
TYPE Methods

PUBLISHED 27 June 2023

DOI 10.3389/fnhum.2023.1129362

OPEN ACCESS

EDITED BY

Ines Chihi,

University of Luxembourg, Luxembourg

REVIEWED BY

Sheng-Fu Liang,

National Cheng Kung University, Taiwan

Yaqi Chu,

Chinese Academy of Sciences, China

Sergio José Rodríguez Méndez,

Australian National University, Australia

*CORRESPONDENCE

Martin Gemborn Nilsson

martin.gemborn_nilsson@control.lth.se

†These authors have contributed equally to this

work and share first authorship

RECEIVED 21 December 2022

ACCEPTED 08 June 2023

PUBLISHED 27 June 2023

CITATION

Gemborn Nilsson M, Tufvesson P, Heskebeck F

and Johansson M (2023) An open-source

human-in-the-loop BCI research framework:

method and design.

Front. Hum. Neurosci. 17:1129362.

doi: 10.3389/fnhum.2023.1129362

COPYRIGHT

© 2023 Gemborn Nilsson, Tufvesson,

Heskebeck and Johansson. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

An open-source
human-in-the-loop BCI research
framework: method and design

Martin Gemborn Nilsson1*†, Pex Tufvesson1,2†, Frida Heskebeck1

and Mikael Johansson3

1Department of Automatic Control, Lund University, Lund, Sweden, 2Ericsson Research, Lund, Sweden,
3Department of Psychology, Lund University, Lund, Sweden

Brain-computer interfaces (BCIs) translate brain activity into digital commands for

interaction with the physical world. The technology has great potential in several

applied areas, ranging from medical applications to entertainment industry, and

creates new conditions for basic research in cognitive neuroscience. The BCIs

of today, however, o�er only crude online classification of the user’s current

state of mind, and more sophisticated decoding of mental states depends on

time-consuming o	ine data analysis. The present paper addresses this limitation

directly by leveraging a set of improvements to the analytical pipeline to pave the

way for the next generation of online BCIs. Specifically, we introduce an open-

source research framework that features a modular and customizable hardware-

independent design. This framework facilitates human-in-the-loop (HIL) model

training and retraining, real-time stimulus control, and enables transfer learning

and cloud computing for the online classification of electroencephalography

(EEG) data. Stimuli for the subject and diagnostics for the researcher are shown

on separate displays using web browser technologies. Messages are sent using

the Lab Streaming Layer standard and websockets. Real-time signal processing

and classification, as well as training of machine learning models, is facilitated by

the open-source Python package Timeflux. The framework runs on Linux, MacOS,

and Windows. While online analysis is the main target of the BCI-HIL framework,

o	ine analysis of the EEG data can be performed with Python, MATLAB, and

Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and

discusses desirable properties of a human-in-the-loop BCI research platform. The

BCI-HIL framework is released underMIT licensewith examples at: bci.lu.se/bci-hil

(or at: github.com/bci-hil/bci-hil).

KEYWORDS

brain-computer interface, research framework, online, real-time, EEG

1. Introduction

The ability to accurately decode mental states, including perceptions, thoughts, and

emotions in real-time would represent a significant advancement in numerous research

fields and provide a wide range of potential applications. A brain-computer interface (BCI)

is a device that interprets brain activity to enable direct human-to-machine communication

without using regular pathways such as peripheral nerves or muscles (Wolpaw et al.,

2002). While brain activity may be measured using a variety of methods such as functional

magnetic resonance imaging (fMRI; Belliveau et al., 1991), magnetoencephalography

(MEG; Cohen, 1968), and functional near-infrared spectroscopy (fNIRS; Jöbsis, 1977), the

examples and discussions presented in this paper are given primarily with non-invasive

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2023.1129362
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2023.1129362&domain=pdf&date_stamp=2023-06-27
mailto:martin.gemborn_nilsson@control.lth.se
https://doi.org/10.3389/fnhum.2023.1129362
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1129362/full
https://bci.lu.se/bci-hil
https://github.com/bci-hil/bci-hil
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

FIGURE 1

The BCI-HIL research framework separates the software into four

major parts: The BCI-HIL research framework separates the

software into four major parts. The Engine is the main module,

keeping track of the current state of the experiment as well as the

distribution of messages and data between other parts in BCI-HIL.

The Engine also takes care of storing unprocessed EEG data for

o	ine analysis. The Calculate module handles EEG preprocessing,

machine learning, creating epochs, training, and performing

inference. The Admin GUI handles commands from the experiment

admin and presents the current status and live values in a

dashboard. The Client GUI presents stimulus for the subject and

receives input from the subject.

electroencephalography (EEG; Berger, 1929) in mind. The

temporal resolution of the EEG is high and thus well-suited for BCI

research and applications. A fundamental limitation with current

BCIs is that more advanced decoding is time-consuming and would

require offline data analysis. Thus, the next generation of BCIs

critically depends on the development of analytical tools to speed

up and enhance the online classification of brain data. In this

paper, we provide a BCI human-in-the-loop (HIL) framework for

this purpose. The main components of BCI-HIL are visualized in

Figure 1.

1.1. Brief history of BCI research

“Über das Elektrenkephalogramm des Menschen" was written

in 1929, 5 years after the first successful recording of the

Electroencephalogram by Berger (1929).

In 1973, one of the first brain-computer interface setups was

described by Vidal (1973). In the coming years, BCI research

expanded to include the development of more sophisticated

systems that could be used to assist or augment human cognitive

or motor functions.

BCI research is advancing with a focus on the development of

more user-friendly and effective BCI systems, by exploring the use

of machine learning algorithms to improve the performance and

reliability of BCIs, and to enable them to be used in a wider range

of applications. The field is continuing to evolve and grow as the

potential applications of BCIs expand, leading to new and exciting

possibilities for the future.

In order to improve machine learning models, it may be

necessary to question the current scientific methodology that has

been traditionally used. New deep learning models will obscure

certain details, and we will need to approach them as black-box

models, where we no longer have the ability to explicitly determine

the purpose of individual components. The adoption of deep neural

networks may require a holistic perspective, in contrast to the

reductionist method of current scientific practice, where machine

learning may assume the task of comprehending and generating

models. This epistemological shift could potentially lead to new

and creative methods in our research toolbox. However, deep

neural networks require huge training datasets, which can solely

be obtained through yet-to-be-seen ubiquitous BCI consumer

products used in everyday life.

1.2. Di�erent types of BCI systems

Based on how information is fundamentally passed from the

brain to a computer, BCI systems are typically divided into three

categories: active, reactive, and passive. For a somewhat more

precise division based on themode of operation, BCIs are also often

categorized into different paradigms, implicitly specifying if it is

used in an active, reactive, or passive system.

1.2.1. Active BCIs
With an active BCI the subject is intentionally trying to

modulate mental states, for example by actively thinking left, stop,

and forward. The goal of intentionally encoding such mental states

is to generate signals that can be separated by the BCI system,

and thus, subsequently can be used as instructions or inputs to

some application.

A classic example is the motor imagery (MI) paradigm where

the subject is imagining the movement of different parts of the

body, without actually moving them (Abiri et al., 2019).

1.2.2. Reactive BCIs
Another way of encoding information is to present

different stimuli to a subject and then use the reactions

to infer possible intentions of the subject, a reactive BCI.

Typically, the subject pays selective attention to some

stimulus (or category of stimuli) corresponding to some

information desired to convey. The BCI then tries to

discriminate the brain signals corresponding to the category of

target stimuli.

A commonly used paradigm is the oddball paradigm, where

stimuli of different categories are sequentially presented to the

subject (Abiri et al., 2019). Here, one of the occasionally displayed

stimuli categories is the target category which in some way, at

least from the subject’s perspective, is different from the other

categories. As a result, different event-related potentials (ERPs)

patterns are elicited depending on whether the subject is focusing

on, or recognizing a certain category or not. The difference in

brain signal patterns, time-locked to the stimuli onset, makes

it possible for a computer algorithm to distinguish and classify

the target category from the other, non-target categories. A

common application is the P300-speller where different letters

are flashed sequentially, and the subject is waiting for a certain

letter to be flashed. Being able to decode a letter of interest

and then repeatedly apply the process to new letters makes it

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

possible for the subject to spell out words (Farwell and Donchin,

1988).

Another reactive BCI paradigm is the so-called steady-state

evoked potentials (SSEP). Here, several stimuli (often visual) are

oscillating at different frequencies, for example a number of

flickering LED lights. The subject is asked to focus on one of the

stimuli, corresponding to some information or command to be

conveyed. If the subject gazes at the flickering stimuli, brainwaves

are elicited with the corresponding frequency and its harmonics, as

described by Muller-Putz and Pfurtscheller (2008).

1.2.3. Passive BCIs
The final category is passive BCIs. Here, brain activity is

monitored passively, i.e., without the subject’s active intention

of communicating with the BCI. Typical use cases would be to

monitor the subject’s attention, level of focus, cognitive stress,

tiredness, or workload.

1.3. Next generation BCIs

Functional neuroimaging techniques are widely used for

medical purposes to assess brain health and for disease diagnostics.

These techniques also serve as a fundamental component in the

field of cognitive neuroscience by offering valuable insights into the

underlying mechanisms through which the brain enables cognitive

functions. Such research comprises experimental paradigms

designed to isolate the neural mechanisms supporting a particular

cognitive function. In such experiments, participants are typically

presented with multiple stimuli (e.g., faces and objects) and

instructed to perform a cognitive task (e.g., memorize). Statistical

analysis is conducted both at the participant level, contrasting

neural data from different trial types, and at the group level testing

hypotheses about population data. When analyzing the recorded

brain signals to draw conclusions after the experiments, it is usually

enough to know the onset-time and duration, and which stimulus

was presented. For these purposes, during the experiment itself, it is

sufficient to present a pre-determined sequence of stimuli. By pre-

determined in this context wemean that the stimuli-environment is

static and does not get adjusted during the experiment based on the

subject’s actions or decoded state of the brain. Such a static stimuli-

environment means that stimuli-sequences and instructions could

be chosen before the start of the experiment, either manually,

randomized, or algorithmically arranged.

The purpose of a BCI is a bit different, seeking to convey

information in order to, in some way, impact the state of the

world. Similar to neuroscientific studies on brain functionality,

when considering a BCI, a fundamental task is to discriminate

between different brain states. However, in the case of BCI, not

only by evaluation of statistical significance, but also while being

as fast as possible. The desire for fast near real-time analysis

originates from the idea that the results of the signal-decoding

are used to interact with the surrounding world here and now,

not hours or months later when all data has been recorded,

cleaned, and carefully analyzed by offline methods. For this reason,

the somewhat different nature of a BCI operating in near real-

time, compared to traditional neuroscientific experiments, will put

different requirements on the system in use. This will also influence

the paradigm used to encode discriminable brain signals, as well as

the methods and algorithms used for signal processing and analysis

of the recorded neuroimaging data.

Since fast discriminability between mental states is desired

when considering a BCI system, the paradigms used are typically

more crude than regular neuroscience experiments. The regular

paradigms used for BCI (briefly described in Section 1.2), for

example, ERP oddball, motor imagery, and SSEP, are all designed

to create maximum separability between different experimental

conditions. For each paradigm, the neural mechanisms used and

detected are typically the same for any application, not taking

into account if the used encoding is a natural way of transferring

information or not. A less crude way would be to better align the

way information is conveyed with human intuition of the task at

hand. A simple example would be playing a game where you can

jump and go forward. For a human, it is probably more natural to

imagine walking and jumping rather than imagining moving the

right and left arm respectively. Of course, tailoring the decoding

algorithms to such encodings would probably put completely

different computationally and algorithmically requirements on the

system, compared to the BCIs of today.

Not only the paradigms are different when comparing

BCI system with more traditional neuroscientific studies. While

neuroscientific experiments are mostly focused on understanding

how the human brain works on a population level, with a BCI

we are interested in enabling each individual subject to convey

information as fast as possible. Thus, it also makes sense to,

if possible, individualize the analysis as much as possible. This

aspect is reflected not only in the use of machine learning for the

classification of data, but also by using data-dependent methods for

individualized feature extraction such as common spatial patterns

(CSP; Koles, 1991), and xDAWN (Rivet et al., 2009). Using

data-driven methods enables the use of transfer learning, where

knowledge or data from analyzing one problem is applied when

trying to solve another, related problem. In the case of a BCI, this

would typically be to use data from other subjects, sessions, and

experimental paradigms. Because of the well-known inter-subject

and inter-session variability in EEG data, is is highly desirable to

transform and transfer data, to make the data generalize better

across different conditions.

The utilization and empirical exploration of transfer learning

provides an opportunity to leverage larger and more diverse

datasets, consequently facilitating the usage of advanced data-

driven models. Additionally, as more data in the current session

becomes available it is possible to gradually improve models or

switch strategy to optimize the performance of the BCI system

during use. Bigger datasets and more advanced and dynamical

models may require more computational resources, which can be

handled by offloading heavy computations to cloud resources.

Another important aspect is closing the loop with the human

using the BCI. It is natural to consider this aspect when developing

BCI systems, as the near real-time analysis might be used to

dynamically alter the stimuli-environment. In contrast to static

stimuli mentioned above, dynamic stimuli would mean that the

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

FIGURE 2

A dual loop present in many online BCIs, showing how to improve

the human-in-the-loop BCI performance. The inner loop is the

online experiment where the human subject and the BCI interact.

This is where both of them learn how to collaborate and work

together. The outer loop is where this interaction can be analyzed in

detail to improve the BCI part of the inner loop.

environment is changing based on analysis of the brain states in

near real-time. With the goal of using a BCI to convey information

in order to change the state of the world, it makes sense to

also develop algorithms in a human-in-the-loop setting where the

stimuli-environment is influenced by the information decoded by

the BCI. This aspect might be especially relevant for an active BCI,

since modulating the mental states is a somewhat continuous task,

to a high degree self-inflicted. It is shown that in such scenarios, the

subject would experiment with the way mental states are encoded,

either if the output results or commands are not satisfactory, or

just slowly drift in strategy over time. Dynamic stimuli might

also be beneficial when considering reactive BCIs, where specific

stimuli can be presented to the subject in order to optimize some

quantity of interest, as described by Tufvesson et al. (2023). Finally,

considering that additional insights gained from offline analysis can

be used to improve the online analysis and experimental setup, we

see an emerging dual loop for improving BCI performance. An

illustration is given in Figure 2.

When comparing aspects of neuroscientific studies trying to

understand the mechanics of the brain, and the development of

BCIs, there are both differences and possible synergies. Using

knowledge and insights from neuroscience could be essential for

developing more advanced BCIs, when combining data-driven

methods such as machine learning and individualized feature

representation with more advanced models on how information

is processed inside the brain. In the other direction, more

advanced algorithms and signal representations developed for near

real-time analysis in BCI could help neuroscientists to perform

more advanced analysis and make use of bigger data sets, faster

computational resources, and dynamic experiments.

In summary, the development of advanced BCI systems

requires consideration of various aspects, including the neural

mechanisms of the brain, computational resources for data-

driven algorithms, and human-in-the-loop capabilities to cope

with dynamic stimuli-environments. The optimal combination of

these components for development of an efficient BCI system

across different paradigms remains unclear. Hence, in order to

facilitate the evaluation and testing of advanced approaches to

BCI systems, it is crucial to test various options. This process is

made easier when the software and hardware are both user-friendly

and highly customizable. The BCI-HIL framework is in active

development and is written in modern high-level languages using

freely available tools.

1.4. Outline

For readers interested not only in design principles and

a system overview, but also in implementation details and

programming, we recommend cloning the provided code

repository containing all code used in the paper. Inspecting the

actual code in parallel with reading the paper will lower the level

of abstraction while also providing more insights and inspiration.

For instructions on how to set up and run the examples, we

refer to the README.md-file located in the root folder of the

BCI-HIL repository.

In Chapter 2, Materials and equipment, we describe hardware

and software tools relevant when designing or considering using a

BCI framework, for example EEG-caps, communication protocols,

and software for stimuli presentation and signal processing. In

Chapter 3, Methods, we first describe desirable properties of a BCI

framework and then show how open-source software tools can

be used to design components of a human-in-the-loop BCI with

these objectives in mind. This is followed by some practical aspects

to consider when using a BCI. In Chapter 4, Results, we present

and provide two BCI applications designed using the BCI-HIL

framework. The paper is concluded with a discussion in Chapter 5.

2. Materials and equipment

Some major system components are found in almost

every BCI. First of all, equipment for signal acquisition of

functional neural activity is required. Additionally, in order

to receive, record, and/or analyze the measured signals, a

computer with relevant software is needed. In many cases one

is also interested in hardware and software used for providing

a controlled stimuli-environment. In this section, different

hardware and software-tools relevant when designing a BCI

framework are presented. Extra focus is given to components

that will be used as sub-components of BCI-HIL, presented

in Section 3.2.

2.1. Measure functional neural activity

There are many possible ways of performing functional

imaging of neural activity in the brain. Some technologies

Frontiers inHumanNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

directly measure activity in the electric domain while others

use hemodynamic-based measures (indirect measures of

neural activity based on properties of the blood in the

brain). The most prominent technologies used in the electric

domain are electroencephalography (EEG; Berger, 1929) and

magnetoencephalography (MEG; Cohen, 1968), measuring electric

field potentials and magnetic fields, respectively. Correspondingly,

for hemodynamic-based measures two of the most common

technologies used are functional magnetic resonance imaging

(fMRI; Belliveau et al., 1991) relying on blood-oxygen-level-

dependent (BOLD) contrast (Ogawa et al., 1990), in turn

dependent on paramagnetic properties of hemoglobin, and

functional near-infrared spectroscopy (fNIRS; Jöbsis, 1977) which

measure changes in hemoglobin concentrations.

There are also many other methods for functional

neuroimaging, such as positron emission tomography (PET),

intracortical neuron recordings (INR), and electrocorticography

(ECoG; Leuthardt et al., 2004), where the last two are of

invasive nature.

In general, there are fundamental trade-offs that are made

when choosing any of the above-mentioned technologies used

for functional neuroimaging. Examples of these trade-offs are

temporal and spatial resolution, price, portability, ethics, personal

health risks, and ease of use. In this paper, we focus on

EEG which excels in terms of temporal resolution, price, and

portability, as well as low risk from a health perspective.

However, compared to many of the other technologies, EEG

lacks substantially in terms of spatial resolution (Nam et al.,

2018).

2.2. Landscape of EEG processing tools

There are many available tools and frameworks intended

for various types of EEG-recordings, paradigms, experiments,

signal processing, and post-hoc analysis. Listed below are

some tools commonly used for EEG-analysis, and to some

extent for other functional neuroimaging technologies. Firstly,

tools specifically designed for real-time analysis are presented,

including frameworks that have been widely utilized over an

extended period and some more recent alternatives. Then, some

tools mainly targeted for offline analysis are presented, and

finally, a couple of frameworks used for stimuli-presentation

are covered.

Regarding open-source licenses, the MIT and BSD licenses

are the least restrictive, with no implication on patents, and

modifications to the original source code can be made without

requiring derived works to be open-sourced as well. The MIT

and BSD licenses exists in many versions.1 The GPL license,2

which is also common in open-source software, puts some

additional requirements regarding patents and forces derived

works to publish any updated source code as open-source

as well.

1 spdx.org/licenses

2 gnu.org/licenses

2.2.1. Real-time online BCI research frameworks
2.2.1.1. BCILAB

BCILAB3 is an open-source MATLAB-based toolbox as

described by Kothe andMakeig (2013) with a GPL license. BCILAB

is designed as an EEGLAB4 plugin used for design, prototyping,

testing, experimentation with, and evaluation of brain-computer

interfaces. The toolbox was maintained from 2006 to 2017 and is

no longer in active development.

2.2.1.2. FieldTrip

FieldTrip5 is an open-source MATLAB software package for

analysis of MEG, EEG, and electrophysiological data as described

by Oostenveld et al. (2011). The toolbox has been developed since

2003 and is released under a GPL license.

2.2.1.3. BCI2000

BCI20006 is a general-purpose software system for brain

computer interface research as described by Schalk et al. (2004),

released under a GPL license. BCI2000 includes software tools

that can acquire and process data, present stimuli and feedback,

and manage interaction with outside devices such as robotic arms.

BCI2000 is written in C++ with interfaces to MATLAB and Python

in Microsoft Windows, with limited functionality running on other

operating systems.

2.2.1.4. OpenViBE

OpenViBE7 is a software platform as described by Renard et al.

(2010) with an AGPL-3 license, that enables to design, test, and

use of brain-computer interfaces. OpenViBE can also be used as

a generic real-time EEG acquisition, processing, and visualization

system. OpenViBE was actively developed between 2006 and 2018.

It supports Microsoft Windows, Ubuntu, and Fedora.

2.2.1.5. Falcon

Falcon8 is a highly flexible open-source software for closed-loop

real-time neuroscience as described by Ciliberti and Kloosterman

(2017). Falcon is written in C++ and is released under a

GPLv3 license.

2.2.1.6. Gumpy

Gumpy9 is an open-source toolbox for development of BCI

systems. It is written in Python and is mainly based on a collection

of already proven Python libraries such as NumPy, SciPy, and

scikit-learn as described by Tayeb et al. (2018). Gumpy is released

under the MIT license.

2.2.1.7. Timeflux

Timeflux10 is an open-source framework for data collection

and real-time processing of generic time series data. However,

it is developed with BCIs and other bio-signal applications in

3 sccn.ucsd.edu/wiki/BCILAB

4 sccn.ucsd.edu/eeglab

5 fieldtriptoolbox.org

6 bci2000.org

7 openvibe.inria.fr

8 bitbucket.org/kloostermannerflab

9 github.com/gumpy-bci/gumpy

10 timeflux.io

Frontiers inHumanNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://spdx.org/licenses
https://gnu.org/licenses
https://sccn.ucsd.edu/wiki/BCILAB
https://sccn.ucsd.edu/eeglab
https://fieldtriptoolbox.org
https://bci2000.org
https://openvibe.inria.fr
https://bitbucket.org/kloostermannerflab
http://github.com/gumpy-bci/gumpy
https://timeflux.io
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

mind. Timeflux is released under the MIT license and is written in

Python, and can be used across platforms. The real-time processing

capabilities in BCI-HIL presented in this paper are based on

Timeflux. Thus, a more detailed overview of the framework is given

in Section 2.4.4 below.

2.2.2. Non-realtime o	ine BCI research
frameworks
2.2.2.1. EEGLAB

EEGLAB11 as described by Delorme and Makeig (2004) is

an open-source MATLAB toolbox for analysis of averaged and

single-trial EEG data. It is released under a GPL license.

2.2.2.2. MNE-Python

MNE-Python12 is an open-source Python package for

exploring, visualizing, and analyzing human neurophysiological

data: MEG, EEG, sEEG, ECoG, NIRS, and more, as described by

Gramfort et al. (2013). MNE is released under the BSD license.

2.2.3. Stimuli toolboxes
2.2.3.1. Py�

Pyff13 is the Pythonic feedback framework released under

GPLv2 license. Pyff uses the network protocol UDP to

communicate with other modules in the BCI system, and

XML is used to wrap arbitrary data in a format Pyff can handle, as

described by Venthur et al. (2010).

2.2.3.2. Psychopy

Psychopy14 is an open-source Python package with a GPLv2

license to build experiments using a GUI or a programming API.

2.3. Hardware

2.3.1. EEG hardware
There is a plethora of hardware devices available for non-

invasive EEG signal acquisition, ranging from open-source low-

cost (Teversham et al., 2022) to high-end, wireless, and closed

source. What device to choose depends on which type of research

environment you target. Any hardware based on the Lab Streaming

Layer (LSL), described in Section 2.4.2 is, compatible with BCI-HIL.

We have implemented and tested the BCI-HIL research framework

using three different EEG hardware devices: MBT Smarting, Muse

S, and Neurosity The Crown.

2.3.1.1. MBT Smarting

The MBT Smarting15 as introduced by Debener et al. (2012) is

a wet electrode wireless EEG system. It uses a Bluetooth transceiver

to send EEG signals to an Android smartphone that can re-

transmit the EEG stream, the head accelerometer, and smartphone

11 sccn.ucsd.edu/eeglab

12 mne.tools

13 bbci.de/py�/index.html

14 psychopy.org

15 mbraintrain.com

accelerometer data in LSL outlets. It has 24 EEG electrodes

evenly distributed across the skull, and a 3 degrees-of-freedom

accelerometer. The sampling rate is either 250 or 500 Hz, and the

companion Android control app can display measured electrode

impedances during cap appliance.

2.3.1.2. Muse S

The Muse S16 headband is a low-cost Bluetooth wireless EEG

device. Following the international 10–20 system, Muse S features

four channels: frontal AF7 and AF8, temporal TP9 and TP10, as

well as FPz used as reference. The electrodes aremade of conductive

ink on flexible fabric adhesive, and the data sample rate is 256 Hz.

Additional sensors on the Muse S are accelerometer, gyroscope and

photoplethysmography (PPG) heart rate sensor using LEDs. The

device introduces an unwanted time delay in the range of 20–40 ms

with 5 ms jitter, and a 0.01-0.05% loss of EEG samples, as described

by przegalinska et al. (2018). Accessing data from Muse S over LSL

can be done for example by using the muse-lsl Python package

(Barachant et al., 2019).

2.3.1.3. Neurosity The Crown

The Crown17 is a wireless EEG system using dry electrodes and

wifi. It provides LSL signals directly from the hardware for the eight

EEG channels, primarily located on the top of the head over the

motor cortex, sampling at 256 Hz. Following the 10–20 system, the

electrodes are placed at Cp3, C3, F5, PO3, PO4, F6, C4, and Cp4,

with reference electrodes at T7 and T8.

2.4. Software

2.4.1. Programming languages
A number of programming languages have historically been

used for BCIs. C++ and MATLAB18 were some of the first, while

more modern alternatives have emerged, replacing for instance

the commercial MATLAB language with Python,19 much due to

the fact that Python is free to use and have a large open-source

community developing frameworks like MNE-Python. On the far

horizon, the Julia20 programming language is rising, addressing

some of the drawbacks with Python like slow computations and

dependency on optimized C-code. However, Python and Julia are

mainly scientific compute languages, and they are not the ideal

candidates when it comes to visualization and stimuli presentation.

Today, JavaScript21 is the most widely used programming

language22 for open-source software, and is used both for front-end

and back-end web programming. Graphical user interfaces (GUIs)

using HTML23 and CSS24, and the companion language JavaScript

are easy to set up and require no compiling or building, which gives

16 choosemuse.com

17 neurosity.co

18 mathworks.com

19 python.org

20 julialang.org

21 javascript.com

22 octoverse.github.com/2022/top-programming-languages

23 html.spec.whatwg.org

24 w3.org/Style/CSS

Frontiers inHumanNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://sccn.ucsd.edu/eeglab
https://mne.tools
https://bbci.de/pyff/index.html
https://psychopy.org
https://mbraintrain.com
https://choosemuse.com
https://neurosity.co
https://mathworks.com
https://python.org
https://julialang.org
https://javascript.com
http://octoverse.github.com/2022/top-programming-languages
https://html.spec.whatwg.org
https://w3.org/Style/CSS
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

quick visual feedback. Using these programming languages there

are many visualization libraries helping you to produce interactive

graphics, both for 2D and 3D, to use Virtual Reality headsets, and

replaying videos and audio.

2.4.2. Inter-process communication
When building a modular software system, inter-process

communication between different parts is needed for the

subsystems to cooperate. Various methods have been used

throughout computing history like signals, message queues, sockets,

named pipes, and shared memory, to name a few. For a

research framework, compatibility is highly desirable, both between

operating systems but also between programming languages. Also,

the possibility to run the subsystems on separate machines across a

wired or wireless network needs to be considered.

2.4.2.1. Lab streaming layer

The Lab streaming layer (LSL) is a system for real-time

measurements and time-synchronization of time series data

between various computers and input devices. LSL handles data-

streams both with uniform sample rate such as EEG data, and

non-uniform sampling rates such as event streams from a stimuli

device, mouse-clicks, and other types of inputs. Communication

over the LSL can be setup in a number of programming languages

(C/C++, Matlab, Python, Java, etc.) with just a few lines of codes.

Over the last decade LSL has been used extensively for EEG signal

acquisition and online processing. As a result, LSL supports many

EEG toolboxes and EEG caps, as well other input devices such as

video game controllers and eye-trackers.25

Under the hood LSL is using network protocols such as UDP

and TCP, and communication is facilitated using a core library

called liblsl as described by Stenner et al. (2022), implemented

in the C++ programming language. Besides C++, interfaces for

programming languages such as Matlab, Python, C, Java, and Julia

are also available, which makes it easy to use LSL in most scenarios.

In order to make data available to other devices and computers

on the local network, a producer of data like EEG caps and stimuli

programs create an LSL-outlet. An LSL-outlet contains metadata

relevant for the particular source of data, and provides functions

to push data out on the network. The combination of data and

corresponding metadata is referred to as an LSL-stream. With the

data stream available, other applications on the network can find a

particular stream by looking for some specific field, information, or

attribute in the metadata. When a stream with the desired attribute

is found, an LSL-inlet is defined. The LSL-inlet is then used to

acquire data that is made available on the network through the

corresponding LSL-outlet.26 The LSL software also comes with an

LSL-recorder written in Python that can be used to save data from

all LSL-streams on the network during a specific session. This is

useful to save the full sequence of events and data generated during

a session. The data is saved in the extensible data format (XDF)27

file format.

25 labstreaminglayer.org

26 labstreaminglayer.readthedocs.io/info/intro.html

27 github.com/sccn/xdf

With a wide support of programming languages and relevant

devices, simplicity to use, community adaptation as well as being

open-source, LSL is a natural choice for some parts of the inter-

process communication in a BCI system.

2.4.2.2. Websockets

Unfortunately, web technologies running inside a browser are

not allowed to open raw sockets as those used by LSL. An LSL

implementation could be implemented for server-side JavaScript

based coding using node.js28 or similar back-end tools. However,

the current security model for browser-based JavaScript does not

permit the low-level network handling that is a vital part of LSL, as

described above.

Rather than using HTTP polling, websockets is a full-duplex

communication link permitting transfers to be initiated both from

the client and the server once the websocket is up and running. This

is used as a low-latency communication link to handle a real-time

BCI for visualizations, stimuli presentation, and the subject’s input

and output. Websockets use TCP networking and work across

operating systems, separate computers, and between processes run

on the same computer.

2.4.3. Stimuli software
For any experimental setup for human-in-the-loop BCI

research one needs ways of presenting stimuli to the subject.

Today’s computers are pretty good at presenting images, videos,

playing audio, and doing 3D graphics. For such stimuli there are

ready made stimulus software tools and Python modules that can

be used. For external stimuli like lights, USB-connected embedded

electronics can be used. Using taste, smell, or haptic feedback is not

so common.

Modern computer monitors typically have a fixed update

frequency, typically 60 Hz, or higher when considering displays

intended for gaming. The latency from a display software update

to the actual update of the graphics on the screen will have a

time jitter with uniform random distribution between 0 and 16.7

ms, on top of the fixed unknown graphics pipeline latency. One

remedy to the jitter related to display refresh rate is to make sure

that the lines of code in the software that updates the display are

synchronized to the updates of the display. One such mechanism is

the Window.requestAnimationFrame() that is part of the

web APIs found in common browsers like Google Chrome, Mozilla

Firefox, and Apple Safari, and access it using JavaScript. This event

acts like an interrupt that will trigger every time the monitor

updates, effectively synchronizing the stimulus presentation with

the display. However, there is still an unknown latency between

this software interrupt and the actual display update. A websocket

callback can tell other parts of the system when the update

happened. The inter-process communication will have smaller jitter

compared to the display refresh jitter. Note that using advanced

display modes, like turning off double buffering from the GPU, will

not change the amount of jitter in the display update, it will simply

lower the latency without affecting the jitter uncertainty. Actually,

without double buffering the possibility of reducing the jitter using

a display refresh rate interrupt is lost.

28 nodejs.org

Frontiers inHumanNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://labstreaminglayer.org
https://labstreaminglayer.readthedocs.io/info/intro.html
https://github.com/sccn/xdf
https://nodejs.org
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

2.4.3.1. Using modern web technology for stimuli

presentation

Naturally, there are ways of playing audio and presenting

images and videos to a subject in almost any programming

language. However, modern web technology is cross-platform and

surprisingly easy to handle for almost any kind of stimuli like audio,

images, video, and virtual reality. Another benefit is the lack of

compile time, providing instant feedback by a simple reload of the

browser page. There is lots of help to be found, with numerous

examples and guides on the internet. Virtual Reality stimulus can

be implemented using ThreeJS and WebGL, supporting a wireless

Meta Quest 1 and 2 wireless VR headset, as well as tethered VR

headsets. These kind of web applications can easily be run on

MacOS, Microsoft Windows, and Linux by installing the Google

Chrome web browser.

2.4.4. Online processing with Timeflux
Timeflux (Clisson et al., 2019)29 is an open-source framework

for data collection and real-time processing of generic time series

data, developed with bio-signal applications and BCIs in mind.

The framework is written in the Python programming language.

Timeflux is designed for being easy to use, having a lightweight core

functionality, being modular in the sense that sub-components are

replaceable, making it easy to reuse or incorporate existing code,

and being easily extendable by adding custom ormodifiedmodules.

In this section, some fundamental concepts of Timeflux will

be introduced and explained. For a more extensive presentation

and documentation, see the original paper and the online

documentation (Clisson et al., 2019).

2.4.4.1. Timeflux basic concepts

Applications in Timeflux consist of one or multiple graphs,

constructed from nodes and directed edges. Nodes are used to

process data while edges define how and in which direction

data flows between the nodes within a graph. All processing

steps in one graph are executed at the same frequency, the

rate of the graph. Different graphs can be executed at different

rates and communication between graphs is facilitated by a

publisher/subscriber system.

In Timeflux, the structure of the nodes and directed edges

have to be defined in a way such that the resulting graph is a

directed acyclic graph, meaning that no cycles can be formed. Thus,

following the directed edges, it is impossible to get to a node of the

graph that has already been traversed. The directed acyclic structure

guarantees that the processing steps of each node can be executed

sequentially, where certain nodes have to be executed before others,

as the output of some nodes might be the input(s) to other nodes.

The sequential execution also implies that the full sequence of

processing steps in a graph can be executed at fixed frequency (rate)

without ambiguities in order of execution.

A Timeflux node is a regular Python class with the addition

of some inherited extra functionality from the Timeflux Node

superclass, such as receiving data from and sending data to other

Timeflux nodes within the graph. Receiving and sending data

is done with input ports and output ports, which are inherited

29 timeflux.io

from the Timeflux Node class. Every node also has a function

called update(). Every time a graph is executed, the update()

function for each node of the graph is called once.

Communication between different graphs is done

asynchronously using a publisher/subscriber system facilitated by a

few Timeflux nodes designed for this purpose. These special nodes

are the Pub and Sub, and Broker nodes. The Broker node acts as

a mediator handling the passing of data and is always placed in a

separate graph. The Pub and Sub nodes are incorporated in graphs

as regular nodes, providing an interface to the Pub and Sub nodes

of other graphs. Under the hood, these inter-graph communication

nodes are using the ZeroMQ-protocol.30

2.4.4.2. Building Timeflux applications from existing nodes

For a Timeflux graph the structure of nodes, edges, and

execution frequency are specified in a yaml configuration file. In

the yaml-file, an instance of a node is specified by a number of

fields. Typically, these fields are: a unique identifier, the name of

the Python class implementing the node, and possibly parameters

passed to the constructor used to specify non-default behaviors of

the node. Similarly, an edge is defined by two fields, source and

target. Here, the source specifies the identifier (and output port)

from a node sending data, and the target specifies the identifier (and

input port) of a node receiving the corresponding data.

2.4.4.3. Notable Timeflux nodes

The Timeflux package comes with a number of nodes and

functions providing the essential building blocks for running

nodes and building useful applications. With the aim of having

a lightweight core in mind, functionality other than the most

essential, such as various digital signal processing (DSP) nodes in

Timeflux-DSP and a simple user interface (UI) node in Timeflux-

UI, come as separate packages. Some Timeflux nodes, essential for

building EEG-processing applications, are mentioned below:

• The Sub and Pub nodes are used to facilitate inter-

graph communication by subscribing and publishing to

so-called topics.

• The Send and Receive nodes (from the LSL module) are used

to send and receive data to/from LSL-streams on the network.

• The Epoch node buffers and collects EEG data and then

time-locks it to stimuli event markers, which indicate that

a stimuli was presented to the subject. If the event marker

also contains label information, this data is concatenated with

the epochs such that labeled data used for machine learning

can be easily constructed. The Window node has a similar

purpose as the Epoch node. The difference here is that epochs

are now cut with fixed time intervals, possibly overlapping,

non-time-locked in relation to external events or stimuli.

2.4.4.4. Building custom Timeflux nodes

Custom Timeflux nodes can easily be developed and

implemented. As mentioned above, a node is a regular Python

class inheriting a few properties and requirements from the Node

superclass. Thus, the implementation of a custom node is very

similar to implementing a regular Python class. The constructor

30 zeromq.org

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://timeflux.io
https://zeromq.org
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

arguments specify parameters that can or need to be passed when

creating an instance of the node/class. Non-default parameter

values are passed from the yaml-file, and the code inside the

constructor is run once upon initialization. Then, the code in the

update() function is run once every time sequence of steps in

the corresponding graph is executed. For near real-time processing

of data, the update() would typically consist of the following

steps: First, check that some conditions of interest are fulfilled, for

example if all input data of interest is available on the input port(s).

If so, unpack the data and perform any desired operations on the

data. Finally, send results to an output port, making it available to

the next node in the graph.

3. Methods

In this section, we start by discussing desirable properties of

a BCI framework. We then describe how some of the existing

equipment, communication protocols, and frameworks presented

in Chapter 2 could be used to design components of a BCI

framework which we will later refer to as the BCI-HIL research

framework. Chapter 4 will describe how these components can

be combined to more specific BCI applications. Finally, practical

aspects and limitations of latency calibration and real-time filtering

are presented.

3.1. Desirable properties of a BCI research
framework

There are many desirable properties of software artifacts such

as functionality, ease-of-use, and customizability, and these apply

to BCI research frameworks as well. There will always be trade-offs

between different aspects of these properties as some are, or might

be, in direct or indirect conflict with each other. What properties

are most important will clearly depend on the intended use, and

who is setting up and running the system.

3.1.1. Functionality
One important property to look for is the current functionality

of the framework. If features required for the intended use are

not available, there are two options. Either move on to another

set of tools or try to get the missing features implemented into

the framework in some way. If this is possible will depend both

on other properties of the framework such as customizability

and community support, as well as the available resources and

programming skills at hand. If the user of the framework has

intentions to develop new custom functionality it is still important

to evaluate the fundamental properties of the framework such that

the desired extensions can be implemented without a complete

redesign of the framework.

3.1.2. Ease-of-use
What makes something easy to use is not the same for people

of different backgrounds. It also depends on what aspects of

the system that should be easy to use. Should it be easy to get

started, to build standard BCI paradigms, or to implement new

algorithms? In general, the framework should: be quick and easy

to install, have intuitive setup and usage, have a GUI, enable use

of standard equipment and interfaces, be compatible with already

existing hardware and software, have possibility to add not-yet-

released hardware, etc. Additionally, a research framework should

preferably not require expensive commercial licensing of closed-

source software.

3.1.3. Modularity
Using a modular design with standard interfaces between

components is important if the intended usage of the framework is

changed, if better alternatives to some parts of the system become

available, or if some new equipment needs to be added. Should any

part of the framework require modification or supplementation,

it would be advantageous for the specific component in question

to be able to be altered independently. Another important aspect

of a modular design is that system components that are not used

can be removed, allowing for an application with as low resource

requirements as possible when it comes to computations, memory

requirements, and hardware cost.

3.1.4. Compatibility
Another desirable property for the system is to be compatible

with as much relevant software and hardware equipment

as possible.

3.1.5. Customizability
Having a system that can be customized is, in some contexts,

also highly desirable. Some properties that make a framework

customizable are modularity (see above), the code being open-

source, and the ability to build and incorporate custom system

components in a frictionless way.

3.2. BCI-HIL modules

With the overall ambition of providing and exemplifying tools

for researching and developing the BCI systems of the future, we

present a system design with the main objective of being a modular

framework that is fully and easily customizable. We also aim for a

design using only open-source components that can be run on any

of the most common operating systems (Windows, MacOS, and

Linux), and distributed on multiple computers if desired.

With these objectives in mind, visualizations and graphics

are displayed directly in one or several web browsers. Real-time

features are provided by the Python package Timeflux, while signal

processing and machine learning functionalities can be either

implemented from scratch or fully performed by (or combined

with) standard packages from the Python community, such as

SciPy (Virtanen et al., 2020) and scikit-learn (Pedregosa et al.,

2011). A central module is keeping track of the dynamics of the

stimuli environment and high-level logic for signal processing

and machine learning. Communication is enabled via standardized

technologies, such as websockets connecting modules, and LSL

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

FIGURE 3

The hardware block schematics of a BCI-HIL research setup. The

Engine is the central software knowing the state of the experiment,

gathering and sending commands to/from the other submodules.

The Client GUI and Admin GUI take care of displaying stimuli and

information, and the Calculate program could handle online

machine learning, inference, classification, and transfer learning.

The dotted lines indicate communication using LSL, the bold

bidirectional arrows represent communication using websockets,

and the remaining arrows show communication using USB/HDMI.

Note that the mentioned software modules can be run using

separate computers if needed. The blue elliptical nodes are input

and output devices to the BCI-HIL research framework.

facilitating the transfer of EEG data and stimuli streams between

the modules and associated hardware.

The BCI-HIL framework has a modular build, with well-

defined inputs and outputs between the modules. This enables us

to replace parts, combine different programming languages and get

an advantage by using the most fit tools for their purpose. The

modules are the Engine, the Admin GUI, the Client GUI(s), and the

Calculate program, as seen in Figure 3. They are described in more

detail below.

3.2.1. The Engine program
The Engine is the part of the BCI-HIL research framework

that knows everything. It provides time synchronization in sub-

millisecond precision to all other modules in the system. It

keeps track of experiment state and relays information between

the Admin GUI, the Client GUI, and the Calculate program.

Additionally, the Engine creates relevant LSL marker events

indicating stimuli onsets and other experimental conditions.

For different BCI applications, some parts of this program

have to be re-designed to enable the desired behavior. For

example, BCI paradigms like P300, Motor Imagery, and SSVEP

all require different experimental setups which need to be

implemented in the Engine program. However, interacting with

FIGURE 4

Screenshot of an Admin GUI. The Admin GUI controls the BCI

experiment through clickable buttons and keyboard shortcuts while

visualizing the current state and classifier output.

the other modules of BCI-HIL will look very similar between

applications. Finally, the Engine program archives the incoming

EEG data and LSL events on a local disk, to facilitate subsequent

offline analysis.

3.2.2. The Admin GUI
The Admin GUI is where any control command is given by

the experiment administrator. This is done from a series of action

buttons like start trail, pause trail, cancel trail, as well as text

fields where information such as the subject-ID, session number,

and other experiment specific data can be input. The Admin GUI

is also where online experiment feedback is shown. This could

be anything from raw EEG-signals to graphs like classification

probabilities, stimuli histograms, visualizations using dimension

reduction, or scatter plots. The information presented here is meant

to supervise the inner workings of the algorithms in order to

help the researcher understand and improve the experiment setup.

Figure 4 shows a screenshot of the admin GUI in the Clear By

Mind application (further details in Section 4.2). Additionally,

the internal timestamp of BCI-HIL is shown on the Admin GUI

display. If the experiment is video-recorded, this timestamp can be

used to match recorded data from the LSL-streams with real-world

experimental conditions, allowing for backtracking of potential

issues or locating events of interest.

3.2.3. The Client GUI(s)
The Client GUI is where the subject is focusing and where

stimuli are presented during a trial. Connected to a monitor the

module can show visual stimuli as typically done in many BCI

paradigms. Similarly, with speakers connected, the Client GUI

can also produce audio stimuli for the experiment if desired.

Figure 5 shows a screenshot of the client GUI in the Clear By

Mind application (further details in Section 4.2). This module is

synchronized to the display output, to keep the jitter of visual event

markers low. Several Client GUIs can be run at the same time, either

on the same or different computers connected the wifi network.

Frontiers inHumanNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

FIGURE 5

Screenshot of a Client GUI, in this case from the BCI-HIL Clear By

Mind example application. Here, the subject is asked to focus on

some category of visual stimuli, which changes a few times per

second during a session (see Section 4.2 for details).

This enables interactive sessions with multiple subjects, such as

competitive games or collaborative tasks.

Similar to the Admin GUI, the Client GUI displays the BCI-

HIL timestamp, enabling time synchronization of video recordings

with timestamps of data recorded from the LSL-streams. However,

to reduce the cognitive distraction of the subject, this timestamp

only updates at events and does not run continuously.

3.2.4. The Calculate program: Timeflux in BCI-HIL
In BCI-HIL the Timeflux application is constructed using four

graphs: input/output, preprocessing, save, and machine learning

graph. The first one is listening and sending data to relevant LSL-

streams. In our case the LSL-streams of interest are the raw EEG

data, stimuli markers, and messages with status and instructions

from the Engine program.

The preprocessing graph is where the EEG time-series is filtered

and cut into epochs of appropriate length. The epochs are either

cut based on a stimuli onset time, or with a fixed time interval

in a rolling window fashion, possibly overlapping. In the former

case the epochs might also be paired with the corresponding labels

from the stimuli markers. The structure of this graph would look

similar for most EEG-related applications. Parameters that might

be of interest to tailor based on application and paradigm in this

graph are: type and cut-off-frequencies of band-pass filter, epoch

length, and whether to use epochs time-locked to stimuli or not.

Other nodes that could make sense to have in this graph are artifact

removal and baselining. The save graph continuously archives

epochs and corresponding labels (when applicable) to disk.

The machine learning graph performs various kinds of analysis

on the preprocessed data. The structure and nodes used in this

graph will depend heavily on the paradigm, application, and what

aspects of the BCI that are of interest at the moment. For combined

calibration and inference sessions it is natural to first collect and

save labeled data. Then, when ready for a feedback session, use the

collected data and possibly additional data from a cloud database,

to train a machine learning pipeline of choice, and finally apply the

trained model to new epochs.

3.2.4.1. Custom BCI-HIL nodes

In order to facilitate signal processing and machine learning

algorithms in line with design principles described above,

a few Timeflux nodes that are not part of the original

Timeflux package were implemented. These custom nodes would

be a natural part of many BCI applications, and they are

implemented to facilitate easy integration of transfer learning and

custom functionality.

• TrainingML: Upon request, this node trains a scikit-learn

pipeline using the collected data from the session (and possibly

other data) and saves the trained model locally to disk.

• InferenceML: This node loads a trained scikit-learn pipeline

from disk and runs inference on new EEG-epochs made

available from the preprocessing graph.

Scikit-learn is one of the most widely used machine learning

packages using the Python programming language. The package

includes ready-to-use implementations of a large number of tools

and algorithms for machine learning and signal processing. Scikit-

learn uses a standardized syntax to specify how different models

transform data and how they can be trained on data. This format is

so common that the majority of third-party machine learning and

signal processing algorithms, even those not included in the scikit-

learn package, also implement the same structure. This makes a

large number of algorithms from the whole Python community

available, for example all decoding modules from MNE-Python.

The standardized structure allows several modules to be piped

together, acting as one module, using a scikit-learn pipeline,

enabling fast prototyping. Enabling intuitive usage of scikit-learn

compatible modules in BCI-HIL gives direct access to many off-

the-shelf algorithms as well as an easy way to implement and

integrate custommodules, in turn leading to easy experimentation,

ease-of-use, modularity, and customizability.

With the BCI-HIL framework a researcher can add their own

machine learning algorithms to the Timeflux nodes as per the

requirements in their experiment, as long as it follows the scikit-

learn syntax. BCI-HIL provides the structure for presenting the

experiment, collecting and analysing the data but the user can

adjust all parts of the framework to their needs. This is one of the

strengths of the BCI-HIL framework, the customizability for the

user to implement any BCI paradigm and corresponding machine

learning algorithm they need.

3.2.5. BCI-HIL advantages
Our research framework only depends on free-to-use open-

source tools and languages. Other state-of-the-art BCI frameworks

such as BCILAB, EEGLAB, and FieldTrip requires licensing

MATLAB, and Octave being a somewhat MATLAB-compatible

environment is unfortunately not mature enough to handle these

extensive packages. Regarding programming languages, BCI-HIL is

written in the Python and JavaScript languages, regarded as easier

to learn and more portable than the C++ language used by the

Frontiers inHumanNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

BCI2000 and Falcon frameworks. Also, BCILAB, OpenViBE, and

Gumpy are no longer in active development.

3.3. Human-in-the-loop feedback

Traditionally, neurofeedback has been studied through the

feedback of one-dimensional features, often based on the energy

content within a specific frequency band. The goal is for the subject

to consistently amplify or attenuate this feature. The purpose of

many such studies has been to mitigate neurological disorders

such as anxiety, insomnia, or epilepsy, or to improve desired

states/behaviors such as cognitive performance or sleep quality.

If such effects can be attributed to the modulation of certain

neurological processes is still under debate, according to Marzbani

et al. (2016).

Other studies have focused on providing neurofeedback with

the aim of guiding the user to encode mental states useful for

control of some kind of application, for example a simple computer

game or moving a cursor on a computer screen, as done by

Neuper and Pfurtscheller (2010). Additionally, it is well-established

that brain activity and mental states can be decoded to varying

degrees of accuracy, depending on the paradigm, equipment, and

experimental setup utilized.

In an active BCI setting, the performance of the system is

clearly dependent on both the BCI decoding algorithm as well as

the encoding of mental states performed by the user, exemplified

in a longitudinal study leading up to the Cybathlon BCI race

(Perdikis et al., 2018). With the large inter-subject and inter-session

variability seen in BCI, modern decoding approaches often take a

data driven approach based on machine learning. Thus, the BCI

is learning from data and can be tailored to a specific subject or

session asmore data becomes available. This leads us to the so called

co-adaptation (Perdikis andMillan, 2020) and two-learners problem

problem (Müller et al., 2017) where the machine and human both

learns and adapt their strategies over time, hopefully converging to

a system that can convey more information in a more robust and

intuitive way.

Here it is important to give, not only the computer but also

the human, relevant feedback such that the mental strategy can be

adapted and/or learned. Thus, selecting what kind of feedback to

display, and how, is of interest for optimal user-learning (Roc et al.,

2021).

Additionally, for reactive BCIs with stimuli presented

sequentially to the user, closing the loop with the human also has

potential benefits. If the decoding results of stimuli presented early

in the experiment indicates a certain result, this information could

be leveraged to better decide which subsequent stimuli to display,

as presented by Tufvesson et al. (2023).

In the case of a passive BCI, closing the loop with the user

would be accomplished differently. Although the user is not actively

attempting to communicate with the BCI, the results obtained from

decoding can still be utilized to influence the environment in which

the user is operating. Examples could be adjusting the difficulty of

task based on decoding of cognitive load, or indicating when it is

time to take a break due to tiredness.

3.4. Hardware latency calibration

When conducting neuroscientific experiments or using a BCI,

it is often important to accurately synchronize stimuli onsets

with the corresponding EEG-data. Different types of equipment

for stimuli-presentation have different properties and imposes

different types of delay. Also, within the same type of equipment

there is a lot of variability. In order tomitigate the effects of intrinsic

delays of the system components it is essential, for each setup, to

perform a delay calibration. A thorough description of latencies in

a BCI setup is presented by Wilson et al. (2010).

Another type of latency is the one introduced by signal

processing steps, and an intrinsic problem when performing

analysis on epoched data is that the signal processing cannot start

before the data from the whole epoch time window is available. To

get a faster response, an epoch has to be constructed from a shorter

time window of data, which then can be processed with a lower

latency.

3.4.1. Calibrating audio to display latency
The combination of a chosen display device and an audio device

will need to be calibrated. With human-in-the-loop calibration,

this step includes adjusting an on-screen slider that will change

the audio-to-display latency until the audio clicks are perceived to

correspond to visual flashes on the display.

In order to obtain an approximate estimate of the intrinsic

audio latencies present in your Client GUI setup, it is possible

to conduct a measurement of the round-trip audio latency of the

hardware and stimuli web application combined.31 Do note that

this test, run in a web browser, measures your combined audio

output and input latency.

3.4.2. Calibrating display to EEG latency
The latency in a computer system from the CPU to visible

changes on a display consists of many steps. The, much simplified,

chain is from the CPU to graphics drivers, to the GPU and then to

the display device. The latency in this part will change depending

on settings like which render mode the OS uses (DirectX, OpenGL,

Vulcan, Metal, etc.), as well as settings like double/triple buffering,

vsync, and frame rate limiting.

Even though the Client GUI computer is good at knowing

when the information is sent to the display system, there is still

a part of the display latency that cannot be measured without

external hardware.

The display used can be the internal display of a laptop, or an

external display connected with any common interface like VGA,

DVI, HDMI, Display Port or USB-C. Typical input lag values for

HDMI input for an external computer monitor is between 9 and

117 ms, with a 29 msmedian value, when tested using a Leo Bodnar

HDMI input lag tester32 according to the Display Lag Database.33

For a TV the input lag is between 18 and 177 ms, and 9 ms

to 31 ms in low latency game mode when measuring a range

31 superpowered.com/webbrowserlatency

32 leobodnar.com

33 displaylag.com/display-database

Frontiers inHumanNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://superpowered.com/webbrowserlatency
https://leobodnar.com
http://displaylag.com/display-database
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

of hundreds of TV models.34 This kind of uncertainty needs to

be accounted for, especially if we are to regard the higher time

resolutions found in EEG signals. Also, note the difference between

response time, input lag, and refresh rate. The response time for

a TV or computer monitor is how fast one single pixel can flip

from being light to being dark, while input lag is the time it takes

for the monitor from first input signal to presenting the image on

screen. The input lag is always larger than the response time. The

refresh rate is how many times per second the display can redraw

the image.

A calibration of a certain hardware setup needs only to be

done once, then the found latency needs to be applied to all

signals acquired with that setup. Numerous third-party stimulus

trackers are available for this kind of latency measurements. As an

alternative, we suggest using human-in-the-loop synchronization,

where tapping the EEG headset to create artifacts in sync with visual

flashes lets us measure the latency, at least to the accuracy of the

human-in-the-loop’s taps on the physical EEG hardware. Humans

can tap to a beat with ∼30 ms variance (Tierney and Kraus, 2013),

and by measuring multiple taps, the variance can be averaged out.

3.4.3. Calibrating audio to EEG latency
Playing sounds using a laptop includes a ring buffer of samples

that is filled in an event-based interrupt driven function. Different

operating systems and audio codecs will have different sizes of

their audio buffers, and latency will depend on these factors. Using

an external audio hardware digital-to-analog converter (DAC) will

also change the latency, and using wireless headphones or an

external amplifier will also add to the audio latency. Another factor

to consider is the speed of sound, ∼343 m/s in dry air at 20 ◦C,

which introduces a latency of∼3 ms per meter from a loudspeaker

to the subject’s ears.

The setup used for getting the display to EEG latency is used

similarly for audio to EEG calibration. Tapping the EEG headset

to create artifacts in sync with audio clicks lets us measure the

latency, at least to the accuracy of the human-in-the-loop’s taps on

the physical EEG hardware, as described in the previous section.

3.5. Hiding latency

The subject expects the Client GUI to update smoothly, with

graphics being animated in sync with the Client GUI display many

times per second, especially in a fast-paced BCI setting. The Engine

program decides the state of the BCI system at a lower frequency,

and any classification or machine learning might take even longer

time and provide updates less often. One major challenge in such a

system is to keep the subject immersed by hiding the slower parts of

the system, keeping consistent graphics updates despite uncertainty

in when results and classifications get updated.

Online multiplayer games have exactly this problem, where

clients have inconsistent and varying latencies to the server. One

approach used in multiplayer online gaming is to use predictive

algorithms to extrapolate other players’ movements and then

34 rtings.com/tv/tests/inputs/input-lag

correcting them every time the true server state arrives. Another

strategy is to use techniques such as data compression and network

optimization to reduce the amount of data that needs to be

transmitted over the network. This can help tominimize the impact

of network latency and reduce the amount of time that it takes

for data to travel between the player’s device and the game server

logic. To minimize network congestion and latencies, use a local

network to connect devices, dedicated to the computers running

the experimental setup with as few as possible external devices

present. Similar approaches could be used to keep the Client GUI

updating smoothly.

A simple way to hide latency in a single-person BCI research

setup is to smoothly animate changes in bar graphs and fade images

in and out. Not everything should be smooth, though, since when

using the P300 response as described by Chapman and Bragdon

(1964), images shown to the subject should be shown instantly, to

keep the onset event timing as distinct as possible.

3.6. Non-causal filters vs. causal filters

When doing offline analysis, we have access to all data in the

EEG time-series. This helps us as non-causal filters with perfect

frequency and phase responses can be designed. However, when

using this type of filter for online processing, we have to wait for

future signals to arrive, thus adding additional delay to the analysis.

The other option is to employ causal filters, which inevitably entail

a drawback or compromise that we need to take into account.

A common way of making this trade-off is to use the impulse

response of the desired non-causal filter, and time-shift it and

multiply it using a windowing function, thereby truncating the

length of the non-causal filter, turning it into a causal filter with

an inherent delay. Good practices and what to avoid is discussed in

the paper VanRullen (2011). The paper presents a warning against

improper use of filtering, showcased with EEG signals shaped

as step-functions with Gaussian noise and a filter function with

excessive ringing. However, biological signals are rarely shaped as

step functions and usually have lower noise levels than the signals

in the paper. Nevertheless, the paper proves an important point.

Filtering of event-related potential (ERP) onsets and distortion of

data is commented by Rousselet (2012). Further insights on aspects

of ERP filtering can be gained by reading about, and understanding,

the basics of ERPs (Luck, 2014).

4. Results

In Sections 4.1 and 4.2 below, we provide examples and describe

how the different system components presented in Section 3.2 can

be combined and used to design two different BCI applications.

The first application is a scaled-down motor imagery experiment,

containing one calibration session and one feedback session. The

second application is an unsupervised visual P300 task, where the

goal is to distinguish images in a target category from images in a

number of non-target categories. These detailed demos using the

BCI-HIL framework with source code and instructions for running

Frontiers inHumanNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
http://rtings.com/tv/tests/inputs/input-lag
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

the applications can be found in the repository complementing

this paper.35

4.1. Motor imagery BCI application

In this section, we show how a scaled-down motor imagery

BCI-HIL application can be built. More specifically the application

is a standard motor imagery session with a calibration phase and

a feedback phase. Additionally, during the feedback phase, the

resulting classification results are fed back to the stimuli program,

altering the behavior, in order to showcase the more general

HIL-application. While the performed experiment is simple, the

example application still contains most major components of a

human-in-the-loop BCI. The example could have been scaled

down even further by, one step at a time, removing components

such as the Admin GUI, classification-feedback, online calibration,

and online signal processing. Removing all of the mentioned

components would collapse the setup to a regular motor imagery

data collection experiment. However, in the interest of generality,

most system components are still included, while the experiment

performed is chosen to be as simple as possible.

4.1.1. Engine
The Engine is kept simple. During the calibration phase the

program generates which motor imagery-tasks the subject will

be asked to perform, and this command is passed to the Client

GUI. When timestamps of the instructions being displayed on the

monitor become available, the Engine creates the corresponding

LSL event markers. In the feedback phase, the Engine is listening

for the output results from the Calculate program, and sends

them to the Client and Admin GUIs. Throughout the experiment,

the Engine takes commands from the Admin GUI such as

experiment metadata and when to switch between the calibration

and feedback phases.

4.1.2. Client and Admin GUI
In order to show only the bare minimum code and on-screen

controls needed to run the experiment, both these programs are

kept as simple as possible. The Admin GUI takes inputs which are

forwarded to the Engine, while the Client GUI receives commands

from the Engine saying what motor imagery commands and

feedback to display to the subject.

4.1.3. Calculate program
For this motor imagery experiment containing one calibration

and one feedback session, we use the following Timeflux setup:

• LSL graph: Here, the LSL-streams of interest are the EEG

data itself, the stream with markers indicating when stimuli

are displayed (in this case instructions to the subject on what

motor imagery to perform), as well as streams with high level

communication such as signaling when to start/stop collecting

35 bci.lu.se/bci-hil (or at: github.com/bci-hil/bci-hil).

data, train a ML-model, or when the training is done and the

feedback phase can commence.

• Preprocessing graph: For preprocessing, two independent

processing sequences are used in parallel: one for the

calibration and one for the feedback session. Both sequences

first apply a band-pass filter. The calibration sequence

continues with the Epoch node (matching timestamps of

stimuli markers with EEG-data in order to create epochs

time-locked to the stimuli event). For a feedback session

in a motor imagery experiment, there is no incentive

to match epochs to stimuli events as the subject is

intentionally encoding/modulating the mental state without

being intrinsically time-locked to an external stimuli event.

Therefore, the EEG data is cut into epochs with a fixed inter-

epoch interval in a rolling window fashion. For this, the

Window node is used. In the provided example code, the data

is band-pass filtered between 8 and 30 Hz.

• ML graph: This graph consists of the TrainingML and

InferenceML custom nodes. When the experiment starts, the

epochs produced by the preprocessing graph are collected and

saved to disk. Upon instruction from the Engine program,

a scikit-learn pipeline model is trained on the available data

and saved to disk. When ready, the InferenceML node takes

over and loads the fitted model from disk and continuously

classifies new EEG-epochsmade available by the preprocessing

graph.

In the provided example code different scikit-learn

pipelines are implemented. For instance, one of them

calculates the covariance matrices for each epoch and uses

minimum distance to mean classification on the Riemannian

manifold. As emphasized above, any scikit-learn compatible

classifier can be utilized by the researcher.

4.1.4. Running a session
First, the computer needs to be setup to run Python programs,

preferably using Python’s virtual environments,36 Anaconda,37 or

Miniconda.38 Additionally, a modern web browser has to be

installed such as Google Chrome.39 In order to run a session, four

separate programs need to be started: the Engine, the Client GUI,

the Admin GUI, and the Calculate program.

To run the Engine, which is a Python program, a command

line or terminal is used. Go to the engine folder using cd. The

required Python modules are found in the requirements.txt

file, and can for example be installed into your Python environment

with the pip package installer using the command python

-m pip install -r requirements.txt. Then, run the

engine using the command python engine.py. Printouts and

debug messages will be displayed in this command line window.

The Client GUI and Admin GUI are regular HTML web pages

and runs directly in a web browser. To run these programs, find the

admin and client folders respectively and then run admin.html

and client.html either by opening the file-path in the web

36 docs.python.org/3/library/venv.html

37 anaconda.org

38 docs.conda.io/en/main/miniconda.html

39 google.com/chrome

Frontiers inHumanNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://bci.lu.se/bci-hil
https://github.com/bci-hil/bci-hil
https://docs.python.org/3/library/venv.html
https://anaconda.org
https://docs.conda.io/en/main/miniconda.html
https://google.com/chrome
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

browser, or by clicking the files directly in the file system (assuming

that a correct default application is set). Make sure that the Client

GUI window is on the correct display when doing the latency

calibration, as different screens will have different latencies in

your setup.

The Calculate program is mostly running Python. However,

since applications in Timeflux are defined and launched from

yaml-files, the startup procedure is a bit different compared to

when running the Engine. In order to run the BCI-HIL custom

modules some extra setup is needed. For these instructions we

refer to the README.md-file. Finally, to run the application

from the command line, find the demo_MI/graphs/ folder.

Here, launch the main yaml-file with the command timeflux

main_demo_MI.yaml. Additional options can be specified

with flags. For more info on these options use the command

timeflux -help.

When the Engine and Calculate programs are run, they will

start looking for LSL-streams on the local network. Make sure that

the EEG hardware is powered on and configured to present itself

as an LSL outlet. When the LSL-stream is found, a message will be

written to the log output in the Engine’s terminal window. Similarly,

with debugmessages activated, the Timeflux Receive nodes will also

indicate when a matching LSL-stream has been found.

4.2. Clear by Mind BCI application

Clear by Mind is a game using the BCI-HIL framework

presented in this paper. The game shows what a brain

computer interface can do in a few minutes without any prior

training, calibration effort or transfer learning in an unsupervised

experiment. The aim of the demonstration is to raise interest in

real-time reactive BCI research.

The task in the game is for the subject to identify an

innocent group of people that are incorrectly suspected in an

ongoing investigation. This is done using a wireless EEG headset

and a reactive BCI based on the oddball paradigm using the

P300 response (Chapman and Bragdon, 1964). The subject has

information about one group of people that are innocent, for

example “the innocent people are green,” “yellow,” “blue,” or “red”.

Examples of people from the different groups can be seen in

Figure 6. In a series of rapidly displayed images, the subject will

count the number of times a person belonging to the innocent

category is shown, and the BCI will output probabilities of each

category being the innocent.

One of the research questions that initiated the implementation

of the Clear by Mind brain game is how to choose the stimuli

sequence optimally. When using any event-related potential such

as P300 in a reactive BCI, choosing a stimuli sequence algorithm

that adapts to the classification results so far will outperform blind

stimuli selection algorithms like pure randomness or round-robin

algorithms (Tufvesson et al., 2023).

4.2.1. Engine
Similar to the the Engine in the motor-imagery BCI application

presented in Section 4.1 above, the Engine creates relevant event

FIGURE 6

Visual stimuli used in the Clear by Mind game. The subject knows

that one group of people, based on their color, is innocent. The

subject is asked to count the number of times a person belonging to

this group is displayed. Artwork: Kirsty Pargeter/Freepik.

markers and acts as themediator between the the Client and Admin

GUI, and the Calculate program. Additionally, logic for deciding

which stimuli to be displayed is implemented here.

4.2.2. Admin GUI
The Admin GUI display is facing the audience and is not seen

by the subject. In addition to accepting relevant operator inputs,

it displays relevant information for the operator and audience

such as the sequence of images shown and the current estimated

probabilities output from the classification algorithm for each of

the four different groups of suspects.

4.2.3. Client GUI
The Client GUI display initially shows an attract mode

slideshow and simple instructions for the subject to follow. During

a trial, when requested by the Engine, the Client GUI shows the

rapidly changing images that the subject either counts or ignores.

4.2.4. Calculate program
The goal of the Calculate program in this case is to find the

target class that the subject is focusing on, in an unsupervised

fashion. The only information available in this setting is the raw

EEG data, and which stimuli were displayed at different points

in time.

• LSL graph: Similar to the motor imagery BCI application, the

LSL-streams of interest are the EEG data itself, the stream with

markers indicating when stimuli are displayed (in this case

information on which stimuli were displayed), as well as the

stream with general instruction regarding the experiment.

• Preprocessing graph: Contrary to the motor imagery BCI

application, the Epoch node is used throughout the whole

session for creating epochs. Only time-locked EEG-epochs

matched to stimuli onset are used in this oddball paradigm.

• Signal processing graph: Since this is neither a regular

supervised nor an unsupervised machine learning

classification task, but rather a find the odd-one-out task, the

previously mentioned TrainingML and InferenceML nodes

are not used. Instead, a tailor-made node is used. Here, epochs

are grouped corresponding to the color of the suspect being

Frontiers inHumanNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

FIGURE 7

The flowchart for the Clear by Mind unsupervised classification

experiment. At the start of the session, the subject is introduced to

the task of counting suspects and gets instructions on what to

expect during the experiment. Then, a five second rest state is used

to let the subject focus, and then the Client GUI will show a number

of suspects images in rapid succession. After a while the subject

gets to rest again, allowing for a few seconds to relax, move freely

and do eye blinks, before continuing counting another round of

potential suspects. In this setup, the complete session lasts ∼90 s.

The latency calibration only needs to be done once, and is optional,

but will improve the accuracy of the recorded marker’s relative

position to any saved EEG data when used for o	ine analysis.

displayed when the epochs were collected. Any algorithm can

then be applied to try to find the odd-one-out. In particular,

an algorithm that averages epochs and compares pairwise

distances between covariance matrices corresponding to the

different classes is used.

4.2.5. Running a session
To run the experiment, follow the steps in Section 4.1.4. When

the EEG hardware and all four programs are up and running, an

initial calibration phase (see Figure 7) is used to find the latency

from display output to EEG input. This calibration should be done

at least once per setup, since the latency depends on the specific

combination of hardware.

4.3. Pitfalls and troubleshooting

There are numerous ways that the BCI-HIL research

framework may or may not perform as intended. By carefully

reading the log output of the Engine, most problems can be

understood and corrected. Below is a list of potential configuration

errors and how to handle them.

• Engine debugging: Read the console output from the Engine

program. Debug messages useful for understanding many

issues are printed here.

• Client and Admin GUI debugging: First, make sure to use

the Google Chrome web browser for viewing the respective

HTML files. The log output of these programs are found

in the Console tab in the Tools for Developers sidebar.

Debug messages useful for understanding many issues are

printed here.

• Timeflux and Calculate program debugging: At runtime,

Timeflux provide debug messages if the application is

launched with the -debug flag. If things are not working

as expected when building or customizing applications in

Timeflux, a natural initial debugging step would be to verify

that all data is passed as expected.

• No LSL stream found: If a wireless EEG hardware device

is used, make sure that it is connected to the same wifi

network as the computer that runs the Engine program. Also,

make sure that this wifi network allows device-to-device direct

communication with no firewall "protecting" devices from

each other. This may be the case in corporate wifi setups.

The solution is to setup your own local wifi network using a

personal wifi router, or even running the experiment using a

mobile hotspot from a smartphone. The availability of LSL-

streams can also be checked by installing any LSL recorder

software, and there make sure that the EEG hardware can

be found.

• EEG data loss or jitter: The Client GUI in the Clear by Mind

example brain game is setup to show EEG data with as low

latency as possible. If frequent disruptions are noticed in the

stream of incoming EEG data waveforms, the wireless setup

might need to be optimized. To reduce jitter in the EEG

stream, use wired communications wherever possible, and

when forced to use wireless communication make sure that

there are as few disturbing devices using the same frequency

bands as possible. Regarding Bluetooth, it is a good idea to

turn off other Bluetooth devices in closer proximity than 30

m. Regarding wifi, a wifi analyzer app on a smartphone can be

used to scan for and identify other wifi nets and routers that

may introduce congestion and impair the wireless channel. It

is also possible trying to switch to another wifi channel in the

router providing the experiment wifi.

• LSL timestamp units: Beware that EEG hardware using

LSL can have their own interpretation on how to produce

timestamps, especially when it comes to the unit: seconds,

milliseconds, or nanoseconds. The timestamp may also be

offset with zero being the boot time of the system, the Unix

epoch in 1970 or any other arbitrary offset.

• Cloud computing: In this paper, we intentionally refrain

from referring to any particular commercial cloud services

or providers, and consider “cloud computing” as any remote

computer outside of your local network. Cloud computing

services can provide you with virtual machines that support

the websocket technology that we use as communication

channel between modules in BCI-HIL. The deployment,

security, and management of cloud-native technology is

beyond the scope of this method paper.

Frontiers inHumanNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

4.4. Experiment preparations

Before the BCI-HIL framework is used some preparations

are needed.

4.4.1. Human-in-the-loop latency calibration
At least once for every unique combination of computer,

display, loudspeaker, headphones, EEG hardware, and network

connection, you should estimate the latency between stimuli and

EEG signal. The BCI-HIL research framework attempts to keep

the jitter in this latency as small as possible. The average value

of the latency is unknown, but often below half a second, which

depending on circumstances can be regarded as small or large.

4.4.2. Electrode impedance
Preparing the EEG headset is an art in itself. Some EEG

hardware has the possibility to directly measure the electrode

impedance guiding the application of wet abrasive gel to minimize

the artifacts that will arise from high impedance electrode to skin

coupling, as described by Browne (1957).

When using simpler EEG hardware, one way of detecting

less-than-ideal impedance is to watch for the artifacts directly.

EEG is measuring signals in the range of millivolts, and the

electromagnetic environment of today contains a lot of noise

sources that will interfere with the measurements. In almost any

location where EEG measurements are done, there will be 50

or 60 Hz disturbances coming from the electricity distribution

system in walls, floors, and ceilings. We can use these artifacts

to roughly estimate if an electrode has a low enough impedance

between the electrode and the skin, since whenever the impedance

gets high, the 50/60 Hz amplitude will rise. A narrow band-

pass filter around 50 Hz can be added to measure the energy

in the signal, and then provide visual feedback on the Admin

and Client GUI displays for all the measured EEG channels. The

artifact amplitudes could then assist in aligning the electrodes

and improve their connectivity. Since non-artifact EEG signals are

inherently low amplitude, implementing a 1 Hz high pass filter

should also get a good enough power estimation for EEG electrode

adjustment guidance.

A filter should be used to reduce these high impedance artifacts’

impact on your online analysis. This could either be a low pass filter,

or a 50 or 60Hz notch filter. Do note that any kind of online filtering

needs to make a proper trade-off between frequency and phase

response vs. non-causality. Only introduce a filter if you know it

makes sense to use it.

5. Discussion

5.1. Considerations when choosing a BCI
research framework

Having read up to this point, you have attained a substantial

level of understanding concerning the research methodology and

the requisite tools for BCI systems. Selecting a BCI framework

requires a comprehensive examination of the framework’s intended

purpose, as well as its target users and implementation methods.

We have outlined a list of desirable attributes for a BCI research

framework in Section 3.1.

For example, if you are a scientist interested in experimenting

with and developing new algorithms for BCIs or data analysis,

you will probably also be proficient in programming. Such a user

will most likely be interested in open-source code, a high level

of customizability, and modularity (in the sense that different

components of the system can be exchanged by others) which

our framework BCI-HIL provides. Having a GUI and ready-to-use

modules might be of relatively low importance in this case.

For researchers less proficient in coding, open-source code and

complete customizability might be less important, while interaction

with a large set of easily combined standard components and

algorithms is valued highly. If you remain uncertain regarding the

selection of an appropriate BCI research framework, we suggest

opting for a Graphical User Interface (GUI) based drag-and-drop

configuration, such as those presented in Section 2.2.1.

5.2. Considerations when planning your
experiment

5.2.1. Ethical aspects
It is imperative for any experimental study to undergo

an ethical review by an external committee. For instance, in

accordance with the regulations outlined by the European General

Data Protection Regulation (GDPR), EEG data is regarded as

personal data when it includes information about an individual’s

physiology, health, or mental states. Although these properties

are not typically utilized in a BCI setting, they are still inherent

in the underlying EEG signal. As a result, it is essential to

consider brain data to be equally sensitive as medical data and

to treat it accordingly. One solution to ensure data privacy is to

ensure that stored EEG data is kept separate from any personal

identifiers. Specifically, any cloud computing devices responsible

for processing the EEG data should not handle any metadata that

could potentially be utilized to link the data to an identifiable

individual. By implementing this approach, the EEG data can be

appropriately treated as pseudonymized. For a thorough discussion

about EEG signals and data privacy, see the article by Rainey et al.

(2020).

Regardless, your experiment should include a consent form,

which subjects will need to sign before having their data recorded

and used.

5.2.2. Eye blink removal
Depending on your experimental setup, there will be a certain

amount of subject induced artifacts in the measured EEG data.

These are unwanted segments where noise might completely mask

out or deteriorate the signal-to-noise ratio of the EEG signal. Thus,

parts of the time series could be unusable. One way of dealing with

these artifacts is trying to limit them or control when they happen.

Asking subjects to refrain from movements during parts of the

experiment will lower the amount of noise due to mechanical or

muscle movement. It also possible to introduce eye blink pauses

Frontiers inHumanNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

in the experiments, trying to keep the amount of usable EEG data

high. Another common practice is to add fixation crosses for the

subject to focus on, to reduce the number of saccades. If you cannot

avoid getting artifacts into your EEG signals, Jiang et al. (2019) gives

an overview of approaches to EEG artifact removal.

5.2.3. Baselining
The EEG signal quality can be improved by using baselining,

which means that the signals are reset to a starting level at the

onset of an event, canceling out drifting potentials between the EEG

electrodes. Baselining is easier to use than high-pass filters which

are known to deform relevant parts of the EEG-waveform in for

example event-related potentials. Additionally, in contrast to any

practically useful casual high-pass filter, baselining does not need to

add processing delay to the EEG signal, since the correction is based

on data that has already been acquired.

5.2.4. Algorithm optimization with simulated EEG
Even though all EEG-signals and stimuli are recorded, there is

a point where changing the algorithms also would have changed

the response or behavior of the subject. To be able to experiment

with algorithms offline in this setting, one would need to simulate

a model of human behavior. There are models for generating

EEG data on every level, from individual neurons up to single

EEG scalp electrode ERP responses, as described in the book

by Ermentrout and Terman (2010). Naturally, these simulation

models are simplifications compared to a real human brain and

will only to some extent help when optimizing algorithms offline.

However, offline processing can help in finding artifacts as well as

improve the understanding of the signals and noise present in the

current experiment.

5.2.5. Gradual improvements and iterations
To optimize performance in every unique BCI situation one

should plan for making many iterations. Every paradigm, subject

and specific setup is going to be at least slightly different.

Additionally, insights gained from offline analysis might lead to

changes in the setup that help to improve the performance of

online human-in-the-loop system. But of course, the effect of these

changes will only be seen when running yet another iteration of the

online system, as illustrated in Figure 2.

6. Conclusion

In this paper, we have presented an open-source BCI research

framework for the next generation of brain-computer interfaces,

addressing the challenge of fast prototyping for online classification

of neural activity. We introduced the BCI-HIL (see text footnote 35)

framework for real-time classification, analysis, and computations

to bring the human into the loop of learning, evaluation, and

improvement. This approach can lead to shorter calibration times

and the possibility of researching new ideas and expanding where

and when brain-computer interfaces can be used.

Data availability statement

Code for the framework is publicly available at https://www.bci.

lu.se/bci-hil (or at https://github.com/bci-hil/bci-hil).

Author contributions

MGN: conceptualization, methodology, writing—original

draft, writing—editing, software, investigation, and project

administration. PT: conceptualization, methodology, writing—

original draft, writing—editing, visualization, and investigation.

FH: software, investigation, and writing—review. MJ: supervision

and writing—review and editing. All authors gave final approval

for publication and agreed to be held accountable for the work

performed therein.

Funding

This work was supported by the ELLIIT Strategic Research

Area. This work was partially supported by the Wallenberg AI,

Autonomous Systems and Software Program (WASP) funded by

the Knut and Alice Wallenberg Foundation.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., and Zhao, X. (2019). A comprehensive
review of EEG-based brain-computer interface paradigms. J. Neural Eng. 16, e011001.
doi: 10.1088/1741-2552/aaf12e

Barachant, A., Morrison, D., Banville, H., Kowaleski, J., Shaked, U.,
Chevallier, S., et al. (2019). muse-lsl, v2.0.2. Zenodo. doi: 10.5281/zenodo.32
28861

Frontiers inHumanNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://www.bci.lu.se/bci-hil
https://www.bci.lu.se/bci-hil
https://github.com/bci-hil/bci-hil
https://doi.org/10.1088/1741-2552/aaf12e
https://doi.org/10.5281/zenodo.3228861
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gemborn Nilsson et al. 10.3389/fnhum.2023.1129362

Belliveau, J. W., Kennedy, D. N., McKinstry, R. C., Buchbinder, B. R., Weisskoff,
R. M., Cohen, M. S., et al. (1991). Functional mapping of the human visual cortex by
magnetic resonance imaging. Science 254, 716–719. doi: 10.1126/science.1948051

Berger, H. (1929). Über das Elektrenkephalogramm des Menschen. Archiv für
Psychiatrie und Nervenkrankheiten 87, BF01797193. doi: 10.1007/BF01797193

Browne, M. K. (1957). Preparation of skin for electrocardiography. Br. Med. J. 2,
1238.

Chapman, R., and Bragdon, H. (1964). Evoked responses to numerical and non-
numerical visual stimuli while problem solving. Nature 203, 1155–1157.

Ciliberti, D., and Kloosterman, F. (2017). Falcon: a highly flexible open-
source software for closed-loop neuroscience. J. Neural Eng. 14, e045004.
doi: 10.1088/1741-2552/aa7526

Clisson, P., Bertrand-Lalo, R., Congedo, M., Victor-Thomas, G., and Chatel-
Goldman, J. (2019). "Timeflux: an open-source framework for the acquisition and near
real-time processing of signal streams," in BCI 2019—8th International Brain-Computer
Interface Conference (Graz), 88–93.

Cohen, D. (1968). Magnetoencephalography: evidence of magnetic fields produced
by alpha-rhythm currents. Science 161, 784–786. doi: 10.1126/science.161.3843.784

Debener, S., Minow, F., Emkes, R., Gandras, K., and de Vos, M. (2012). How about
taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49, 1617–1621.
doi: 10.1111/j.1469-8986.2012.01471.x

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis. J. Neurosci.
Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Ermentrout, G., and Terman, D. H. (2010). Mathematical Foundations of
Neuroscience. New York, NY: Springer New York.

Farwell, L. A., and Donchin, E. (1988). Talking off the top of your head: toward
a mental prosthesis utilizing event-related brain potentials. Electroencephal. Clin.
Neurophysiol. 70, 510–523. doi: 10.1016/0013-4694(88)90149-6

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,
C., et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7,
1–13. doi: 10.3389/fnins.2013.00267

Jiang, X., Bian, G.-B., and Tian, Z. (2019). Removal of artifacts from EEG signals: a
review. Sensors 19, 50987. doi: 10.3390/s19050987

Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial
oxygen sufficiency and circulatory parameters. Science 198, 1264–1267.

Koles, Z. (1991). The quantitative extraction and topographic mapping of the
abnormal components in the clinical EEG. Electroencephal. Clin. Neurophysiol. 79,
440–447.

Kothe, C., and Makeig, S. (2013). BCILAB: a platform for brain–computer interface
development. J. Neural Eng. 10, e056014. doi: 10.1088/1741-2560/10/5/056014

Leuthardt, E. C., Schalk, G.,Wolpaw, J. R., Ojemann, J. G., andMoran, D.W. (2004).
A brain–computer interface using electrocorticographic signals in humans. J. Neural
Eng. 1, 63–71. doi: 10.1088/1741-2560/1/2/001

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd
Edn. Cambridge, CA: MIT Press.

Marzbani, H., Marateb, H. R., and Mansourian, M. a. (2016). Methodological note:
neurofeedback: a comprehensive review on system design, methodology and clinical
applications. Basic Clin. Neurosci. J. 7, 3070208. doi: 10.15412/J.BCN.03070208

Müller, J. S., Vidaurre, C., Schreuder, M., Meinecke, F. C., von Bünau, P., andMüller,
K.-R. (2017). A mathematical model for the two-learners problem. J. Neural Eng. 14,
e036005. doi: 10.1088/1741-2552/aa620b

Muller-Putz, G. R., and Pfurtscheller, G. (2008). Control of an electrical
prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55, 361–364.
doi: 10.1109/TBME.2007.897815

Nam, C. S., Choi, I., Wadeson, A., and Whang, M. (2018). "Brain–computer
interface: an emerging interaction technology," in Brain–Computer Interfaces
Handbook: Technological and Theoretical Advances, eds C. S. Nam, A. Nijholt, and F.
Lotte (New York, NY: CRC Press), 12–52.

Neuper, C., and Pfurtscheller, G. (2010). "Neurofeedback training for BCI control,"
in Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction, eds B.
Graimann, G. Pfurtscheller, and B. Allison (Berlin; Heidelberg: Springer), 65–78.

Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D.W. (1990). Brain magnetic resonance
imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U. S. A.
87, 9868–9872.

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip: open
source software for advanced analysis of meg, eeg, and invasive electrophysiological
data. Comput. Intell. Neurosci. 2011, 156869. doi: 10.1155/2011/156869

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in Python. the J. Machine Learn. Res. 12,
2825–2830. Available online at: http://jmlr.org/papers/v12/pedregosa11a.html

Perdikis, S., and Millan, J. d. R. (2020). Brain-machine interfaces:
a tale of two learners. IEEE Syst. Man Cybernet. Magazine 6, 12–19.
doi: 10.1109/MSMC.2019.2958200

Perdikis, S., Tonin, L., Saeedi, S., Schneider, C., and Millán, J. d. R. (2018). The
cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users.
PLoS Biol. 16, 1–28. doi: 10.1371/journal.pbio.2003787

Przegalinska, A., Ciechanowski, L., Magnuski, M., and Gloor, P. (2018).
“Muse headband: Measuring tool or a collaborative gadget,” in Collaborative
Innovation Networks: Building Adaptive and Resilient Organizations, eds F. Grippa,
J. Leitao, J. Gluesing, K. Riopelle, and P. Gloor (Cham: Springer), 93–101.
doi: 10.1007/978-3-319-74295-3_8

Rainey, S., McGillivray, K., Akintoye, S., Fothergill, T., Bublitz, C., and Stahl,
B. (2020). Is the european data protection regulation sufficient to deal with
emerging data concerns relating to neurotechnology? J. Law biosci. 2020, lsaa051.
doi: 10.1093/jlb/lsaa051

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., et al. (2010).
OpenViBE: an open-source software platform to design, test and use brain-computer
interfaces in real and virtual environments. Presence Teleoperat. Virt. Environ. 19, 35.
doi: 10.1162/pres.19.1.35

Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009). xDAWN algorithm
to enhance evoked potentials: application to brain-computer interface. IEEE Trans.
Bio-med. Eng. 56, 2035–2043. doi: 10.1109/TBME.2009.2012869

Roc, A., Pillette, L., Mladenovic, J., Benaroch, C., N’Kaoua, B., Jeunet, C., et al.
(2021). A review of user trainingmethods in brain computer interfaces based onmental
tasks. J. Neural Eng. 18, e011002. doi: 10.1088/1741-2552/abca17

Rousselet, G. (2012). Does filtering preclude us from studying ERP time-courses?
Front. Psychol. 3, 131. doi: 10.3389/fpsyg.2012.00131

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., and Wolpaw, J. R.
(2004). BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE
Trans. Biomed. Eng. 51, 1034–1043. doi: 10.1109/TBME.2004.827072

Stenner, T., Boulay, C., Grivich, M., Medine, D., Kothe, C., Herzke, T., et al. (2022).
sccn/liblsl: v1.16.0. Available online at: https://labstreaminglayer.readthedocs.io/info/
faqs.html?highlight=cite#referencing-lsl

Tayeb, Z., Waniek, N., Fedjaev, J., Ghaboosi, N., Rychly, L., Widderich,
C., et al. (2018). Gumpy: a python toolbox suitable for hybrid brain–
computer interfaces. J. Neural Eng. 15, e065003. doi: 10.1088/1741-2552/a
ae186

Teversham, J., Wong, S. S., Hsieh, B., Rapeaux, A., Troiani, F.,
Savolainen, O., et al. (2022). "Development of an ultra low-cost SSVEP-
based bci device for real-time on-device decoding," in 2022 44th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC) (Glasgow), 208–213. doi: 10.1109/EMBC48229.2022.98
71064

Tierney, A. T., and Kraus, N. (2013). The ability to tap to a beat relates to cognitive,
linguistic, and perceptual skills. Brain Lang. 124, 225–231. doi: 10.1016/j.bandl.2012.
12.014

Tufvesson, P., Gemborn-Nilsson, M., Soltesz, K., and Bernhardsson, B. (2023).
“Real-time bayesian control of reactive brain computer interfaces,” in IFAC Proceedings
Volumes (IFAC-PapersOnline) Yokohama.

VanRullen, R. (2011). Four common conceptual fallacies in mapping the
time course of recognition. Front. Psychol. 2, 365. doi: 10.3389/fpsyg.2011.
00365

Venthur, B., Scholler, S., Williamson, J., Dähne, S., Treder, M., Kramarek,
M., et al. (2010). PYFF—a Pythonic framework for feedback applications and
stimulus presentation in neuroscience. Front. Neurosci. 4, 179. doi: 10.3389/fnins.2010.
00179

Vidal, J. J. (1973). Toward direct brain-computer communication. Ann. Rev.
Biophys. Bioeng. 2, 157–180.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Wilson, J. A., Mellinger, J., Schalk, G., and Williams, J. (2010). A procedure
for measuring latencies in brain–computer interfaces. IEEE Trans. Biomed. Eng. 57,
1785–1797. doi: 10.1109/TBME.2010.2047259

Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., and
Vaughan, T. (2002). Brain–computer interfaces for communication and
control. Clin. Neurophysiol. 113, 767–791. doi: 10.1016/s1388-2457(02)00
057-3

Frontiers inHumanNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1129362
https://doi.org/10.1126/science.1948051
https://doi.org/10.1007/BF01797193
https://doi.org/10.1088/1741-2552/aa7526
https://doi.org/10.1126/science.161.3843.784
https://doi.org/10.1111/j.1469-8986.2012.01471.x
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3390/s19050987
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1088/1741-2560/1/2/001
https://doi.org/10.15412/J.BCN.03070208
https://doi.org/10.1088/1741-2552/aa620b
https://doi.org/10.1109/TBME.2007.897815
https://doi.org/10.1155/2011/156869
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1109/MSMC.2019.2958200
https://doi.org/10.1371/journal.pbio.2003787
https://doi.org/10.1007/978-3-319-74295-3_8
https://doi.org/10.1093/jlb/lsaa051
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1109/TBME.2009.2012869
https://doi.org/10.1088/1741-2552/abca17
https://doi.org/10.3389/fpsyg.2012.00131
https://doi.org/10.1109/TBME.2004.827072
https://labstreaminglayer.readthedocs.io/info/faqs.html?highlight=cite#referencing-lsl
https://labstreaminglayer.readthedocs.io/info/faqs.html?highlight=cite#referencing-lsl
https://doi.org/10.1088/1741-2552/aae186
https://doi.org/10.1109/EMBC48229.2022.9871064
https://doi.org/10.1016/j.bandl.2012.12.014
https://doi.org/10.3389/fpsyg.2011.00365
https://doi.org/10.3389/fnins.2010.00179
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TBME.2010.2047259
https://doi.org/10.1016/s1388-2457(02)00057-3
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

	An open-source human-in-the-loop BCI research framework: method and design
	1. Introduction
	1.1. Brief history of BCI research
	1.2. Different types of BCI systems
	1.2.1. Active BCIs
	1.2.2. Reactive BCIs
	1.2.3. Passive BCIs

	1.3. Next generation BCIs
	1.4. Outline

	2. Materials and equipment
	2.1. Measure functional neural activity
	2.2. Landscape of EEG processing tools
	2.2.1. Real-time online BCI research frameworks
	2.2.1.1. BCILAB
	2.2.1.2. FieldTrip
	2.2.1.3. BCI2000
	2.2.1.4. OpenViBE
	2.2.1.5. Falcon
	2.2.1.6. Gumpy
	2.2.1.7. Timeflux

	2.2.2. Non-realtime offline BCI research frameworks
	2.2.2.1. EEGLAB
	2.2.2.2. MNE-Python

	2.2.3. Stimuli toolboxes
	2.2.3.1. Pyff
	2.2.3.2. Psychopy


	2.3. Hardware
	2.3.1. EEG hardware
	2.3.1.1. MBT Smarting
	2.3.1.2. Muse S
	2.3.1.3. Neurosity The Crown


	2.4. Software
	2.4.1. Programming languages
	2.4.2. Inter-process communication
	2.4.2.1. Lab streaming layer
	2.4.2.2. Websockets

	2.4.3. Stimuli software
	2.4.3.1. Using modern web technology for stimuli presentation

	2.4.4. Online processing with Timeflux
	2.4.4.1. Timeflux basic concepts
	2.4.4.2. Building Timeflux applications from existing nodes
	2.4.4.3. Notable Timeflux nodes
	2.4.4.4. Building custom Timeflux nodes



	3. Methods
	3.1. Desirable properties of a BCI research framework
	3.1.1. Functionality
	3.1.2. Ease-of-use
	3.1.3. Modularity
	3.1.4. Compatibility
	3.1.5. Customizability

	3.2. BCI-HIL modules
	3.2.1. The Engine program
	3.2.2. The Admin GUI
	3.2.3. The Client GUI(s)
	3.2.4. The Calculate program: Timeflux in BCI-HIL
	3.2.4.1. Custom BCI-HIL nodes

	3.2.5. BCI-HIL advantages

	3.3. Human-in-the-loop feedback
	3.4. Hardware latency calibration
	3.4.1. Calibrating audio to display latency
	3.4.2. Calibrating display to EEG latency
	3.4.3. Calibrating audio to EEG latency

	3.5. Hiding latency
	3.6. Non-causal filters vs. causal filters

	4. Results
	4.1. Motor imagery BCI application
	4.1.1. Engine
	4.1.2. Client and Admin GUI
	4.1.3. Calculate program
	4.1.4. Running a session

	4.2. Clear by Mind BCI application
	4.2.1. Engine
	4.2.2. Admin GUI
	4.2.3. Client GUI
	4.2.4. Calculate program
	4.2.5. Running a session

	4.3. Pitfalls and troubleshooting
	4.4. Experiment preparations
	4.4.1. Human-in-the-loop latency calibration
	4.4.2. Electrode impedance


	5. Discussion
	5.1. Considerations when choosing a BCI research framework
	5.2. Considerations when planning your experiment
	5.2.1. Ethical aspects
	5.2.2. Eye blink removal
	5.2.3. Baselining
	5.2.4. Algorithm optimization with simulated EEG
	5.2.5. Gradual improvements and iterations


	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


