentialed music
therapist to be present (Bradt et al., 2015; Monsalve-Duarte
et al., 2022). The therapist’s role is to provide opportunities for
intervention—a core characteristic of MT (Gold et al., 2011). These
opportunities include a wide range of activities such as singing,
playing musical instruments, composing, and song writing. When
conducting sessions, a music therapist can choose either active

music therapy or receptive music therapy. In active music therapy,
subjects are involved in the performance of the music (e.g., singing,
playing instruments or both). In receptive music therapy, the
subject plays a passive role, listening to music only.

MM uses more of a “scientific evaluation” approach with a
focus on medical research and may not contain a “systematic
therapeutic process” (i.e., methodology) that requires a customized
plan for the patient (Bradt et al., 2015). With a more research-based
centricity, MM relies more heavily on generated music. This is in
contrast with MT’s reliance on a credentialed music therapist to
perform any singing or instrument playing. However, MM can also
be used to compliment music therapy (Wheeler et al., 2019).

Both MM and MT involve some form of Music Intervention
(MI) that involves listening, singing, or making of music within a
therapeutic context. If a subject self-administers a MI, it is defined
as “music as medicine” (de Witte et al., 2020).

2.3. General music interventions

The therapeutic use of music is antiquitous and spans
cultures, continents, and even millennia of human history where
speculation of practices goes back to paleolithic times (West,
2000). There are historic texts such as the Jewish Old Testament
where David plays the harp for the first King of Israel, Saul
(ca. 1120 BCE). The playing of the harp offers Saul “relief”,
makes Saul “feel better” by purging any “evil spirit” (New
International Version, 1 Samuel 16:14–23). This early reference
to music having a healing aspect is not alone. The thirteenth
century saw an Islamic brotherhood in Meknes, Morocco, known
as the Isawiyya, create music called Gnawa that was used to
perform exorcisms (Shiloah, 2000), another example of music as
a healer.

There’s also traditional medicine from the Indian culture
known as Suśrutasam. hitā (ca. first millennium BCE). One of the
prescribed practices within the Suśrutasam. hitā was for individuals
to “enjoy soft sounds, pleasant sights and tastes” after eating
(Katz, 2000). The goal being to help facilitate digestion by
listening to calming music. More recently, in 1840, the Czech
physician Leopold Raudnitz published a book on music therapy.
In his writings, he accounts experiences at a Prague insane
asylum where patients suffering from delirium would “cease
to babble” and patients with delusion demonstrated “marked
improvement” (Kramer, 2000) after listening to music. And in
1891 a clergyman and musician, Frederick Kill Harford, organized
a group of “musical healers”. They were named the Guild of St.
Cecilia. The purpose of Harford’s work was to “alleviate pain and
relieve anxiety” (Tyler, 2000). Harford is considered a pioneer
in music therapy. Over the last 100 years, therapeutic use of
music has become more formalized with different approaches
in intervention.

2.3.1. Music intervention overview
MT and MM have roots in other disciplines such as health

science, psychology, and music education (Ole Bonde, 2019).
Because of the multidisciplinary nature of MT and MM, therapists
and researchers can tailor treatments in specific ways based on the
patient. The approach can be curative or palliative and attempt to
correct behaviors or provide personal growth. They can emphasize
more artistic expression or provide a more scientific approach (Ole
Bonde, 2019).

A common MI session requires the music therapist in MT
or researcher in MM to prepare material needed for the subject.
This includes preparing song lists, tuning instruments, playing live
music, and preparing any pre-session and post-session surveys, all
the while remaining neutral and keeping an emotional distance
from the patient (Nygaard Pedersen, 2019). Playing live music for
a patient based on request is called Patient Preferred Live Music
(PPLM) (Silverman et al., 2016). Accredited music therapists are
generally expected to have music backgrounds and thus be able to
play musical instruments (Reimnitz and Silverman, 2020).

The music therapist’s role in live performance requires musical
training and education since their involvement in PPLM can
involve playing guitar (Reimnitz and Silverman, 2020), singing,
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humming, or playing a body tambura (Kim S. et al., 2018).
Various techniques with subtle changes to the performance can
require the music therapist to slow the music tempo (de Witte
et al., 2020) or utilize a technique known as dynamic rhythmic

entrainment. Dynamic rhythmic entrainment entails bi-directional
synchronization performed between “two rhythmic events” (Kim
S. et al., 2018). In the context of music therapy, the therapist
could change the tempo of their performance to match the patient’s
breathing. How therapists approach a MI may also vary.

2.3.2. Therapeutic models for music intervention
The use ofMIs has a long history, but the creation of formalized

models has only recently been developed. In 1999, the 9th World
Congress of Music Therapy convened in Washington, USA, with
the theme “Five Internationally KnownModels of Music Therapy”.
The five recognized models were Guided Imagery and Music
(GIM), analytical-oriented music therapy, Nordoff-Robbins music
therapy, Benenzon music therapy, and cognitive-behavioral music
therapy (Jacobsen et al., 2019). Although there are other models in
use, our survey paper focuses on these five models presented by the
World Congress of Music Therapy.

The GIM model was developed by Helen Lindquist Bonny
in the 1970s while working at the Maryland Psychiatric Research
Center in the USA. This model utilizes classical music chosen by the
therapist for playback while patients deeply relax, lying down with
their eyes closed. During this process, the therapist helps the patient
imagine scenarios of their choosing and guides calming thoughts
around the scenario. After the session, which lasts up to 50min, the
patient is asked about their experience and how they feel. GIM has
broad applications for patients struggling with addiction, trauma,
and cancer (Bonny, 1989; Jacobsen et al., 2019).

Analytical oriented music therapy (AOM) is based on
Analytical Music Therapy (AMT) by Mary Priestley (Aigen et al.,
2021). AOM is a widely accepted approach in Europe and is a
form of active music therapy. Music can be played tonally (i.e.,
using major or minor keys) or atonally (i.e., lacking tonality).
There is importance placed on the relationship between the
therapist, the patient, and the music. Both the intra-psychological
and inter-psychological relationships are analyzed—specifically any
transference between the patient and the musical instruments. Play
rules are agreed upon which may include associating notes or
chords to represent a specific emotion. A patient may decide to beat
a drum to express frustration in this model.

The Nordoff-Robbins music therapy model is an
improvisational method, created by Paul Nordoff and Clive
Robbins (Kim, 2004). Nordoff, an American composer and pianist,
and Robbins, a special educator, collaborated to create a model
that was initially meant to treat children with learning disabilities.
Focus is on allowing the patient to express themselves with various
instruments such as drums, wind instruments, and various string
instruments. Assessments include rating scale questionnaires to
track progress as well as therapists taking notes (Jacobsen et al.,
2019).

The Benenzon music therapy model requires patients to
identify their “Musical Sound Identity,” which refers to the
body sounds and other nonverbal communication that define

their psychological state (Benenzon, 2007). Founded by Rolando
Benenzon in 1966 in Buenos Aires, Argentina, the model originally
focused on patients with autism and vegetative states. The
process involves three stages: (1) warming up, (2) perception and
observation, and (3) sonorous dialogue, which involves full, loud
sounds. This model can be used on an individual basis or in group
settings (Jacobsen et al., 2019).

Last, the Cognitive Behavioral Therapy (CBT) music therapy
model has roots from the Second World War as therapists treated
veterans with the goal of cognitive or behavior modification. Music
stimuli is played, and participants can either participate (i.e., active
music therapy) or listen (i.e., receptive music therapy) (Cognitive-
Behavioural Music Therapy, 2019). The cognitive behavioral
music therapy model has been used with children, patients with
Parkinson’s disease, autism, and eating disorders. Unlike the
improvisational models, this model is structured and is a form of
Cognitive Behavioral Therapy (CBT) where unwanted behaviors
(e.g., destructive) are identified and the therapist helps the patient
work toward changing the behaviors. The music stimuli are used
to modify the behavior and results are measured by the therapist
during a music therapy session.

2.3.3. Self-reported music intervention
measurements

When treating stress for patients, questionnaire feedback helps
direct the music therapist through an effective therapeutic process.
Using questionnaires such as the Visual Analog Scale for Anxiety
(VAS-A) and State-Trait Anxiety Inventory (STAI) have proven to
be effective in treating stress. Both VAS-A (Hayes and Patterson,
1921) and STAI-Y1 (Spielberger et al., 1983) are psychometric
measuring instruments that record participant stress rating and can
be administered pre-experiment and post-experiment. VAS-A has a
longer history, stemming from 1921. While they are both meant to
measure stress, they do have some differences. Questions for the
VAS-A questionnaire (see Table 1) use a continuous (analog) scale
rather than Likert. Participants are presented with a short number
of questions—typically between one and 10 questions. STAI-YI on
the other hand uses Likert questions representing discreet choices.
There are a few variations of STAI with Y1 presenting 20. Other
versions of STAI can contain up to 40 questions.

VAS-A may be considered less accurate due to less questions
being presented to participants (Labaste et al., 2019). However,
VAS-A is shorter and so it is referred in heightenedmoments where
a time-consuming questionnaire could be abandoned due to pain
or anxiety (Ducoulombier et al., 2020). Despite their differences,
there is significant correlation between the two types of measuring
instruments (Delgado et al., 2018; Ducoulombier et al., 2020;
Lavedán Santamaría et al., 2022).

2.3.4. Music intervention results for stress
MT and MM have both been used to treat a wide range of

health issues, disabilities, and physical and psychological stressors.
MIs have been used in addressing stress in cancer patients receiving
blood or marrow transfusions (Reimnitz and Silverman, 2020),
stress reduction in patients going through rehabilitation for Total
Knee Arthroplasty (TKA) (Leonard, 2019), and lowering stress in
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TABLE 1 VAS-A questionnaire.

1 I have no stress 0 1 2 3 4 5 6 7 8 9 10 I am extremely stressed right now

2 I am able to concentrate 0 1 2 3 4 5 6 7 8 9 10 I cannot concentrate at all

3 My body is relaxed 0 1 2 3 4 5 6 7 8 9 10 My body is tense

4 I feel happy 0 1 2 3 4 5 6 7 8 9 10 I feel depressed

5 I have lots of energy 0 1 2 3 4 5 6 7 8 9 10 I have no energy

6 I feel safe and protected 0 1 2 3 4 5 6 7 8 9 10 I feel tense and afraid

7 I feel patient and calm 0 1 2 3 4 5 6 7 8 9 10 I feel short and easily agitated

8 I feel mentally energized 0 1 2 3 4 5 6 7 8 9 10 I feel mentally exhausted

9 I don’t have any cares right now 0 1 2 3 4 5 6 7 8 9 10 I feel pressure from responsibilities

10 My worries do not bother me right now 0 1 2 3 4 5 6 7 8 9 10 My worries are consuming my thoughts

TABLE 2 Smartphone apps for relaxation, meditation, stress, and anxiety.

App name
and goal

Music
genre

Biofeedback Adaptive
music

Endel: focus,
sleep, relax

Soundscape Yes Yes (geo-location,
HR, environment,
time-of-day)

Flow: music
therapy

Soundscape No No

Spiritune Ambient,
soundscape,

No No

Halo: relax, focus,
meditate

Ambient,
soundscape,
binaural beats

No Yes (time)

Spoke: music,
meditate, sleep

Various (hip
hop,
mindfulness)

No No

various other settings such as organ transplants and chemotherapy
(Silverman et al., 2016). Other areas where MI is being used include
hospital psychiatry, patients with developmental disabilities, brain
injuries, and palliative care patients (Jacobsen et al., 2019). MIs can
address Generalized Anxiety Disorder (GAD) which goes beyond
normal levels of stress that occur in day-to-day lives (Gutiérrez and
Camarena, 2015). Patients of GAD have “chronic and persistent
worry” (Stein and Sareen, 2015), insomnia (Wittchen and Hoyer,
2001), and susceptibility to substance abuse (Stein and Sareen,
2015).

Music interventions (MI) have been studied in specific health
contexts and stressors, but they can also provide benefits to healthy
patients and treat cases of daily stress in patients (Thoma et al.,
2013; de Witte et al., 2022a,b). MI can help strengthen family
relationships, including those with children with disabilities or
mental instability, and can provide opportunities for bonding
(Jacobsen et al., 2019). MIs can also be used to treat daily levels of
stress, offer coaching, and be used in sessions for stress prevention
(Daniels Beck, 2019). Subjects seeking personal growth can also
benefit fromMIs (Pedersen and Bonde, 2019).

2.3.5. Music interventions with live music
MT emphasizes the therapist playing live music vs. using pre-

recorded playback. This is due to consensus within the music

therapy industry that live performances are more effective in
addressing and reducing stress (de Witte et al., 2020). Live music
involves a combination of the therapist and the patient and is used
in improvisational music therapy models and where active MIs
are utilized.

Live music can be beneficial in group settings, especially when
multiple patients are participating in the session. In a case involving
a 27-year-old woman, Carla, with bipolar disorder, live music was
used to help identifymoments ofmania during her rapid xylophone
playing. The therapist responded with piano motifs, and other
group members noticed Carla mumbling during her playing. This
allowed Carla to identify one of her problems: having too many
thoughts at once. After her sessions, Carla’s resistance and psychotic
behaviors had lessened (Nolan, 1991).

Live music also helps when patients are too young to
play instruments or prefer songs familiar to them. One case
study involved a 9-year-old boy, Robbie, with “severe emotional
problems” due to being in foster care all his life. He was prone to
violent reactions and remained distant. Robbie’s sessions included
singing various children’s songs with the therapist, and in moments
of stress, the therapist would play music to calm Robbie. Over
120 sessions were held and the analysis of the therapist included
increased attention span, less disruptive behavior, and his verbal
communication became more succinct (Herman, 1991).

2.3.6. Music interventions with pre-recorded
music

While many MIs involving MT utilize improvisation and
patient participation, there are situations where live music is
impractical. An example case study involved a 22-year-old patient
named Jerry, with autism. He liked to dance to music from
radio and his record collection. The music therapist used Jerry’s
favorite recordings over several weeks. The results reported from
the therapist showed that Jerry transformed from withdrawn and
prone to violent outbursts, to having confidence in dancing and
playing musical instruments (Clarkson, 1991).

Another example where it is more practical to use pre-
recorded music is during moments of hospital care—such as
going through labor during childbirth. A case involving a 30-
year-old woman, named Annie, involved the process of a MI
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FIGURE 2

Biosensing instruments, measurements, and state-and-e�ect with music intervention. The up arrow ↑ represents an increase in biological measure

with decreasing stress and the down arrow ↓ represents a decrease in biological measure with decreasing stress. Electrodermal Activity (EDA),

Galvanic Skin Response (GSR), Electrodermal Response (EDR), and Psychogalvanic Reflex (PGR) are all considered synonymous where EDA is more

recent and common to use.

session during childbirth. Eight 90-min cassette tapes were
prepared with classical music. The tapes were used before
and during childbirth. Questionnaires were given before and

after each session. The results from the questionnaires found
that music therapy was effective in pain management (Allison,
1991).
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2.3.7. Music as self-administered medicine
With limited access to music therapists and with increased

consumer-grade biosensing wearables and smartphones available,
individuals may simply choose to self-medicate. Smartphone users
have application choices for therapeutic use of music. Table 2
shows apps that are addressing MI for relaxation, meditation,
and stress. This table only includes applications for iPhone and
may change quickly as this is a relatively new type of app
and technology.

Most of the current apps offering therapeutic use of
music do not include biosensing or self-administered feedback
questionnaires. Current focus offers artists whose music can be
downloaded based on a subscription rather than a digital music
system that responds to biosensing coupled with ML. An app
named Endel shown in Table 2 does offer biosensing (HR) and
other inputs such as counted steps, current weather, time-of-day,
and location. This application uses inputs to generate music that
is contextual to the user’s environment and biosensing capabilities
of the device (McGroarty, 2020; Kleć and Wieczorkowska,
2021).

But a lack of adaptivity in feedback doesn’t negate efficacy in
self-administered MIs. Listening to classical music or self-selected
songs reduces stress. Results from studies that have used either
questionnaires such as STAI or biosensing such as heart rate
and respiratory rate show self-administered MIs can reduce stress
(Knight and Rickard, 2001; Burns et al., 2002; Labbé et al., 2007).
Even in daily life, listening to music for the purpose of stress
reduction has shown efficacy (Linnemann et al., 2015). However,
in self-reported studies, the amount of time subjects listened to
music was important. Listening to music for relaxation for more
than 20 minutes showed significance whereas < 5min increased
stress (Linnemann et al., 2018).

2.3.8. Binaural beats
Binaural beats share a relationship with acoustic beats which

happen when a pair of sound waves with slightly different
frequencies (e.g., 122 and 128Hz) are played together from two
different sound sources (e.g., speakers). The result is the difference
between these two frequencies (e.g., 128–122Hz = 6Hz) and
creates an auditory pulsating sound, known as the beat frequency.

These two soundwaves create both constructive and destructive
interference—depending on where the two crest (i.e., high points)
and where their troughs (i.e., low points) meet. Constructive
interference is the result of the two soundwave crests meeting in the
same place in time. This causes an amplification of the combined
soundwave crests. Destructive interference is the outcome of one
soundwave crest meeting the other soundwave trough which results
in cancellation of the two with little or no audible sound.

Acoustic beats exist in the air around us and are detected by our
brains. Binaural beats involve listening to two different frequencies
played in each ear through headphones, and the brain identifies
the difference. Research has shown that entraining the frequency
of binaural beats with the brain can have a psychophysiological
effect. Binaural beats in the beta range (13–30Hz) have been shown
to decrease negative mood (Lane et al., 1998), while those in the
delta (0.1–4Hz) or theta (4–8Hz) ranges can reduce anxiety (Le

Scouarnec et al., 2001; Krasnoff, 2021). Roughly 30% of surveyed
systems use binaural beats for these purposes.

2.4. Biosensing instruments and
measurements

MIs with therapists utilize pretest and posttest questionnaires
such as VAS-A or STAI-YI. However, measurements may be subject
to variance if too much time has passed between the session and
questionnaires. Biosensing offers a finer granularity of analysis by
recording real-time data from the patient as they interact with and
experience a MT session.

The systems we surveyed used eight types of biosensing
measurements: cardiovascular, brain activity, electrodermal (i.e.,
skin measurements), respiratory, and optical measurements.
Figure 2 shows these types in the second column, labeled
“Categories”. For biosensing measurements, there are different
types of instruments that are used to acquire measurement
data. It is important to identify the relationships between
instruments and measurements are not one-to-one. For example,
respiratory measurements (i.e., breathing data) can be extracted
from a Respiratory Inductance Plethysmography (RIP) instrument,
Electrocardiogram (ECG) electrodes, or a Photoplethysmography
(PPG) sensor. When looking at cardiovascular measurements,
some papers mention the R-R interval instead of Heart Rate
(HR). R-R interval refers to the interval between heart beats in
milliseconds whereas HR uses minutes. HR is obtained via ECG
electrodes, a PPG sensor, a Seismocardiogram (SCG) instrument,
or a Gyrocardiography (GCG) instrument.

And in the last 5 years, instrument technology has become
less expensive and more accessible. Some instruments that have
historically been accessible only by medical professionals are
now readily available for consumer purchase. This includes
portable consumer-grade Electrocardiogram (ECG) devices such
as the LOOKEE

R©
Personal ECG and Apple Watch Series

8. Electroencephalogram (EEG) devices such as the BrainBit
headband and Interaxon’s Muse 2 are readily ordered online for
researchers and consumers alike. And the Natus

R©
XactTrace

R©

Respiratory Inductance Plethysmography (RIP) respiratory effort
belt for respiratory measurements is also obtainable—in terms of
availability and price.

Of the 10 surveyed digital music systems that we looked at,
five used cardiovascular measurements, five used brain activity
measurements, five used electrodermal measurements, two used
respiratory measurements, and one used optical (i.e., pupil
measurements). Lastly, five digital music systems used two or more
types of measurements concurrently. Table 3 lists the biosensing
measurements in the “Types of Feedback” column.

We note that not all wearable devices contain the same
capabilities. Both the Apple Watch and the Fitbit Sense use PPG
to capture HRV data. However, the Fitbit Sense can also capture
Electrodermal Activity (EDA) and Skin Temperature (ST) data,
whereas the Apple Watch does not. And Apple Watch Series 4
through 8 offer both a PPG sensor and an ECG electrode for
cardiovascular measurements. In the following sub-sections, we
discuss these instruments and measurements.
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TABLE 3 Surveyed therapeutic music systems.

# Paper title, references Research
type

Address Type of
biosensing

Adaptive
(biofeedback)

Algorithms Method
of
delivery

Music and
sound
genre

Music
therapy/
medicine

Respondent
sensory
Inputs

System

① Can Machine Learning Predict
Stress Reduction Based on
Wearable Sensors’ Data Following
Relaxation at Workplace? A
Pilot Study
(Tonacci et al., 2020)

Intervention
Experiment
quantitative &
qualitative

Stress HR, HRV, GSR N Various
classifiers
(SVM, KNN,
Linear
Discriminant)

Prerecorded Yoga chakra
music

Medicine Auditory,
visual

Matlab
Machine
Learning
classifiers

② Computational Music Biofeedback
for Stress Relief
(Capili et al., 2018)

Intervention
Experiment
with
quantitative

Stress EEG Y Binaural beat
chosen to suit
relaxed
brainwaves

Prerecorded/
generated

Ambient
music and
binaural beats

Therapy Auditory Mac OS,
Python, Muse
SDK

③ Development of a Biofeedback
System Using Harmonic Musical
Intervals to Control Heart Rate
Variability with a Generative
Adversarial Network
(Idrobo-Ávila et al., 2022)

Observational
experiment
quantitative

Stress HRV N GAN Generative Harmonic
music intervals

Medicine Auditory GAN – no
software listed

④ Engineering Music to Slow
Breathing and Invite
Relaxed Physiology
(Leslie et al., 2019)

Intervention
experiment
quantitative

Relaxation EDA, HRV,
EEG, BPM

Y Amplitude
controlled by
breathing

Prerecorded Ambient
music,
soundscape

Medicine Auditory Pure data

⑤ Machine Learning Model for
Mapping of Music Mood and
Human Emotion Based on
Physiological Signals
(Garg et al., 2022)

Intervention
experiment
quantitative

Music emotion
calibration for
stress and
relaxation

EEG, HR Y Various
classifiers
(SVM,
Random
Forest)

Prerecorded Various Medicine Auditory pyAudio-
Analysis,
LibRosa
OpenSMILE

⑥ Musical Mandala Mindfulness: A
Generative Biofeedback Experience
(Adolfsson et al., 2019)

Exhibition
with
quantitative

Meditation/
Relaxation

EEG Y Various
algorithms

Prerecorded Ambient
music, monk
chants,
binaural beats

N/A Auditory,
visual (VR)

Muse Direct,
ChucK2 ,
Unity,
python-osc

⑦ Novel Approach for Emotion
Detection and Stabilizing Mental
State by Using Machine
Learning Techniques
(Kimmatkar and Babu, 2021)

Intervention
experiment
quantitative

Emotion
detection/stress
reduction

EEG N Various
classifiers
(KNN, CNN,
RNN, DNN)

Prerecorded Meditation
music

Medicine Auditory,
visual

Ad hoc–
various
algorithms
given; no
software listed

⑧ Toward Effective Music Therapy
for Mental Health Care Using
Machine Learning Tools : Human
Affective Reasoning and
Music Genres
(Rahman et al., 2021)

Observation
experiment
quantitative

Music emotion
rating,
relaxation for
epilepsy
patients

EDA, BVP, ST,
PD

N Various
classifiers (NN,
KNN, SVM),
GA, NN

Prerecorded Various inc.
binaural beats,
jazz, rock, pop,
classical

Therapy Auditory MATLAB
R2018a

(Continued)
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2.4.1. Brain activity instruments and
measurements

To record brain activity, Electroencephalogram (EEG)
electrodes are placed on a subject’s scalp. Devices such as the
consumer-grade BrainBit headband provide four electrodes that
record electrical activity from the brain. The electrical signals are
divided into five bands: gamma, beta, alpha, theta, and delta (see
Table 4).

Brain activity is present in all bands although some may be
more prominent than others based on a subject’s mental state.
The gamma band exists in the range between 30 and 45Hz
(Sanei and Chambers, 2007; Neurohealth, 2013) and is used for
reading emotion (Li et al., 2018). It is active during learning,
information processing, and cognitive function (Abhang et al.,
2016). The beta band is between 13 and 30Hz and associated
with alertness and concentration (i.e., lower beta: 12–18Hz) and to
agitated or stressed states (i.e., higher beta: 18–30Hz) (Garg et al.,
2022).

Following is the alpha band between 8 and 13Hz. Here, the
brain is not actively processing information (Sanei and Chambers,
2007; Neurohealth, 2013) and is the range when a subject’s eyes
are closed but not sleeping. The theta band is between 4 and
8Hz and is associated with intuition, creativity, daydreaming, and
fantasizing (Sanei and Chambers, 2007; Neurohealth, 2013). Lastly
the delta band, is between 0.1 and 4Hz (Sanei and Chambers, 2007;
Neurohealth, 2013). This band is most prominent when a subject is
in deep and restorative healing sleep.

2.4.2. Cardiovascular instruments and
measurements

Of our surveyed systems, the following cardiovascular
measurements were used in detecting stress: HR, HRV, and Blood
Volume Pulse (BVP) with HR and HRV being the more commonly
used. And the following types of instruments are used: ECG, PPG,
GCG, and SCG.

2.4.2.1. Cardiovascular instruments

Electrocardiogram (ECG or EKG) is the most common
instrument used to record cardiovascular data. It senses the heart’s
electrical output through electrodes that record the depolarization
wave generated as the heart beats. These waves result from the
loss of negative charges inside the cells of the heart during each
beat. The ionic currents generated in the body are converted
into electrical signals that can be processed for various purposes
(Bonfiglio, 2014, p. 5).

PPG is different from ECG as it uses a photodetector and green
LED to measure heart rate and HRV. When a green light is shone
at the skin, the photodetector detects the light, which is absorbed
by blood due to its red color. The photodetector measures the
resulting “volumetric variations of blood circulation” (Castaneda
et al., 2018), also called BVP, which changes due to the heartbeat.
As a result, PPG measures heart rate and HRV indirectly through
changes in blood pressure and is sometimes used interchangeably
with BVP.

The last two types of instruments are Seismocardiogram (SCG)
devices, which detect vibrations from the beating of the heart at skin
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TABLE 4 Brainwave bands.

Brain band and characteristics Surveyed systems Graphical representation

Gamma (30–45Hz)
Reading emotion, rapid information processing

Input for system 4, 7, 10

Beta (13–30Hz)
Busy, alert, stressed, anxiety-filled

Input for system 4, 7, 10

Alpha (8–13Hz)
Calm, at ease, not processing information

Input for system 1, 4, 7, 10, Output
for System 2

Theta (4–8Hz)
Intuition, fantasizing, creativity, daydreaming, sleep

Input for system 4, 7, 10, Output
for system 2

Delta (0.1–4Hz)
Deep restorative sleep

Input for system 4, 10, 7

surface level, and Gyrocardiography (GCG) devices (Jafari Tadi
et al., 2017) which use gyroscopic sensors to record heart motions
(Sieciński et al., 2020). We focus only on ECG and PPG since they
are the instruments used in the surveyed papers. GCG and SCG are
mentioned for reference only.

2.4.2.2. Cardiovascular measurements

HRV and HR both use the beats-per-minute (i.e., heart
contractions) whereas BPV and BP use the force exerted by the
blood through the arteries. While HR and PR are not always
identical, for most healthy subjects, the two are meant to measure
the same thing: how many times per minute the heart beats. HR
is based on the number of heart beats per minute—much like a
metronome and HRV (shown in Figure 3) is the variations between
the peaks of the R – R intervals over time. R-wave peak represents
one heartbeat.

The intervals can be affected by many physical factors overtime
including processes in the Sympathetic Nervous System (SNS) such
as breathing (Shaffer and Ginsberg, 2017). When a subject inhales,
HR increases and when a subject exhales, HR decreases. However,
psychological effectors such as stress can also activate the SNS and
therefore affect HR and HRV (Ziegler, 2004). Healthy subjects with
little-to-no stress will have a higher HRV ratio due to HR being low
when they are at rest or asleep. A subject that has high levels of
stress have their SNS overriding the at-rest heart rate and therefore
have an elevated HR. This lowers the HRV ratio (Kim H.-G. et al.,
2018).

2.4.3. Electrodermal instruments and
measurements

Electrodermal Activity (EDA) devices also utilize electrodes. In
the case of EDA, the electrical signals are emitted from the device at
a low constant voltagemaking it too low for human nerve detection.
This low voltage helps measure the skin’s conductance level over
time which changes due to sweating.

Sweating is controlled by the SNS and affected by physical
influences (e.g., temperature) as well as psychological effectors
such as stress (Geršak, 2020). The psychologically induced
sweating is independent of thermoregulatory sweating responses
and a direct effect from emotional responses. Emotions such
as fear, anxiety, and agitation can induce the psychologically
sweating response (Geršak, 2020). EDA is used to measure Skin
Conductance Level (SCL) which is measured over a period of
seconds and minutes. Another electrodermal measurement is
Skin Temperature (ST) which detects changes in surface skin
temperature. ST lowers during stressors due to the SNS reducing
peripheral vasoconstriction.

2.4.4. Respiratory instruments and measurements
The Respiratory Inductance Plethysmography input (RIP)

device is an instrument used to measure pulmonary ventilation
(i.e., breathing). The RIP measures volumetric changes in the rib
cage and abdomen via wire coils in adhesive elastic bands that are
connected to an oscillator. This wearable band is placed around
the subject’s rib cage. As the subject inhales, the circumference
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FIGURE 3

HRV with R – R interval changes.

changes and affects the frequency in the wire coils. These changes
are recorded via computer hardware and software.

Using a RIP to measure breathing is cumbersome as the subject
is required to wear a band around their rib cage—which restricts
movement and activity. ECG as well as PPG can provide respiratory
data due to the changes in heart rate from breathing (mentioned
previously with HRV). Both utilize software that can extract the
breathing rate from the HR since the HR is affected by breathing
controlled by the SNS. Breaths Per Minute (BPM), which is also
known as the Respiratory Rate (RR), increases with exposure to
stressors and decreases during relaxation (Widjaja et al., 2013).

2.4.5. Optical instruments and measurements
A pupilometer is the traditional device used for measuring

Pupil Dilation (PD). PD is the widening of the pupil within the eye.
Recent digital camera technology is used to replace a pupilometer
due to the ubiquitous availability of inexpensive high-resolution
digital cameras and software that records the changes.

Like HR and breathing, PD is affected by both physical
responses (e.g., light with PD) and physiological effectors (e.g.,
stress), both under control of the SNS (Mokhayeri and Akbarzadeh,
2011). Eye tracking software that supports recording PD can
record the diameter and the Pupil Dilation Acceleration (PDA)
and perform interpolation for blinking. Both PD and PDA are
useful measurements for tracking effectors such as stress (Zhai and
Barreto, 2006) where stressors increase PD (Sege et al., 2020).

3. Surveyed systems and typology

We focused our survey on three main criteria for system
inclusion. Systems that: (1) utilize music interventions in
addressing stress—or a future ability to do so, (2) incorporate one
or more forms of biosensing, and (3) use biosensing in an adaptive
biofeedback loop, or with potential provisions to do so in the future.

Figure 4 shows the process that our surveyed systems either
conform to or demonstrate the potential to meet. A session begins
with the digital music system reading participant biosensing data
where the data is any of the previously mentioned types. Data
is preprocessed where down sampling, de-noising, or removing
of unwanted artifacts is performed. In the case of EEG data (i.e.,
brainwave), when a participant blinks, talks, or moves parts of their
body, artifacts occur and must be removed.

The preprocessed data is forwarded to the software component
that chooses feature selection and extraction. An example of
feature selection with EEG data would be choosing only beta and
gamma bands, discarding information in the other three bands.
Feature extraction in EEG data could capture statistical features
such as mean, median, and standard deviation of a particular
brainwave band (Stancin et al., 2021). Once features are selected
or extracted—or both—the classification process can distinguish
between the changes in features over time. With EEG data,
this could involve comparing time series samples of the alpha
band mean to determine whether generated music has affected
participant brainwaves.

The resulting differences allow a selection of changes to be
made (e.g., change track, alter tempo, add a new melody). This
real-time feedback loop takes the biosensing data and turns it into
a biofeedback loop. In the surveyed systems that we analyzed, the
following types of changes in music playback were made: change in
track, change in genre, pitch, tone, and amplitude.

When looking at digital music systems, we chose more recent
papers within the last 5 years due to a couple of factors. First,
as mentioned in the introduction, the advent of consumer-grade
biosensing wearables has only become commonplace within the last
5 years. Second, we wish to concentrate on digital music systems
that either use Machine Learning (ML) techniques for addressing
stress or offer future potential for adding this feature. To the best of
our knowledge, we’ve included all digital music systems that meet
our three main criteria.

Table 2 shows the systems in our survey. The first column
contains a circled number. We use these numbers to reference
each of the systems throughout the rest of this paper (e.g., ① for
system one, ② for system two, etc.). Column six identifies whether
the system uses biosensing to create a biofeedback loop. Next,
we analyze how each of the systems compares to our three main
criteria. We divide the systems into two main sections: those using
biosensing only, and systems that complete the biofeedback loop.

3.1. Music interventions with biosensing
only

System ① employs yoga videos with yoga chakras to induce
relaxation and reduce stress while recording HR, HRV, and
GSR biosensing data. This five-step experiment consisted of the
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FIGURE 4

Digital music biofeedback loop. Rectangles inside of the digital music system represent components of the system. Rectangles outside of the music

system represent external processes.

following phases: (1) baseline, (2) task one, (3) rest, (4) task two,
and (5) post rest. Both groups watched the yoga video with ambient
music for task one. For task two, Group A watched only the yoga
video and Group B listened to just the ambient music. System ①

did not replicate the same findings with HRV that have been found
in previous research (Kim H.-G. et al., 2018): relaxation increases
HRV and cognitive load or stress decreases it. Their study does
show consistent results in GSR changes: relaxation decreases GSR.
The researchers attribute their failure to find significance with HRV
due to their protocol being short in duration (i.e., 3.5min per task).

This system used pre-extracted video and audio YouTube
videos which were not changed during the experiment and no
biofeedback loop was created. After the experiment, all data
was run through the following Matlab “Classification Learner”
classifiers: “tree, linear discriminant, quadratic discriminant,
logistic regression, support vector machine (SVM) and k-nearest
neighbor (KNN)” (Wu et al., 1996; Nick and Campbell, 2007;
Kramer, 2013; Suthaharan, 2016; Tonacci et al., 2020). The results

from the classifiers showed significance with HR and GSR but
not HRV. While this system demonstrates the ability of the ML
classifiers to determine changes in participant biosensing data as
they listen and watch YouTube videos, the system would require a
biofeedback loop as shown in Figure 4.

Researchers with system ③ used two Generative Adversarial
Networks (GANs) that play Harmonic Music Intervals (HMIs)
Wang et al. (2017). HMIs are sets of notes that are played
simultaneously to create harmony. Participants listened to 24
HMIs in random order which were created from 12 synthetic
harmonic sounds. These were played for 10 seconds each to
subjects.

GAN one’s discriminator is given human generated HMIs,
along with the HMIs created from the generator. The generator
uses HRV data from human subjects (via two ECG electrodes) as
input. The generator in GAN one reached an accuracy of 0.53 for
real data and 0.52 for generated, meaning its HMIs are comparable
to the human create data. Thus, using HRV data as input from

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1165355
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ferguson et al. 10.3389/fcomp.2023.1165355

subjects can be used to create HMIs. AndGAN two’s generator used
audio data as input to generate HRV data for the discriminator,
with the discriminator using HRV data from subjects. GAN two’s
discriminator reached an accuracy of 0.56 for real data and 0.51 for
generated data.

Due to the complexity of this study, the researchers did not
complete determining whether the system could raise HRV from
a lower state as they were not able to test GAN-to-GAN. However,
their contribution demonstrates a working model and architecture
that can be used in the management of stress. And GAN one could
use a set point to decide whether the loop increases the HRV and
thus induces relaxation where the HRV data is either generated by
GAN two or input from subjects in real-time.

The researchers that built system ⑦ utilize EEG signals from
participants. During the experiment, participants watched pre-
recorded video, listened to pre-recorded meditative music, or used
their own thoughts to elicit an emotion from four categories: angry,
calm, happy, and sad, following the circumplex emotion model
(Figure 1). Classifiers, such KNN were used to identify emotions
that participants were feeling—based on their EEG data. One of
their measures of success was finding 15 out of 20 EEG signals from
participants successfully transformed to the relaxed brain wave
band: alpha.

While not real-time in delivery, or generation of music, this
system demonstrates a strong ML component that shows potential
for creating a digital music system using biofeedback with EEG.
Participant EEG data is used with several classifiers where the
results are compared against what emotion state participants stated
that they are in. The classifiers chosen for this system were:
KNN, a Convolutional Neural Network (CNN), a Recurrent Neural
Network (RNN) (Jain and Medsker, 1999), and a Deep Neural
Network (DNN). The KNN classifier was the most accurate.

This study would benefit by using a corpus of MER data
such as PMEmo or DEAM since participant stated emotion may
not be as accurate. MER, PMEmo, and DEAM are datasets that
map song excerpts to emotions based on the Circumplex Model
(Figure 1). This could be used to either generate the music or to
help a music recommender component provide music based on the
emotion that the participant wishes to feel, providing a unique User
Experience (UX).

System ⑧ incorporates classical, instrumental, and pop music
for its playback. Instrumental music was paired with binaural beats,
instrumental rock was coupled with gamma binaural beats (i.e., 30–
45Hz), and instrumental jazz was coupled with alpha binaural beats
(i.e., 8–12Hz). Analysis of EDA, HR (via BVP), ST, and PD were
recorded from participants during the experiment. Participants
listened to 12 pieces of music that were played for ∼4min each.
Like systems ⑤ and ⑦, system ⑧ employed the circumplex model
(Figure 1).

Participants filled out a questionnaire where they rated each
song with a series of Likert scale questions pertaining to the
emotion of the song (e.g., sad to happy, unpleasant to pleasant, etc.).
Both the questionnaire data and the biosensing data were used to
classify a song’s genre. And both provided significance in doing so.
While system ⑧did not use biosensing to reduce participant stress,
their focus was on the ability to classify songs where participant
feedback rates songs as being helpful for reducing stress.

The researchers used a KNN and a SVM for classification of
biosensing data offline. However, they also used a unique visual
approach they called “Gingerbread Animation” (Rahman et al.,
2021). A two-dimensional figure of a gingerbread man was filled in
with color from the EDA, HR, and ST biosensing data and updated
over time: EDA represented as red, HR as blue, and ST as green.
These colors overlap, creating other colors (e.g., purple, orange,
etc.). If the biosensing data values are not updated (due to lack
of change in biosensing data), their color intensity diminishes, like
ripples in a pond.

These animated changes of the gingerbread figure were used
as input for a CNN where the CNN determined changes in
emotion based on the changes in color. The researchers found
that that the CNN performed best within their experiment. This
digital music system provides a unique approach using a CNN for
classification of emotion change and could use a custom dataset for
better accuracy.

3.2. Music interventions with biofeedback
loop

In system ②, researchers played a combination of music and
binaural beats in the 10Hz range (i.e., alpha range) to treat stress
while recording EEG data. The experiment consisted of four phases:
(1) music only, (2) music and alpha wave binaural beats, (3) music
and theta wave binaural beats, and (4) music and a customized
binaural beat. Each of the phases lasted 5min. The fourth phase
was chosen by the digital music system based on which of the two
wave sets increased while the participant listened: either alpha or
theta bands. The results were concordant with previous studies
that utilized similar test procedures: alpha wave binaural beats
increase participant brain alpha wave activity (Capili et al., 2018)
and therefore promote a relaxed state.

Since the biosensing data was used to select binaural beat
wavelengths, this digital music system has a biofeedback loop.
There are several ways in whichML could be employed with system
②. Rather than update within the last phase of the session, real-time
ML can be used to update the binaural beat band every minute
as well as change the played song or transition from one song to
another. To support real-time, a data set such as MER including
PMEmo (Zhang et al., 2018) is needed with theML to select musical
choices to offer a more personalized relaxation experience.

System ④ plays ambient music in blocks of time for the
treatment of stress. The experiment consisted of seven time-
blocks in total, each lasting ∼ 7min. During all seven time-blocks,
biosensing was recorded and participants were required to perform
the task of pressing a key on a computer keyboard when hearing an
“alarming short buzzing sound” (Leslie et al., 2019). The first four
time-blocks were used for control and the last three time-blocks
were music interventions: (1) fixed tempo, (2) personalized tempo
to breathing, and (3) personalized amplitude to breathing.

For the biofeedback loop, only the BPM was used although
HRV, EEG, and EDA data were recorded for later analysis.
HRV data did not demonstrate significance between baseline and
intervention phases while EDA, EEG, and respiratory biosensing
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did. The respiratory biofeedback’s calming effect of breathing was
validated by using z-score as a baseline. Z-score for respiratory
biofeedback is calculated by how many Standard Deviations (SDs)
from the mean BPM where the mean BPM is calculated based on
age, gender, and height.

The ambient music was pre-recorded, but their digital
music system changed the tempo during playback based on the
interventions. Two ways in which breathing changed the ambient
music: (1) personalized tempo, and (2) personalized envelope. For
the breathing changes for personalized tempo, the amplitude was
calculated at 75% of the participant BPM with a limit placed
on potentially high breathing rates at 15 beats per minute. The
personalized envelope offered a more real-time approach where
inhaling and exhaling produced notes generated. Since EEG and
HR were utilized in this digital music system, a ML component
could compare this biosensing data against datasets to determine if
the entrainment also reduces HR and places participants into alpha
or theta bands. This would require HR, HRV, and EEG datasets for
real-time biofeedback.

System ⑤ contains a recommender digital music system that
uses song samples from the PMEmo Dataset for Music Emotion
Recognition (MER) (Zhang et al., 2018) which consists of various
tracks—mostly from current pop-music. This study was unique in
that their focus was to detect stress rather than detect relaxation.
During song playback, participants’ EEG and HR (via ECG) were
analyzed and compared against the circumplex model (Figure 1).
The participant biosensing data was compared to the PMEmo
dataset. By comparing participant EEG to the PMEmo dataset, they
were able to detect certain playback songs that became stressors for
participants: EEG moved from theta or alpha to upper beta.

Like system ①, system ⑤ compares classifiers within a
recommender digital music system. Participant EEG, HR, and
GSR data is compared against MER datasets (PMEmo and
DEAM). SVM and random forest classifiers are used for emotion
classification to detect stress. With the ability of this digital music
system to detect whether a song creates stress, this study could be
adapted to perform real-time changes during user playback based
on the biosensing data that the researchers recorded to nudge user
state into one of relaxation.

System ⑨ plays binaural beats, ambient music, and monk
chants to address anxiety while recording participant EEG data.
The survey paper included the digital music system for the purpose
of an exhibition rather than a research study. The 38 participants
were each given 6min and 45 s per session where they listened to
music and watched an animated mandala (i.e., circular symmetric
geometrical shape) atop a milky way galaxy background in Virtual
Reality (VR).

The biosensing data (EEG) in system ⑥ changes both the
mandala visuals and the audio; the breathing drives the patterns.
While the EEG data was used to influence the visuals as well as the
audio (binaural beats were not influenced), the researchers did not
measure significance in whether the music changed brain waves
from beta to alpha or theta. This, however, was mentioned as a
future consideration for their digital music system.

The digital music system was implemented in Unity using a
plugin known as chucK script. This script allows programmers
to manipulate audio in real time such as volume, create sine
oscillators, and create reverb effects. The researchers used chucK
to affect the volume levels of both the monk chants as well as the

ambient music. This was performed by using average values of the
EEG brainwave data. Because chucK has many other parameters
that are configurable, the EEG biosensing data could be controlled
by classifiers that use the circumplex model to control the music
and the monk chants. For example, if the ML component detects
participant anxiety (based on the arousal and valence emotion
model), the volume of the music, monk chants, or both, could
be reduced.

System ⑨ provides ambient music playback and nature
soundscapes. HR, SCR, BPM, and HRV biosensing data were
recorded. Participants were put into either a Control Group (CG)
or an Experimental Group (EG) and run through three phases: (1)
baseline phase (i.e., rest and relax), (2) stress phase (i.e., mentally
challenging task), and (3) a relaxation phase. The CG listened to
both soundscape, then soundscape and music together—with no
adaptivity. The EG listened to soundscape, then soundscape and
music together where the respiratory biosensing data was used to
control the amplitude of the wind creating a biofeedback loop.
At the end of the session both groups of participants filled out
State-Trait Anxiety Inventory (STAI) and Rumination Response
Scale (RRS) surveys. Results from the experiment demonstrated
that HRV was raised, and BPM was decreased.

Because the researchers use a PPG sensor for cardiovascular
measurements, BPM biosensing data was obtained and used by
the music system to affect the amplitude of the generated wind
sound. Since significance was found with both BPM and HRV
this biofeedback system could incorporate a form of ML such as
a classifier and compare against a dataset for real-time updates to
not only change the wind amplitude, but also generation of ambient
music as well.

Like system ⑥, system ⑩ was created for exhibition purposes.
Ambient sounds came in the form of quartal and quintal piano
harmonies which can avoid tensions in tonal harmony (Tatar
et al., 2019). It utilized BPM biosensing data from participants and
immersed them in a VR environment where breathing controlled
their altitude within a 3D environment with ocean waves below.
Lower BPM also decreased the calmness of the ocean waves,
encouraging slower respiratory rate, and thus a relaxed state.
Because this digital music system encourages slower breathing, it
provides insight into how future digital music systems can help
encourage relaxation from stress using ambient music and VR.

The exhibition digital music system in ⑩ also uses breathing
to affect the music that it generates: quartal and quintal piano
harmonies. Because this system only uses respiratorymeasurement,
the addition of other biosensing data could help offer more real-
time parameter changes. And the BPM is obtained by a device that
measures BVP so that both breathing as well as HR and HRV could
be utilized for other parameters. This would allow for comparison
against a dataset of heart data to offer real-time changes based on a
digital music system using ML.

3.3. Software adaptivity approaches to
biofeedback

We saw two main approaches that researchers either chose
or posited would work with their systems: (1) provide a non-ML
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algorithm that uses biosensing data as stimuli to change music
delivery, or (2) utilize ML techniques that are used offline.

Both approaches have their merits. The first approach provides
immediate results that can validate the sometimes-complicated
workflow when acquiring biosensing data. An example of this
workflow requires researchers to first ensure no environmental
stimuli will invalidate the acquisition of data (e.g., hot temperature
skews GSR data, neck movement or blinking affects EEG data,
etc.). Next, the data stream may include some denoising or
filtering. Without any ML involved, any algorithms used provide
basic choices—such as whether participant alpha or theta bands
increased more than the other—as found in system ②.

The second approach can demonstrate effectiveness of a
particular ML strategy where processing may include denoising,
down-sampling, filtering of data, time-synchronizing with other
biosensing data, feature extraction, and finally ML such as
classification. Other choices include which ML to use: classifiers,
Generative Adversarial Networks (GANs) as in system ③, or even
a Genetic Algorithm (GA)—found in system ⑧. Once a chosen
approach is made, researchers may need some time to acquaint
themselves with any frameworks, configuration, and hardware
requirements. Finally, researchers need to choose a training set or
budget in time to make their own. Seeing the amount of effort
required to design each of these two approaches provides insight
into why many research endeavors currently choose one approach
or another rather than both.

4. Conclusion

The digital music systems that we’ve looked at show promise
in providing therapeutic use of music to subjects who seek MIs.
By processing biosensing data within a digital music system, the
biofeedback loop provides real-time adaptivity with a promise of
increased efficacy if the digital music system can provide immediate
tailoring of a subject’s music needs.

If this technology is implemented on mobile computing
devices such as smartphones and consumer-grade wearables with
biosensing data instruments, music therapists and researchers can
use this technology—both during therapy as well as outside of
therapy. Subjects can self-administer a MI session in a place and
time of their convenience. This would help address limited access
to music therapists and researchers. But there are challenges and
questions that need to be addressed.

4.1. Current digital music system
approaches and limitations

Of the digital music systems that we surveyed, only six out of
the ten were adaptive. And of the six systems that were adaptive,
only one utilized ML classifiers. None offered a real-timeML-based
adaptive solution. Further, of the 10 systems that we analyzed, none
were implemented on smartphones connected to consumer-grade
biosensing wearables.

Moving in that direction, we see two limited or emerging
areas that hinder ubiquity of using a mobile-computing, real-time
ML-based adaptive digital music system for MIs for treatment of

stress: (1) training sets and data for digital music systems, and (4)
consumer-grade biosensing data instruments.

4.1.1. Limited training sets for digital music
systems

Training sets such as the MediaEval Database for Emotional
Analysis of Music’ (DEAM), PMemo, and the MIREX like Mood
dataset for emotion classification are relatively new and do not
contain the vast amounts of data that other branches of AI
have already employed such as Chat Generative Pre-Trained
Processor (ChatGPT).

There are older projects that have also explored the relationship
between music or sound, biosensing data, and emotion. Database
for Emotion Analysis using Physiological Signals (DEAP) has been
used for emotion analysis and contains data from 32 participants
watching 40 one-minute snippets of music videos. The data
collected includes EEG, peripheral physiological signals (e.g., GSR,
respiration amplitude, ST, ECG, etc.), and Multimedia Content
Analysis (MCA) data [e.g., Hue, Color, Value (HSV) average and
standard deviation, etc.] (Koelstra et al., 2012). Unfortunately,
DEAP has not been updated since 2012.

This limited support of pretrained data is no better
demonstrated than by looking at how many of these digital
music systems utilize pretrained datasets. Of the 10 systems that
we surveyed, only system ⑤ used existing pretrained data sets:
DEAM and PMemo. The rest of the systems provided their own
training sets.

4.1.2. Limited consumer-grade biosensing
instrumentation

Many of the consumer-grade biosensing data wearables are
relatively new in both features as well as in developer support.
For recording cardiovascular and respiratory data, Apple provides
their Apple Watch series currently at series 8. Samsung, the top
manufacturer of Android smartphones, has their Galaxy Watch5,
and company Fitbit offers their Versa 4 device. All devices provide
recording of HR, HRV, and respiratory data using either PPG
or ECG.

For EEGwearables, the bio-tech company EMOTIV has offered
the Muse EEG headset with the Muse 2 being the most recent.
Unfortunately, since 2020 EMOTIV restricted developer access to
the Software Development Kit (SDK) that allows reading data from
the Muse EEG headsets. This has made it difficult for developers
and researchers to utilize the power of the four electrode EEG
headset. Another recent bio-tech company, BrainBit, also offers
a four-electrode wearable EEG headband that is comparable with
EMOTIV’sMuse 2. Unlike EMOTIVE’sMuse 2, the BrainBit SDK is
not restricted, and developers and researchers are free to download
their SDK.

4.2. The ethics of self-medicating

Allowing subjects to initiate their own MI after being
onboarded by a music therapist does present a potential ethical
dilemma. Are we taking jobs away from trained therapists and
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replacing them with AI? This is quite a topical concern where
AI technologies such as ChatGPT can perform human tasks
(e.g., author research papers, write poems, write program code,
etc.) just as well, or better than humans—as well as faster. By
providing a mobile computing solution with biosensing data
support that uses ML for the adaptivity of the digital music system,
patients may decide that a music therapist is too expensive or
difficult to schedule with and simply download the app and treat
themselves. Self-treatment may not provide the efficacy that a
trained professional provides.

This not only presents a potential threat of replacement of
music therapists, but it also creates a danger that without the
expertise of a music therapist, a patient may not successfully
treat themselves in a manner that meets their needs. Currently,
music therapists are accredited by degree programs. An app and
technology without direction from a Subject Matter Expert (SME)
could be detrimental to patient health. However, if these systems
are used in tandem with a music therapist, or used to address stress
in daily lives, then there are benefits to this digital music system.

4.3. Future direction

With the Internet of Things (IoT), ubiquity of Internet
connectivity, and consumer-grade biosensing wearables, mobile
apps can send all relevant session data to a cloud service for
further processing. This allows music therapists and researchers
to remotely monitor subject progress. This could help alleviate the
restricted availability of music therapists and researchers.

The wearable apps that provide biosensing, such as a
smartwatch and EEG headset would communicate biosensing data
in real-time to the smartphones digital music system app. The
app incorporates ML techniques that were discussed in Section
3 and shown in Figure 4. After each session, data summaries are
sent to a central server where researchers or music therapists can
analyze the results via a web interface. This digital music system
currently does not exist and many of the hardware and software
features that we’ve discussed in this section are emerging and
continually changing.

In the introduction, our survey research questions we posited
were as follows:

(1) Can therapeutic use of music be conducted with wearable
biosensing computing devices?

(2) Can digital music intervention systems yield results that can
address stress and anxiety?

Both questions (1) and (2) may be answered soon by utilizing
the current offering of consumer-grade biosensing wearables
for brain, cardiovascular, electrodermal, and respiratory data.
Working together, researchers and music therapists could create a
standardized framework with ample training-set data for successful
classification of stress across biosensing instruments. The training
sets would allow for low-shot ML (Hu et al., 2021), significantly

decreasing the computing time of a digital music system. This
could allow a mobile app to perform the ML locally rather
than utilizing server-side cloud services which require Internet
connectivity. With more formalized and larger datasets, it may be
easier to identify which algorithms are more accurate and efficient
at providing efficacy in MIs for addressing stress.

Lastly, how music is being ontologized is changing as well. Less
importance is being placed on music genres with more emphasis
on music’s intended purpose. This approach has roots going back
to the early 1930s from a company known as Muzak where the
purpose was to affect the listener. Music could be used to relax
patients waiting in a doctor’s office by playing soft melodies.

This approach is known as functional music and complements
what we’ve already discussed with music successfully being used
to improve relaxation and lower stress. Of the studies that we
looked at, ambient, meditative, and soundscape genres offered
successful results as did binaural beats. Their function is to relax
and offer a meditative mood for participants. Further research is
needed to see if there are any other genres that fit into the same
functional music classification and which combinations provide
the best efficacy. Applying all these changes together may provide
a digital music system that generates music to complement the
expertise of music therapists.
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