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1. INTRODUCTION

In recent years, several researchers have proposed many generalizations of classical
distributions by adding further parameters. Generally, the aim behind such generalized dis-
tributions is to improve goodness-of-fit. For instance, the choice for modelling a monotonic
hazard function (hf) usually falls on the exponential, Weibull, gamma or others generalized
exponential distributions. However, for complex phenomena in survival and reliability stud-
ies, the hazard behaviour is almost certainly not monotonic. Therefore, in a situation of
non-monotonic hf, such as bathtub-shaped or unimodal, the aforementioned distributions are
unreasonable or even unrealistic. These limitations have naturally increased the interest in
developing new extensions or generalizations of the more traditional distributions.

In the current literature, the methods for generating new distributions can be divided
into two main approaches. The first one consists in the introduction of shape parameter(s) in
the baseline distribution to explore tail properties. Some well-known techniques are: Lehman
alternatives (also known as exponentiated), Marshall–Olkin, Kumaraswamy, transmuted,
among others. The second approach concerns compounding a baseline continuous lifetime
distribution with a discrete distribution, namely Poisson, geometric, negative-binomial or
logarithmic. One of the reasons for developing compounding distributions is that the lifetime
of a system constituted by Z (discrete random variable) components can be characterized by
the distribution of the minimum or maximum of the lifetimes of its components (non-negative
continuous random variables), depending on whether they form a series or a parallel system,
respectively. A detailed and comprehensive survey of the existing methods are presented in
Tahir and Cordeiro [30], which also proposed some new distributions.

An interesting two-parameter lifetime distribution that exhibits an increasing or a
bathtub-shaped hf was proposed by Chen [11]. Some merits of this distribution are related
with the exact confidence intervals and exact joint confidence region for the parameters. Over
the years, several generalizations of this distribution have been developed. One of the first
extensions, named XTG distribution, was introduced by Xie et al. [34] by adding the lacking
scale parameter. Although the resulting model provided a better fit to the analysed data,
the variety of shapes of the hf was not enriched. Other researchers have proposed models
with an increased number of alternative hazard shapes. The family of distributions given by
Lehman alternatives was considered by Chaubey and Zang [10] and Sarhan and Apaloo [28],
who obtained the exponentiated Chen and exponentiated XTG distributions, respectively.
Nadarajah et al. [23] derived general properties of the Kumaraswamy family of distributions
and illustrated the new results obtaining the Kumaraswamy versions of the Chen and XTG
distributions. The Marshall–Olkin technique was applied by Alawadhi et al. [2] in order
to develop the Marshall–Olkin Chen distribution. The Chen-geometric and Marshall–Olkin
Chen distributions can be seen as similar models with the same number of parameters, but
the parameter space of the former model takes a more limited range of values. Cordeiro et
al. [13] proposed a new family of lifetime distributions compounding a given class of gen-
eralized Weibull distributions with the geometric distribution. Since the Chen and XTG
distributions were shown to be members of such class of models, these authors described the
Chen-geometric and XTG-geometric distributions as particular cases. Another compounding
distribution was proposed by Pappas et al. [24], who studied the Chen-logarithmic distri-
bution and also extended the parameter space of the logarithmic distribution to R+\{0}.
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The transmuted Chen distribution has already been developed and was reported in Tahir
and Cordeiro [30]. For other recent generalized versions of the Chen distribution, the reader
is referred to [3, 7, 31].

In the light of the above context, the aim of this paper is to propose a new flexible
generalization of the Chen distribution [11] by compounding it with the zero-truncated Pois-
son (ZTP) distribution. The remainder of the paper is organized as follows. In Section 2,
a brief review on the unified Poisson family of distributions discussed by Ramos et al. [26]
is presented. Section 3 begins with the definition of the new lifetime distribution, followed by
the study of its properties, including the shapes of the probability density function (pdf) and
hf in Subsection 3.1, as well as the quantiles, moment generating function and mean residual
life function in Subsection 3.2. In Subsection 3.3, the maximum likelihood (ML) method is
applied in the presence of a right-censoring mechanism and the estimators performance is
evaluated by a simulation study in Subsection 3.4. In Subsections 3.5 and 3.6, the useful-
ness of the new distribution is illustrated in two real data applications with uncensored and
censored observations. Some final remarks are presented in Section 4.

2. THE UNIFIED POISSON FAMILY OF DISTRIBUTIONS:
A BRIEF REVIEW

The new distribution arises on competitive and complementary risks (CCR) scenarios,
wherein it is only possible to observe the minimum/maximum lifetime among all causes
instead of observing the lifetime associated with a particular cause [5]. In these settings, a
difficulty emerges if the causes are latent in the sense that there is no information about which
cause was responsible for the occurrence of the event. On many situations, it is impossible to
specify the true cause, even by an expert, because it is somehow masked. For instance, in the
biomedical sciences the interest is often to study the time until death, which can occur due to
several competing causes such as respiratory infection, cardiac arrest, stroke, cancer, diabetes,
among others. This triggers a competitive risks problem (time-to-event of a series system)
due to the fact that it is only possible to observe the minimum lifetime among all causes.
In an opposite example, suppose that the death of a patient with a given infection is due
to multiple organ failures such as in lungs, kidneys and liver. This is now a complementary
risks problem (time-to-event of a parallel system) since only the maximum lifetime among
all causes is observed. As mentioned by Basu and Klein [6], since a complementary risks
problem is the dual of a competitive risks problem, in general it is sufficient to establish the
results in terms of the distribution of the minimum or the maximum, although there are some
situations where the distribution of the maximum is simpler to handle analytically.

Recently, Ramos et al. [26] showed that both distributions of the minimum and the
maximum can be unified in a simple form using a latent variable with ZTP distribution. Let
X1, ..., XZ be the times to event associated with each cause and Z a random variable with ZTP
distribution, with probability mass function P (Z = z;φ) = φz

(
z!(eφ − 1)

)−1, z ∈ N, φ ∈ R+.
Assume that the random variables X’s and Z are independent and that X1, ..., XZ are in-
dependent and identically distributed according to a continuous lifetime distribution with a
generic baseline cumulative distribution function (cdf) F0(x;θ), indexed by the parameters
vector θ.
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Defining Y = min{X1, ..., XZ} in a competitive risks problem, the conditional cdf of Y
given that Z = z is

F (y|z;θ) = 1− P (Y > y|Z = z;θ) = 1−
[
1− F0(y;θ)

]z
, y > 0.

Then, the marginal cdf of Y is

(2.1) F (y;θ, φ) =
∞∑

z=1

φz

z!(eφ − 1)

(
1−

[
1− F0(y;θ)

]z) =
1− e−φF0(y;θ)

1− e−φ
, φ > 0.

On the other hand, defining T = max{X1, ..., XZ} in a complementary risks problem, the
conditional cdf of T given that Z = z is

F (t|z;θ) = P (T ≤ t|Z = z;θ) =
[
F0(t;θ)

]z
, t > 0.

Consequently, the marginal cdf of T is

(2.2) F (t;θ, φ) =
∞∑

z=1

φz

z!(eφ − 1)
[
F0(t;θ)

]z =
1− eφF0(t;θ)

1− eφ
, φ > 0.

Thus, the distribution obtained from (2.2) belongs to the same family of distributions pre-
sented in (2.1) if it is assumed that φ takes negative values. So, when the latent variable has
a ZTP distribution, the distributions of the minimum and the maximum can be merged into
one, giving rise to the unified Poisson family of distributions.

Thereafter, assume that T has a distribution from the unified Poisson family, wherein
the parameter space is extended to R\{0}. Since the cdf of T is still defined by (2.2), the
parameter φ of this family of models has a particular interpretation in CCR problems. When
φ < 0 (φ > 0), T represents the minimum (maximum) lifetime among all causes.

A large number of compounded ZTP distributions has already been proposed consid-
ering separately the minimum or maximum, as reviewed by Tahir and Cordeiro [30]. Fol-
lowing the unified approach, some of these distributions can be merged or even extended.
For instance, Ramos et al. [26] considered the extended Weibull–Poisson (EWP) distribu-
tion [16, 19] (that was initially derived only by taking the minimum) and showed that the
exponential-Poisson [18] and Poisson-exponential [9] distributions (that were derived by tak-
ing the minimum and maximum, respectively) can be unified into a single distribution, named
extended exponential-Poisson (EEP) distribution.

3. A NEW LIFETIME DISTRIBUTION

Let X be a random variable following a Chen distribution [11] with cdf and hf given
by

(3.1) F0(x;λ, γ) = 1− eλ
(
1−ex

γ
)
, x > 0,

and

(3.2) h0(x;λ, γ) = λγxγ−1exγ , x > 0,
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respectively, where λ, γ > 0. Since h′0(x;λ, γ) = [γ(xγ + 1)− 1]h0(x;λ, γ)x−1, only the pa-
rameter γ affects the shape of the hf, which is: i) bathtub-shaped for γ < 1 (decreasing for
0 < x ≤ (1/γ − 1)1/γ and increasing for x > (1/γ − 1)1/γ); and ii) monotonically increasing
for γ ≥ 1.

By substituting (3.1) in the unified Poisson family of distributions (2.2), a new gener-
alization of the Chen distribution arises with cdf given by

(3.3) F (t;λ, γ, φ) =
1− eφ

[
1−e

λ

(
1−et

γ
)]

1− eφ
, t > 0,

where λ, γ > 0 and φ ∈ R\{0} are the parameters of the distribution. The corresponding pdf
is

(3.4) f(t;λ, γ, φ) =
λγφtγ−1

1− e−φ
etγ+λ

(
1−et

γ
)
−φe

λ

(
1−et

γ
)
, t > 0.

Hereafter, the distribution of T will be referred to as extended Chen–Poisson (ECP) distri-
bution, which is a customary name for distributions belonging to the unified Poisson family.
In fact, this distribution unifies both the minimum (φ < 0) and the maximum (φ > 0) distri-
butions, which correspond to the Chen–Poisson and Poisson-Chen distributions, respectively.

The survival function (sf) and hf of the ECP distribution are defined, respectively, as
follows

S(t;λ, γ, φ) =
1− e−φe

λ

(
1−et

γ
)

1− e−φ
, t > 0,

and

(3.5) h(t;λ, γ, φ) =
λγφtγ−1etγ+λ

(
1−et

γ
)

eφe
λ

(
1−et

γ
)
− 1

, t > 0.

3.1. Shapes of the probability density function and hazard function

The pdf (3.4) and hf (3.5) for some combinations of parameters values are depicted in
Figures 1 and 2, respectively. It is challenging to study analytically the theoretical behaviour
of these functions due to their complex expressions. In addition, the monotonicity study
is hampered by the fact that all three parameters, λ, γ and φ, affect both the density and
hazard shapes.

Based on the analytical analysis of the pdf, and as illustrated on the graphical repre-
sentation in Figure 1, the density shape can be: (a) monotonic decreasing; (b)–(c) unimodal;
or (d) decreasing-increasing-decreasing (DID). In what concerns the hazard shape, Figure 2
suggests that it can be: (a) monotonic increasing; (b) monotonic decreasing; (c) unimodal;
(d) bathtub; (e) increasing-decreasing-increasing (IDI); or (f) decreasing-increasing-decreasing-
increasing (DIDI). Accordingly, the ECP distribution is shown to be quite flexible. Nonethe-
less, some care is needed as the monotonicity study of the hf should not be solely based
on graphical analysis. Since limt→∞ h(t;λ, γ, φ) = ∞, for all λ, γ > 0 and φ ∈ R\{0}, the hf
is ultimately increasing, so a pure monotonic decreasing or unimodal shape is impossible.
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However, it was verified that when γ takes values close to zero the hf takes a long time to
increase. In such cases it is usual to admit that, from the practical point of view, the hf has
a generally decreasing right tail.
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Figure 1: Probability density functions of the ECP distribution for different combinations
of parameters values.

Proposition 3.1. The Chen distribution is a limiting case of the ECP distribution,

since when φ approaches 0 it follows that

lim
φ→0

h(t;λ, γ, φ) = λγtγ−1etγ ,

which is the hf (3.2) of the Chen distribution.

Proposition 3.2. The limiting behaviour of the pdf (3.4) and hf (3.5) of the ECP

distribution is

(i) lim
t→0+

f(t;λ, γ, φ) = lim
t→0+

h(t;λ, γ, φ) =


∞, 0 < γ < 1,
λφ

eφ − 1
, γ = 1,

0, γ > 1,∀λ > 0 and φ ∈ R\{0};

(ii) lim
t→∞

f(t;λ, γ, φ) = 0 and lim
t→∞

h(t;λ, γ, φ) = ∞, ∀λ, γ > 0 and φ ∈ R\{0}.
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Figure 2: Hazard functions of the ECP distribution for different combinations
of parameters values.
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Proposition 3.3. The theoretical behaviour of the pdf (3.4) of the ECP distribution

may be characterized separately for the minimum (φ < 0) and maximum (φ > 0) distributions,

as summarized in the following statements.

(i) Distribution of the minimum:

• For φ < 0, 0 < γ ≤ 1 and λ ≥ (1−φ)−1, the pdf is monotonically decreasing;

• For φ < 0, γ = 1 and 0 < λ < (1− φ)−1, the pdf is unimodal;

• For φ < 0, 0 < γ < 1 and 0 < λ < (1− φ)−1, the pdf is monotonically de-

creasing or DID;

• For φ < 0, γ > 1 and λ > 0, the pdf is unimodal;

(ii) Distribution of the maximum:

• For 0 < φ ≤ 1− λ−1, 0 < γ ≤ 1 and λ > 1, the pdf is monotonically decreas-

ing;

• For φ > 1− λ−1, γ = 1 and λ > 1, the pdf is unimodal;

• For φ > 1− λ−1, 0 < γ < 1 and λ > 1, the pdf is monotonically decreasing

or DID;

• For φ > 0, γ > 1 and λ > 1, the pdf is unimodal;

• For φ > 0, γ ≥ 1 and 0 < λ ≤ 1, the pdf is unimodal;

• For φ > 0, 0 < γ < 1 and 0 < λ ≤ 1, the pdf is monotonically decreasing or

DID.

The proofs of Propositions 3.1 and 3.2 are straightforward and, therefore, are omitted.
The proof of Proposition 3.3 is given in supplementary material file.

3.2. Quantiles, moments and mean residual life function

Some of the most important characteristics of a distribution, such as dispersion, skew-
ness and kurtosis, can be studied through its quantiles and moments. By inverting the cdf
(3.3), the quantile function of the ECP distribution is given by

(3.6) Q(u;λ, γ, φ) =
{

log
[
1− λ−1 log

(
1− φ−1 log

(
(eφ − 1)u+ 1

))]}1/γ

,

for 0 < u < 1. This expression can be used for simulating pseudo-random values of T ∼
ECP(λ, γ, φ), considering that

(3.7) T =
{

log
[
1− λ−1 log

(
1− φ−1 log

(
(eφ − 1)U + 1

))]}1/γ

,

where U is a uniformly distributed random variable on (0, 1) interval.

The moment generating function of T can be defined as

MT (w) = E(ewT ) = φ(1− e−φ)−1

∫ 1

0
exp

{
w

[
log
(

1− λ−1 log(v)
)]1/γ

− φv

}
dv,
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by making the change of variable v = eλ
(
1−et

γ
)
. Then, the r-th raw moment of T is given by

E(T r) = φ(1− e−φ)−1

∫ 1

0
e−φv

[
log
(

1− λ−1 log(v)
)]r/γ

dv, r = 1, 2, ... .

In particular, the mean and variance of ECP distribution are, respectively, given by

E(T ) = φ(1− e−φ)−1

∫ 1

0
e−φv

[
log
(

1− λ−1 log(v)
)]1/γ

dv,

and

Var(T ) = φ(1− e−φ)−1

∫ 1

0
e−φv

[
log
(

1− λ−1 log(v)
)]2/γ

dv − [E(T )]2.

The mean residual life function, as well as the hf, plays an important role in sur-
vival analysis for characterizing lifetime. While the latter represents the instantaneous event
rate, the former summarizes the entire residual lifetime. The mean residual life function,
mrl(t;λ, γ, φ) = E(T − t|T ≥ t), of the ECP distribution is given by

mrl(t;λ, γ, φ) = φ(1− e−φA)−1

∫ A

0
e−φv

[
log
(

1− λ−1 log(v)
)]1/γ

dv − t,

with A = eλ
(
1−et

γ
)
.

The moments have no closed-form expressions and so they can only be obtained using
numerical integration. Therefore, the classical measures of skewness and kurtosis based on
moments are intractable. In this case, quantile-based measures are often considered, namely
the Bowley skewness and Moors kurtosis that are given, respectively, by B = [Q(3/4)−
2Q(1/2)+Q(1/4)]/[Q(3/4)−Q(1/4)] andM = [Q(7/8)−Q(5/8)−Q(3/8)+Q(1/8)]/[Q(3/4)
−Q(1/4)], where Q(·) comes from (3.6). These measures exist even for distributions without
finite moments and are less sensitive to outliers.

3.3. Statistical inference

For statistical inference, the ML method is usually preferred due to the attractive
properties of the resulting estimators, such as consistency, asymptotic efficiency, invariance
property and asymptotic normality. Therefore, the ML method to estimate the three unknown
parameters of the ECP distribution for the general case of right-censored time-to-event data
is presented.

Let T̃i = min{Ti, Ci}, i = 1, ..., n, where Ti is the lifetime of i-th subject, following a
ECP distribution, and Ci is the censoring time, assumed to have a distribution that does not
depend on the parameters of Ti. Moreover, it is assumed that Ti and Ci are independent.
So, the censoring mechanism is non-informative. The censoring indicator is defined as δi =
I(Ti ≤ Ci), taking the value 1 if Ti is a time-to-event and 0 if it is right-censored. Considering
a random sample of n pairs, (t1, δ1), ..., (tn, δn), the log-likelihood function ` = logL(λ, γ, φ)
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is given by

` =
n∑

i=1

{
δi log f(ti;λ, γ, φ) + (1− δi) logS(ti;λ, γ, φ)

}
= n log

(
φ

1− e−φ

)
+m

(
λ+ log(λγ)

)
+ (γ − 1)

n∑
i=1

δi log(ti) +
n∑

i=1

δit
γ
i(3.8)

− λ
n∑

i=1

δietγi +
n∑

i=1

(1− δi) log

(
1− e−φe

λ

(
1−e

t
γ
i

)
φ

)
− φ

n∑
i=1

δieλ
(
1−et

γ
i

)
,

where m =
∑n

i=1 δi is the observed number of events. Some care must be taken when φ < 0,
since the values of log(φ) cannot be computed. This problem is easily overcome by considering

the fact that log
(
φ/(1− e−φ)

)
∈ R, ∀φ ∈ R\{0}, and log

(
(1− exp{−φeλ

(
1−et

γ
i

)
})/φ

)
∈ R,

∀λ, γ > 0 and φ ∈ R\{0}.

The first-order partial derivatives of the log-likelihood function with respect to each of
the three parameters are

∂`

∂λ
= m

(
1 +

1
λ

)
−

n∑
i=1

δietγi −
n∑

i=1

(1− δi)
φ
(
1− etγi

)
eλ
(
1−et

γ
i

)
1− eφe

λ

(
1−e

t
γ
i

) − φ

n∑
i=1

δi
(
1− etγi

)
eλ
(
1−et

γ
i

)
,

∂`

∂γ
=

m

γ
+

n∑
i=1

δi log
(
ti
)

+
n∑

i=1

δit
γ
i log

(
ti
)
− λ

n∑
i=1

δit
γ
i log

(
ti
)
etγi

+ λφ

n∑
i=1

(1− δi)
tγi log

(
ti
)
etγi +λ

(
1−et

γ
i

)
1− eφe

λ

(
1−e

t
γ
i

) + λφ

n∑
i=1

δit
γ
i log

(
ti
)
etγi +λ

(
1−et

γ
i

)
,

∂`

∂φ
= n

(
1
φ

+
1

1− eφ

)
− 1
φ

n∑
i=1

(1− δi)
1 + φeλ

(
1−et

γ
i

)
− eφe

λ

(
1−e

t
γ
i

)
1− ee

λ

(
1−e

t
γ
i

) −
n∑

i=1

δieλ
(
1−et

γ
i

)
.

The ML estimates are determined by setting these partial derivatives equal to zero, obtaining
a nonlinear system of equations that can only be solved using a numerical optimization
method such as Newton–Raphson or Broyden–Fletcher–Goldfarb–Shanno (BFGS).

Under mild regularity conditions, the ML estimators of λ, γ and φ have an asymptotic
multivariate normal distribution given by

(λ̂, γ̂, φ̂) a∼ N
[
(λ, γ, φ), I−1(λ, γ, φ)

]
, as n −→∞,

where the observed information matrix, I(λ, γ, φ), is defined as

I(λ, γ, φ) = −



∂2`

∂λ2
,

∂2`

∂λ∂γ
,

∂2`

∂λ∂φ

∂2`

∂γ∂λ
,

∂2`

∂γ2
,

∂2`

∂γ∂φ

∂2`

∂φ∂λ
,

∂2`

∂φ∂γ
,

∂2`

∂φ2


.

The mathematical expressions of the elements of I(λ, γ, φ) are given in supplementary ma-
terial file.
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For interval estimation and hypothesis testing, let V̂ar(λ̂), V̂ar(γ̂) and V̂ar(φ̂) denote
the estimates of the main diagonal elements of the inverse of the observed information matrix,
evaluated at the ML estimates of the parameters. The large-sample (1− α)100% confidence
intervals (CI) for λ, γ and φ are

λ̂± zα/2

√
V̂ar(λ̂), γ̂ ± zα/2

√
V̂ar(γ̂) and φ̂± zα/2

√
V̂ar(φ̂),

respectively, where zα/2 is the upper α/2 quantile of the standard normal distribution.

For computational implementation, the optim function available in R [25] statistical
software (version 4.1.0) was used for direct maximization of the log-likelihood function (3.8).

3.4. Simulation study

In order to investigate the performance of ML estimators of the three parameters of
the ECP distribution and to evaluate the accuracy of the resulting estimates, a simulation
study was conducted through R [25] statistical software. In such simulation, the following
steps were followed:

1. Specification of the parameters values (λ, γ, φ) = (0.2, 1.5, 3.0), (1.3, 0.2, -2.0),
(3.0, 0.3, 20.0) and (0.6, 0.6, -3.5). These sets of parameters values were selected in
order to yield increasing, decreasing, unimodal and bathtub shapes of the hazard
function, respectively, as shown in Figure 2.

2. Specification of the sample size n = 20, 50, 100, 500 and 1000.

3. Generation of a pseudo-random sample from (3.7), in the presence of random cen-
soring (that has the types I and II of censoring mechanisms as special cases). Here,
it is assumed that the event times follow an ECP distribution and the censoring
times are uniformly distributed. The percentage of pseudo-random censoring is
specified as 0%, 10% and 30%, following the procedures discussed in [27].

4. Computation of the ML estimates of the three parameters using the BFGS method
and evaluation of the elements of the inverse of the observed information matrix at
the ML estimates.

5. Repetition of the steps 1 to 4, N = 1000 times.

6. Calculation of the average of the N ML estimates and their standard errors.

7. Calculation of the bias, mean squared error (MSE) and coverage probability (CP)
of the 95% CI for each parameter. The bias and MSE associated with the ML
estimates of the parameter ϑ are, respectively, given by

Biasϑ =
1
N

N∑
l=1

(
ϑ̂l − ϑ

)
and MSEϑ =

1
N

N∑
l=1

(
ϑ̂l − ϑ

)2
,

where ϑ̂l is the ML estimate obtained from the l-th sample, l = 1, ..., N , and
ϑ = (λ, γ, φ)′. The CP is the proportion of the N generated 95% CIs that include
the real value of the parameter.
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The results obtained from the simulation study are presented in Table 1. For samples
generated with 0% of censoring, it is observed that the averages of the ML estimates of λ, γ
and φ tend to the true value of the parameter as the sample size increases, as well as their
standard errors tend to zero. Both the bias and MSE are smaller for larger sample sizes,
reflecting that the ML estimators are asymptotically unbiased. Besides, the CP tends to be
closer to the nominal level of 95%. However, it appears that φ has higher values for bias and
MSE in comparison to the remaining parameters. This aspect is more visible for the set of
parameters values corresponding to a unimodal hazard shape, but then it vanishes for large
sample sizes and does not compromise the estimation of λ and γ.

In general, these results suggest that the estimation of parameters was performed con-
sistently. Similar results were obtained for samples generated with 10% and 30%, despite the
bias and MSE of all three parameters having slightly higher values. Although it is not shown
here, the results were similar to the ones obtained for other choices of parameter values.

The programming codes of the simulation study, developed in R, are available in sup-
plementary material file. Further research may be carried out to assess and explore other
potential estimation procedures for the parameters of the ECP distribution, such as least-
square estimators, minimum distance estimators, percentile based estimators, among others
(see, for example, Dey et al. [14]).

3.5. Application to uncensored data: guinea pigs

In this section, the ECP distribution is applied to the (uncensored) guinea pigs data
set reported by Bjerkedal [8]. The data represent the survival times, in days, of 72 guinea
pigs infected with virulent tubercle bacilli. Dey et al. [15] analysed a transformed version
of the original data (divided by 100), which is also considered in this work. Moreover, the
adequacy of the ECP distribution is assessed in comparison with some other generalizations
of the Chen distribution. Those models are listed in Table 2.

Table 2: List of distributions fitted to the guinea pigs data.

j-th Model, [ref.] Probability density function, f(t), t > 0

1 Chen, [11] λ1γ1t
γ1−1et

γ1+λ1(1−et
γ1

), λ1, γ1 > 0

2 XTG, [34] λ2γ2(t/φ2)
γ2−1e(t/φ2)γ2+λ2φ2(1−e(t/φ2)γ2 ), λ2, γ2, φ2 > 0

3 ECP
λ3γ3φ3t

γ3−1

1− e−φ3
et
γ3+λ3(1−et

γ3
)−φ3eλ3(1−et

γ3 )
, λ3, γ3 > 0, φ3 ∈ R\{0}

4 Chen-logarithmic, [24]
λ4γ4(φ4 − 1)tγ4−1�

1− (1− φ4)eλ4(1−et
γ4 )

�
log φ4

et
γ4+λ4(1−et

γ4
), λ4, γ4, φ4 > 0

5 Exponentiated Chen, [10] λ5γ5φ5t
γ5−1�1− eλ5(1−et

γ5
)�φ5−1

et
γ5+λ5(1−et

γ5
), λ5, γ5, φ5 > 0

6 Marshall–Olkin Chen, [2]
λ6γ6φ6t

γ6−1�
1− (1− φ6)eλ6(1−et

γ6 )
�2 et

γ6+λ6(1−et
γ6

), λ6, γ6, φ6 > 0

7 Transmuted Chen, [30]
λ7γ7t

γ7−1�
1− φ7 + 2φ7eλ7(1−et

γ7 )
�−1 et

γ7+λ7(1−et
γ7

), λ7, γ7 > 0, φ7 ∈ (−1, 1)

8 Kumaraswamy Chen, [23]
λ8γ8φ8ψ8t

γ8−1(1− eλ8(1−et
γ8

))φ8−1

h
1−

�
1− eλ8(1−et

γ8 )
�φ8

i1−ψ8
et
γ8+λ8(1−et

γ8
), λ8, γ8, φ8, ψ8 > 0
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The AdequacyModel [21] package was used for fitting models to the guinea pigs data.
The ML estimates, their corresponding standard errors and −log-likelihood values of the
fitted models are shown in Table 3. The AdequacyModel package also provides some useful
statistics to assess the adequacy of the fitted models [22], such as the Cramér–von Mises (CM),
Anderson–Darling (AD), Akaike information criterion (AIC), consistent Akaike information
criterion (CAIC), Bayesian information criterion (BIC), Hannan–Quinn information criterion
(HQIC) and in addition performs the Kolmogorov–Smirnov (KS) test. The obtained values
are compiled in Table 4.

Table 3: ML estimates, standard errors and −log-likelihood values
for the guinea pigs data.

ML estimates Standard error
Model

λ̂j γ̂j φ̂j ψ̂j λ̂j γ̂j φ̂j ψ̂j
−ˆ̀

Chen 0.208 0.759 — — 0.034 0.043 — — 104.241

XTG 0.391 0.322 0.010 — 0.165 0.023 0.005 — 100.839

ECP 1.225 0.407 12.094 — 0.256 0.061 5.158 — 93.537

Chen-logarithmic 0.208 0.758 1.008 — 0.131 0.094 1.395 — 104.241

Exponentiated Chen 0.995 0.444 7.209 — 0.306 0.080 4.095 — 94.186

Marshall–Olkin Chen 0.003 1.131 0.016 — 0.001 0.043 0.006 — 97.975

Transmuted Chen 0.117 0.809 0.753 — 0.025 0.045 0.203 — 102.617

Kumaraswamy Chen 0.896 0.339 9.229 2.364 0.391 0.324 11.159 6.413 94.108

Table 4: Goodness-of-fit statistics for the guinea pigs data.

Model CM AD KS (p-value) AIC CAIC BIC HQIC

Chen 0.367 2.130 0.165 (0.040) 212.482 212.656 217.036 214.295

XTG 0.304 1.775 0.131 (0.172) 207.678 208.031 214.508 210.397

ECP 0.085 0.514 0.082 (0.719) 193.075 193.428 199.905 195.794

Chen-logarithmic 0.367 2.130 0.165 (0.040) 214.482 214.835 221.312 217.201

Exponentiated Chen 0.094 0.585 0.090 (0.601) 194.372 194.725 201.202 197.091

Marshall–Olkin Chen 0.199 1.153 0.137 (0.134) 201.652 202.005 208.482 204.371

Transmuted Chen 0.336 1.950 0.158 (0.055) 211.235 211.588 218.065 213.954

Kumaraswamy Chen 0.092 0.570 0.090 (0.610) 196.217 196.814 205.323 199.842

Bold values correspond to the best model.

The ECP distribution stands out as the best model among the fitted models, since its
values of goodness-of-fit measures are the smaller ones and it has the highest p-value from the
KS test. Interestingly, Dey et al. [15] showed that the alpha power transformed inverse Lindley
(APTIL) distribution provides a better fit to the guinea pigs data, when compared to the fits
of the inverse Lindley, generalized inverse Lindley, exponentiated generalized inverse Lindley,
exponentiated inverse Lindley and inverse Weibull distributions. Nevertheless, the reported
values of the AIC, BIC and KS statistic associated to the fit of the APTIL distribution are
234.817, 239.370 and 0.146, respectively, which are much higher than those obtained for the
ECP distribution.
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Additionally, the adequacy of the ECP distribution to model the guinea pigs data was
informally evaluated through the two plots positioned on the upper panel of Figure 3, where
plot (a) displays the empirical and model-based estimates of the sf; and plot (b) exhibits
the histogram and model-based estimates of the pdf. In order to avoid a graphical overload,
only the estimates of the Chen and ECP distributions are depicted. In both plots, the curves
corresponding to the ECP distribution show close agreement, corroborating the fact that this
distribution provides an adequate superior fitting to the survival times of guinea pigs with
tuberculous infection.
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Figure 3: (a) Empirical and estimated survival functions of the Chen and ECP distributions;
(b) Histogram and estimated probability density functions; (c) Estimated hazard
functions; (d) Empirical scaled TTT-transform for the guinea pigs data.

The hf estimates of the referred distributions are shown in Figure 3 (c). With the purpose
of identifying the hazard shape, a graphical method based on the total time on test (TTT)
transform suggested by Aarset [1] was considered. The TTT plot is obtained by plotting the
empirical scaled TTT-transform given by G(r/n) =

[∑r
i=1 Ti:n + (n− r)Tr:n

]
/
[∑n

i=1 Ti:n

]
versus r/n, where r = 1, ..., n and Ti:n are the order statistics of the sample. It has been
shown that the hf is increasing or decreasing if the TTT plot is concave or convex, respectively.
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Although this is a sufficient but not a necessary condition, this graphical method is commonly
used as a rough indicative of the hazard shape. Figure 3 (d) shows that the TTT plot
is concave for the considered data, suggesting an increasing hf, which in theory would be
properly accommodated by both distributions. However, the ML estimate of γ1 of the Chen
distribution is less than 1 (see Table 3), indicating that its hf is bathtub-shaped, as confirmed
by Figure 3 (c). Hence, this distribution provides a poor fit. In fact, based on the p-value
of the KS test (see Table 4), at significance level of 5%, there is evidence that the Chen
distribution is not adequate for modelling this data. In contrast, the ECP distribution was
able to capture an increasing hazard shape, reinforcing that it provides a good fit to the
guinea pigs data.

Under the unified approach of Ramos et al. [26], it is possible to find whether the
ECP distribution comes from the distribution of the minimum or maximum. Since the ML
estimate of φ3 is a positive value (see Table 3), the resulting distribution comes from the
maximum of Chen distributions, that is, if Ti, i = 1, ..., 72, are the guinea pigs lifetimes,
then Ti = max{Xi,1, ..., Xi,Z}, where Xi,z, z = 1, ..., Z, follows a Chen distribution and Z is
a non-observable random variable following a ZTP distribution.

3.6. Application to censored data: Rotterdam breast cancer

In this section, the ECP distribution is applied to the Rotterdam breast cancer data
set reported by Sauerbrei et al. [29]. The data represent the relapse-free survival from 2982
patients with primary breast cancer whose records were included in the Rotterdam tumour
bank. Here, the survival times (in years) since tumour removal until death from the dis-
ease is analysed. The maximum follow-up time is 19.283 years, the median (estimated by
the reverse Kaplan–Meier method) is 9.273 years and the percentage of censoring is 57.3%.
The Rotterdam data is also available in the survival [32] package.

The adequacy of the ECP distribution is assessed in comparison with some other mem-
bers of the unified Poisson family [26], in particular with the EEP, EWP, generalized extended
exponential-Poisson (GE2P) and extended exponenciated Weibull–Poisson (E2WP) distribu-
tions. Those models are listed in Table 5. Note that the E2WP distribution was proposed
only by taking the maximum (φ7 > 0) [20], but we consider φ7 ∈ R\{0} because it belongs
to the unified Poisson family. Besides the Chen distribution being a limiting case of the ECP
distribution (when φ4 → 0), the Weibull distribution is a limiting case of the EWP (when
φ5 → 0) and E2WP (when ψ7 = 1 and φ7 → 0) distributions. For this reason, the Weibull
distribution was also fitted to the Rotterdam data.

Given that in this application there are censored observations, the maxLik [33] package
was conveniently used to maximize the log-likelihood function for censored data associated to
each model, using the BFGS method. Table 6 compiles the ML estimates, their corresponding
standard errors and −log-likelihood values. Here, it is verified that almost all fitted models
come from the distribution of the maximum, except the GE2P distribution that comes from
the distribution of the minimum (φ̂6 < 0). Since the current application is not a CCR problem,
the sign of φ̂j is not relevant. The observed values of the AIC, CAIC, BIC and HQIC
statistics were also calculated in order to informally assess the adequacy of the fitted models,
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as presented in Table 7. From these results it is seen that, although the ECP distribution
has the smaller values of those criteria, the EWP distribution provides a similar fit. Thus,
both ECP and EWP distributions are the best models among the fitted models to analyse
the Rotterdam data.

Table 5: List of distributions fitted to the Rotterdam breast cancer data.

j-th Model, [ref.] Probability density function, f(t), t > 0

1 Chen, [11] λ1γ1t
γ1−1et

γ1+λ1(1−et
γ1

), λ1, γ1 > 0

2 Weibull λ2γ2t
γ2−1e−λ2t

γ2
, λ2, γ2 > 0

3 EEP, [18, 9]
λ3φ3

1− e−φ3
e−λ3t−φ3e−λ3t

, λ3 > 0, φ3 ∈ R\{0}

4 ECP
λ4γ4φ4t

γ4−1

1− e−φ4
et
γ4+λ4(1−et

γ4
)−φ4eλ4(1−et

γ4 )
, λ4, γ4 > 0, φ4 ∈ R\{0}

5 EWP, [16, 19, 26]
λ5γ5φ5t

γ5−1

1− e−φ5
e−λ5t

γ5−φ5e−λ5t
γ5
, λ5, γ5 > 0, φ5 ∈ R\{0}

6 GE2P, [4, 26]
λ6γ6φ6

1− e−φ6

�
e−φ6e−λ6t − e−φ6

1− e−φ6

�γ6−1

e−λ6t−φ6e−λ6t
, λ6, γ6 > 0, φ6 ∈ R\{0}

7 E2WP, [20]
λγ77 γ7φ7ψ7t

γ7−1
�
1− e−(λ7t)

γ7 �ψ7−1

�
eφ7 − 1

�
e(λ7t)

γ7−φ7

�
1−e−(λ7t)

γ7
�ψ7

, λ7, γ7, ψ7 > 0, φ7 ∈ R\{0}

Table 6: ML estimates, standard errors and −log-likelihood values
for the Rotterdam breast cancer data.

ML estimates Standard error
Model

λ̂j γ̂j φ̂j ψ̂j λ̂j γ̂j φ̂j ψ̂j
−ˆ̀

Chen 0.034 0.469 — — 0.002 0.007 — — 4913.724

Weibull 0.035 1.254 — — 0.003 0.031 — — 4817.114

EEP 0.101 — 1.479 — 0.006 — 0.194 — 4839.735

ECP 1.792 0.108 83.000 — 0.017 0.002 1.407 — 4780.796

EWP 0.227 2.330 39.353 — 0.005 0.035 1.047 — 4780.882

GE2P 1.609 0.046 −2.233 — 0.065 0.015 0.993 — 4797.261

E2WP 14.908 0.257 0.378 25.107 0.903 0.013 0.840 1.332 4780.297

Table 7: Goodness-of-fit statistics for the Rotterdam breast cancer data.

Model AIC CAIC BIC HQIC

Chen 9831.448 9831.452 9843.449 9835.766

Weibull 9638.228 9638.232 9650.229 9642.546

EEP 9683.471 9683.475 9695.472 9687.789

ECP 9567.591 9567.599 9585.592 9574.068

EWP 9567.765 9567.773 9585.766 9574.242

GE2P 9600.522 9600.530 9618.523 9606.999

E2WP 9569.527 9569.540 9593.528 9578.163

Bold values correspond to the best models.
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In addition, the overall goodness-of-fit of the ECP distribution was informally evaluated
through the two plots positioned on the upper panel of Figure 4, where plot (a) displays the
estimates of the sf based on the Kaplan–Meier estimator and on the Chen and ECP distri-
butions; and plot (b) exhibits the Cox–Snell residuals of the ECP distribution. The residuals
are defined as r̂i = Ĥ(ti; λ̂, γ̂, φ̂), i = 1, ..., n, where Ĥ(ti; λ̂, γ̂, φ̂) is the estimated cumulative
hazard function (chf) of the fitted model. When the model is adequate, the residuals behave
approximately as a sample from a population with unit exponential distribution [12]. This as-
sumption is informally checked through the graphical representation of

(
r̂i, ĤNA(r̂i)

)
, where

ĤNA(r̂i) is the Nelson-Aalen estimate of the chf of the residuals. There is a good fit when
this representation yields a straight line through the origin with slope 1. In both (a) and
(b) plots, the curves corresponding to the ECP distribution show general agreement, even
though there are a few poorly fitted observations on the upper tail. This is acceptable since
the 90-th quantile of the follow-up time (estimated by the reverse Kaplan–Meier method) is
equal to 13.227 years, from which the model begins to provide a poor fit to the data.
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Figure 4: (a) Estimated survival functions based on the Kaplan–Meier estimator
and on the Chen and ECP distributions; (b) Cox–Snell residuals of the
ECP distribution; (c) Estimated hazard functions of the Chen, Weibull,
ECP and EWP distributions; (d) Empirical scaled TTT-transform based
on the Kaplan–Meier estimator for the Rotterdam breast cancer data.
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The hf estimates of the Chen, Weibull, ECP and EWP distributions are depicted in
Figure 4 (c). With the purpose of identifying the hazard shape, the TTT plot is once again
considered. However, the existence of censored observations must be taken into account. As
mentioned by Klefsjö [17], a natural generalization of the empirical scaled TTT-transform,
G(r/n), to accommodate right censored data consists in replacing the empirical cdf, r/n, by
the estimator of the cdf based on the Kaplan–Meier estimator, 1− ŜKM(t). Figure 4 (d) shows
that, in this case, the TTT plot is initially concave and then becomes convex, suggesting an
unimodal hf. Both ECP and EWP distributions were able to capture an unimodal hazard
shape, providing quite similar estimates. Therefore, in addition to both models being suit-
able for modelling the Rotterdam data, the proposed distribution is an adequate parametric
alternative to the EWP distribution.

4. CONCLUDING REMARKS

In this paper, we introduce a new three-parameter lifetime distribution, named ECP
distribution. The proposed distribution is a generalization of the Chen distribution [11] and
arises from the unified Poisson compounding approach of Ramos et al. [26], where both
distributions of the minimum and maximum are merged into one when it is assumed that the
latent variable follows a ZTP distribution. Under this approach, the obtained distribution
allows a practical interpretation in CCR settings. It was verified that if the parameter from
the ZTP distribution takes a negative (or positive) value, then the random variable with ECP
distribution represents the minimum (or maximum) lifetime among all unobservable causes.
Several features of the new distribution are deduced, including the explicit expressions for
the sf, pdf, hf, quantile function, moment generating function (particularly, for the mean and
variance) and mean residual life function. The ECP distribution can take a richer variety
of flexible hazard shapes regarding to the baseline distribution. In fact, the main advantage
of the ECP distribution is that its hf can be monotonic increasing, monotonic decreasing,
unimodal, bathtub, IDI or DIDI.

The estimation of the parameters is done by the ML method, considering a right-
censoring mechanism. The results of the simulation study showed the effectiveness of the
ML method, in which the bias and MSE of the parameters estimates are close to zero as
the sample size increases. Additionally, two real data applications were presented with the
following purposes:

i) to assess the adequacy of the ECP distribution for modelling uncensored (guinea
pigs) and censored (Rotterdam breast cancer) data;

ii) to compare the proposed distribution with other generalizations of the Chen dis-
tribution, as well as with other members of the unified Poisson family.

In both applications, the ECP distribution clearly revealed to be a suitable parametric alter-
native for modelling the data, when compared with the competing models. It is noteworthy
that some of the considered models have quite flexible hfs (such as the Marshal-Olkin Chen
and E2WP distributions) but, for the analysed data sets, none was better than the ECP
distribution. This fact emphasizes the potential and flexibility of the proposed model.
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