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1. INTRODUCTION

Let X1, ..., Xn, ... denote i.i.d. random variables with a common absolutely continuous
distribution function F and density function f , say. We assume that they have a finite
second moment. Let Mn = max{X1, ..., Xn}, n = 1, 2, ..., stand for the maximum of the first
n observations. For fixed 1 ≤ j ≤ n and 0 < q < 1, we determine tight lower and upper
bounds for the standardized versions of the conditional expectations

(1.1)
1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)

over all parent distribution functions F where µ and σ denote the respective mean and stan-
dard deviation. It is clear that manipulating with location and scale of the parent distribution
function F , we may obtain arbitrarily large and small values of the conditional expectation
in (1.1), and a proper standardization allows to get rid of the trivial extremes. We chose the
mean and standard deviation of the parent distribution as the most classic location and scale
parameters, respectively. Normalization (1.1) allows us to get rid of dependence on location and
scale, and its variability depends only on the shape of the parent distribution. It is also intuitively
clear that the conditional expectation depends on the location of Mj in the support of X1, and
its distribution over the support. This is well expressed by the order of respective quantile.

A similar problem is solved for the upper records. We define the first record time and
value as T1 = 1 and R1 = X1, respectively. The further record times and values are deter-
mined recursively Tn = min{k > Tn−1 : Xk > Mk−1}, and Rn = XTn = MTn . By definition,
the sequence of upper records is the maximal increasing subsequence of the non-decreasing
sequence of sample maxima, arisen by crossing out all the repetitions. The second problem
we cope with here is evaluating

(1.2)
1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
, 1 ≤ j ≤ n, 0 < q < 1.

For describing our last problem, we introduce the record indicators ηk = 1 if Xk > Mk−1 and
ηk = 0 otherwise. Our purpose is to evaluate

(1.3)
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = F−1(q)

)
, 1 ≤ j ≤ n, 0 < q < 1.

Expression
∑n

k=1 Xkηk represents the sum of all the record values observed among the first n

observations. Condition Mj = F−1(q) means that the actual record value after j observations
amounts to F−1(q).

Exemplary applications of our problems are connected with sponsoring and rewarding
sportsmen.

Example. Some sports disciplines consists in gaining the greatest possible results. The
examples are here the track and field competitions in jumping and throwing. The sportsmen
receive scholarships and rewards proportional to (or linearly dependent on) their achieve-
ments. Suppose that due to an agreement with a sponsor a person receives a scholarship in
the period of n months based on sports level which is measured by his/her personal best result.
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(In the meantime he/she can achieve worse results, but it is known that he/she is able to
attain the results on the level of his/her personal best.) Therefore his/her joint earnings in
n months are proportional to

∑n
i=1 Mi.

In the second case, the sponsoring company signs the agreement with the organizer of
a competition series that it pays honoraria for n consecutive records during the competitions
of the amounts linearly dependent on the values of records. The sum of payoffs is a linear
function of

∑n
i=1 Ri then.

Another variant of the agreement is that the company sponsors n track and field meet-
ings so that it pays a random number of honoraria to the people who gain new records during
these events. The total amount of the rewards is proportional to

∑n
i=1 Xiηi, where Xi is the

result of the winner in the i-th competition, and ηi is the respective record indicator.

We try to evaluate the total sums of payments in these three models on the basis
of knowledge of j-th value of the payment, 1 ≤ j ≤ n, which are Mj , Rj and Mj again,
respectively, but we do not know a substantially random mechanism generating the results.
However, such generally stated problems do not have nontrivial solutions. We should know
at least approximate values of the location and scale parameters. Therefore we included
the mean and standard deviation in the models, which are the most popular parameters of
location and scale. Also, one other factor specific to a given sport discipline should be taken
into account. For instance, it is obvious that one can expect more progress in the triple
jump or hammer throw in the ladies competitions rather than among the men, because the
women version of these sport competitions were introduced quite recently. Mathematically,
the tendency of the given discipline for gaining new records is expressed the small value of
the quantile order q of the parent distribution.

We solve our three problems using a similar approach. We represent expressions
(1.1)–(1.3) in integral forms, depending on indices j and n, quantile order q, and parent
distribution function F . Then for fixed j, n, and q, we determine the lower and upper
bounds on the integrals representing (1.1)–(1.3), and distribution functions F which attain
the bounds. These distributions have atoms, and formally do not satisfy the continuity as-
sumptions. However, if we skilfully spread out (uniformly, for simplicity) the atom masses
over their small neighborhoods preserving the parent mean and variance, we may attain val-
ues of conditional expectations arbitrarily close to the respective bounds by an absolutely
continuous distributions. This means that our bounds are optimal: there are sequences of
continuous distributions tending weakly to a discontinuous ones which approach respective
bounds arbitrarily close. For brevity of presentation, we merely present these limiting dis-
continuous distributions, and imprecisely write that the bounds are attained by them.

The integral bounds are calculated with use of the method proposed in Moriguti [21]
who used it for evaluating the expectations of order statistics from i.i.d. samples and their
differences.

Lemma 1.1. Let H be a non-decreasing right-continuous function on an interval [a, b],
and continuous at a and b. Let H and H be the smallest concave majorant, and the greatest

convex minorant of H, respectively. Let h and h denote the the right-hand side deriva-

tives of H and H, respectively. Then for every non-decreasing function f on [a, b] we have

(1.4)
∫ b

a
f(x)h(x)dx ≤

∫ b

a
f(x)H(dx) ≤

∫ b

a
f(x)h(x)dx
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under the assumption that the integrals exist and are finite. The lower (upper) bound is at-

tained iff f is constant in every interval of the open set {x ∈ [a, b] : H(x) > H(x)} ({x ∈ [a, b] :
H(x) < H(x)}, respectively), and f(x) is left-continuous (right-continuous, resp.) at every

discontinuity point (if any) of H.

Moriguti ([21], Theorem 1) determined the upper bound in (1.4) under a more general
assumption that H has a bounded variation on [a, b], and is continuous at the interval ends.
The lower one is easily concluded from Theorem 1 of Moriguti [21]:

−
∫ b

a
f(x)H(dx) =

∫ b

a
f(x)(−H)(dx) ≤ −

∫ b

a
f(x)h(x)dx,

because −h is the derivative of the greatest convex minorant of −H.

Order statistics, especially sample extremes, and records were the objects of extensive
studies. Arnold et al. [2], and David and Nagaraja [9] are the most popular textbooks devoted
to order statistics. Comprehensive studies of records were presented in Arnold et al. [3] and
Nevzorov [23]. Gumbel [13] and Hartley and David [14] independently derived sharp upper
mean-variance bounds on the maxima of i.i.d. random variables. Analogous estimates for the
record values were presented in Nagaraja [22]. These bounds were determined with use of
the Schwarz inequality. Applying the same tool one can establish analogous bounds on sums
of maxima and records, but the respective analytic formulae are complicated.

Predictions of order statistics and record values were analyzed by Raqab and Balakr-
ishnan [28], Ahmadi and Balakrishnan [1], MirMostafaee and Ahmadi [20], and Volterman
et al. [31], among others. In particular, Rychlik [29] and Klimczak [17] determined bounds
on conditional expectations of future order statistics and records. Balakrishnan et al. [5],
Asgharzadeh et al. [4], Khatib and Ahmadi [15], and Khatib et al. [16] studied reconstruc-
tions of previous failure times and records in various models. Klimczak and Rychlik [18]
presented evaluations of conditional expectations of previous order statistics and records.

Conditional expectations of (1.1), (1.2), and (1.3) are studied in survival analysis, the
gambling, finance, and reliability theories. A problem of prediction of the sum of minima
(dual to (1.1)) was treated by Nevzorov et al. [24]. Problem (1.3) is a modification of a
classical secretary choice problem which consist in maximizing the probability of finding the
maximal record value in a finite sequence of i.i.d. observation in an on-line decision procedure
(see, e.g., Gilbert and Mosteller [11] or Chow et al. [8]). Various generalizations of the
secretary problem can be found in Freeman [10] and Samuels [30]. Recent developments in
the subject are presented in Ramsey [27], Kuchta [19], Woryna [32], and Grau Ribas [12].
Sums of records in fixed numbers of trials were treated in Bel’kov and Nevzorov [6]. For a fixed
parent distribution, they maximized E

(∑n
k=j Xkηk|X1, ...Xj

)
with respect to j = 1, ..., n− 1.

Nevzorov and Tovmasyan [26] analyzed a similar problem if the number of upper records
was maximized instead of the sum of their values. Bel’kov and Nevzorov [7] maximized the
joint sum of upper and lower records in the analogous model. Nevzorov and Stepanov [25]
maximized the expected sum of maxima by choosing an optimal starting time.

Evaluations of (1.1), (1.2) and (1.3) are presented in Sections 2, 3, and 4, respectively.
Section 5 is devoted to numerical comparisons.
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2. SUMS OF SAMPLE MAXIMA

Lemma 2.1. Let X1, ..., Xn be i.i.d. with an absolutely continuous distribution func-

tion F and density f . Then E
(

1
n

∑n
k=1 Mk

∣∣Mj = x
)

is identical with the expectation of the

distribution function

Fj,n,F (y|x) =


1
jn

j−1∑
k=1

(j − k)
F k(y)
F k(x)

, y < x,

j

n
+

1
n

n−j∑
k=1

F k(y), y ≥ x.

=


1
jn

F (x)F (y)
[F (y)− F (x)]2

[
j − 1− j

F (y)
F (x)

+
F j(y)
F j(x)

]
, y < x,

j

n
+

1
n

F (y)
1− F (y)

[1− Fn−j(y)], y ≥ x.

(2.1)

We adhere to the convention that
∑j

k=i ai = 0 for j < i.

Proof: For j < k we have

P(Mk = x|Mj = x) = P(Xi ≤ x, i = j + 1, ..., k) = F k−j(x),

and for x < y yields

P(Mj ≤ x,Mk ≤ y) = P(Xi ≤ x, i = 1, ..., j, Xi ≤ y, i = j + 1, ..., k) = F j(x)F k−j(y).

Therefore the joint density function of Mj and Mk is

(2.2) fMj ,Mk
(x, y) = j(k − j)F j−1(x)F k−j−1(y)f(x)f(y), x < y.

Since

(2.3) fMj (x) = jF j−1(x)f(x),

the conditional density of Mk under condition Mj = x has the form

fMk|Mj
(y|x) = (k − j)F k−j−1(y)f(y), y > x,

and the respective conditional distribution function is

(2.4) FMk|Mj
(y|x) =

{
0, y < x,

F k−j(y), y ≥ x.

Take now k < j. Using the exchangeability argument we conclude that P(Mk = x |Mj = x) = k
j

for any x. Applying (2.2) and (2.3) we also obtain

fMk|Mj
(y|x) =

k(j − k)
j

F k−1(y)
F k(x)

, y < x.
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It follows that the conditional distribution function of Mk with respect to Mj = x is

(2.5) FMk|Mj
(y|x) =


j − k

j

F k(y)
F k(x)

, y < x,

1, y ≥ x.

Obviously, the distribution of Mj given Mj = x is the degenerate measure concentrated at x.
Combing this fact with (2.4) and (2.5), we get

n∑
k=1

FMk|Mj
(y|x) =


1
j

j−1∑
k=1

(j − k)
F k(y)
F k(x)

, y < x,

j +
n−j∑
k=1

F k(y), y ≥ x.

Finally,

E

(
1
n

n∑
k=1

Mk

∣∣∣∣∣Mj = x

)
=
∫

R
y

n∑
k=1

FMk|Mj
(dy|x) =

∫
R

y Fj,n,F (dy|x).

Distribution function (2.1) in the standard uniform case has the form

Fj,n(u|q) =


1
jn

j−1∑
k=1

(j − k)
uk

qk
, 0 < u < q,

j

n
+

1
n

n−j∑
k=1

uk, q ≤ u < 1,

=


1
jn

uq

(u− q)2

[
j − 1− j

u

q
+

uj

qj

]
, u < q,

j

n
+

1
n

u

1− u
[1− un−j ], u ≥ q,

0 < q < 1.(2.6)

It has the density function

fj,n(u|q) =


1

jnq

j−2∑
k=0

(j − k − 1)(k + 1)
uk

qk
, 0 < u < q,

1
n

n−j−1∑
k=0

(k + 1)uk, q ≤ u < 1,

=



(j + 1)q
jn(q − u)2

[
1− j

uj−1

qj−1
+ (j − 1)

uj

qj

]
− q2

jn(q − u)3

×
[
2− j(j + 1)

uj−1

qj−1
+ 2(j − 1)(j + 1)

uj

qj
− j(j − 1)

uj+1

qj+1

]
, 0 < u < q,

1
(1− u)2

[1− (n + 1− j)un−j + (n− j)un+1−j ], q ≤ u < 1,

(2.7)

when 0 < q < 1, and the jump of height j+1
2n + 1

n

∑n−j
k=1 qk = j+1

2n + 1
n

q
1−q (1− qn−j) at q.
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We also note that

Fj,n(q − |q) =
j − 1
2n

, Fj,n(q|q) =
j

n
+

1
n

n−j∑
k=1

qk =
j

n
+

1
n

q

1− q
(1− qn−j),(2.8)

fj,n(0|q) =
j − 1
jnq

, fj,n(1|q) =
(n− j)(n− j + 1)

2n
,(2.9)

fj,n(q − |q) =
(j − 1)(j + 1)

6nq
, fj,n(q + |q) =

1
n

n−j−1∑
k=0

(k + 1)qk

=
1− (n + 1− j)qn−j + (n− j)qn+1−j

n(1− q)2
.

Before we formulate the main results of this section, we define some auxiliary notions. Put

j∗ = j∗(n) =
2n + 1−

√
8n + 1

2
,(2.10)

Ifj,n(u|q) =
∫ u

0
f2

j,n(v|q)dv

=
1

(jnq)2

∫ u

0

[
j−2∑
k=0

(j − k − 1)(k + 1)
vk

qk

]2

dv

=
1

(jnq)2

2j−4∑
r=0

1
(r + 1)qr

 min{r+1,j−1}∑
k=max{1,r−j+3}

k(j − k)(r − k + 2)(j − r + k − 2)

ur+1(2.11)

for 0 < u ≤ q, and

Jfj,n(u|q) =
∫ 1

u
f2

j,n(v|q)dv

=
1
n2

∫ 1

u

[
n−j−1∑

k=0

(k + 1)uk

]2

dv

=
1
n2

2(n−j−1)∑
r=0

1
(r + 1)

 min{r+1,n−j}∑
k=max{1,r−n+j+2}

k(r − k + 2)

(1− ur+1)(2.12)

for q ≤ u < 1. We first describe the upper bounds for 2 ≤ j ≤ n− 1. The extreme cases j = 1
and j = n are treated separately.

Theorem 2.1. Let X1, ..., Xn be i.i.d. with some distribution and density functions

F and f , mean µ and variance σ2. Fix 2 ≤ j ≤ n− 1, and 0 < q < 1.

(i) If j∗ ≤ j ≤ n− 1 (see (2.10)), and q ≤ j−1
jn , then

(2.13)
1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ 0.

The bound is attained in limit by sequences of continuous distributions tending

to degenerate ones.

(ii) Assume that q > j−1
jn and either of two conditions holds. One is j∗ ≤ j ≤ n− 1,

and the other is 2 ≤ j < j∗ with the assumption that the equation

(2.14) fj,n(1|q)(u− 1) + 1 = Fj,n(u|q)

has a solution in (0, q).
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(a) If moreover j−1
jn < q < (j−1)(j+1)

6n+(j−1)(j−2) then the equation

(2.15) 1− Fj,n(u|q) = (1− u)fj,n(u|q)

has a unique solution 0 < u∗ < q, and then

(2.16)
1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ nAj,n(q),

where

(2.17) A2
j,n(q) = Ifj,n(u∗|q) + f2

j,n(u∗|q)(1− u∗)− 1.

The equality in (2.16) is attained by the parent distribution with the quantile

function

(2.18) F−1(u) = µ +
σ

Aj,n(q)
[fj,n(min{u, u∗}|q)− 1].

(b) However, if q ≥ (j−1)(j+1)
6n+(j−1)(j−2) , then (2.16) holds with

(2.19) A2
j,n(q) = Ifj,n(q|q) +

[1− Fj,n(q − |q)]2

1− q
− 1,

and attainability condition

(2.20) F−1(u) = µ +
σ

Aj,n(q)
×


fj,n(u|q)− 1, u < q,

1− Fj,n(q − |q)
1− q

, u ≥ q.

(iii) Suppose that 2≤ j < j∗, and either of two assumptions holds. The first is q≤ j−1
jn .

The other admits q > j−1
jn , but demands that the equation

(2.21) fj,n(0|q)u = Fj,n(u|q)

has a solution in (q, 1) then. In consequence, the equation

(2.22) Fj,n(u|q) = ufj,n(u|q)

has a unique solution q < u∗∗ < 1, and (2.16) holds with

(2.23) A2
j,n(q) = f2

j,n(u∗∗|q)u∗∗ + Jfj,n(u∗∗|q)− 1.

In this case the bound in (2.16) is attained by the distribution with the quantile

function

(2.24) F−1(u) = µ +
σ

Aj,n(q)
[fj,n(max{u, u∗∗}|q)− 1].
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(iv) Finally, let 2 ≤ j < j∗, and q > j−1
jn , and equations (2.15) and (2.22) do not have

solutions in (0, q) and (q, 1), respectively.

(a) If moreover the equation

(2.25) fj,n(q − |q)(u− q) + Fj,n(q − |q) = Fj,n(u|q)

has a solution in (q, 1), though, then there exist unique 0 < u∗ < q < u∗∗ < 1
satisfying the equations

(2.26) fj,n(u∗|q) = fj,n(u∗∗|q) =
Fj,n(u∗∗|q)− Fj,n(u∗|q)

u∗∗ − u∗
,

and (2.16) holds with

(2.27) A2
j,n(q) = Ifj,n(u∗|q) + f2

j,n(u∗|q)(u∗∗ − u∗) + Jfj,n(u∗∗|q)− 1.

The equality in (2.16) is attained then if

(2.28) F−1(u) = µ +
σ

Aj,n(q)
×

{
fj,n(u∗|q)− 1, u∗ ≤ u ≤ u∗∗,

fj,n(u|q)− 1, otherwise.

(b) If (2.25) does not have a solution in (q, 1), then there exists a unique

q < u∗∗ < 1 such that

(2.29) fj,n(q − |q) <
Fj,n(u∗∗|q)− Fj,n(q − |q)

u∗∗ − q
= fj,n(u∗∗|q),

and (2.16) holds with

(2.30) A2
j,n(q) = Ifj,n(q|q) +

[Fj,n(u∗∗|q)−Fj,n(q−|q)]2

u∗∗ − q
+ Jfj,n(u∗∗|q)−1,

and the equality in (2.10) holds for

(2.31)

F−1(u) = µ +
σ

Aj,n(q)
×


Fj,n(u∗∗|q)− Fj,n(q − |q)

u∗∗ − q
− 1, q ≤ u < u∗∗,

fj,n(u|q)− 1, otherwise.

Proof: By Lemma 2.1,

nE

(
1
n

n∑
k=1

Mk − µ

∣∣∣∣∣Mj = F−1(q)

)
= n

∫
R

(y − µ)Fj,n,F (dy|F−1(q))

= n

∫ 1

0
[F−1(u)− µ]Fj,n(du|q).(2.32)

For using Lemma 1.1, we need to determine the greatest convex minorant of (2.6). This
distribution function is convex on the intervals [0, q) and [q, 1], and has a jump up at q.
We easily notice that the greatest convex minorant may have four possible shapes. It is
certainly linear near q and possibly identical with Fj,n(u|q) at the ends of [0, 1]. However, it
may happen that the linear part reaches either of the end-points of the interval, or even the
line may cover the whole interval.
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(i) Then problem is most simple when fj,n(1|q) ≤ 1 ≤ fj,n(0|q) , i.e. when j ≥ j∗
and q ≤ j−1

jn (cf. (2.9)). Then the straight line `(u) = u, 0 ≤ u ≤ 1, connects the
points (0, Fj,n(0|q)) = (0, 0) and (1, Fj,n(1|q)) = (1, 1), and runs beneath Fj,n(u|q)
in between. It follows that the line is the greatest convex minorant of (2.6), and
its derivative amounts to constant 1. Therefore

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ n

∫ 1

0
[F−1(u)− µ]du = 0.

This proves inequality (2.13). In order to prove its optimality, for simplicity we
consider the family of two-point distributions with the quantile functions

(2.33) F−1
ε (u) = µ + σ ×


−
√

1− ε

ε
, u < ε,√

ε

1− ε
, u ≥ ε,

0 < ε < 1.

Applying the de l’Hospital rule and boundedness of fj,n(u|q) near 0, we obtain

lim
ε→0

∫ 1

0
[F−1

ε (u)− µ]Fj,n(du|q)

= σ lim
ε→0

[
−
√

ε(1− ε)
Fj,n(ε|q)

ε
+
√

ε

1− ε
[1− Fj,n(ε|q)]

]
= 0.

This argument shows that the zero bound is optimal if the greatest convex mi-
norant is linear. We shall not repeat it in the future proofs. Note that here the
same conclusion could be derived if we locate the vanishing atom on the right.

Now we observe that each of equations (2.14) and (2.21) has at most two solutions in
(0, q) and (q, 1), respectively, because their left-hand sides are linear, and the right-hand sides
are strictly convex. We also note that existence of solutions to (2.14) excludes that for (2.21)
and vice-versa. Assume for instance that u0 is the solution (the single one or the smaller of
two) to (2.14). It follows that

(2.34) Fj,n(u|q) > fj,n(1|q)(u− 1) + 1, q < u < 1.

The straight line fj,n(0|q)u runs below the point (u0, Fj,n(u0|q)), and line fj,n(1|q)(u− 1) + 1
right to u0. By (2.34), it cannot meet Fj,n(u|q) in (q, 1). When (2.21) has a solution, we
argue in a similar way to exclude that of (2.14).

(ii) Let fj,n(0|q) < 1, i.e., q > j−1
jn . Assume moreover that either fj,n(1|q) ≤ 1 (j ≥ j∗)

or fj,n(1|q) > 1 (j < j∗) holds together with existence of solution to (2.14). It
follows that then the greatest convex minorant of Fj,n(u|q) coincides first with
the function itself, and then with the straight line fj,n(1|q)(u− 1) + 1 (at least on
[q, 1)). The change point u∗ amounts to q if

(2.35) fj,n(q − |q) ≤ 1− Fj,n(q − |q)
1− q

.

(a) If j−1
2n < q < (j−1)(j+1)

6n+(j−1)(j−2) , we have the reversed inequality in (2.35).
Function

(2.36) F j,n(u|q) =


Fj,n(u|q), u ≤ q,

1− Fj,n(q − |q)
1− q

(u− 1) + 1, u ≥ q,
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is not convex then. However, there exist u∗ < q such that the line 1−Fj,n(u∗|q)
1−u∗

× (u− 1) + 1 connecting the points of the graph of Fj,n(u|q) at u∗ and 1 runs
below the graph, and is tangent to it at u∗. This provides the change point of
the minorant, and is certainly determined by (2.15). When j−1

jn < q ≤ j−1
2n ,

we have Fj,n(q − |q) ≥ q which again implies that the change point is u∗ de-
fined in (2.15). It follows that for j−1

jn < q < (j−1)(j+1)
6n+(j−1)(j−2) the derivative of the

greatest convex minorant of (2.6) has the form f
j,n

(u|q) = fj,n(min{u, u∗}|q).
Coming back to (2.32) we obtain

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ n

∫ 1

0
[F−1(u)− µ][f

j,n
(u|q)− 1]du

≤ n

(∫ 1

0
[F−1(u)−µ]2du

∫ 1

0
[f

j,n
(u|q)−1]2du

) 1
2

= nσ

(∫ 1

0
f2

j,n
(u|q)du−1

) 1
2

.(2.37)

The last equality follows from the fact that f
j,n

(u|q) integrates to F j,n(1|q) =

1 on the interval [0, 1]. Using (2.11) we easily check that
∫ 1
0 f2

j,n
(u|q)du−1 =

A2
j,n(q) defined in (2.17). The equality in the latter inequality of (2.37) holds

when

(2.38) F−1(u)− µ = α[f2
j,n

(u|q)− 1], 0 < u < 1,

for some α > 0. Note that the right-hand side is right-continuous and in-
tegrates to 0, which allows to preserve the expectation condition for the
left-hand side. The variance assumption implies α = σ

Aj,n(q) . Observe that
condition (2.38) for the equality in the latter Schwarz inequality of (2.37)
preserves constancy intervals of the derivative of the greatest convex mino-
rant which is necessary for satisfying the first equality condition of Lemma
1.1 in the first upper Moriguti inequality of (2.37). The other is satisfied as
well since we defined the right continuous version of the quantile function
in (2.38). It follows that (2.18) actually defines the parent distribution for
which the bound (2.16) with the right-hand side defined in (2.17) is attained.

This approach is used in our further investigations. Determination of the greatest
convex minorant is the crucial step in the evaluation method. The upper bound coincides
with the Hilbert norm of its derivative decreased by one, and a proper linear modification
of this function defines the quantile function of the distribution which satisfies the moment
conditions and attains the bound. For brevity, in our further studies we stop calculations
once we define the greatest convex minorant of a suitable integrand, and tacitly refer to the
procedure described in the previous paragraph.

(b) Using (2.8) and (2.9) we check that (2.35) is satisfied when q ≥ (j−1)(j+1)
6n+(j−1)(j−2) .

Note that (2.35) implies Fj,n(q − |q) < q. Indeed, relation Fj,n(q − |q) ≥ q

forces 1−Fj,n(q−|q)
1−q ≤ 1, and fj,n(q − |q) > 1. The latter is a consequence of

the fact that Fj,n(u|q) crosses then the line `(u) = u from bottom to top
in (0, q). Its derivative is necessarily greater than 1 at the crossing point,
and increases later on. Also, relation q ≥ (j−1)(j+1)

6n+(j−1)(j−2) implies that (2.36)
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is actually a convex function, and it forms the greatest convex minorant of
Fj,n(u|q). Its right-hand side derivative is

f
j,n

(u|q) =


fj,n(u|q), u < q,

1− Fj,n(q − |q)
1− q

=
2n + 1− j

2n(1− q)
, u ≥ q.

Following the arguments presented above we conclude that in this case we
obtain the bound in (2.16) defined by (2.19) and its attainability condition
are described in (2.20).

(iii) Under the assumptions of this point, Fj,n(u|q) runs below the line `(u) = u in
some left neighborhood of 1. If q ≤ j−1

jn , the function is located above the line for
all 0 < u < q. Therefore the greatest convex minorant has to be first linear, and
then identical with Fj,n(u|q). When q > j−1

jn and fj,n(0|q) < 1 in consequence,
but (2.21) holds for some q < u < 1, then Fj,n(u|q), 0 < u < q, lies above the line
fj,n(0|q)u, but this is not true for some u ∈ (q, 1). Again we deduce that the
minorant is first linear and eventually strictly convex. The change point belongs
to (q, 1), and q is impossible. This point is determined by (2.22) which means
that the linear part of the greatest convex minorant is tangent to Fj,n(u|q) at
the change point u∗∗. The derivative of the convex minorant is then f

j,n
(u|q) =

fj,n(max{u, u∗∗}|q). Proceeding as in the previous part on the proof we determine
the mean-variance bound for the conditional expectation and the condition of its
attainability.

(iv) The assumptions mean that Fj,n(u|q) goes below `(u) = u in some neighborhoods
of 0 and 1. Moreover, the lines tangent to Fj,n(u|q) at 0 and 1 run below the
graph of the function. This implies that the greatest convex minorant of Fj,n(u|q)
cannot be linear at vicinities of the end-points. So the linear part may appear
only in the central part, and it contains q.

(a) If (2.25) has a solution then the derivative of the greatest convex minorant
of Fj,n(u|q) can be written as

f
j,n

(u|q) =

{
fj,n(u∗|q), u∗ ≤ u ≤ u∗∗,

fj,n(u|q), elsewhere,

where 0 < u∗ < q < u∗∗ < 1 are determined from the tangency conditions
(2.26). In the standard way we establish the bound in (2.16) with the right-
hand side described in (2.27), and the attainability condition (2.28).

(b) The lack of solution to (2.25) implies that all the lines u 7→ fj,n(v|q)(u− v) +
Fj,n(v|q), tangent to Fj,n(u|q) at v < q run below Fj,n(u|q) for u < v. The
only candidate for the change point of the minorant from Fj,n(u|q) into a line
is q. Consider the functions `α(u) = α(u− q) + Fj,n(q− |q), and increase the
slopes α starting from fj,n(q−|q) until we touch any point of Fj,n(u|q) for u≥q.
Obviously q cannot be the first meeting point, because the line connecting
Fj,n(q−|q) and Fj,n(q|q) is vertical. It cannot be 1, either, because then α =
1−Fj,n(q−|q)

1−q ≥ fj,n(1|q) which contradicts the assumption that (2.14) does not
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have a solution in (0, q). Consequently, our assumptions imply

f
j,n

(u|q) =


Fj,n(u∗∗|q)− Fj,n(q − |q)

u∗∗ − q
, q ≤ u ≤ u∗∗,

fj,n(u|q), elsewhere,

where u∗∗ is determined by solving (2.29). This allows us to conclude (2.16)
with (2.30) and (2.31) assuring the equality in (2.16).

We separately consider the extreme cases j = 1 and j = n, for which the distribution
function (2.6) does not have any mass on the left and right, respectively, of q. This allows us
to simplify the arguments of the above proof in order to get desired conclusions. The details
of the reasoning are left to the reader.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold.

(i) Let M1 = F−1(q) for some 0 < q < 1.

(a) If q < n−3
n−1 , then there exists q < u∗∗ < 1 solving the equation

u

1− u
(1− un−1) = nF1,n(u|q) = n(u− q)f1,n(u|q)

=
u− q

(1− u)2
[1− nun−1 + (n− 1)un],

and then we have (2.16) with j = 1 and

A2
1,n(q) = f2

1,n(u∗∗|q)(u∗∗ − q) + Jf1,n(u∗∗|q)− 1

(see (2.12)). The equality is attained if

F−1(u) = µ +
σ

A1,n(q)
×


−1, u < q,

f1,n(u∗∗|q)− 1, q ≤ u ≤ u∗∗,

f1,n(u|q)− 1, u ≥ u∗∗.

(b) If q ≥ n−3
n−1 , then A1,n(q) =

√
q

1−q , and the bound is attained by the two-

point parent distribution on µ− σ
√

1−q
q and µ + σ

√
q

1−q with respective

probabilities q and 1− q.

(ii) Under the condition Mn = F−1(q), there are three possible cases.

(a) When q ≤ n−1
n2 (cf. Theorem 2.1(i)), the optimal upper bound on the stan-

dardized expectation of the first n maxima is equal to 0.

(b) If n−1
n2 < q < n−1

n+2 then the statements of Theorem 2.1(iia) hold with j

replaced by n.

(c) If q ≥ n−1
n+2 then the statements of Theorem 2.1(iib) hold with j replaced

by n.

In the following theorem we describe the lower bounds on the conditional expectations
of sample maxima for all 1 ≤ j ≤ n.
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Theorem 2.3. Assume the conditions of Theorem 2.1.

(i) Let 0 < q∗ ≤ 1 be the unique solution to

(2.39) j +
q

1− q
(1− qn−j) = nq.

If either j∗ ≤ j ≤ n (comp. (2.10)) or 1 ≤ j < j∗ and q < q∗ defined above, then

(2.40)
1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≥ −

j + q
1−q (1− qn−j)− nq√

q(1− q)
.

The lower bound in (2.40) is attained by the two-point distribution supported on

µ− σ
√

1−q
q and µ + σ

√
q

1−q with respective probabilities q and 1− q.

(ii) If 1 ≤ j < j∗ and q ≥ q∗ then the optimal bound is

1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≥ 0.

Note that q∗ = 1 for j = n, and so (2.40) holds for all 0 < q < 1 with the right hand-side

simplified to −n
√

1−q
q .

Proof: We rewrite representation (2.32), and apply the lower estimate of Lemma 1.1.
In consequence of the shape of the distribution function (2.6), the only possible shapes of its
smallest concave majorant is the linear function `(u) = u when Fj,n(q|q) ≤ q or a broken line
with the break point q otherwise. Inequality Fj,n(q|q) ≤ q is equivalent to

(2.41) j +
n−j∑
k=1

qk − nq ≤ 0.

The left-hand side function is strictly convex, positive at 0, and vanishing at 1. Its derivative
at 1 amounts to (n−j)(n−j+1)

2 −n = 1
2 [j2− (2n+1)j +n(n−1)] which is non-positive for j ≥ j∗

(see (2.10)), and positive otherwise. Accordingly, inequality (2.41) is false for all 0 < q < 1
when j ≥ j∗. If j < j∗, (2.41) holds only for sufficiently large q. Precisely, this is true for
q ≥ q∗ defined in (2.39).

(i) Assume so that either j∗ ≤ j ≤ n or 1 ≤ j < j∗ and q < q∗. Then the smallest
concave majorant has the form

F j,n(u|q) =


Fj,n(q|q)

q
u =

j +
∑n−j

k=1 qk

nq
u, u ≤ q,

1− Fj,n(q|q)
1− q

(u− 1) + 1 =
n− j −

∑n−j
k=1 qk

n(1− q)
(u− 1) + 1, u ≥ q.

We use

(2.42) f j,n(u|q)− 1 =


j +

∑n−j
k=2 qk − (n− 1)q

nq
, u ≤ q,

(n− 1)q − j −
∑n−j

k=2 qk

n(1− q)
u > q,
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for establishing the following lower mean-variance bound

nE

(
1
n

n∑
k=1

Mk

∣∣∣∣∣Mj = F−1(q)

)
≥ n

∫ 1

0
[F−1(u)− µ][f j,n(u|q)− 1]du

≥ −n

[∫ 1

0
[F−1(u)− µ]2du

]1/2[∫ 1

0
[f j,n(u|q)− 1]2du

]1/2

= −nσaj,n(q),(2.43)

where

a2
j,n(q) =

∫ 1

0
[f j,n(u|q)− 1]2du =

1
n2q(1− q)

(
j +

n−j∑
k=1

qk − nq

)2

.

Note that under the assumption the expression in the parentheses is positive.
Now set

(2.44) F−1(u−)− µ = − σ

aj,n(q)
[f j,n(u|q)− 1]

which asserts the equalities in both the inequalities of (2.43). Note that the right-
hand side of (2.44) is non-decreasing and left-continuous. Moreover, its integral
over [0, 1] is equal to 0, and the integral of its square amounts to 1. This implies
that the left-hand side determines the standardized lower quantile function of a
distribution with mean µ and variance σ2. Plugging (2.42) into (2.44) we obtain

F−1(u−) = µ + σ ×


−
√

1− q

q
, u ≤ q,√

q

1− q
, u > q,

which describes the two-point distribution defined in the first part of Theorem
2.3.

(ii) Otherwise, if 1 ≤ j < j∗ and q ≥ q∗, the derivative of the smallest concave majorant
F j,n(u|q) = u, 0 ≤ u ≤ 1, of Fj,n(u|q) is equal to 1. Consequently,

nE

(
1
n

n∑
k=1

Mk

∣∣∣∣∣Mj = F−1(q)

)
≥ n

∫ 1

0
[F−1(u)− µ]du = 0.

Seemingly, the conditions for attaining the upper bounds in Theorem 2.2(ib) and Theo-
rem 2.3(i) pretend to be identical. There are subtle differences between them, though. In the
first case, the strictly increasing quantile functions F−1

n (u) should tend to the right-continuous
version of the two-valued extreme quantile function. In the other one, they should tend to
the left-continuous lower quantile function. We omit presenting elementary constructions of
such sequences.
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3. SUMS OF UPPER RECORDS

Lemma 3.1. Let X1, ..., Xn, ... be i.i.d. with an absolutely continuous distribution

function F and density f , and let R1, ..., Rn denote the values of the first upper records in the

sequence. Then E
(

1
n

∑n
k=1 Rk

∣∣Rj = x
)

for some 1 ≤ j ≤ n is identical with the expectation

of the distribution function

(3.1) Gj,n,F (y|x) =


j − 1

n

− ln[1− F (y)]
− ln[1− F (x)]

, y < x,

1− 1
n

1− F (y)
1− F (x)

n−j−1∑
k=0

n− j − k

k!

[
− ln

1− F (y)
1− F (x)

]k

, y ≥ x.

Proof: The density function of the single record value Rj , and the joint density of a
pair (Rj , Rk), j < k, have the forms

fRj (x) =
{− ln[1− F (x)]}j−1

(j − 1)!
f(x),(3.2)

fRj ,Rk
(x, y) =

{− ln[1− F (x)]}j−1

(j − 1)!

[
− ln 1−F (y)

1−F (x)

]k−j−1

(k − j − 1)!
f(x)f(y)
1− F (x)

, x < y,(3.3)

respectively (see, e.g., Arnold et al. [3], p. 11). It follows that for j < k

fRk|Rj
(y|x) =

[
− ln 1−F (y)

1−F (x)

]k−j−1

(k − j − 1)!
f(y)

1− F (x)
, y > x,

is the conditional density function of Rk under the condition that Rj = x. We see that the
conditional distribution is identical with the unconditional distribution of the (k−j)-th record
value from a sequence with the left-truncated parent distribution function 1−F (y)

1−F (x) , y > x. The
respective distribution function is

FRk|Rj
(y|x) = 1− 1− F (y)

1− F (x)

k−j−1∑
i=0

[− ln[ 1−F (y)
1−F (x) ]

i

i!
, x < y.

We also note that

(3.4)
n∑

k=j+1

FRk|Rj
(y|x) = n− j − 1− F (y)

1− F (x)

n−j−1∑
k=0

n− j − k

k!

[
− ln

1− F (y)
1− F (x)

]k

, x < y.

Referring again to (3.2) and (3.3), we obtain

fRk|Rj
(y|x) =

(j−1)!
(k−1)!(j−k−1)

[
− ln[1− F (y)]
− ln[1− F (x)]

]k−1

×
[
1−− ln[1− F (y)]

− ln[1− F (x)]

]j−k−1 −f(y)
[1−F (y)] ln[1−F (x)]

for y < x and k < j. This coincides with the density function of the k-th order statistic from
an i.i.d. sample of size j− 1 from the right-truncated distribution function − ln[1−F (y)]

− ln[1−F (x)] , y < x.
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Obviously, the sum of ordered variables is identical with that of the original unordered ones.
Therefore

(3.5) E

(
j−1∑
k=1

Rk

∣∣∣∣∣Rj = x

)
= (j − 1)

∫ x

−∞
y
− ln[1− F (dy)]
− ln[1− F (x)]

Combining (3.4), (3.5) with the trivial fact E(Rj |Rj = x) = x =
∫

R y1[x,+∞)(dy), we conclude

E

(
1
n

n∑
k=1

Rk

∣∣∣∣∣Rj = x

)

=
j − 1

n

∫ x

−∞
y
− ln[1− F (dy)]
− ln[1− F (x)]

+
1
n

∫
R

y1[x,+∞)(dy) +
1
n

∫ +∞

x
y

n∑
k=j+1

FRk|Rj
(dy|x)

=
∫

R
yFj,n,F (dy|x),

which proves our statement.

In the standard uniform case (3.1) takes on the form

(3.6) Gj,n(u|q) =


j − 1

n

− ln(1− u)
− ln(1− q)

, 0 < u < q < 1,

1− 1
n

1− u

1− q

n−j−1∑
k=0

n− j − k

k!

(
− ln

1− u

1− q

)k

, 0 < q ≤ u < 1.

It has the density function

gj,n(u|q) =


j − 1

n

1
− ln(1− q)

1
1− u

, 0 < u < q < 1,

1
n(1− q)

n−j−1∑
k=0

1
k!

(
− ln

1− u

1− q

)k

, 0 < q ≤ u < 1,

and an atom with the weight 1
n at q. In particular we have

Gj,n(q − |q) =
j − 1

n
, Gj,n(q|q) =

j

n
,

gj,n(0|q) =
j − 1

−n ln(1− q)
, gj,n(1− |q) =


+∞, j < n− 1,

1
n(1− q)

, j = n− 1,

0, j = n,

(3.7)

gj,n(q − |q) =
j − 1

−n(1− q) ln(1− q)
, gj,n(q + |q) =

1
n(1− q)

.

We also define

(3.8) Igj,n(u|q) =
∫ u

0
g2
j,n(v|q)dv =

[
j − 1

−n ln(1− q)

]2 ∫ u

0

1
(1− v)2

dv =
[

j − 1
−n ln(1− q)

]2 u

1− u
,
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for 0 < u ≤ q, and

Jgj,n(u|q) =
∫ 1

u
g2
j,n(v|q)dv =

1
n2(1− q)2

∫ 1

u

[
n−j−1∑

k=0

1
k!

(
− ln

1− v

1− q

)k
]2

dv

=
1

n2(1− q)2

2(n−j−1)∑
r=0

 min{r,n−j−1}∑
k=max{0,r−n+j+1}

(
r

k

) 1
r!

∫ 1

u

(
− ln

1− u

1− q

)r

dv

=
1− u

n2(1− q)3

2(n−j−1)∑
r=0

 min{r,n−j−1}∑
k=max{0,r−n+j+1}

(
r

k

)[ r∑
k=0

1
k!

(
− ln

1− u

1− q

)k
]

(3.9)

for q ≤ u < 1. Note that for r = 0, ..., n− j − 1, the sum of binomial coefficients in the first
square brackets of (3.9) amounts to 2r.

Theorem 3.1. Let X1, ..., Xn, ... be i.i.d. with some distribution and density functions

F and f , mean µ and variance σ2. Fix 2 ≤ j ≤ n− 2, and 0 < q < 1.

(i) Suppose that either of two assumptions holds. One is q ≤ 1− exp(− j−1
n ). The

other is q > 1− exp(− j−1
n ) and the equation

(3.10) gj,n(0|q)u = Gj,n(u|q)

has a solution in (q, 1). Then the equation

Gj,n(u|q) = ugj,n(u|q)

has a unique solution q < u∗∗ < 1, and we have

(3.11)
1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
≤ nBj,n(q)

with

(3.12) B2
j,n(q) = g2

j,n(u∗∗|q)u∗∗ + Jgj,n(u∗∗|q)− 1.

In this case the bound in (3.11) is attained by the distribution with the quantile

function

(3.13) F−1(u) = µ +
σ

Bj,n(q)
[gj,n(max{u, u∗∗}|q)− 1].

(ii) Assume that q > 1− exp(− j−1
n ) and the equation (3.10) does not have a solution

in (q, 1).

(a) If moreover there exists in (q, 1) a solution to the equation

(3.14) gj,n(q − |q)(u− q) + Gj,n(q − |q) = Gj,n(u|q)

then there is a unique pair 0 < u∗ < q < u∗∗ < 1 satisfying the equations

(3.15) gj,n(u∗|q) = gj,n(u∗∗|q) =
Gj,n(u∗∗|q)−Gj,n(u∗|q)

u∗∗ − u∗
,
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and (3.11) holds with

B2
j,n(q) = Igj,n(u∗|q) + g2

j,n(u∗|q)(u∗∗ − u∗) + Jgj,n(u∗∗|q)− 1.

The equality in (3.11) is attained then if

F−1(u) = µ +
σ

Bj,n(q)
×

{
gj,n(u∗|q)− 1, u∗ ≤ u ≤ u∗∗,

gj,n(u|q)− 1, otherwise.

(b) If (3.14) does not have a solution in (q, 1), then there is a unique q < u∗∗ < 1
such that

(3.16) gj,n(q − |q) <
Gj,n(u∗∗|q)−Gj,n(q − |q)

u∗∗ − q
= gj,n(u∗∗|q),

and (3.11) holds with

(3.17)

B2
j,n(q) = Igj,n(q|q) +

[Gj,n(u∗∗|q)−Gj,n(q − |q)]2

u∗∗ − q
+ Jgj,n(u∗∗|q)− 1,

whereas the equality in (3.11) is attained for

(3.18)

F−1(u) = µ +
σ

Bj,n(q)
×


Gj,n(u∗∗|q)−Gj,n(q − |q)

u∗∗ − q
− 1, q ≤ u < u∗∗,

gj,n(u|q)− 1, otherwise.

The idea of proof of Theorem 3.1 as well as the following results is similar to that of
Theorem 2.1. Therefore we sketch only the main points focusing merely on the differences.

Proof: Since gj,n(1− |q) = +∞ for j ≤ n− 2, we can exclude the possibilities that the
greatest convex minorant of (3.6) is linear at the neighborhood of 1.

(i) Suppose that either gj,n(0|q) ≥ 1 (i.e., q ≤ 1 − exp
(
− j−1

n

)
, comp. (3.7)) or

gj,n(0|q) < 1 but the line tangent to Gj,n(u|q) at 0 meets Gj,n(u|q) somewhere
in (q, 1). This implies that there is a line located below it in the positive half-axis
which runs through (0, 0) and is tangent to Gj,n(u|q) at some u∗∗ in (q, 1). Its
segment joining (0, 0) with (u∗∗, Gj,n(u∗∗|q)) extended by Gj,n(u|q) itself on the
right composes the greatest convex minorant of Gj,n(u|q). This observation allows
us to determine the bound (3.12) in (3.11), and the condition of its attainability
(3.13) (comp. (2.16), (2.23) and (2.24)).

(ii) If q > 1−exp
(
− j−1

n

)
and gj,n(0|q)u runs below Gj,n(u|q) on (q, 1), then the convex

minorant should coincide with the original function on a right neighborhood of 0
as well as that of 1, and be linear in between. There are two possible subcases.

(a) If the line tangent to Gj,n(u|q) at q− runs above Gj,n(u|q) on the whole (q, 1)
(i.e., (3.14) does hold), the point where the minorant transforms into a line
has to be less than q. The linear part should be tangent to the graph of
Gj,n(u|q) at the both its ends. Therefore the end points u∗ < q < u∗∗ are
determined by equations (3.15). Once we fix the convex minorant we are in
a position to calculate the sharp upper bound on the conditional expectation,
and the parent distribution which attains it.
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(b) In the opposite case, the linear part starts at q, and its right end u∗∗ is de-
termined by the tangency condition (3.16). This provides the bound defined
in (3.17) and its attainability condition described in (3.18).

Below we present without a proof the upper bounds for conditional expectations of the
sum of first upper records under condition Rj = F−1(q) for remaining j = 1, n− 1, and n.

Theorem 3.2. Suppose that X1, ..., Xn, ... satisfy the assumptions of Theorem 3.1.

(i) There exists q < u∗∗ < 1 solving the equation

g1,n(u|q)(u− q) = G1,n(u|q)

such that

(3.19)
1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣R1 = F−1(q)

)
≤ nB1,n(q)

where

B2
1,n(q) = g2

1,n(u∗∗|q)(u∗∗ − q) + Jg1,n(u∗∗|q)− 1.

The equality in (3.19) holds for the distribution function F satisfying

F−1(u) = µ +
σ

B1,n(q)
×


−1, u < q,

g1,n(u∗∗|q)− 1, q ≤ u < u∗∗,

gj,n(u|q)− 1, u ≥ u∗∗.

(ii) For j = n− 1 and j = n we have the following.

(a) If q ≤ 1− exp
(
− j−1

n

)
, then the optimal bound is

1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
≤ 0.

(b) If 1− exp
(
− j−1

n

)
< q < 1− exp

(
− j−1

n+1−j

)
, then (3.11) holds with

B2
j,n(q) = Igj,n(u∗|q) + g2

j,n(u∗|q)(1− u∗)− 1

for 0 < u∗ < q satisfying the equation

gj,n(u|q)(1− u) = 1−Gj,n(u|q).

The condition for getting the equality in (3.11) is

F−1(u)− µ +
σ

Bj,n(q)
[gj,n(min{u, u∗}|q)].

(c) Finally, if q ≥ 1− exp
(
− j−1

n+1−j

)
, then (3.11) holds with

B2
j,n(q) = Igj,n(q|q) +

[1−Gj,n(q − |q)]2

1− q
− 1.

The equality in (3.11) holds then if

F−1(u) = µ +
σ

Bj,n(q)
×


gj,n(u|q)− 1, u < q,

1−Gj,n(q − |q)
1− q

− 1, u ≥ q.
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The lower bounds on the conditional expectations of the sums of consecutive record
values are presented below. The proof mimics the proof of Theorem 2.3, and it is omitted.

Theorem 3.3. Assume the conditions of Theorem 3.1. For any 1 ≤ j ≤ n, we have

two cases.

(i) If q < j
n , then

(3.20)
1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
≥ − j − nq√

q(1− q)
.

The equality in (3.20) is attained by the two-point distribution supported on the

points µ− σ
√

1−q
q and µ + σ

√
q

1−q with probabilities q and 1− q, respectively.

(ii) If q ≥ j
n then

1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
≥ 0.

is optimal.

A more precise description of the attainability conditions in case (i) is presented in the
comment below Theorem 2.3. Note that for j = n only this case occurs.

4. SUMS OF RECORDS IN FINITE SEQUENCES

The problem of maximizing the conditional expectation of
∑n

k=1 Xkηk makes sense if
Xk are positive.

Lemma 4.1. Let X1, ..., Xn be positive i.i.d. with an absolutely continuous distribu-

tion function F , and finite expectation. Then E
(

1
n

∑n
k=1 Xkηk

∣∣Mj = x
)

for some 1 ≤ j ≤ n

is identical with the expectation of the distribution function

(4.1) Hj,n,F (y|x)=



0, y < 0,

n−1
n

−
n−j∑
k=1

1−F k(x)
nk

−

(
j∑

k=2

1
nk

)[
1− − ln[1−F (y)]

− ln[1−F (x)]

]
, 0 ≤ y < x,

1−
n−j∑
k=1

1− F k(y)
nk

, y ≥ x.

Proof: Since we may observe at most j records among X1, ..., Xj , we have

E

(
j∑

k=1

Xkηk

∣∣∣∣∣Mj = x

)
=

j∑
k=1

E

(
k∑

i=1

Ri

∣∣∣∣∣Mj =Rk =x,

j∑
i=1

ηi = k

)
P

(
j∑

i=1

ηi = k

)

=
j∑

k=1

E

(
k−1∑
i=1

Ri + x

∣∣∣∣∣Rk = x,

j∑
i=1

ηi = k

)
P

(
j∑

i=1

ηi = k

)

= x +
j∑

k=2

E

(
k−1∑
i=1

Ri

∣∣∣∣∣Rk = x,

j∑
i=1

ηi = k

)
P

(
j∑

i=1

ηi = k

)
.
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Let Y1(x), ..., Yj−1(x) denote i.i.d. random variables with a common distribution function
Fx(y) = − ln[1−F (y)]

− ln[1−F (x)] , y < x. By arguments of the proof of Lemma 3.1 we notice that

E

(
j∑

k=1

Xkηk

∣∣∣∣∣Mj = x

)
= x +

j∑
k=2

E

(
k−1∑
i=1

Yi(x)

)
P

(
j∑

i=1

ηi = k

)

= x + EY1(x)
j∑

k=2

(k − 1) P

(
j∑

i=2

ηi = k − 1

)

= x + EY1(x) E

(
j∑

i=2

ηi

)

= x + EY1(x)
j∑

k=2

1
k
,

because P(ηk = 1) = 1
k = 1− P (ηk = 0). Note that under the condition Mj = x, just one

among Xkηk, k = 1, ..., j, has value x for sure. The other ones take on either some values
in (0, x) as the order statistics from the sample with the distribution function Fx, or they
amount to 0. The first ones appear with probabilities 1

k , and the others with probabilities
1− 1

k , k = 2, ..., j. Therefore we can write

E

(
j∑

k=1

Xkηk

∣∣∣∣∣Mj =x

)
=
∫

R
y 1[x,∞)(dy) +

j∑
k=2

1
k

∫ x

0
y
− ln[1− F (dy)]
− ln[1− F (x)]

+

(
j−

j∑
k=1

1
k

)∫
R

y 1[0,∞)(dy).(4.2)

For k > j, the conditional distribution of Xkηk has an atom at 0 with probability

P(Xkηk = 0|Mj = x) = P(Xk ≤ x) + P(x < Xk ≤ max{Xj+1, ..., Xk−1})

= F (x) +
∫ ∞

x
P(max{Xj+1, ..., Xk−1} ≥ y)f(y)dy

= F (x) +
∫ ∞

x
[1− F k−j−1(y)]f(y)dy = 1− 1− F k−j(x)

k − j
.

Moreover, for y > x we have

P(Xkηk > y|Mj = x) = P(Xk > max{y, Xj+1, ..., Xk−1})

=
∫ ∞

y
P(max{Xj+1, ..., Xk−1} < t)f(t)dt

=
∫ ∞

y
F k−j−1(t)f(t)dt =

1− F k−j(y)
k − j

.

Summing up, we obtain

(4.3) P(Xkηk ≤ y|Mj = x) =



0, y < 0,

1− 1− F k−j(x)
k − j

, 0 ≤ y ≤ x,

1− 1− F k−j(y)
k − j

, y ≥ x.
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Combining (4.2) and (4.3) yields

E

(
1
n

n∑
k=1

Xkηk

∣∣∣∣∣Mj = x

)
=

1
n

j −
j∑

k=1

1
k

+ n− j −
n∑

k=j+1

1− F k−j(x)
k − j

∫
R

y 1[0,∞)(dy)

+
j∑

k=2

1
nk

∫ x

0
y
− ln[1− F (dy)]
− ln[1− F (x)]

+
1
n

∫
R

y 1[x,∞)(dy)

+
1
n

∫ ∞

x
y

n−j+
n∑

k=j+1

1−F k−j(dy)
k − j

 =
∫

R
yHj,n,F (dy|x).(4.4)

This completes the proof.

If X1, ..., Xn are standard uniform, (4.1) simplifies to

(4.5) Hj,n(u|q) =


n− 1

n
−

n−j∑
k=1

1− qk

nk
−

(
j∑

k=2

1
nk

)[
1− − ln(1− u)

− ln(1− q)

]
, 0 ≤ u < q,

1−
n−j∑
k=1

1− uk

nk
, q ≤ u ≤ 1.

It has two atoms at 0 and q with respective probabilities 1−
∑j

k=1
1

nk −
∑n−j

k=1
1−qk

nk and 1
n ,

and the density function

(4.6) hj,n(u|q) =



(
j∑

k=2

1
nk

)
1

−(1− u) ln(1− q)
, 0 < u < q,

1
n

n−j−1∑
k=0

uk =
1− un−j

n(1− u)
, q < u < 1.

Below we use the following values

(4.7) Hj,n(q − |q) =
n− 1

n
−

n−j∑
k=1

1− qk

nk
, hj,n(q − |q) =

∑j
k=2

1
k

−n ln(1− q)(1− q)
,

and the the following function (comp. (3.8))

(4.8) Ihj,n(u|q) =
∫ u

0
h2

j,n(v|q)dv =

[ ∑j
k=2

1
k

−n ln(1−q)

]2∫ u

0

1
(1−v)2

dv =

[ ∑j
k=2

1
k

−n ln(1−q)

]2
u

1−u
.

Theorem 4.1. Let X1, ..., Xn be positive i.i.d. with an absolutely continuous distri-

bution function F , and finite variance σ2. Let µ stand for the respective expectation.

(i) Let 0 < q∗ < 1 be the unique solution to the equation

(4.9) 1 +
n−1∑
k=1

1− qk

k
− n(1− q) = 0.
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(a) If q ≤ q∗, then the bound

(4.10)
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣M1 = F−1(q)

)
≤ 0

is sharp and attained in limit by the degenerate distribution.

(b) If q > q∗, then

(4.11)
1
σ

E

(
n∑

k=1

Xkηk−nµ

∣∣∣∣∣M1 = F−1(q)

)
≤ nCj,n(q) =

1+
∑n−1

k=1
1−qk

k − n(1−q)√
q(1− q)

,

and the equality is attained by the parent distribution assigning the masses

q and 1− q to the points 0 and σ√
q(1−q)

, respectively.

(ii) Assume 2 ≤ j ≤ n.

(a) If

(4.12) Hj,n(u|q) ≥ u,

(comp. (4.5)) for all 0 < u < q, then the optimal inequality is

1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ 0.

Otherwise we have three possibilities.

(b) If

(4.13) hj,n(q − |q) ≤ Hj,n(q − |q)
q

< 1,

then (4.11) holds with M1 and
∑n−1

k=1
1−qk

k replaced by Mj and
∑n−j

k=1
1−qk

k ,

respectively, and identical conditions of attainability.

(c) If

(4.14) 1 >
Hj,n(q − |q)

q
< hj,n(q − |q) ≤ 1−Hj,n(q − |q)

1− q
,

then there exists a unique 0 < u∗ < q solving the equation

Hj,n(u|q) = uhj,n(u|q)

(see (4.5) and (4.6)), and then

(4.15)
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ nCj,n(q),

where

C2
j,n(q) = h2

j,n(u∗)u∗ + Ihj,n(q|q)− Ihj,n(u∗|q) +
[1−Hj,n(q − |q)]2

1− q
− 1.

(see also (4.8)). The equality in (4.15) holds for F with the quantile function

F−1(u) =
σ

Cj,n(q)
×


0, 0 < u < u∗,

hj,n(u|q)− hj,n(u∗|q), u∗ ≤ u < q,

1−Hj,n(q − |q)
1− q

− hj,n(u∗|q), q ≤ u < 1.
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(d) Finally, if

hj,n(q − |q) > min
{

Hj,n(q − |q)
q

,
1−Hj,n(q − |q)

1− q

}
then there also exists u∗ < u∗∗ < q satisfying the equation

(1− q)hj,n(u|q) = 1−Hj,n(u|q),

and then (4.15) holds with

C2
j,n(q) = h2

j,n(u∗)u∗ + Ihj,n(u∗∗|q)− Ihj,n(u∗|q) + h2
j,n(u∗∗)(1− u∗∗)− 1,

and the equality condition

F−1(u) =
σ

Cj,n(q)
×


0, 0 < u < u∗,

hj,n(u|q)− hj,n(u∗|q), u∗ ≤ u < u∗∗,

hj,n(u∗∗|q)− hj,n(u∗|q), u∗∗ ≤ u < 1.

Proof: We first notice that in contrast to the maximization problems studied in
Sections 2 and 3, one treated here is not location-scale invariant. Indeed, if we translate
the parent distribution by c > 0 to the right, we obtain

1
σ

E

(
n∑

k=1

(Xk + c)ηk − n(µ + c)

∣∣∣∣∣Mj = x + c

)

=
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = x

)
− c

(
n−

j∑
k=1

1
k
−

n−j∑
k=1

1− F k(x)
k

)

<
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = x

)

(see (4.1)). Accordingly, it suffices to restrict our investigations to the distributions whose
supports start from 0. Alternatively, we can consider the problem modification where the
lack of record gives the gain equal to the minimal value of the distribution support, and then
remove the solutions for which F−1(0) 6= 0.

Distribution functions (4.5) contain atoms at their left-end points of the supports, and
hence they do not satisfy the assumptions of Lemma 1.1. We show that we get the sharp right-
hand inequality in (1.4) if we replace the greatest convex minorant of Hj,n(u|q) by the greatest
convex minorant Hj,n,0(u|q) of Hj,n(u|q) and the point (0, 0). Take ε > 0 sufficiently small
so that Hj,n,0(u|q) is also the greatest convex minorant of Hj,n,ε(u|q) = min{Hj,n(u|q), u

ε } ≤
Hj,n(u|q). For every non-deceasing function f yields∫ 1

0
f(u)Hj,n(du|q) ≤

∫ 1

0
f(u)Hj,n,ε(du|q) ≤

∫ 1

0
f(u)hj,n,0(u|q) du,

where hj,n,0(u|q) denotes the right derivative of Hj,n,0(u|q). Let f0 satisfy the equality con-
ditions in the latter inequality: f0 is constant on each interval of {Hj,n,ε(u|q) < Hj,n,0(u|q)}
and right-continuous. In particular, it is constant on {Hj,n,ε(u|q) < Hj,n(u|q)}, and 0 can be
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attached to this interval by right-continuity of f0. For brevity, denote the extended interval
by [0, δ). Therefore∫ δ

0
f0(u)Hj,n(du|q) =

∫ δ

0
f0(u)Hj,n,ε(du|q) = f0(0)Hj,n,ε(δ−) = f0(0)Hj,n(δ−).

The respective integrals over [δ, 1) are identical, because Hj,n(u|q) and Hj,n,ε(u|q) are identical
there. Consequently,∫ 1

0
f0(u)Hj,n(du|q) =

∫ 1

0
f0(u)Hj,n,ε(du|q) =

∫ 1

0
f0(u)hj,n,0(u|q) du,

which proves sharpness of the upper bound.

It follows that for proving our bounds, we need to determine the greatest convex mino-
rants of the functions Hj,n,0(u|q), which amount to 0 at u = 0, and coincide with Hj,n(u|q)
otherwise. Note that each Hj,n(u|q) is convex non-decreasing in (q, 1), and its derivative
satisfies hj,n(1− |q) = 1− j

n < 1. So this part of the function runs above the line `(u) = u,
and does not affects the convex minorant.

(i) Function H1,n(u|q) is constant on the interval (0, q). Therefore the greatest convex
minorant of H1,n,0(u|q) is either the straight line H1,n,0(u|q) = u, 0 < u < 1, when
H1,n(q − |q) ≥ q, or the broken line

(4.16) H1,n,0(u|q) =


H1,n(q − |q)

q
u, u < q,

1−H1,n(q − |q)
1− q

(u− 1) + 1, u ≥ q,

otherwise. Function

H1,n(q − |q)− q =
n− 1

n
−

n−1∑
k=1

1− qk

nk
− q, 0 < q < 1,

amounts to n−1
n −

∑n−1
k=1

1
nk > 0 at 0, and to − 1

n < 0 at 1. Moreover, its derivative
1
n

∑n−2
k=0 qk − 1 is negative for all 0 < q < 1. Therefore H1,n.0(u|q) = u for q ≤ q∗

defined in (4.9), and has the form (4.16) for q > q∗.
Repeating the reasoning of the previous proofs we determine the sharp bounds
(4.10) and (4.11). In the modified location-scale invariant problem, the former
is attained by (2.33) with ε → 0. In order to obey the restriction F−1

ε (0) = 0 we

put µ = σ
√

1−ε
ε . In the latter, the modified problem has solution (2.33) with ε

replaced by q. Again, the support requirement narrows the attainability condition
to the last statement of Theorem 4.1(i).

(ii) Relation (4.12) implies that Hj,n,0(u|q) ≥ u = Hj,n,0(u|q), 0 < u < 1. It follows
that zero provides the optimal bound for (1.3). Otherwise we obtain non-trivial
evaluations. Under condition (4.13) the line Hj,n(q−|q)

q u runs beneath function
Hj,n,0(u|q) on (0, q), and connects its end-points. Another linear function
1−Hj,n(q−|q)

1−q (u− 1) + 1 minorizes Hj,n,0(u|q) in [q, 1]. Gluing together the lines
we obtain the greatest convex minorant of Hj,n,0(u|q) (note that the inequali-
ties Hj,n(q−|q)

q < 1 <
1−Hj,n(q−|q)

1−q guarantee convexity and compare with (4.16)).
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Mimicking the arguments of the previous proofs we calculate the upper bounds and
determine the location-scale family of two-point distributions attaining the bounds
in the location-scale invariant problem. Under the support restriction, we distin-
guish the scale family of distributions with the left support end-point equal to 0.
If Hj,n(q−|q)

q < hj,n(q − |q) (see (4.7) and (4.14)), then the right part of the line
Hj,n(q−|q)

q u, 0 < u < q, lies above Hj,n(u|q), and cannot constitute a part of the
minorant. It should be replaced by a line with a smaller slope hj,n(u∗|q) =
Hj,n(u∗|q)

u∗
, tangent to Hj,n(u|q) at some 0 < u∗ < q, and Hj,n(u|q) on the right

which ultimately transforms into a line. If moreover hj,n(q − |q) ≤ 1−Hj,n(q−|q)
1−q ,

then Hj,n,0(u|q) = Hj,n(u|q) for all u∗ ≤ u < q. The last part of the minorant
is the line connecting (q, Hj,n(q − |q)) with (1, 1). Otherwise Hj,n,0(u|q) should
transform into a line at some u∗ < u∗∗ < q determined by the tangency condition
hj,n(u∗∗|q)(1− uu∗∗) = 1−Hj,n(u∗∗|q). Note that in the last case it is admitted
that Hj,n(q − |q) ≥ q but necessarily Hj,n(u∗∗|q) < u∗∗.

Once we determine the greatest convex minorants, we further proceed in a standard
way. The bound amounts to n multiplied by the square root of the integral of the squared
derivative of the minorant decreased by 1. The standardized quantile function of the distribu-
tion attaining the bound is proportional to the greatest convex minorant derivative decreased
by 1. The last step of the proof consists in removing the distributions whose left-end support
points differ from 0. Detailed calculations are left to the reader.

Establishing lower bounds for (1.3) does not make sense, because when we consider
random variables X1, ..., Xn taking on very large values, and we may get Xkηk = 0 as the
results of not reaching records in some trials, would make (1.3) negative and arbitrarily small.
We illustrate the phenomenon in the following example.

Example. Suppose that Xk, k = 1, ..., n, are uniformly distributed on the interval
[m,m + 1]. They have the distribution function F (x) = x−m, m < x < m + 1, and quantile
function F−1(q) = m + q, 0 < q < 1. Applying (4.4) we calculate

E

(
n∑

k=1

Xkηk

∣∣∣∣∣Mj = m+q

)
=

∑j
k=2

1
k

− ln(1−q)

∫ m+q

m

y dy

1−y+m
+q+m+

∫ m+1

m+q
y

n−j−1∑
k=0

(y−m)k dy

=
∑j

k=2
1
k

− ln(1− q)
[−(m + 1) ln(1− q)− q] + q + m +

n−j+1∑
k=2

1− qk

k
+ m

n−j∑
k=1

1− qk

k

= m

[
1 +

j∑
k=2

1
k

+
n−j∑
k=1

1− qk

k

]
+ q +

j∑
k=2

[
1− q

− ln(1− q)

]
+

n−j+1∑
k=2

1− qk

k
.

Since EX1 = m + 1
2 and Var X1 = 1

12 , we have

1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = m + q

)
= 12m

[
1 +

j∑
k=2

1
k

+
n−j∑
k=1

1− qk

k
− n

]

+ 12

[
q +

j∑
k=2

[
1− q

− ln(1− q)

]
+

n−j+1∑
k=2

1− qk

k
− n

2

]
.(4.17)
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Putting m = 0, we obtain the standardized conditional expectation for the standard uniform
variables. However, when m increases to +∞, then (4.17) tends to −∞, because the factor
at m is strictly negative.

We would avoid obtaining trivial lower bounds in (1.3) if we replaced Xkηk = 0 by a
quantity connected with the distribution of random variables, e.g. by the mean or a quantile
of F of a positive order.

5. NUMERICAL EVALUATIONS

Here we present numerical upper bounds on the conditional expectations of sums of
sample maxima and records described analytically in Sections 2–4 for n = 10, j = 1, 5, 8 and
10, and quantile orders q = 0.1..., (0.1), ..., 0.9. We also include two extreme cases q = 0.05
and 0.99. For comparison, we present numerical results for n = 20 and j = 10 as well. We do
not evaluate numerically respective lower bounds because they have simple analytic forms.

The bounds strongly depend on the number n of summands. Therefore instead of
bounds nAj,n(q), nBj,n(q), and nCj,n(q) on the expectations of the total sums, we present in
Tables 1–5 the average bounds Aj,n(q), Bj,n(q), and Cj,n(q) determined per each particular
summand. Each numerical bound is accompanied by the reference to a particular part of
the theorem which provides the tools for calculating it. This allows the reader to realize the
shape of the parent distribution which attains the corresponding bound. For instance, the
average upper bounds A5,10(q) are determined with use of Theorem 2.1. For q = 0.05 the
quantile function is first a constant (which generates a jump of height u∗∗ > q), and than is a
curve linearly transforming f5,10(u|0.05) (see (2.7)). For q = 0.1, ..., 0.4 the extreme quantile
function is first increasing, then constant, and again increasing. When q = 0.1, 0.2, 0.3 the
transition from the curve to the horizontal line occurs at q (see Theorem 2.1(iva)), but for
q = 0.4 it happens at some u∗ < q (see Theorem 2.1(ivb)). For q ≥ 0.5 the conditions of
Theorem 2.1(iib) hold which implies that the distribution functions attaining the respective
bounds are continuous on some intervals, and have jumps of size 1− q at their right-end
points.

All the average bounds presented in Tables 1–5 are increasing with respect to q. This is
easily justifiable: the greater is the extreme j-th variable, the greater is the expectation of the
sum of n analogous observations. When we fix n and q, we observe that the bounds decrease
when j increases. It has a clear explanation as well. E.g., when we assume that Mj1 = x we
may suspect that

∑n
k=1 Mk is greater than in the case Mj2 = x for some j2 > j1, because in

the latter case the maximum equal to x appears later than in the former one. We note that
Cj,n(q) = 0 except for about 10% upper quantile orders q. Trivial zero bounds Aj,n(q) and
Bj,n(q) for the sums of maxima and records, respectively, appear only for relatively small q

and large j.

By definition
∑n

k=1 Xkηk ≤
∑n

k=1 Mk ≤
∑n

k=1 Rk for any random sequence X1, ..., Xn, ... .
The corresponding relations for the bounds Cj,n(q) < Aj,n(q) < Bj,n(q) are preserved and their
values are significantly different when j is small with respect to n. When j is equal or close to n,
the latter inequality is reversed, though. For j = n it is justified by the following arguments.
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Table 1: Average upper bounds for n = 10, and j = 1.

q T2 Aj,n(q) T5 Bj,n(q) T7 Cj,n(q)

0.05 (ia) 0.99901 (i) 23.19053 (ia) 0
0.1 (ia) 1.00446 (i) 24.48122 (ia) 0
0.2 (ia) 1.01964 (i) 27.54620 (ia) 0
0.3 (ia) 1.04398 (i) 31.48623 (ia) 0
0.4 (ia) 1.08488 (i) 36.73885 (ia) 0
0.5 (ia) 1.15691 (i) 44.09161 (ia) 0
0.6 (ia) 1.28895 (i) 55.11962 (ia) 0
0.7 (ia) 1.53655 (i) 73.49811 (ia) 0
0.8 (ib) 2.00000 (i) 110.25284 (ia) 0
0.9 (ib) 3.00000 (i) 220.51248 (ib) 0.24836
0.99 (ib) 9.94987 (i) 2205.14721 (ib) 0.99321

Table 2: Average upper bounds for n = 10, and j = 5.

q T1 Aj,n(q) T4 Bj,n(q) T7 Cj,n(q)

0.05 (iii) 0.11265 (i) 1.53182 (iia) 0
0.1 (iva) 0.11312 (i) 1.62854 (iia) 0
0.2 (iva) 0.16859 (i) 1.85718 (iia) 0
0.3 (iva) 0.28233 (i) 2.14943 (iia) 0
0.4 (ivb) 0.43379 (i) 2.53691 (iia) 0
0.5 (iib) 0.61390 (iia) 3.09867 (iia) 0
0.6 (iib) 0.82506 (iia) 3.92617 (iia) 0
0.7 (iib) 1.09660 (iia) 5.29056 (iia) 0
0.8 (iib) 1.50351 (iib) 7.86104 (iia) 0
0.9 (iib) 2.33534 (iib) 15.77310 (iib) 0.15107
0.99 (iib) 7.94034 (iib) 157.76816 (iic) 0.94803

Table 3: Average upper bounds for n = 20, and j = 10.

q T1 Aj,n(q) T4 Bj,n(q) T7 Cj,n(q)

0.05 (iii) 0.38885 (i) 22.61002 (iia) 0
0.1 (iva) 0.39153 (i) 23.86739 (iia) 0
0.2 (iva) 0.41974 (i) 26.85346 (iia) 0
0.3 (iva) 0.47203 (i) 30.69239 (iia) 0
0.4 (iva) 0.54734 (i) 35.81061 (iia) 0
0.5 (iva) 0.65396 (i) 42.97568 (iia) 0
0.6 (ivb) 0.81552 (iia) 53.72374 (iia) 0
0.7 (ivb) 1.06348 (iia) 71.63557 (iia) 0
0.8 (iib) 1.45459 (iia) 107.45727 (iia) 0
0.9 (iib) 2.25974 (iia) 214.91881 (iia) 0
0.99 (iib) 7.69114 (iib) 2149.144709 (iic) 0.43245

There are no future maxima and records after the j-th one. Conditionally on Rn = x, the
previous record values R1, ..., Rn−1 are distributed as ordered i.i.d. random variables from
the right-truncated at x parent distribution (cf. Lemma 3.1). The distributions of Mk, k =
1, ..., n− 1, under the condition Mn = x are the mixtures of maxima from k independent
observations from the right-truncated baseline distribution and an atom at x (see Lemma 2.1).
This implies E

(∑n
k=1 Rk

∣∣Rn = x
)

< E
(∑n

k=1 Mk

∣∣Mn = x
)

for any parent distribution.
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Numerical calculations show that the reversed inequality Bj,n(q) < Aj,n(q) holds for j = n−1
and all q as well. Then the distribution L(Rn|Rn−1 = x) is just the left-truncated parent
distribution at x, and this does not affect much the whole sum. Table 4 shows that for
n = 10, j = n− 2 = 8 the reversed inequalities B8,10(q) < A8,10(q) are satisfied merely for
some central q.

Table 4: Average upper bounds for n = 10, and j = 8.

q T1 Aj,n(q) T4 Bj,n(q) T7 Cj,n(q)

0.05 (i) 0 (i) 0.01450 (iia) 0
0.1 (iia) 0.00644 (i) 0.01874 (iia) 0
0.2 (iia) 0.10956 (i) 0.03141 (iia) 0
0.3 (iia) 0.21969 (i) 0.05288 (iia) 0
0.4 (iia) 0.33303 (i) 0.08963 (iia) 0
0.5 (iia) 0.45780 (i) 0.15357 (iia) 0
0.6 (iia) 0.60936 (iia) 0.59290 (iia) 0
0.7 (iib) 0.82368 (iia) 0.96188 (iia) 0
0.8 (iib) 1.16140 (iia) 1.56008 (iia) 0
0.9 (iib) 1.85340 (iia) 3.22165 (iib) 0.06500
0.99 (iib) 6.43747 (iib) 16.06139 (iic) 0.92619

Table 5: Average upper bounds for n = 10, and j = 10.

q T2 Aj,n(q) T5 Bj,n(q) T7 Cj,n(q)

0.05 (iia) 0 (iia) 0 (iia) 0
0.1 (iib) 0.00448 (iia) 0 (iia) 0
0.2 (iib) 0.10267 (iia) 0 (iia) 0
0.3 (iib) 0.20796 (iia) 0 (iia) 0
0.4 (iib) 0.31432 (iia) 0 (iia) 0
0.5 (iib) 0.42761 (iia) 0 (iia) 0
0.6 (iib) 0.55702 (iib) 0.00138 (iia) 0
0.7 (iib) 0.72122 (iib) 0.08846 (iia) 0
0.8 (iic) 0.98150 (iib) 0.25087 (iia) 0
0.9 (iic) 1.55748 (iib) 0.54681 (iia) 0
0.99 (iic) 5.44190 (iib) 1.91034 (iic) 0.91287

We finally focus on Tables 2 and 3 which contain results for (j, n) = (5, 10) and (10, 20).
One could expect that the average bounds are similar if the proportion j/n is preserved. This
actually happens in the case of sums of maxima. We see that A5,10(q) < A10,20(q) for small q,
and the opposite holds for large q. In the former case, when Mj = F−1(q) is relatively small,
it is a great chance that the total sum of maxima shall increase more when we observe 10
future i.i.d. observations rather than 5. This chance decreases when Mj is close to the right
end-point of the support. Much the same observation concerns Cj,n(q), but the difference is
not visible for small q, for which C5,10(q) = C10,20(q) = 0. The average bounds Bj,n(q) for the
sums of record values behave quite differently: B5,10(q) are much less than B10,20(q), and the
latter are rather close to B1,10(q) (see Table 1). This shows that the average bounds Bj,n(q)
depend rather on the differences n− j, i.e., on the number of future records.
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