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Identifying influential nodes in complex networks is one of themost important and
challenging problems to help optimize the network structure, control the spread
of the epidemic and accelerate the spread of information. In a complex network,
the node with the strongest propagation capacity is known as the most influential
node from the perspective of propagation. In recent years, identifying the key
nodes in complex networks has received increasing attention. However, it is still a
challenge to design a metric that has low computational complexity but can
accurately identify important network nodes. Currently, many centrality metrics
used to evaluate the influence capability of nodes cannot balance between high
accuracy and low time complexity. Local centrality suffers from accuracy
problems, while global metrics require higher time complexity, which is
inefficient for large scale networks. In contrast, semi-local metrics are with
higher accuracy and lower time cost. In this paper, we propose a new semi-
local centrality measure for identifying influential nodes under complex contagion
mechanisms. It uses the higher-order structure within the first and second-order
neighborhoods of nodes to define the importance of nodes with near linear time
complexity, which can be applied to large-scale networks. To verify the accuracy
of the proposed metric, we simulated the disease propagation process in four real
and two artificial networks using the SI model under complex propagation. The
simulation results show that the proposed method can identify the nodes with the
strongest propagation ability more effectively and accurately than other current
node importance metrics.
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1 Introduction

Weare surrounded by a variety of complex systems andmost of the complex systemswe come
across can be abstracted into a complex network model with a certain topology, these networks
contain a large number of nodes, which are interconnected by some strong or weak
relationship. Complex network models are widely used in the research of various fields. The
identification and ranking of influential nodes has always been one of the most fundamental
problems inmodern network science, it may facilitate our understanding of the structure, function
and characteristic of networks [1, 2]. In recent years, efforts have been made to identify influential
nodes in complex networks. So far, researchers have proposed a variety of metrics, including
traditional measures such as degree centrality [3], betweenness centrality [4], Closeness centrality
[5] and K-core centrality [6]. Depending on the node location and topology under consideration,
The current node importance metrics are divided into three main categories: local measure, semi-
local measure and global measure [7]. Local measures are relatively straightforward and have low
time complexity because they only consider the number of nodes in the first-order neighborhood.
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Instead, global measures have higher accuracy and time complexity,
using the overall information of the network to determine the
importance of a node. Considering the low accuracy of local
measures and the high time complexity of global measures, semi-
local centrality measures are proposed, which use the information in
the second-order neighborhood of the nodes to improve the accuracy of
themeasure whilemaintaining a relatively low time complexity. In terms
of local measure, Xu et al. [8] proposed a local clustering h-index (LCH)
centrality measure for identifying and ranking influential nodes in
complex networks. It takes into account both topological connections
between neighboring nodes, the number and quality of neighboring
nodes. Nodes can be distinguished more effectively and ranked more
accurately Salavati et al. [9] proposed a novel local node sorting
algorithm that utilizes local structure to improve closeness centrality
aiming to reduce computational complexity. The method is able to find
the best set of seed nodes with high propagation capacity and low time
complexity is suitable for large-scale networks Ruan et al. [10] considered
the links of a node and the connectivity within the neighborhood of that
node and proposed an efficient method based on semi-local features to
identify key nodes that play an important role in maintaining network
connectivity Zhao et al. [11] proposed NL metrics based on the
importance of neighborhoods and links, considered the influence of
second-order neighborhoods on the nodes, used the connectivity and
irreplaceability of links to distinguish the topological positions of nodes
Hu et al. [12] proposed a new ranking method using structural holes to
identify influential nodes (E-Burt), which takes fully into account the
total connection strength of nodeswithin their local area and the number
of connected links Zhu et al. [13] proposed a local h-index centrality
method to identify and rank influential nodes in the network. The LH-
indexmethod considers both the h-index values of the node itself and its
neighbors. In terms of global measure, Enduri et al. [14] used the relative
change in the local network on the average shortest path when nodes are
removed to define node importance. The method identifies the initial
seed nodes and effectivelymeasures the spread of information within the
network. From an information theory point of view Yang et al. [15]
proposed the EnRenew algorithm aimed to identify a set of influential
nodes via information entropy. Firstly, the information entropy of each
node is calculated as initial spreading ability. Then, select the node with
the largest information entropy and renovate its l-length reachable
nodes’ spreading ability by an attenuation factor, repeat this process
until specific number of influential nodes are selected. The impressive
results on the SIR simulation model Wen et al. [16] proposed a method
for identifying influencers in complex networks via the local information
dimensionality. The proposed method considers the local structural
properties around the central node. A node is more influential when its
local information dimensionality is higher. Compared with the other
four importance measures in six real networks, the simulation results
show the superiority of this measure. From the perspective of artificial
intelligence, Fan et al. [17] proposed a deep reinforcement learning
framework to find the most important group of spreaders in the
network. The proposed framework opens up a new direction for
using deep learning techniques to understand how complex networks
are organized, which allows us to design more powerful networks to
enhance or inhibit propagation. Considering the loop structure in the
network, Fan et al. [18] defined two loop-based node characteristics,
namely, loop number and loop ratio, which can be used to measure the
importance of nodes (in terms of network connectivity). It was verified
that nodes with higher cycle ratios are more important for network

connectivity and the number of cycles better quantifies the impact of
diffusion based on the cycle structure than the general clustering-based
node centrality Lin et al. [19] defined the cycle number matrix, a matrix
containing cycle information in the network and ametric to quantify the
importance of nodes, i.e., the cycle ratio Zhang et al. [20] introduced the
node cycle ratio to determine how close the network is to a tree-like
network [18–20]. Innovatively introduce the loop structure, which has
been previously neglected in the analysis and modeling of networks into
the importance measure of nodes, opening another new perspective for
identifying nodeswith high propagation capacity. It has been proven that
loops as amesoscopic structure in the network, play an important role in
the structure and function of the network. In terms of the transmission
dynamics of the network, Chen et al. [21] proposed a new method for
dynamic ordering of nodes using a probabilistic model to measure the
ordering of nodes. This simple and effective method opens new ideas for
the identification of important nodes in network propagation dynamics.
In terms of semi-local measure, A new semi-local centralitymeasure was
proposed by Kamal et al. [22]. It uses the positive effect of the secondary
neighborhood clustering coefficient and the negative effect of the node
clustering coefficient to define the importance of a node. That is, a node
with a high clustering coefficient may be a “hub” node or a “bridge”
node. If the sum of the clustering coefficients of a node’s secondary
neighbors is high, then the node’s secondary neighbors are located in the
dense part of the network. If a node has low clustering, high and dense
secondary neighbors, it is identified as a structural hole Lei et al. [23]
introduced a centrality metric (HIC) to identify influential nodes in
complex networks. It combines node neighborhood, location and
topology features to identify influential nodes. In terms of identifying
multiple influential nodes, Mishra et al. [24] identify a set of influential
nodes in undirected and unweighted networks, using only the local
topology of the network in the absence of global information about the
network. In this paper, we propose a centrality measure based on the
higher-order structure within the second-order neighborhood of a node.
Taking into account the fully connected quadrilateral and diagonal
quadrilateral in the first-order neighborhood and the loop and diagonal
quadrilateral in the second-order neighborhood, the higher-order
structures considered are more diverse and more varied. We extend
the traditional clustering coefficient to a higher-order form. This metric
is also used as a measure to compare with the current representative
measure of node propagation ability in terms of node circulation rate
(CR) [19], Measurement of positive and negative clustering coefficient
based on node neighborhood (FI) [22] and measurement based on
structural hole features (SHF) [10].We used the SImodel to simulate the
virus propagation process on six networks under the condition of
complex contagion. The numerical simulation results show that the
proposed node importance metric can identify the nodes with the
strongest propagation ability more quickly and accurately.

The structure of this paper is as follows. In the first part, a brief
introduction to the three metrics used for comparison and the basic
concepts related to this paper is given first, focusing on the higher-order
structure of networks and defining the concept of high-order node
degree, it also illustrates how the higher-order structure affects the
propagation dynamics on the network. In the second part, a new
measure for evaluating the importance of nodes is introduced,
extending the traditional clustering coefficients based on nodes to
the form of higher-order within the second-order neighborhood of
nodes and a optimal algorithm for finding the higher-order structure
within the second-order neighborhood of nodes is also proposed in the
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Supplementary Materials. In the third part, the models and data sets
used are described. In the fourth part, simulations are done in six
networks using the SI model under complex propagation mechanism
and the superiority of the proposed metric is derived. Finally, we
conclude with a summary of the work done and some prospects for
future research.

2 Preliminaries

2.1 Basic concepts of complex networks

A complex network can be represented by graph G = (V, E),
where G is an undirected connected graph, with n nodes,m edges, V
represents the set of nodes, E represents the set of links, The
adjacency matrix of G of A � [aij] has n rows n columns, and
the elements in A are defined aij as follows: (i) aij � 1, the ith node is
connected to the jth node; (ii) aij � 0, the ith node is infinitely
connected to the jth node. Degree is the most basic concept in
complex networks. The degree ki of a node i refers to the number of
nodes directly connected to it. In an undirected and unweighted
network, suppose that the distance between the nodes directly
connected to node i and node i is 1, then the first-order
neighborhood of node i refers to the set of nodes with a distance
of 1. The second-order neighborhood of node i is the set of nodes
with a distance of 2.

2.2 Importance measure of the nodes

Because there are more existing indicators of the importance of
nodes. Therefore, only three of the most representative indicators of the
propagation ability of nodes are selected for comparative illustration.

2.2.1 Node cycle rate (CR)
Loops are another widely observed structure that plays an

important role in both structural organization and functional
implementation. A loop can be simply defined as a closed path
with the same start and end nodes. The size of a loop is equal to the
number of links it contains. The loop containing node i with the
smallest size is defined as the shortest loop associated with node i
and the corresponding size is called the perimeter of node i. Define
the loop rate of a node, i.e.,

CR i( ) � ∑
j

cii
cij

cii, cij > 0( ) (1)

Where cij represents the number of loops in the network via
nodes i, j, cii represents the number of loops in the network
containing node i. They are all available from the loop matrix of
the network.

2.2.2 Measurement of positive and negative
clustering coefficient based on node
neighborhood (FI)

This metric was proposed by Kamal and it is a semi-local
centrality metric used to identify influential propagators in
complex networks. A node is an important “connector” between
dense parts of the network (modules) if it has low clustering, high

degree and a large sum of clustering coefficients of the nodes in its
second-order neighborhood, i.e., a structural hole (influential
propagator). The formula is defined as,

FI i( ) � ki ×
1

c i( ) + 1
ki

+ ∑
j∈V 2( ) i( )

c j( ) (2)

Where ki is the degree of node i, c(i) is the clustering coefficient
of node i, V(2)(i) which is the set of second-order neighborhood
nodes, and c(j) is the clustering coefficient of second-order
neighborhood nodes.

2.2.3 Measurement based on structural hole
features (SHF)

A node is more important to the network when it is
characterized by more structural holes. Based on this Ruan et al.
proposed a node importance ranking algorithm (SHF) that
incorporates structural hole features to identify the network
nodes that play an important role in maintaining network
connectivity. The formula is defined as,

SHF i( ) � ∑
j∈V i( )

1
ki
+ 1
kikj

( )2

× 1 + V i( ) ⋂ V j( )∣∣∣∣ ∣∣∣∣( ) (3)

where ki and kj denote the degree values of node i and node j,
respectively. V(i) and V(j) are the sets of first-order neighborhood
nodes of node i and node j, respectively.

2.3 High-order structure and high-order
node degree

2.3.1 Higher-order structure in networks
Networks are inherently limited to describing pairwise interactions,

whereas real-world systems are often characterized by higher-order
interactions involving three or more units. Therefore, higher-order
structures, such as hypergraphs and simplicial complex are better tools
for depicting the real structure ofmany social, biological andman-made
systems [25]. A triangle is the smallest higher-order structure, which is a
third-order (number of nodes is 3) connected subgraph formed by three
nodes connected to each other. It is the basic unit of association and the
basic topology of the network. The size of the higher-order structure is
between a single node and a large dense community. It is a fully or
partially connected subgraph consisting of a few nodes connected in a
guaranteed closed-loop situation, which occurs more frequently in real
networks than in their corresponding random networks and increases
with the increase of network size and connection density between
nodes. As shown in Figure 1.

2.3.2 High-order node degree
The traditional node clustering coefficient measures how many

triangles with the node as the vertex in the first-order neighborhood,
i.e., how sparsely the neighboring nodes are connected to each other
in the first-order neighborhood. The formula is:

Ci � 2Li

ki ki − 1( ) (4)

Where, Li represents the actual number of links in the first-order
neighborhood of node i, and ki(ki − 1)/2 represents the maximum
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number of all possible links formed. The traditional node clustering
coefficient only takes into account the connections among neighbors
in first-order neighborhoods, as shown in Figure 2, kΔa � 6, where Δ
is the number of triangles with a as the vertex. This local metric uses
only information from the first-order neighbors to determine the
importance of the nodes. Inspired by this, we enrich the variety of
higher-order structures, extending the range to second-order
neighborhoods to determine the importance of nodes. High-
order node degree is defined as the sum of the number of
triangles, diagonal quadrilateral and fully connected quadrilateral
in the first-order neighborhood of a node and the number of
diagonal quadrilateral and loops in the second-order
neighborhood. Expressed as kΦ. As shown in Figure 2, kΦa � 10,
Φ is the number of higher-order structures of the node a involved in
the first and second-order neighborhoods. This is actually a semi-
local measure, and the analysis range is increased to include higher
order structures in second-order neighborhoods, extending from
triangles to higher-order quadrilaterals. To determine the
importance of a node, in addition to using node information
from first-order neighborhoods, node information from second-
order neighborhoods is used to improve accuracy. At the same time,
this does not significantly increase the time complexity of the
computation.

2.3.3 Effect of the higher-order structure on the
propagation dynamics

Several studies have shown that the presence of higher-order
interactions may severely affect the dynamics of network systems,
from diffusion [26, 27] and synchronization [28, 29] to social
[30–33] and evolutionary processes [34], possibly leading to the
emergence of abrupt (explosive) transitions between states. Under
different mechanisms of simple and complex contagion, the
presence of higher-order structures can make the propagation
process on the network significantly different [35–38]. Diffusion
is often described as either “simple contagion” or “complex

contagion”, where simple contagion is a process in which a node
is easily infected through a single contact with an infected neighbor.
Complex infection is a collaborative merged infection process in
which nodes are usually exposed to multiple infected neighbors
multiple times before changing state. Under a simple transmission

FIGURE 1
From (i–iii), they are third-order, fourth-order and five-order, respectively. Where Gk

i represents the ith k-order structure. It can be seen that the
variety of higher order structures grows exponentially as the order increases. In (i), there exists only a unique higher-order structure, i.e.,G3

1 . In (ii,iii), all of
them are partially connected except for G4

3 and G5
9 which are fully connected.

FIGURE 2
A toy networks. In the first-order neighborhood of node A (red),
the nodes located on the same higher-order structure with node A are
B、C、D、E、F、H、J (green). The second-order neighbor nodes
located on the same higher-order structure as node A areG and I
(black). The triangle in the first-order neighborhood of node A are
ABC、ABD、ACD、ADE、AEF、AHJ, the diagonal quadrilateral is
ADEF, a fully connected quadrilateral is ABCD. The diagonal
quadrilateral in the second-order neighborhood of node A is AHIJ, the
empty quadrilateral (loop) is AFGH. In addition, the yellow link
represents the internal link of the small community formed by the four
types of high-order structures in the first and second-order
neighborhood of node A, the blue links represent the small
community’s links to external contacts.
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mechanism, infected nodes transmit the virus through their links at
a fixed infection rate per unit time. Predisposing nodes change states
and become infected, whose rate is related linearly to the number of
infected neighbors. In the complex contagion definition of disease
interactions, a susceptible node is co-infected by more than one
neighboring infected node. In fact, there exists a threshold of co-
infection beyond which the threshold is exceeded. As the infection
rate increases, the clustered network structure will enhance the
propagation of the co-combination infection. This is the
reinforcement mechanism from the higher order structure. As
shown in Figure 3, the different infection pathways of susceptible
node i are shown. Under the simple infection mechanism, node i
contacts with one (A, C) or more (B, D) infected nodes through the
links and is infected at each time step at the rate λ through these
links. In E, nodes i, j are infected by the triangle at the infection rate
λ1*. In G, node i is infected by the fully connected quadrilateral at the
infection rate λ3*. We would like to highlight F, which has been
ignored in previous higher-order contagion models. It is believed
that node e is not directly connected to i, so the two cases E and F are
confused. In fact, these two cases should be discussed separately.
Although node e is not directly connected to i, e exerts its influence
directly on the triangle to act indirectly on i. This is for the real-life
scenario with strongly superimposed viruses, so the contagion is
stronger than E. The infection rates for all cases are roughly ordered,
i.e., λ3* > λ2* > λ1* > λ.

3 The proposed method

The node importance metric proposed in this paper is a
generalization of the traditional clustering coefficients of nodes.
The scope is extended from the first-order neighborhood of nodes to
the second-order neighborhood, the types of higher-order structures
are extended from a single triangle to loops and quadrilaterals. In

terms of the topology of the network, the influence of the loop
structure on the propagation is also taken into account. In terms of
propagation mechanism, the influence of fully connected
quadrilateral and diagonal quadrilateral on the propagation of
viruses with mutual superposition is considered. The equation of
the metric is expressed as follows:

CK i( ) � kΦi
Nα +Nβ

×
Lext

Lint + Lext
(5)

Where Nα � ki(ki − 1) ∕ 2 + 2ki!/3!(ki − 3)! represents the
maximum number of triangles, diagonal quadrangles and fully
connected quadrangles in the first-order neighborhood of node i.
Nβ � ki(ki − 1) × k2i represents the sum of themaximum number of
diagonal quadrilateral and loops in the second-order neighborhood
of node i. ki, k2i representing the number of nodes in the first and
second-order neighborhoods, respectively. Lint andLext are the inner
links (Links between nodes located on higher-order structures
within the first and second-order neighborhoods of a node, such
as the yellow edges in Figure 2) and the outer links (Links with only
one node located on higher-order structures within first and second-
order neighborhoods, such as the blue edges in Figure 2),
respectively. In fact we can consider the region containing the
higher-order structure within the second-order neighborhood of
a node as a small community. Lext

Lint+Lext is used to portray the difference
in density inside and outside the community. In a complex
mechanism of propagation, the community is seen locally as a
“accelerator” of propagation, a high density of external links will
ensure that the spread is global. 0≤CK(i)≤ 1. Note that this formula
is only applicable to the case of ki ≥ 3. At the same time, the
measurement we propose is only applicable to undirected and
unweighted networks.

According to the proposed node importance measure, we take
node A in Figure 2 as an example to calculate its CK value. kΦA = 10,
Nα � 8(8 − 1) ∕ 2 + 2 × 8!/3!(8 − 3)! � 140 and Nβ �

FIGURE 3
There are simple contagion and complex contagion. (A–D) for simple contagion. In the case of complex contagion we have (E–G). Because of the
higher-order interaction, the rate of infection varies with different modes of contagion. λ represents the transmission rate under the simple transmission
mechanism, λ1* represents the transmission rate under the complex transmissionmechanism in the formof links, λ2* represents the transmission rate under
the complex transmissionmechanism in the form of triangles, λ3* represents the transmission rate under the complex transmissionmechanism in the
form of triangles and links.
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8(8 − 1) × 17 � 952. Lext � 17, Lint � 18. So the CK of node A in
Figure 2 is CK(A) � (10/1092) × (17/35) ≈ 0.004. Next, let’s
consider the computational complexity of the proposed
importance measure. For a network with n nodes, the average
degree of nodes is 〈k〉, the computational complexity of
calculating the number of first-order neighbors of each node
isΟ(〈k〉), the computational complexity of calculating the
number of second-order neighbors of each node is Ο(〈k〉2), then
the total computational complexity isΟ(n〈k〉(〈k〉 + 1)). Therefore,
the near linear computational complexity makes the proposed
metric scalable to large-scale networks. For kΦi , it is not easy to
find the high-order vertex degree of node i in large dense networks.
In this paper, we also propose a method to quickly find all the above
higher-order structures using only the adjacency matrix of the nodes
within the second-order neighborhood containing node i. See
Supplementary Material.

4 Experimental setup

4.1 Data set

In order to test the effectiveness of the proposed method, we
apply it to real-world networks and artificial networks. Real world
networks include (i) electricity: the network of power grids; (ii)
network science: the coauthor network in network science consists
of 1,589 nodes. We chose the largest dense community of 400 nodes
in this network. (iii) Email: the email network of the University
Rovirai Virgili. (iv) Yeast: the protein-protein interaction network.
The two artificial networks are Watts-Strogatz (WS) small world
network [39] and Barabasi-Alber (BA) scale-free network [40]. First,
a small world network (WS) is constructed, in which nodes n =
1,000, linksm = 1,475, nodes are connected with a probability of p =
0.01. The average degree of the network is <k>≈3. The scale-free
network (BA) takes N = 1,000,m0 = 5,m = 4 (for the initial network
with m0 nodes, each time a new node is introduced to connect with
m existing nodes, m ≤ m0), generates a scale-free network with N =
1,000 nodes andmt = 3,980 links (t steps are required to generate the
required scale-free network). Table 1 shows the statistical
characteristics of six networks. In this paper, all these real-world
networks and analog network are regarded as undirected and
unweighted.

4.2 Dynamic transmission model

To compare the accuracy of the proposed metric in identifying
node propagation capabilities, the susceptible infection (SI) model is
used to simulate propagation and evolution in real networks. The SI
model contains only two types of nodes, susceptible (S) and infected
(I). Once a node is infected, it will never be able to recover. Assume
that the total network scale of disease transmission is N, S(t)
represents the number of susceptible nodes at time t, I(t)
represents the number of infected nodes at time t (S(t) + I(t) =
N). At t = 0, all nodes are susceptible, that is S (0) =N and I(t) = 0. At
t = 1, we selected a node in the network as the initial source of
infection. It is assumed that each node has 〈k〉 contactable neighbor
nodes in unit time Δt (here approximated by the average degree of
the network) and 〈k1〉 of these 〈k〉 neighbor nodes are susceptible,
the initial transmission rate of the disease from infected nodes to
susceptible nodes is λ. At each time step Δt, infected nodes can
simultaneously spread the virus to more than one susceptible node.
According to the assumption of uniform mixing (each node will
touch the infected node with equal probability), the probability of an
infected node encountering a susceptible node is S(t)

N , so the infected
node will contact 〈k1〉

〈k〉 · S(t)N susceptible nodes per unit time. Since
there are I(t) total of infected nodes at time t to spread the disease
with the transmission rate λ, the average number of newly infected
nodes dI(t) within the differential time dt is: dI(t) = λ· I(t) ·〈k1〉〈k〉 · S(t)N

dt. In other words, the rate of change of I(t) is: dI(t)dt = λ 〈k1〉
〈k〉 · I(t)·S(t)N .

In this paper, we use SI model under complex propagation
mechanism. This is different from the SI model in the simple
transmission mechanism because we consider the strengthening
mechanism of the higher-order structure in the transmission process
and define that the diseases can be superimposed and co-infected. In
our model, as soon as the initial infected node infects the node on the
same link as it, the complex propagation mechanism will be triggered
and the complex propagation process will begin in the form of a link. At
the same time, the propagation rate does not remain constant, but
increases gradually with the participation of more and more higher-
order structures. In this case, the transmission rate is λ* = c ·λ. Where c
is a perturbation parameter, it increases with the increase of the number
of participating higher-order structures in the propagation process, that
is the more involved higher-order structures, the faster c increases, and
vice versa. As time increases more andmore higher-order structures are
involved in the propagation process, the virus becomesmore contagious
and spreads faster and more widely. Figure 4 shows the basic
propagation process under the complex propagation model, where
red nodes are infected nodes and blue nodes are susceptible nodes. At
the initial time t0, a node is selected as the initial source of infection.
With the progress of transmission, Δt1 >Δt2 and λ1* < λ2* can be
obtained by involving more and more higher-order structures. In
addition, the outbreak of the propagation process is related to the
propagation threshold [8]. If the transmission rate is much smaller than
the threshold, the transmission process will be limited to a smaller area
and will end prematurely. Conversely, if the transmission rate is much
greater than the threshold, the transmission process will spread
instantaneously over a large part of the network. Therefore, it is
reasonable to choose a transmission rate near the neighborhood of
the propagation threshold to evaluate the validity of a centrality metric.
That is, a transmission rate that is too small will result in a diffusion
process of limited size and affect the accuracy of the observation. In

TABLE 1 Some statistical properties of six networks. Its topological features
include: number nodes (|V |), number of edges (|E|), average degree (〈k〉),
maximum degree (k max ), average clustering coefficient (〈C〉), propagation
threshold (λth* = 〈k〉/〈k2〉).

Network |V | |E| 〈k〉 k max 〈C〉 λth*

Power grid 4,941 6,594 2.66 19 0.08 0.257

Network science 379 914 4.82 34 0.74 0.134

Email 1,133 5,451 9.62 71 0.22 0.058

Yeast 2,361 7,182 5.62 64 0.13 0.063

WS 1,000 1,475 3.78 25 0.84 0.156

BA 1,000 3,980 1.45 42 0.36 0.095

Frontiers in Physics frontiersin.org06

Song and Wang 10.3389/fphy.2023.1046077

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1046077


contrast, too large a value of the transmission rate will lead to a large-
scale diffusion of the network, the propagation ability of individual
nodes cannot be identified. Notice here that, unlike simple propagation,
the propagation threshold is based on a complex propagation
mechanism.

5 Evaluation methods

From the perspective of propagation dynamics, the greater the
influence of a node, the stronger the diffusion ability of the node.
That is, the number of nodes in the network that are ultimately
infected is more. We use the number of final infected nodes Fi(tc)
after tc time step to reflect the propagation ability of nodes in the
network. The formula is as follows:

Fi tc( ) � 1
M

∑M
m�1

fi m( ) (6)

Where, M is the total number of experimental repetitions,
fi(m) � ni/N is the proportion of the final infected nodes in the
steady state of the network. Set the propagation threshold of
propagation rate λ*> λth*, where 〈k〉 and 〈k2〉 are the average
degree and the variance respectively. We assume that at the
beginning, all nodes in the network are susceptible except the
initial infection source.

Kendall’s tau correlation coefficient is selected to determine the
consistency between the ranking list obtained by the specific
measurement method and ranking list obtained by SI model
based on standard Monte Carlo simulation. Give two ranking
lists X and Y, (xi, yi) and (xj, yj) are the two node pairs in
these lists. The Kendall’s tau correlation coefficient is defined as:

τ X,Y( ) � 2 n1 − n2( )
N N − 1( ) (7)

In this paper, X represents the ranking result of nodes obtained
from a centrality measure, and Y represents the ranking result of the
number of infected nodes obtained from the SI model based on
standard Monte Carlo simulation. If xi > xj, yi >yj or
xi < xj, yi <yj. That is to say xi, xj the order in X is the same as
yi, yj in y. Otherwise, it is called inconsistent. n1 and n2 represents
the number of consistent and inconsistent pairs, N is the length of
the sorting list X. Obviously, τ between −1 and 1. Here, τ � −1 it

means that the order of these two lists is completely opposite. At that
time, τ � 1, the order of the two lists was the same.

In order to distinguish the propagation ability of all nodes, each
node should assign a unique indicator through centrality
measurement. The proportion of repeating elements in a
sequence is called the monotonicity of the sequence. In order to
quantify the monotonicity of different sorting methods, we use [8]
and define it as:

M R( ) � 1 − ∑r∈R Nr Nr − 1( )
N N − 1( )[ ] (8)

Where N is the length of the ranking list R, Nr indicating the
number of nodes with the same sorting value R. The range of M
values is 0–1. The best value ofM is 1, whichmeans that each node in
the network has a unique and identifiable sorting value. On the
contrary, the worst value ofM is 0, which means that all nodes in the
network have the same ranking.

Pearson coefficient (R) is used to explain the correlation between
different sorting methods. The formula of R is as follows [22]:

R � ∑n
i�1 Xi − �X( ) Yi − �Y( )∑n

i�1 Xi − �X( )2√
×

∑n
i�1 Yi − �Y( )2√ (9)

Where, Xi, Yi represents the set of propagation capacity of each
node in the network under any two different sorting methods, where
Xi � (x1, x2, ..., xn), Yi � (y1, y2, ..., yn). (xi, yi) represents the
combination of propagation capabilities of the same node under
two different sorting methods. For an N node network, there will be
such a combination are the average ofN(N − 1)∕ 2. The value of R is
between [−1,1]. R = 1, then the two sorting methods show positive
linear correlation; R = 0, then the two sorting methods are irrelevant;
R = −1, then the two sorting methods are negative linear correlation.
When R is in [0,1], the two sorting methods are positively correlated,
and the closer to 1, the stronger the positive correlation;When R is at
[−1,0], the two sorting methods are negatively correlated, and the
closer to −1, the stronger the negative correlation.

6 Experimental results and analysis

In the experiments, the proposed node importance metric was
compared with three other metrics, including CR, FI, and SHF. We

FIGURE 4
An evolutionary diagram of a complex propagation process. The red nodes are infected nodes and the blue nodes are susceptible nodes.
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use different methods to analyze the performance of the proposed
centrality metric in terms of propagation ability, correlation and
monotonicity.

6.1 Analysis of transmission capacity

At time step t = 1, the nodes with the largest values of SHF, FI,
CR, and CK are selected as the initial infection sources. Set the
initial transmission rate of the disease to be slightly greater than
the propagation threshold of the network. The final proportion of
infected nodes in the six networks was observed after 100 time
steps. The experimental results are shown in Figure 5, it can be
seen from Figures 5A-E that the proposed metric CK results in
the largest proportion of final infected nodes after 100 time steps.
This is followed by FI, SHF, and CR. In fact, under the complex
contagion mechanism, nodes with larger FI metric values have
dense second-order neighbors and their second-order neighbors
are part of the dense part of the network, the disease triggers the
complex contagion mechanism once it spreads to the second-
order neighbors of the node, which facilitates the global spread of
the disease. However, the clustering coefficients of the nodes are
small, which makes it harder for the initial spread of the disease
to trigger complex contagion on a large scale, so the FI is
ultimately secondary to the CK. For SHF, this metric only

considers the degree of node and the number of common
neighbors in the first-order neighborhood. Therefore, the
initial spread of the disease is carried out under complex
transmission with triangles and subsequently spreads to
second-order neighborhoods. This inhibits the spread of the
disease to some extent due to the lack of information related
to the second-order neighborhood, so the SHF is ultimately
subordinate to the FI. It is difficult to trigger complex
propagation with an infection source on a loop (except for
triangles), this is mainly because all nodes on the loop except
the nodes at both ends of the link cannot achieve direct
interaction, i.e., the loop lacks higher-order structures that
trigger complex contagion, so it can be seen that the CR
metric has the lowest number of final infected nodes. In
Figure 5F, it can be seen that the only difference is that the
propagation rate of FI is slightly greater than CK after t = 35. This
is mainly because BA is a network of many small communities
connected by the large-degree nodes and FI happens to identify
the large degree nodes in the BA network. The tight clustering
maximizes the complex propagation mechanism when the virus
propagates to the second-order neighborhoods of the nodes
identified by the FI. In addition, we looked at disease
transmission rates over 100 time steps. Here we set the initial
transmission of the disease is slightly greater than that of each
network propagation threshold value, which in turn were 0.26,

FIGURE 5
The number of final infected nodes caused by four different centrality measures on six networks in (A-F). The horizontal axis corresponds to the infection
time and the vertical axis represents the diffusion capacity Fi(tc). The results are averaged by 100 independent experiments on the complex SI model.
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FIGURE 6
Network propagation rate λ* as a function of time t in (1), (2), (3), (4), (5) and (6). Each network is the average result of 200 separate simulations on the
complex SI model.

FIGURE 7
The Kendall’s tau correlation coefficient (τ) between the ranking results obtained from the four different metrics and the Fi(tc) ranking list obtained
from the SI model with different infection probabilities λ* in (G-L), λ* Changes near the neighborhood of λth*. The results obtained by averaging
100 independent simulations of the complex SI model, where the vertical dotted line represents the propagation threshold λth .
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0.14, 0.06, 0.065, 0.16, and 0.10. The results are shown in Figure 6.
It can be seen that when the node identified by metric index CK is
taken as the initial transmission source, the transmission rate of
the disease in the 6 networks is always the largest in 100 time steps.
This also shows from the side that there are the most high-order
structures involved in the whole propagation process and further
explains the accuracy of CK in identifying the most important nodes
under the complex propagation mechanism. In Eqs 1, 4–6, the effect
of measurement index FI is better than that of SHF. In Eq. 2, the effect
of FI and SHF is roughly equivalent. In Eq. 3, SHF is superior to FI.
However, the effect of CR is always the worst in the six networks.
Secondly, the measurement index FI in Eq. 6 also has a good effect. To
sum up, under the complex transmission mechanism based on SI
model, when the node identified by the metric index CK is the initial
infection source, the number of nodes infected and disease
transmission rates in the network will be the largest after 100 time
steps.

6.2 Kendall’s tau correlation coefficient

In order to test the accuracy of the proposed centrality measure, it is
compared with three different centrality measures on six networks
under the complex SI model. The closer to 1 is τ, the better the
performance of the sortingmethod. The selection value λ* changes near
the propagation threshold. The value λth* is related to the topological
characteristics of a given network, so the abscissa of different networks
in Figure 6 is different. Figure 7 describes the Kendall’s tau correlation
coefficient of four central indicators varying with the probability of
infection. In Figures 7G-K,CKwas superior to the other three centrality
indicators over the entire range of infection probabilities. In Figure 7G,
the τ values of CK and FI were roughly equivalent around the
prevalence threshold. This is mainly because λ* as a relatively small
value, the influence of the node is limited to a small range resulting in
the virus not spreading. It can be seen thatCK gradually outperforms FI
as λ* increases. In Figure 7H, K, the four centrality measures differed
most from each other. This is mainly because Network science andWS
networks are characterized by large clustering coefficients and small
average path lengths, which create the most powerful conditions for
triggering complex propagationmechanisms. The complex contagion is
triggered at the initial propagation, which makes CK the most accurate
in identifying the important nodes. At the same time, SHF is superior to
FI when λ* is in [0.124, 0.135] and [0.157, 0.195], which is also due to
the larger clustering coefficients. Because SHF takes into account the

number of common neighbors in the first-order neighborhood of a
node while FI does not, this leads to a decrease in the accuracy of FI in
identifying influential nodes for period of time when λ* exceeds λth*. In
Figure 7L, CK is better than FI before λ* = 0.093. This is because BA is
composed of “hub” nodes connecting many dense small communities,
which can trigger less complex propagation during the initial
propagation of the virus because there are fewer higher-order
structures in the first-order neighborhoods of the nodes identified
by FI. At after λ* = 0.093, FI is gradually better than CK. Because as
the virus continues to spread to second-order neighborhoods, the dense
cluster of the second-order neighborhoods of FI-identified nodes plays a
huge role in triggering complex propagation, which greatly improves
the accuracy of the FImetric. Furthermore, we can see that the τ-value
of CR is the lowest among all networks, which means that CR cannot
identify important nodes under the complex propagation mechanism.
It can be seen that under the complex propagationmechanism based on
SImodel, the τ value of themetric indexCK is always the highest, which
also means that most nodes identified by CK are the nodes with the
strongest propagation ability in the network.

6.3 Monotonicity

A good centrality measure should be able to distinguish between
nodes with different propagation capabilities. Table 2 shows the
monotonicity of the four centrality measures in six different
networks. The closer M is to 1 the better the performance of the
centrality measure is. It can be seen that among the four centrality
measures, the monotonicity value of CK (black bold) is always close
to 1 in all networks. In summary, CK can better distinguish nodes
with different propagation capabilities. We conclude that under the
complex propagation mechanism based on SI model, the metric
index CK can well distinguish nodes with different propagation
capabilities in the network.

TABLE 2 Monotonicity of four centrality measures in six networks.

Complex network CK FI CR SHF

Power grid 0.9543 0.8276 0.7424 0.6983

Network science 0.9072 0.8355 0.6784 0.7631

Email 0.8549 0.7244 0.6552 0.6954

Yeast 0.8756 0.7563 0.5944 0.7328

WS 0.8032 0.7126 0.6852 0.6349

BA 0.7842 0.7305 0.7024 0.6842

That the bold values indicates the emphasis.

FIGURE 8
The average correlation matrix for the four indices of node
importance over six networks. Each element is the averaged value of
the correlation R between the two indices corresponding to its
position over the six networks, and the value is visualized by the
color. The correlation increases gradually from blue to yellow.
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6.4 Correlation analysis

Figure 8 shows the correlation matrix between CK and the other
three centralitymetrics. Each of these elements represents the average of
the correlation coefficient r between the two metrics over the six
networks, the results are accurate to two decimal places. It can be
seen thatCK, FI has the strongest correlation, followed byCK SHF、CK
CR. This is because FI considers triangles in the first-order
neighborhood of a node, diagonal quadrilateral and loops in the
second-order neighborhood. SHF considers only triangles in the
first-order neighborhood of a node. CR only considers the loops in
the second-order neighborhood of the node. The proposed metric CK
based on the higher-order vertex degree of the node not only considers
the loop in the second-order neighborhood but also the diagonal
quadrilateral, the fully connected quadrilateral in the first-order
neighborhood and the diagonal quadrilateral, which is an extension
of the other three metrics considering a more diverse higher-order
structure. The same result is obtained from Figure 9. Each point denotes
one node in the network, the color of the node indicates the nodal
spreading ability simulated by the complex SI model, denoted by Fi(tc)
(tc = 100). Note that the more propagating a node is, the closer its color
is to red. In (m) (q) (v), we can clearly see that CK and FI have the
strongest correlation, followed byCK, SHF, andCK,CR. The correlation
between CK andCR is weak, becausemany nodes are assigned the same
value. Furthermore, the larger the value of CK, the redder the color of
the node, which is in accordance with the actual spreading ability Fi(tc)
of nodes. It can be seen that when identifying the nodes with the
strongest propagation ability in the network under the complex
propagation mechanism, if the metric index CK is not available, FI
may be an optimal alternative.

7 Conclusion

In this paper, a new node importance metric is proposed for
identifying nodes with the strongest propagation capacity under
complex contagion mechanisms. The metric innovatively considers
diagonal quadrilateral, loop (empty quadrilateral) and fully connected

quadrilateral in the first and second-order neighborhood of a node. The
impact of these structures on the complex propagation dynamics on the
network is considered. Meanwhile, the high-order node degree are
defined and a complex propagation model which has been neglected in
the past is introduced. The superiority of the proposed metric is
obtained by analyzing the simulation results on real and synthetic
networks. In addition, only some of the higher-order forms in the first
and second-order neighborhoods of the nodes are considered in this
paper, in fact their higher-order structures are much richer than we can
imagine. Moreover, as the analysis range (the neighborhood of nodes)
extends outward, its computational complexity is exponentially
increasing, and we will face more difficult problems. This work will
be explored in the next step. Our future work will mainly focus on
finding the optimal combination of higher-order structures in the
node’s neighborhood that can most efficiently facilitate the
information dissemination. At the same time, we will also propose
some targeted protection strategies for the higher-order organization of
the network.
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