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Accumulating evidence indicates that most primary Wharton’s jelly mesenchymal
stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity,
i.e., their ability to modulate their microenvironment by releasing bioactive
molecules and factors collectively known as secretome. These bioactive
molecules and factors can either be released directly into the surrounding
microenvironment or can be embedded within the membrane-bound
extracellular bioactive nano-sized (usually 30–150 nm) messenger particles or
vesicles of endosomal origin with specific route of biogenesis, known as
exosomes or carried by relatively larger particles (100 nm–1 μm) formed by
outward blebbing of plasma membrane called microvesicles (MVs); exosomes
and MVs are collectively known as extracellular vesicles (EVs). The bioactive
molecules and factors found in secretome are of various types, including
cytokines, chemokines, cytoskeletal proteins, integrins, growth factors,
angiogenic mediators, hormones, metabolites, and regulatory nucleic acid
molecules. As expected, the secretome performs different biological functions,
such as immunomodulation, tissue replenishment, cellular homeostasis, besides
possessing anti-inflammatory and anti-fibrotic effects. This review highlights the
current advances in research on the WJ-MSCs’ secretome and its prospective
clinical applications.
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1 Introduction

In recent years, the biological and clinical interest in mesenchymal stem cells (MSCs) has
grown remarkably due to their distinctive stemness characteristics. MSCs are multipotent
non-hematopoietic cells that exhibit high degree of self-renewal, multi-lineage
differentiation potential and immunomodulatory activity (Pittenger et al., 1999; Ali
et al., 2015).

MSCs reside primarily in the bone marrow, where they were first characterized;
nevertheless, they have a broad post-natal organ distribution (Friedenstein et al., 1970).
MSCs have been isolated from different adult and fetal tissues (Uder et al., 2018). The adult
tissues include adipose tissue, skeletal muscle, bone marrow, molar teeth/dental pulp,
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synovium/synovial fluid, skin, hematopoietic supportive stroma,
and others (da Silva Meirelles et al., 2006). The fetal tissues
include peripheral and umbilical cord blood, umbilical cord
stroma or tissue, placenta, amniotic fluid, endometrium (da Silva
Meirelles et al., 2006; Jiang et al., 2011). Although, MSCs share
common characteristics including the expression of common cell
surface markers (CD105, CD73 and CD90) and multipotency
capacity to differentiate into osteoblasts, chondrocytes, or
adipocytes (Carvalho et al., 2011; Ghaneialvar et al., 2018), they
have different expression profiles and properties.

The unique properties of Wharton’s Jelly (WJ)-MSCs attracted
the attention of scientific community as an alternative source of stem
cells for regenerative medicine. Unlike embryonic stem cells, no
ethical concerns are associated with WJ-MSCs clinical application.
Remarkably, both cell types have comparable molecular signatures
as depicted from genetic profiling studies (Hsieh et al., 2010). Worth
mentioning, umbilical cord bloodMSCs share similar characteristics
to that of WJ-MSCs, however, they are less attractive for clinical
application due to their low frequency, poor proliferation rate and
culture limitations (Zeddou et al., 2010).

WJ-MSCs characteristics qualify them as a better alternative for
clinical use since WJ-MSCs are isolated from the gelatinous layer of
the umbilical cord tissue using a non-invasive and painless
procedure. Moreover, the umbilical cord is deemed a medical
waste eliminating ethical concerns for their use (Kim et al.,
2013). Thus, the use of WJ-MSCs overcomes the clinical
limitations associated with adult MSCs such as the invasive
collection procedures and the availability of suitable cell donors
(Ali et al., 2015). Because of the embryonic nature of WJ-MSCs, the
expression of the pluripotency markers, NANOG, Oct 3/4 and Sox2,
is higher than that of the adult MSCs (Nekanti et al., 2010; Higuchi
et al., 2012), and also implies less exposure to environmental toxins
and associated genetic modulation which, may in part, explain their
superiority over the adult MSCs (Fong et al., 2011). In comparison to
adult MSCs, WJ-MSCs have a higher proliferation rate, longevity,
differentiation potential, immune-privilege, and lower
immunogenicity properties (Kim et al., 2013). Together, these
advantages enable the use of WJ-MSCs as therapeutic agents in
regenerative medicine. Notably, several clinical trials have been
established to investigate the safety and efficacy of treatment with
allogeneic WJ-MSCs (Uder et al., 2018; Carlsson et al., 2023). Yet,
there are critical issues including heterogenicity as depicted from
single cell transcriptomic studies (Chen et al., 2023), lack of clinical
longitudinal studies addressing the long-term safety and prospective
adverse conditions such as potential tumorigenicity,
profibrogenicity, which were reported using adult MSCs (Russo
et al., 2006; Barkholt et al., 2013). Together, these complications may
add some complexity to their clinical applications.

In general, it was initially believed that the therapeutic effects of
transplanted MSCs were facilitated by the migration of the cells to
sites of injury, where they integrated into the damaged tissue and
differentiated into specialized cells. But only a small number of cells
were detected to engraft and survive in the damaged host tissue.
Therefore, it became evident that the transplanted MSCs do not
necessarily need to come in proximity with the damaged tissue. A
growing body of evidence supports that the therapeutic effects of
MSCs occur largely through paracrine signaling of secretome (Fong
et al., 2014), which is classified into soluble factors (growth factors,

cytokines, chemokines, and enzymes) and extracellular vesicles
(EVs) such as exosomes and microvesicles (MVs) that
additionally contain lipids, proteins, RNA and DNA subtypes
(Daneshmandi et al., 2020). Therefore, delineating the secretome
components and properties may assist with improving the
therapeutic potential of MSCs (Nooshabadi et al., 2018). In this
review, we discuss the WJ-MSCs’ secretome components compared
to the secretomes of other MSCs as well as the therapeutic
applications of these cells and their secretome in different disease
conditions.

2 WJ mesenchymal stem cell’s origin
and isolation

During pregnancy, the umbilical cord forms a link between the
mother and the fetus. From the outside, the umbilical cord is covered
by a layer(s) of squamous-cubic epithelial cells, called umbilical
epithelium (Can and Karahuseyinoglu, 2007; Wang et al., 2008).
From the inside, the umbilical cord is composed of two arteries and
one vein that are surrounded by a matrix of embryonic mucous
connective tissue called WJ, which lies between the covering
amniotic epithelium and the umbilical vessels (Figure 1) (Can
and Karahuseyinoglu, 2007).

WJ’s function is to protect the enclosed vessels from
compression, torsion and bending to maintain the blood flow
between the fetal and maternal circulations. The mucous
connective tissue contains specialized fibroblast-like cells and
some mast cells. These stromal cells are called myofibroblasts
because they exhibit some ultrastructural features of both smooth
muscle cells and fibroblasts (Karahuseyinoglu et al., 2007). WJ is the
major source of MSCs from the umbilical cord due to the large
number of MSCs that may reach up to 4,700,000 MSCs/cm of the
umbilical cord (Subramanian et al., 2015). In addition, the cells
isolated from WJ show specific characteristics of MSCs, such as
pluripotency and self-renewal as well as the ability to adhere to
plastic in culture, the expression of specific surface antigens, namely
CD105, CD73 and CD90, as well as their ability to differentiate into
osteoblasts, adipocytes and chondroblasts (Ali et al., 2015).

2.1 Origin of WJ-MSCs

Although the ontogeny of MSCs is well-documented in both
human and rodent fetal and adult tissues, little is known about the
origin of WJ-MSCs. However, it is widely accepted that WJ-MSCs
and adult MSCs have common parental cells, since both have similar
structure and shape, possess the same surface markers, and have
similar plasticity and multipotency (Can and Karahuseyinoglu,
2007). At the human embryonic stage E26-E27 [E11-E12 in mice
(Mendes et al., 2005)], mesenchymal progenitor/stem cells initially
arise in unique structures within the intra-embryonic aorta-gonad-
mesonephros (AGM) region, i.e. in the earliest hematopoietic-
forming sites (Wang et al., 2008). Although the hemangioblast
compartments provide a good niche for the maintenance and
proliferation of the mesenchymal progenitor/stem cells, these
cells are different from their neighboring hematopoietic or
endothelial progenitor cells (Durand et al., 2006; Guillot et al.,
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2007). In addition, WJ-MSCs are capable of proliferation and
differentiation independently from any support by neighboring
cells, whereas the hematopoietic stem cells (HSCs) are dependent
on stromal cells as feeder cells. (Oostendorp et al., 2002; Mendes
et al., 2005). During embryogenesis, MSCs co-localize with
hematopoietic stem and progenitor cells, and circulate from the
AGM region to various tissues (Migliaccio et al., 1986; Takashina,
1987; Zanjani et al., 1993; Tavian et al., 1999). Campagnoli et al.,
(2001) and Guillot et al., (2007) recovered a large number of MSCs
from human fetal blood, liver, and bone marrow in the first-
trimester of pregnancy, which showed the expression of
pluripotency markers, demonstrated rapid growth and increased
telomere length. However, in the second- and third-trimesters, the
detected frequency of MSCs was low in the circulation and

hematopoietic tissues, but high in the bone marrow, suggesting
that MSCs undergo a migration process and are eventually stored in
the bone marrow (Campagnoli et al., 2001). During the migration of
MSCs from the AGM region to the fetal liver and bone marrow,
some cells get trapped, and thus colonize the gelatinous material of
the WJ, forming WJ-MSCs (Mendes et al., 2005; Batsali et al., 2013).

2.2 Isolation and culture of stromal cells

Cells from the umbilical cord can be isolated using two different
methods, the explant method, or the enzymatic digestion method
(Figure 1). The explant method requires mechanical tissue mincing
that is followed by placing the tissue at substrate/tissue interface,

FIGURE 1
Umbilical cordWJ-MSCs and secretome. (A) Anatomical illustration of a cross section of umbilical cord depictingWharton’s jelly, the process ofWJ-
MSCsmechanical and enzymatic isolation, culturing and secretome collection which contains both soluble and exosome fractions. (B) Schematic image
for the exosome components. (C) Prospective functional roles of the secretome that influence cell function and system homeostasis.
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which results in cell outgrowth on a plastic surface. The enzymatic
digestion method, on the other hand, involves an additional step of
tissue enzymatic digestion before plating on tissue culture plates
(Mushahary et al., 2018). To isolateWJ-MSCs by enzymatic method,
a freshly removed 5–10 cm long umbilical cord needs to be
immediately transported to the laboratory in a sterile and cooled
transfer medium (e.g. Hanks’ balanced salt solution). Then, before
further processing of the tissue, arteries and veins are aseptically
removed. After that, the cord is mechanically chopped and can be
digested using enzymes such as collagenase, hyaluronidase,
caseinase, clostripain and tryptic activity (Can and
Karahuseyinoglu, 2007). The tissue homogenate is then filtered
through 70–100 µm pore sized sieves to remove unnecessary
tissue debris and the cells are plated, displaying a fibroblast-like
appearance over the first culture period until the first passage
(Figure 1) (Can and Karahuseyinoglu, 2007; Karahuseyinoglu
et al., 2007).

2.3 Proliferation and senescence

For cell-based therapy, using adult MSCs involves some
challenges, including also their failure to proliferate infinitely.
They have a limited number of population doublings before they
become senescent, that is a state of cell division arrest which
eventually limits their immunomodulatory and differentiation
capacities and thus, their clinical application is impeded (Fan
et al., 2011; Turinetto et al., 2016). Due to their embryonic
origin, WJ-MSCs show a delayed progression to senescence,
compared to other MSCs (Batsali et al., 2017; Liau et al., 2020).
Liau et al., (2020) observed no significant differences in WJ-MSCs’
proliferation, cell cycle, phenotype, and stemness marker expression
after serial cell passaging. However, the expression of senescence-
related gene, p21, and oncogene, c-Myc, was significantly
upregulated at late passages (>20 cell passages). Furthermore, at
low (<10) cell passages, WJ-MSCs adopt small fine-spindle shape
which then transforms into flat, long, and broader cell morphology
at later passages associated with low proliferation rate (Panwar et al.,
2021). The late passage cells are non-tumorigenic, show slow cellular
aging and do not exhibit chromosomal abnormalities. However,
further passages demonstrate shorter telomere length (Panwar et al.,
2021). Due to their embryonic nature, WJ-MSCs have low
senescence rate relative to adult MSCs. Therefore, earlier passages
of WJ-MSCs are good candidates for therapeutic use.

3 Principle of cell-fee based therapy

Several studies have demonstrated promising results for the
treatment of different diseases using MSC-based therapy (Connick
et al., 2012; Karantalis et al., 2014; Rushkevich et al., 2015; Vega et al.,
2015; Fernández et al., 2018). Although the exact mechanism of
action of MSCs remains unclear, various studies show that it is the
secreted factors and EVs, collectively called the secretome, that cause
the improvement rather than cellular differentiation at the site of
injury or tumor per se (Gomes et al., 2018). The term secretome was
originally defined by Tjalsma et al., (2000) as “both the components
of machineries for protein secretion and the native secreted

proteins.” However, currently the secretome is defined as “the
factors that are secreted by a cell, tissue, or organ to the
extracellular space at a specific time and under defined
conditions” (Hathout, 2007; Agrawal et al., 2010). As mentioned
above, the secretome is composed of soluble factors (growth factors,
cytokines, chemokines, interleukins, prostaglandins, angiogenic
mediators, hormones) and EVs including exosomes and MVs
that harbor the vital molecules including lipids, proteins (cell
adhesion molecules, extracellular matrix proteins, receptors,
enzymes, metabolites, transcription factors), RNA and DNA
subtypes inside or on their surfaces (Baraniak and McDevitt,
2010; Vizoso et al., 2017; Witwer and Théry, 2019; Daneshmandi
et al., 2020; Xunian and Kalluri, 2020; Al Madhoun et al., 2021).

The use of cells’ secretome as a whole or only the EVs for
treatment of diseases is termed as cell-free based therapy. Its benefits
include the overcoming of ethical issues associated with cellular
transplantation and preventing survival or complications resulting
from incorrect differentiation of the cells in the host tissue, while
maintaining the therapeutic potential (Chronopoulos and Kalluri,
2020; Kalluri and LeBleu, 2020).

4 Extracellular vesicles (EVs), their
origin, subtypes, and composition

EVs are lipid bound vesicles harboring proteins, lipids and
nucleic acids (Zaborowski et al., 2015; Bebelman et al., 2018) that
are secreted into the extracellular space (Yáñez-Mó et al., 2015;
Zaborowski et al., 2015; Théry et al., 2018). They play a role in
intercellular communication and have the potential to alter the
function of the recipient cell (White et al., 2006; Harding et al., 2013;
Zaborowski et al., 2015). There are three principal subtypes of EVs
including microvesicles (MVs), exosomes, and apoptotic bodies,
which are distinguished based on their biogenesis and release
pathways, their size, content, and function (Borges et al., 2013;
Yáñez-Mó et al., 2015; Zaborowski et al., 2015). Despite the fact that
their protein profiles vary based on their formation pathways, there
are no specific distinguishing protein markers identified as yet.
Exosomes are vesicles (30–150 nm in diameter) that are enclosed
within a single outer membrane, originate from the endosome, and
are secreted by all types of cells (Yáñez-Mó et al., 2015; Bebelman
et al., 2018). Exosomes play a role in intercellular communication,
cell maintenance, and tumor progression. They may also induce
immune responses by acting as antigen-presenting vesicles (Bobrie
et al., 2011; Chaput and Théry, 2011; Doyle and Wang, 2019).
Microvesicles (MVs), also known as ectosomes, microparticles or
shedding MVs, on the other hand, are vesicles (100 nm to 1 µm in
diameter) (Borges et al., 2013; Yáñez-Mó et al., 2015; Zaborowski
et al., 2015) that form by direct outward budding or pinching of the
cell’s plasma membrane. It is believed that their formation requires
cytoskeleton components (actin and microtubules), molecular
motors (kinesins and myosins), and fusion machinery (SNAREs
and tethering factors) (Cai et al., 2007). Due to their outward
blebbing from the plasma membrane, in contrast to exosomes,
MVs are abundant in cytosolic and plasma membrane associated
proteins (Doyle and Wang, 2019), such as cytoskeletal proteins,
integrins, heat shock proteins (HSPs), and tetraspanins (Willms
et al., 2018). Annexin A1 which belongs to the family of Ca2+-
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dependent phospholipid-binding membrane proteins has been
identified as a specific marker of MVs (Jeppesen et al., 2019). In
mammals, MVs can be released by almost all cell types such as blood
cells (platelets, leukocytes, and erythrocytes) (Wolf, 1967),
endothelial cells (Elsner et al., 2023), and vascular smooth muscle
cells (Boulanger et al., 2006). Apart from differences in their size and
biogenesis, MVs and exosomes express different surface molecules
used as biomarkers for their identification (Wu et al., 2013).
Prototypic exosome markers include tetraspannins (CD9,
CD63 and CD81) and ESCRT proteins (Alix and TSG101)
(Hessvik and Llorente, 2018; Mathieu et al., 2021) while MVs are
well studied in tumor cells and their markers frequently include
CD40, ARF6, selectins, and flotillin-2 (Sedgwick and D’Souza-
Schorey, 2018). MVs, like exosomes, are involved in intercellular
communication. Apoptotic bodies (50 nm up to 5,000 nm in
diameter) are released by dying cells due to separation of the
plasma membrane from the cytoskeleton (Wickman et al., 2012).
Unlike both exosomes and MVs, apoptotic bodies may contain
intact organelles, chromatin, and small amounts of glycosylated
proteins (Thery et al., 2001).

5 Wharton’s jelly MSCs secretome

5.1 Comparison of WJ-MSC’s secretome to
that derived from other MSCs

The ability of the secretome to mediate various biological
functions prompted exploratory studies on its use in cell-free
therapies. The secretome of MSCs displays heterogeneous profiles
depending on factors such as host age, source of MSCs, and the cell
culture/differentiation media used (Paliwal et al., 2018).
Investigating the differences in MSCs’ secretome and elucidating
the mechanisms of action of their components may potentially
facilitate effective and cell-free use of the secretome for treating
different diseases (Kupcova Skalnikova, 2013; Driscoll and Patel,
2019; Kandoi et al., 2019; Wang L-T. et al., 2021; Munoz-Perez et al.,
2021; Sandonà et al., 2021; Muzes and Sipos, 2022; Ghasemi et al.,
2023).

Moreover, recent advances in analytical techniques have allowed
the mapping of MSCs’ secretome and identifying the therapeutic
factors applicable in regenerative medicine. The proteomic methods
used for characterizing the secretome of MSCs are based on
approaches involving immunological, shotgun and proteomic
assays (Lavoie and Rosu-Myles, 2013). Immunological assays,
including enzyme-linked immunosorbent assay (ELISA), Luminex
antibody bead-based array, microarray, Western blotting, and
cytokine antibody array, are highly specific, sensitive, and
reproducible. While, the shotgun-based proteomics, two-
dimensional gel electrophoresis, liquid chromatography with
tandem mass spectrometry, stable isotope labeling by amino
acids in cell culture (SILAC), matrix-assisted laser desorption/
ionization time of flight (MALDI-TOF), MS/MS and quadrupole
time-of-flight mass spectrometry (QTOF-MS), enable the
identification of unknown and uniquely secreted proteins
(Kandoi et al., 2019).

Significant differences in the secretomes’ profiles of MSCs from
different sources have been documented (Shin et al., 2021).

Moreover, Kim et al. observed a donor-to-donor variation in the
secretome profiles of WJ-MSCs, even under identical culture
conditions and passage number (Kim et al., 2019). Therefore, it
is important to analyze the composition and functions of the
secretome of different MSCs as it may affect their therapeutic
potential. Hitherto, the best characterized secretome are those of
bone marrow derived MSCs and adipose stem/stromal cells
(Kupcova Skalnikova, 2013). Only recently, a comparative
analysis of human WJ-MSC secretome has revealed the presence
of a large number of proteins (Shin et al., 2021). For example, a study
showed that alpha-2-macroglobulin (α2M) was the most highly
expressed protein, after serum albumin (Bakhtyar et al., 2018). The
secretome of these cells was also found to be enriched with
cytokines/chemokines and growth factors, including interleukin
(IL) 1-alpha (IL-1α), IL-1β, IL-6, IL-8, and granulocyte-
macrophage colony-stimulating factor (GM-CSF), which was
shown to have both pro- and anti-tumorigenic effects
(Mirabdollahi et al., 2019). Other secreted factors include IL-2,
IL-7, IL-12, IL-15, monocyte chemoattractant protein-1 (MCP-1),
macrophage inflammatory protein-1beta (MIP-1β), regulated upon
activation, normal T cell expressed and presumably secreted
(RANTES), and platelet-derived growth factor (PDGF)-AA
(Mirabdollahi et al., 2019). These factors are involved in cellular
proliferation and differentiation, tissue remodeling, and regulating
inductive events in patterning and morphogenesis; while
chemoattractants such as MCP1, MIP-1β, RANTES, hepatocyte
growth factor (HGF), fibroblast growth factor-2 (FGF-2), and
PDGF-AA, facilitate mobilizing of immune cells in the process
(Yoo et al., 2009; Prasanna et al., 2010; Konala et al., 2020). A
recent study that compared expression profiles of WJ-MSCs and
bone marrow derivedMSCs reported significant differences between
both (Barrett et al., 2019). They found that 436 genes were
significantly and differentially expressed in WJ-MSCs (Barrett
et al., 2019). These genes play a role in different processes, such
as immunomodulation, angiogenesis, wound healing, apoptosis,
antitumor activity, and chemotaxis (Barrett et al., 2019). The
authors are suggesting that these differences may explain the
advantages of using WJ-MSCs over BM-MSCs in clinical
applications (Barrett et al., 2019). A myriad of biomolecules and
factors detected in the secretome of different MSCs is summarized in
Table 1.

5.2 Therapeutic potential and applications of
WJ-MSCs and their secretome

As mentioned above, it is thought that MSCs facilitate the tissue
and organ repair by their multipotent potential that enables them to
replace the damaged cells (Mahmood et al., 2003; Murphy et al.,
2003). However, it was later suggested that in response to tissue
injury, MSCs home to the damaged site and stimulate repair by
producing trophic factors such as growth factors, cytokines, and
antioxidants (Chen et al., 2008; Karp and Leng Teo, 2009). Some of
these factors impart MSCs their immunomodulatory potential
(English et al., 2010). In general, the biological characteristics of
MSCs that form the basis of their clinical applications include: (a)
their ability to home to sites of inflammation following tissue injury
when injected intravenously (Rustad and Gurtner, 2012); (b) the
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TABLE 1 Comparison of the components of different MSCs’ secretome.

Function Marker WJ-MSCsa AD-MSCsb BM-MSCsc DP-MSCsd Peripheral
MSCse

Angiogenesis ANG ✓ ✓

ANGPT1 ✓ ✓ ✓ ✓

Chemokine CCT8 ✓

CCL5 ✓ ✓

MCP1 ✓ ✓

MIP-1B ✓

SDF-1 ✓ ✓ ✓

Cytokine IFN-g ✓ ✓ ✓

IL-10 ✓ ✓ ✓

IL-12 ✓

IL-15 ✓

IL-1a ✓ ✓ ✓

Il-1b ✓ ✓

IL-2 ✓

IL-4 ✓ ✓

IL-6 ✓ ✓ ✓ ✓

IL-7 ✓

IL8 ✓ ✓

Cytoskeleton ACTA2 ✓ ✓ ✓ ✓ ✓

ACTB ✓ ✓ ✓ ✓ ✓

ACTC1 ✓ ✓ ✓ ✓ ✓

ACTG2 ✓

ACTN4 ✓ ✓

DES ✓

FLNA ✓

SPTA1 ✓

SPTB ✓

TAGLN ✓

TPM2 ✓

TUBB ✓

VIM ✓ ✓

ECM protein FBN1 ✓ ✓

FN1 ✓ ✓

Enzyme GAPDH ✓

IDO ✓

Functional
protein

MYH11 ✓

MYH14 ✓

(Continued on following page)
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TABLE 1 (Continued) Comparison of the components of different MSCs’ secretome.

Function Marker WJ-MSCsa AD-MSCsb BM-MSCsc DP-MSCsd Peripheral
MSCse

MYH9 ✓

MYL6 ✓

TLN1 ✓

Growth factor FGF-2 ✓ ✓ ✓ ✓

GDF6 ✓

GM-CSF ✓

HGF ✓ ✓ ✓

NGF ✓

PDGF-1 ✓ ✓ ✓

TGF-B ✓ ✓ ✓ ✓

VEGF ✓ ✓ ✓ ✓ ✓

Hemoglobin HBA1 ✓

HBB ✓

HBG2 ✓

Hormone IGF-1 ✓ ✓ ✓ ✓

Immune system IGHG2 ✓

IGHG3 ✓

IGHM ✓

IGKC ✓

IGLC2 ✓

Inflammation ANXA1 ✓

Inhibitor TIMP2 ✓ ✓ ✓

lipid metabolism APOA1 ✓

Membrane
skeletal protein

ANK1 ✓

Nucleoprotein AHNAK ✓

plasma
membrane
protein

SLC4A1 ✓

Plasma protein FGB ✓

A2M ✓

ALB ✓ ✓ ✓ ✓ ✓

C3 ✓

TF ✓

Pleiotropic
protein

ANXA2 ✓

Prostaglandin PGE2 ✓

Ribosomal
protein

RPLP2 ✓

(Continued on following page)

Frontiers in Cell and Developmental Biology frontiersin.org07

Drobiova et al. 10.3389/fcell.2023.1211217

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1211217


secretion of multiple bioactive molecules capable of stimulating
recovery of injured cells and inhibiting inflammation (Ranganath
et al., 2012), (c) modulating the immune functions (Lo Iacono et al.,
2018), (d) differentiation into various cell types (Wang S. et al.,
2012), and (e) as a tool for gene therapy (Kamal and Kassem, 2020).

Because the secretome of WJ-MSCs plays roles in cellular
homeostasis, anti-inflammation, tissue replenishment,
immunomodulation, and other functions (Tang et al., 2021), the
therapeutic potentials of WJ-MSCs and their secretome have been
explored for several disease conditions as briefly reviewed in the
following sections.

5.3 Immunomodulatory properties

The clinical utility of WJ-MSCs is tantamount, due basically to
their low immunogenicity (Liu et al., 2012; Kim et al., 2013; Varaa
et al., 2019).WJ-MSCs were found to express low-to-moderate levels
of MHC class I (HLA-ABC) molecules (Prasanna et al., 2010; Liu
et al., 2012; de Girolamo et al., 2013) and lack the expression of
MHC class II (HLA-DR) and co-stimulatory antigens such as CD40,
CD80 and CD86 that lead to T- and B-cell mediated responses
(Pappa and Anagnou, 2009; Prasanna et al., 2010). Their
immunosuppressive potential also relates to their ability to
produce large quantities of immunosuppressant cytokines, such
as TGF-β, IL-10, and VEGF (Weiss et al., 2008).

Interestingly, MSCs, including WJ-MSCs, may interact with and
modulate the activation and function of all key immune effector cells
including T or B cells (Le Blanc et al., 2004; Aggarwal and Pittenger,
2005; Uccelli et al., 2006; Carreras-Planella et al., 2019), monocyte or
macrophages (Cutler et al., 2010; Dymowska et al., 2021; Lu et al.,
2021), dendritic cells (DCs) (Tipnis et al., 2010; Gao et al., 2017;
Vieira Paladino et al., 2019), neutrophils (Khan et al., 2015; Ahn

et al., 2020; Taghavi-Farahabadi et al., 2021), mast cells (Brown et al.,
2011; Cho et al., 2022), and natural killer cells (Casado et al., 2013;
Najar et al., 2018; Abbasi et al., 2022). Although the mechanism of
immunomodulatory activity remains to be elucidated, it is thought
that both cell-to-cell contact and soluble factors are the key players
in WJ-MSCs mediated immunosuppression (Shi et al., 2010; Ma
et al., 2014). Of note, WJ-MSCs and their secretome possess the
immunomodulatory properties (Mrahleh et al., 2021; Muzes and
Sipos, 2022), in addition to exerting anti-inflammatory effects
(Munoz-Perez et al., 2021). In this regard, immune-modulatory
effects of WJ-MSCs secretome were related to the presence of several
secreted factors, including IL-2, IL-6, IL-12, IL-15, CXCL8 (IL-8),
CCL2 (MCP-1), CCL3/4 (MIP-1), CCL5 (RANTES), and
prostaglandin-E2 (PGE2) (Yoo et al., 2009). Taghavi-Farahabadi
et al., (2021) demonstrated that WJ-MSCs’ secretome improved the
function and expanded the lifespan of neutrophils, which might
have therapeutic applications for treating neutropenia or chronic
granulomatous disease. These positive effects of exosomes were
ascribed to miRNAs and mRNAs, as well as several secreted
factors present in exosomes, including tumor necrosis factor α
(TNFα), G-CSF, interferon (IFN)-γ, IFN-α, IL-8, and IL-6
(Taghavi-Farahabadi et al., 2021). Moreover, WJ-MSCs can
modify T cell receptor-mediated T cell activation via EVs
enriched with programmed death-ligand 1 (PD-L1) which
reduces T cell activation in acute graft versus host disease (Li
et al., 2021). WJ-MSCs’ exosomes also proved to be beneficial for
treating lymphedema by increasing the expression of
lymphangiogenic factors including angiopoietin-2 (Ang2),
prospero-homeobox protein 1 (Prox1), and phospho-Akt (Ting
et al., 2021). Moreover, based on their immunomodulatory
effects, whether through cell-to-cell contact or soluble factors,
WJ-MSCs and their secretome have been used to successfully
treat morbid conditions, such as graft versus host disease (Newell

TABLE 1 (Continued) Comparison of the components of different MSCs’ secretome.

Function Marker WJ-MSCsa AD-MSCsb BM-MSCsc DP-MSCsd Peripheral
MSCse

Serine protease
inhibitor

SERPINA1 ✓ ✓ ✓

References Bakhtyar et al., (2018), Mirabdollahi
et al., (2019), Konala et al., (2020),
Yoo et al., (2009); Prasanna et al.,

(2010)

Chang et al., (2017),
Mussano et al., (2017), An
et al., (2021), Chen et al.,

(2022)

Oskowitz et al., (2011),
Katagiri et al., (2017),
Baberg et al., (2019), Konala
et al., (2020)

Rajan et al.,
(2017), Konala
et al., (2020)

van Buul et al.,
(2012), Katagiri et al.,

(2016)

A2M, Alpha-2-Macroglobulin; ACTA2, Actin; aortic smooth muscle; ACTB, Actin; cytoplasmic 1; ACTC1, Actin; alpha cardiac muscle; ACTG2, Actin; gamma-enteric smooth muscle;

“ACTN4, Actinin Alpha 4”; AHNAK, Desmoyokin, ALB, Albumin; ANG, Angiogenin; ANGPT1, Angiopoietin-1; ANK1, Ankyrin 1; ANXA1, Annexin A1; ANXA2, Annexin A2; APOA1,

Apolipoprotein A1; C3, Complement C3; CCL5, RANTES; CCT8, Chaperonin Containing T-Complex Polypeptide 1 Subunit 8; DES, Desmin; FBN1, Fibrillin 1; FGB, Fibrinogen Beta Chain;

FGF-2, Fibroblast growth factor 2; FLNA, isoform 2 of filamin-A; FN1, Fibronectin 1; GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase; GDF6, Growth Differentiation factor 6; GM-CSF,

Granulocyte-Macrophage Colony-Stimulating Factor; HBA1, Hemoglobin Subunit Alpha 1; HBB, Hemoglobin Subunit Beta; HBG2, Hemoglobin Subunit Gamma 2; HGF, Hepatocyte Growth

factor; IDO, Indoleamine 2; 3-Dioxygenase 1; IFN-g, Interferon g; IGF-1, Insulin-like growth factor-1; IGHG2, Immunoglobulin Heavy Constant Gamma 2; IGHG3, Immunoglobulin Heavy

Constant Gamma 3; IGHM, Immunoglobulin Heavy Constant Mu; IGKC, Immunoglobulin Kappa Constant; IGLC2, Immunoglobulin Lambda Constant 2; IL-10, Interleukin-10; IL-12,

Interleukin-12; IL-15, Interleukin-15; IL-1a, Interleukin-1a; Il-1b, Interleukin-1b; IL-2, Interleukin-2; IL-6,; IL-7, Interleukin-7; IL8, Interleukin-8; MCP1,Monocyte Chemoattractant Protein-1;

MIP-1B, Macrophage Inflammatory Protein 1-Beta; MYH11, Isoform 2 of Myosin 11; MYH14, Myosin Heavy Chain 14; MYH9, Myosin Heavy Chain 9; MYL6, Myosin Light Chain 6; NGF,

Nerve Growth Factor; PDGF-1, Platelet Derived Growth Factor Subunit A; PGE2, Prostaglandin E2; RPLP2: Ribosomal Protein Lateral Stalk Subunit P2, SDF-1: Stromal Cell-Derived Factor 1;

SERPINA1, Serpin Family A Member 1; SLC4A1, Solute Carrier Family 4 Member 1; SPTA1, Spectrin Alpha; Erythrocytic 1; SPTB, Spectrin Beta Chain; Erythrocytic; TAGLN, Transgelin; TF,

Transferrin; TGF-B, Transforming growth factor b; TIMP2, Tissue Inhibitor Of Metalloproteinases 2; TLN1, Talin 1; TPM2, Tropomyosin 2; TUBB, Tubulin Beta Class I; VEGF, Vascular

Endothelial Growth Factor; VIM, Vimentin.
aWharton’s jelly mesenchymal stem cells.
bAdipose tissue mesenchymal stem cells.
cBone marrow mesenchymal stem cells.
dDental pulp mesenchymal stem cells.
ePeripheral blood mesenchymal stem cells.

The ✓sign implies the existence of the marker.
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et al., 2014; Soder et al., 2020; Pochon et al., 2022), diabetes
(Katuchova et al., 2015; Moreira et al., 2017; Gao et al., 2018; Qi
et al., 2019), and cancer (Hendijani et al., 2015).

5.4 Tissue repair and injury prevention

5.4.1 Tissue repair
Tissue repair is defined as a compensatory regeneration and

restoration of tissue architecture and function following a surgical,
mechanical, or chemical-induced injury (Krafts, 2010). Tissue repair
is a dynamic complex process that involves the coordinated action of
many different cells and molecules. The mechanism of tissue repair
includes the activation of immune response, angiogenesis,
innervation, epithelialization, and scar formation, best reviewed
in (Deng et al., 2022) and (Eming et al., 2014). Notably, the
administration of WJ and other sources MSCs’ secretome
improves the tissue repair due to its ability to modulate the
process of inflammation by inducing anti-inflammatory responses
(Chen et al., 2015; Hervás-Salcedo et al., 2021; Miyano et al., 2022;
Wang et al., 2022), including also the M2 macrophage polarization
(Nakajima et al., 2012; Zhou et al., 2016; Luz-Crawford et al., 2017;
Wang J. et al., 2021). Furthermore, WJ-MSCs’ secretome was found
to mediate angiogenesis, neuroprotection and neurogenesis (Hsieh
et al., 2013).

5.4.2 Wound healing and repair
Despite the efforts focused on wound care and new therapeutic

approaches for acute and chronic wound management, wound
healing is still a challenging clinical problem. The process of
wound healing involves an interplay between several cell
populations, the extracellular matrix and the action of soluble
mediators including growth factors and cytokines. The process
may be studied by dividing it into four phases, (i) coagulation
and hemostasis, (ii) inflammation, (iii) proliferation, and (iv)
wound remodeling with scar tissue formation, best reviewed in
(Velnar et al., 2009).

The pioneering work by Bakhtyar et al., (2018) identified that the
exosomes isolated from WJ-MSCs promote skin wound healing by
increasing fibroblasts viability, migration, and the expression of
myofibroblast marker alpha smooth muscle actin (αSMA) and
enhanced skin wound healing in the punch biopsy wound model
in mice. Proteomic analysis of exosomes revealed that the alpha-2-
macroglobulin (α2M) protein played a key role in promoting wound
healing (Bakhtyar et al., 2018). Similarly, another group of
researchers also found that the exosomes of WJ-MSCs were
instrumental in enhancing skin wound healing and the
underlying mechanism involved attenuation of cell death by
suppressing nuclear translocation of apoptosis-inducing factor
(AIF) which is a mitochondrial oxidoreductase that contributes
to cell death and participates in the respiratory chain assembly
(Zhao et al., 2020). Kim et al., (2019) reported that the pro-
angiogenic activities of WJ-MSCs were related to their secretome
containing angiogenin, MCP-1, IL-8, and VEGF.

5.4.3 Neuroprotection
Perinatal brain injury (PBI) is one of the main causes of

perinatal morbidity and mortality (Volpe, 1995). PBI is mainly

caused by cerebral ischemia, cerebral hemorrhage, or ascending
intrauterine infection because of accidental trauma or genetic
disorders. PBI has an enormous impact on the effected family
and society which requires co-operation between physicians,
neurologists, physio-, speech-, and psychotherapists, as well as
other specialists. (Jensen et al., 2003). More effective
neuroprotective strategies are being developed. One of these
strategies involves the use of WJ-MSCs’ exosomes, such as to
alleviate the pathogenesis of PBI which is associated with the
death of neurons and pre-oligodendrocytes and by reducing
microglia-mediated neuroinflammation (Thomi et al., 2019a).
Thomi et al., (2019a) demonstrated that exosomes of WJ-MSCs
exhibited the anti-inflammatory potential, both in vitro and in
vivo, by targeting microglia cells which reduced the expression
of pro-inflammatory cytokines through interference with the
toll-like receptor 4 (TLR4)/CD14 pathway. The same group of
researchers also reported that intranasal administration of WJ-
MSCs’ exosomes could protect white and gray matter in PBI by
improving neuron cell viability, development, and the
recovery of learning ability in animal models of PBI (Thomi
et al., 2019b).

Neuroprotective potential of WJ-MSCs’ secretome was also
demonstrated in Alzheimer’s disease. Alzheimer’s disease is a
progressive brain disease that negatively affects the performance
of daily activities in older individuals. This progressive cognitive
decline is associated with the accumulation of amyloid-beta (Aβ)
and tau proteins (Selkoe and Hardy, 2016). The accumulation of
Aβ, produced by sequential cleavage of amyloid precursor
protein (APP) by beta-secretase and gamma-secretase, results
in the formation of Aβ oligomers that are toxic to neurons (Haass
and Selkoe, 2007). In contrast, tau protein results from
alternative splicing of the microtubule associated protein tau
(MAPT) gene, forming soluble protein isoforms (Goedert et al.,
1989). Several functional interactions between these two proteins
result in neural circuit damage and cognitive decline in
Alzheimer’s disease. Unfortunately, no treatment that cures
this disease is available yet. However, one of the recent
treatment approaches is to explore the neuroprotective
potentials of MSCs’ exosomes (Zhang et al., 2021; Kandimalla
et al., 2023). EVs from WJ-MSCs were shown to protect against
Alzheimer’s disease by preventing the damage caused by amyloid
beta oligomers in hippocampal neurons (Bodart-Santos et al.,
2019). WJ-MSCs’ exosomes also improved spatial memory in
Alzheimer’s disease models of olfactory bulbectomized mice
(Zhdanova et al., 2021). WJ-MSCs-conditioned media was
reported to improve Schwann cell viability and proliferation
(Guo et al., 2015). Similarly, hepatocyte growth factor (HGF)
and brain-derived neurotrophic factor (BDNF) secreted by WJ-
MSCs were found to have neuroprotective effects on the damaged
neurons (Mukai et al., 2018).

5.4.4 Anti-fibrotic potential of WJ-MSCs and their
secretome

Fibrosis is defined as an overgrowth, hardening, and/or scarring
of different tissues due to the formation and deposition of excess
extracellular matrix components including collagen and fibronectin,
leading to formation of scar tissue (Schuppan et al., 2001; Wynn,
2008; Wynn and Ramalingam, 2012). The resulting replacement of
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the normal tissue by fibrous tissue disrupts the structure and
function of the tissue (Tomasek et al., 2002; Friedman, 2004;
Wynn, 2007), causing an impaired function of the organ affected
which may lead to life-threatening complications. Fibrotic diseases
can affect different organs and tissues including the lung
(pulmonary fibrosis), liver (liver cirrhosis), heart (cardiac
fibrosis), kidney (renal fibrosis) and skin (systemic sclerosis)
(Wernig et al., 2017).

Although it is believed that fibrosis is the end result of chronic
inflammation (Wynn, 2008), accumulating evidence suggests that
the mechanisms inducing fibrogenesis are different from those
regulating inflammation (Wynn, 2008). Fibrosis is a complex and
multifactorial process that may be triggered by different factors
(Wynn, 2008). However, in all fibrotic diseases, fibrotic tissue
remodeling begins by the activation of ECM-producing
myofibroblasts (Gabbiani, 2003; Wynn and Ramalingam, 2012)
that leads to the production of surplus quantities of extracellular
matrix proteins comprising of 43 types of collagen subunits,
36 proteoglycans and about 200 types of complicated
glycoproteins (Hynes and Naba, 2012). These myofibroblasts can
develop from different sources including the resident mesenchymal
cells, epithelial/endothelial-mesenchymal (EMT/EndMT) transition
(Kalluri and Neilson, 2003; Quan et al., 2006; Willis et al., 2006;
Zeisberg et al., 2007) or from fibrocytes that are derived from bone-
marrow stem cells (Bucala et al., 1994). Autocrine factors secreted by
myofibroblasts as well as different paracrine signals from
lymphocytes and macrophages can activate myofibroblasts
(Wynn, 2008; Van Linthout et al., 2014). In addition, the
pathogen-associated molecular patterns (PAMPs) may also play a
role in myofibroblast activation (Otte et al., 2003; Coelho et al., 2005;
Meneghin and Hogaboam, 2007).

Currently, the treatment options for fibrotic diseases are limited
(Rosenbloom et al., 2017) and mainly focus on symptom
management and target the inflammatory response (Zhao et al.,
2022). The multifactorial etiology and redundancy of pathways
involved make it hard to find a single drug that will be successful
in stopping or modifying fibrotic disease progression. Therefore,
anti-fibrotic therapy development requires targeting the molecular
pathways that lead to fibrosis including inhibiting the activation or
proliferation of fibroblasts, promotion of excessive ECM
degradation, or modulating the immune response (McVicker and
Bennett, 2017). In this regard, research studies concerned with the
development of anti-fibrotic therapies are reporting encouraging
results (Zhao et al., 2022), even in cell-based therapies (Cheng et al.,
2022).

The fact that WJ-MSCs possess immunomodulatory and anti-
fibrotic properties attracted attention to their therapeutic potential.
The anti-fibrotic potential of WJ-MSCs is multifactorial and may
involve a combination of direct and indirect effects on the cellular
and molecular mechanisms involved in fibrosis (Lin et al., 2010).
The direct effects may include inhibition of fibroblast activation and
proliferation, and the reduction of collagen synthesis and deposition
in the extracellular matrix (Lin et al., 2010). WJ-MSCs’ secretome
contains factors that can directly modulate these processes,
including transforming growth factor β (TGF-β) inhibitors,
matrix metalloproteases (MMPs) that degrade excess extracellular
matrix and anti-inflammatory cytokines such as IL-10 that can
reduce inflammation and tissue damage (Muzes and Sipos, 2022).

The indirect effects of WJ-MSCs that contribute to their anti-fibrotic
potential may involve their ability to modulate the immune
response, stimulate tissue regeneration and repair and enhance
angiogenesis (Ahangar et al., 2020). Tissue repair and
regeneration is mediated by the ability of WJ-MSCs to
differentiate into various cell types, such as fibroblasts, epithelial
cells, and endothelial cells (Ali et al., 2015). Moreover, WJ-MSCs
ability to enhance angiogenesis, which in turn improves tissue
perfusion and oxygenation, stimulates healing and may play a
role in the anti-fibrotic characteristics of these cells (Hsieh et al.,
2013).

In contrast, WJ-MSCs may exert indirect effects on fibrosis by
their ability to modulate the immune response, promote tissue
regeneration, and enhance angiogenesis (Planat-Benard et al.,
2021). The immunomodulatory activity of WJ-MSCs is mediated
by their secretome which contains factors, such as TGF-β and IL-10,
that regulate the activity and proliferation of immune cells
eventually reducing pro-inflammatory cytokines production and
inhibiting the immune response that leads to fibrosis (Planat-
Benard et al., 2021). It was demonstrated that WJ-MSCs exhibit
increased expression of immunosuppressive proteins, such as
leukocyte antigen G6 (HLA-G6) that plays a vital role in
avoiding immune-based responses against the embryo,
indoleamine-2,3-dioxygenase (IDO), and PGE2 (Weiss et al.,
2008). Preliminary results of clinical studies using WJ-MSCs’
secretome, on the other hand, have demonstrated promising anti-
fibrotic potential in patients with liver cirrhosis (Ding et al., 2022),
pulmonary fibrosis (Liu et al., 2020), and renal fibrosis (Di Vizio
et al., 2012).

5.4.4.1 Liver fibrosis
Liver fibrosis is a wound healing response to chronic injuries

which if not treated can progress to liver cirrhosis (Suk and Kim,
2015; Liedtke et al., 2022). Although, numerous drugs were proven
to have anti-fibrotic activity both in vitro and in animal models,
none of them was effective for clinical use. Therefore, until now, the
only effective therapy for end-stage liver disease remains the liver
transplantation. Recently, research of liver disease treatment using
MSCs is gaining attention, especially that studies have demonstrated
the ability of human WJ-MSCs to differentiate into hepatocyte-like
cells in vitro (Campard et al., 2008; Zhang et al., 2009; An et al.,
2014).

Recent studies provide promising evidence for the use of WJ-
MSCs in the treatment of liver fibrosis (Kao et al., 2020; Afarin et al.,
2022). The suggested mechanisms of the therapeutic potential of
WJ-MSCs regarding liver fibrosis include the paracrine effects,
trans-differentiation into hepatocyte-like cells, and
immunomodulatory functions (Liu et al., 2015).

The effect of WJ-MSCs on liver fibrosis has been assessed by
several investigators (Tsai et al., 2009; Lin et al., 2010; Kao et al.,
2020; Afarin et al., 2022). In rats, Tsai et al., (2009) have shown that
injection of WJ-MSCs significantly reduced the liver fibrosis by
decreasing collagen deposition, serum levels of glutamic oxaloacetic
transaminase, glutamic pyruvate transaminase, and TGF-β1 and
increasing mesenchymal-epithelial transition factor-phosphorylated
type and hepatocyte growth factor.

Lin et al., (2010), on the other hand, investigated the use of WJ-
MSCs in treatment of liver fibrosis using chemically induced liver
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fibrosis model. In this model, liver fibrosis was induced in rats via
intraperitoneal injection of thioacetamide. WJ-MSCs were
transplanted into liver-damaged rats via the portal vein and the
effects were monitored by serum biochemistry and histopathology
assessment and the authors found that WJ-MSCs transplantation
significantly recovered serum prothrombin time and serum albumin
was also improved (Lin et al., 2010). Collagen accumulation
decreased after 14 days of transplantation and
immunohistochemical analysis revealed that the transplanted WJ-
MSCs produced albumin, HGF, and metalloproteinase (MMP),
suggesting that WJ-MSCs might alleviate liver collagen and could
be used in liver fibrosis therapy (Lin et al., 2010). Another study by
Hammam et al., (2016) investigated the antifibrotic potential of
combining either early or late WJ-MSCs treatment combined with
praziquantel on both acute and chronic stages of Schistosoma
mansoni-induced liver fibrosis in mice. Following transplantation,
WJ-MSCs exhibited differentiation into functioning liver-like cells,
which was proven by their expression of human hepatocyte-specific
markers (Hammam et al., 2016). Regression of liver fibrosis was also
evidenced by histopathological, morphometric, and gelatin
zymographic results, in addition to the reduction of three vital
contributors to liver fibrosis in the model studied including alpha
smooth muscle actin, collagen-I, and interleukin-13 (Hammam
et al., 2016). Praziquantel enhanced the benefits observed in the
WJ-MSCs treated groups (Hammam et al., 2016). However,
Rengasamy et al., (2017) indicated that CCl4-induced liver
fibrosis was alleviated more effectively using human BM-MSCs
than by WJ-MSCs in rat models. This could be explained by
differential expression patterns of matrix metalloproteases and
angiogenic factors produced by bone marrow and Wharton’s jelly
derived MSCs.

It was also shown that paracrine activity of MSCs plays a role in
tissue damage repair through exosomes (Salehipour Bavarsad et al.,
2022). However, the types and concentrations of inflammatory
mediators, such as TGF-β1 in the MSCs’ microenvironment may
affect their function and therapeutic potential. In this concern,
Salehipour Bavarsad et al., (2022) investigated whether WJ-MSCs
pretreated with different concentrations of TGF-β1 change the anti-
fibrotic properties of their exosomes on activated hepatic stellate
cells. Their results demonstrated that exosomes isolated from
untreated WJ-MSCs reduced TGFβ-smad2/3 signaling and
expression of fibrotic markers. These effects were even more
intense upon using exosomes derived from 0.1 ng/ml TGFβ-
pretreated WJ-MSCs, suggesting that these pre-treated WJ-MSCs
might significantly benefit the liver fibrosis patients (Salehipour
Bavarsad et al., 2022).

5.4.4.2 Pulmonary fibrosis
Pulmonary fibrosis is a chronic, progressive lung disease that is

characterized by progressive lung scarring, eventually leading to
respiratory failure and death (Martinez et al., 2017). There are
currently only two anti-fibrotic agents, namely nintedanib (ofev)
and pirfenidone (Esbriet) (Marijic et al., 2021), that are FDA-
approved for treating idiopathic pulmonary fibrosis which is the
most common form of pulmonary fibrosis and slow down the
disease progression and scarring in the lungs, but also have
multiple side effects and do not cure the disease (Marijic et al.,
2021). Therefore, research is attracted to investigating the utility of

anti-fibrotic characteristics of MSCs for the treatment of pulmonary
fibrosis. The applicability of WJ-MSCs as an anti-fibrotic agent in
lungs has been demonstrated in the following studies. For example,
Periera-Simon et al., (2021) compared the therapeutic potential of
different sources of MSCs including WJ-MSCs in the aging mouse
model of bleomycin (BLM)-induced lung fibrosis. Their results
showed that all sources of MSCs, except chorionic membrane
cells (CSC), decreased the Ashcroft score [a pulmonary fibrosis
evaluation procedure based on histological sample analysis (Hübner
et al., 2008)] and hydroxyproline levels [collagen metabolism
evaluation test (Qiu et al., 2014)] on day 10 after infusion into
the BLM-treated mice. The observed phenotype was mainly due to a
reduction in the gene expression of αv-integrin- and TNF-α, protein
markers for fibrosis and inflammation, respectively; thus,,
suggesting that WJ-MSCs could promote the repair of fibrotic
lung tissue (Periera-Simon et al., 2021). Another study reported
that WJ-MSCs repress inflammation, reduce myofibroblast action,
and enhance MMP-9 and TLR-4 receptor expression, leading to
alleviation of fibrosis (Chu et al., 2019). Moreover, in a small pilot
study of patients with pulmonary fibrosis, WJ-MSCs infusion led to
improved lung function and reduced fibrosis as assessed by imaging
studies (Yang et al., 2021; Saleh et al., 2022a).

The therapeutic potential of WJ-MSCs was also tested for the
treatment of coronavirus pandemic 2019 (COVID-19) (Saleh et al.,
2021; Saleh et al., 2022b), caused by SARS-CoV-2 which is known to
induce a severe cytokine storm in the lungs that causes edema,
defective respiration, acute respiratory distress syndrome, acute
heart damage, and secondary infections (Huang C. et al., 2020),
and eventually death (Huang P. et al., 2020). Owing to their’
immunomodulatory property, WJ-MSCs were suggested to
attenuate COVID-19 cytokine storms by suppressing
T-lymphocytes (Aggarwal and Pittenger, 2005). WJ-MSCs play
an important role in modulating immune system by secreting
large amounts of anti-inflammatory cytokines such as IL-10,
TGF-β, IL-6, and VEGF (Zhang et al., 2020; Saleh et al., 2021).
The immunomodulatory secretome of MSCs is stimulated by the
pathogen-related molecules including LPS and/or dsRNA of viruses
that activate the TLR receptors on MSCs (Waterman et al., 2010; Li
et al., 2012). MSCs secrete paracrine factors such as keratinocyte
growth factor (KGF), Ang-1, PGE2, IL-10, and other trophic
cytokines which eventually enhance the alveolar fluid clearance,
regulate epithelial and endothelial permeability of the lung, promote
endothelial repair, and reduce inflammation (Maron-Gutierrez
et al., 2014). In critically severe-type COVID-9 patients, Zhang
et al., (2020) demonstrated that WJ-MSCs intravenous injections
improves pulmonary function, lung inflammation, and patients’
recovery within 7 days with no obvious adverse conditions.
Similarly, a phase I clinical trial demonstrated the therapeutic
potential of WJ-MSCs in COVID-19 patients. In this trial,
patients received WJ-MSCs intravenous injections three times
three days apart, which was sufficient to improve the immune
system function as demonstrated by an increase in lymphocytes
percentage, absolute lymphocyte count, and CD4 and CD8 T cell
ratios (Saleh et al., 2021). Moreover, a 1-year follow up of these
patients demonstrated that WJ-MSCs treatment did not cause any
serious complications or tumor development (Saleh et al., 2022b).
Currently, there are several ongoing clinical studies that may
improve the understanding about the therapeutic potential of
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WJ-MSCs’ and their secretome in the therapy of COVID-19 (Harrell
et al., 2020). Together, these results indicate that WJ-MSCs inhibit
overactivation of the immune system caused by COVID-19 and
promote endogenous repair by improving the microenvironment.

5.4.4.3 Renal fibrosis
Hu et al., (2020) have shown that seeding the human WJ-MSCs

into the decellularized kidney scaffold ameliorates the renal fibrosis
through decreasing EMT by the TGF-β/SMAD signaling pathway
following subtotal nephrectomy in rats. WJ-MSCs exhibited anti-
fibrotic effects in unilateral ischemia-reperfusion injury rat model of
renal fibrosis through the mechanism involving delayed epithelial-
to-mesenchymal transition and reduced renal fibrosis (Du et al.,
2013). Thus, WJ-MSCs hold a promising potential for the treatment
of fibrotic diseases. However, more research is required to better
understand their mechanisms of action, optimal dosing and delivery
strategies, as well as long-term safety and efficacy concerns in clinical
settings.

5.4.5 WJ-MSCs in treatment of diabetes mellitus
Diabetes mellitus is a group of metabolic diseases characterized

by hyperglycemia due to deficiency in insulin secretion, insulin
action, or both (Udler et al., 2017). The current cell therapy
approach, i.e. islet transplantation, is challenging due to the
limited donor availability, immune rejections and adverse effects
of immunosuppressants (Bhonde et al., 2014). Therefore, utilizing
MSCs’ secretome could be an effective intervention. In diabetes
treatments, the mechanism of action of MSCs could be related to
their ability to reside in pancreas and/or promoting repair by
producing trophic factors including the growth factors, anti-
inflammatory cytokines, and anti-oxidants (Chen et al., 2008;
Karp and Leng Teo, 2009), all of which may exert anti-diabetic
effects by modulating the immune system and by enhancing insulin
sensitivity (English et al., 2010; Xie et al., 2016; Yin et al., 2018).

In type 2 diabetes (T2D) rodent model, WJ-MSCs injected
intravenously through the tail vein were detected in several
tissues including the lung, liver, spleen and pancreas, implying
that the homing of WJ-MSCs was associated with recruitment to
sites of tissue damage (Yin et al., 2018). Relative to UCB-MSCs and
BM-MSCs, WJ-MSCs demonstrated a superior potential to
differentiate into glucose stimulated insulin secreting (GSIS) cells
and for better hyperglycemia control in type 1 diabetes (T1D)
animal models (Chao et al., 2008; Wu et al., 2009; Wang et al.,
2014; El-Demerdash et al., 2015). Interestingly, pancreatic islets co-
cultured with umbilical cord blood (UCB)-MSCs induced a notable
improvement in GSIS index and provided glycemic control post-
transplantation in T1D mice model, supporting the notation that
MSCs’ secretome enhanced the islet survival and function (Park
et al., 2010; Keshtkar et al., 2020). In humans, a recent meta-analysis
study assessing the therapeutic efficacy of WJ-MSCs and UCB-
MSCs revealed a superior efficiency of the former cells for treating
both types of diabetes mellitus (Kassem and Kamal, 2020). WJ-
MSCs improved the glycemic control, β-cell function, decreased
incidence of diabetic complications, and ameliorated the need for
insulin injection in some of the patients (Kassem and Kamal, 2020).
Furthermore, T1D patients treated with undifferentiated WJ-MSCs
experienced a controlled postprandial plasma glucose levels and
significant improvements in C-peptide and HbA1c levels during a

21-month follow-up period (Hu J. et al., 2013). In T2D patients, WJ-
MSCs transplantation via intravenous and intrapancreatic
endovascular injections retuned glycemic control and improved
beta cell function by mechanisms that inhibited systemic
inflammation and/or improved immunological regulation (Liu
et al., 2014). Although, WJ-MSCs were used in these human
clinical trials, yet most of the observed phenotypes were mainly
due to the effects of their secretome (Fong et al., 2014).

6 WJ-MSCs and their microRNAs cargo

The human genome contains 1% microRNA (miRNA) coding
genes, and around 30% of the protein coding genes are regulated by
miRNAs (Gao et al., 2011). miRNAs are single-stranded, short
(21–25 nucleotides), non-protein-coding RNAs that inhibit gene
expression at post-transcriptional level by binding at the 3′
untranslated region of the target messenger RNA (mRNA)
(Greco and Rameshwar, 2007; Lakshmipathy and Hart, 2008;
Wagner et al., 2008; Aranda et al., 2009; Chen et al., 2010; Chen
and Chen, 2011; Raut and Khanna, 2016). In most (80%) cases, this
leads to the degradation of the mRNA or inhibition of protein
translation (Sato et al., 2011; Dong et al., 2013; Raut and Khanna,
2016). In addition to containing proteins, WJ-MSCs’ exosomes
harbor the coding (mRNAs) and non-coding (miRNAs) RNAs.
In general, miRNA content of exosomes play a vital role in the
biological function of exosomes and the source cells (Zhang et al.,
2006; Gartel and Kandel, 2008; Gangaraju and Lin, 2009; Singh et al.,
2013), by acting as signalosomes that can reprogram the cellular
functions (Thomi et al., 2019a).

In general, miRNAs in stem cells have different-functions and
play a significant role in determining fate of the cell. Stem cells
exhibit the expression of specific miRNAs that are particularly
associated with their distinct stages of differentiation (Greco and
Rameshwar, 2007; Lakshmipathy et al., 2007; Bork et al., 2011; Tomé
et al., 2011; Raut and Khanna, 2016). These characteristic expression
signatures regulate the pluripotency and differentiation factors and
can be used to characterize and monitor cell populations (Raut and
Khanna, 2016). For example, an integrated analysis of miRNA and
mRNA expression profiles of WJ-MSCs revealed 41 upregulated
genes that represented the functions ofWJ-MSCs (Chen et al., 2012).
The key genes identified were KAL1 and PAPPA which are involved
in maintaining the stemness of these cells, and regulate tissue
development, cellular differentiation, and osteogenic protein
signaling pathways (Bribián et al., 2006; Chapman et al., 2008).
Moreover, the role of miRNA in determining a cell’s fate was
confirmed by studying miRNA expression patterns during trans-
differentiation of WJ-MSCs to hepatocyte-like cells (Raut and
Khanna, 2016). The trans-differentiation of WJ-MSCs was
initiated by treatment with histone deacetylase inhibitor and
valproic acid and miRNA analysis revealed a significant
upregulation of miRNAs involved in hepatic differentiation,
including miR-23b cluster, miR-30a-5p, miR-26a-5p, miR-148a-
3p, miR-192-5p, and miR-122-5p (Raut and Khanna, 2016). The
targets of the upregulated miRNAs included pathways that block
hepatic differentiation including transforming growth factor beta
(TGFβ) and notch signaling pathways and those that inhibit the
expression of transcription factors required to maintain the
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mesenchymal status (Li et al., 2011). Therefore, inhibition of these
targets promoted the hepatic differentiation.

The miRNA expression patterns of WJ-MSCs EVs revealed
miRNAs that were specific to WJ-MSCs EVs, along with those
found in other types of stem cells (Zhou et al., 2018). They identified
eight miRNAs that are common to WJ- and other MSCs-derived
EVs, including miR-199a-3p, miR-24-3p, miR-29a-3p, miR-23a-3p,
miR-638, miR-125b-5p, miR-630, and miR-21-5p (Zhou et al.,
2018). The identified WJ-MSC-EV-specific miRNAs comprised of
25 miRNAs, including miR-144-3p and miR-142-3p for which
biological activities have been documented (Zhou et al., 2018).
miR-144-3p targets SMAD4, leading to negative regulation of
osteogenic differentiation and proliferation of murine stem cells
(Huang et al., 2016), while miR-142-3p promotes myeloid
differentiation in hematopoietic stem cells, osteoblast
differentiation in human fetal mesenchymal precursor cells, and
erythroid differentiation in human embryonic stem cells (Wang XS.
et al., 2012; Hu W. et al., 2013).

The therapeutic landscape of WJ-MSCs EVs, mediated by their
cargo miRNAs, has shown neuroprotective and neuro-regenerative
potential during hypoxic-ischemic injury (Joerger-Messerli et al.,
2018). This protective and regenerative potential has been shown to
be mediated by the let-7-5p miRNA family (let-7a and let-7e) that
regulates caspase 3 activity (Joerger-Messerli et al., 2018). The
potential of WJ-MSCs EVs to facilitate tissue repair was
demonstrated by their ability to promote angiogenesis via the
activation of the endogenous vascular endothelial growth factors
(VEGF)-A expression (Chinnici et al., 2021). The EVs contained five
miRNAs: miR-146a-5p, miR-27b-3p, miR-137, miR-125a-5p and
miR-126-3p, which were upregulated and targeted the VEGF-A gene
that is associated with angiogenesis (Chinnici et al., 2021). They also
contained 15miRNAs, including let-7b-5p, let-7e-5p, 21-5p, 99a-5p,
100-5p, 125b-5p, 127-3p, 145-5p, 193b-3p, 199a-3p, 214-3p, 221-3p,
222-3p, 320a, and 484, that were highly expressed in these EVs and
exclusively targeted the thrombospondin 1 (THBS1) gene which is
associated with the regulation of tissue repair (Chinnici et al., 2021).
Moreover, WJ-MSCs-derived EVs were also found to promote the
migration and proliferation of bone marrow-derived MSCs,
chondrocytes, and M2 polarization of macrophages, eventually
leading to osteochondral regeneration (Jiang et al., 2021). This
effect was found to be promoted by 5 miRNAs (miR-92b, miR-
29b, miR-374a, miR148a, and miR23a) in the EVs (Jiang et al.,
2021).

In triple negative breast cancer (TNBC), WJ-MSCs-derived EVs
were used to modify the cellular behavior and communication of
TNBC cells and the non-cancer cells involved in tumorigenesis and
metastasis (Chang et al., 2022). This effect was mediated by the
internalization of WJ-MSCs EVs by the cells which resulted in the
inhibition of tumor progression and metastasis (Chang et al., 2022).
The transformation of the phenotypic characteristics is suggested to
be mediated by the transfer of miRNA-125b from the WJ-MSCs
EVs, which targets hypoxia-inducible factor 1-alpha (HIF1-α) and
other genes related to proliferation, epithelial-mesenchymal
transition, and angiogenesis (Chang et al., 2022). Therefore,
analyzing the patterns of miRNA expression in WJ-MSCs EVs
and characterizing their target genes and pathways can provide
an insight into the therapeutic potential of WJ-MSCs. Similarly, as a
novel method for the treatment of glioblastoma multiforme, WJ-

MSCs’ exosomes were used to deliver miR-124, which reduced the
expression of CDK6 and enhanced chemosensitivity to
temozolomide, along with decreasing the migration of
glioblastoma multiforme cells (Sharif et al., 2018).

Recent studies identified that a large amount of endogenous
non-coding RNAs (ncRNAs) exist in MSCs which have critical
regulatory effects on cell homeostasis and interaction with
microenvironment, best reviewed in (Pant et al., 2021). Using an
elegant transwell co-culture system, Sun et al., (2018) showed that
circular RNAmolecules were upregulated and secreted byWJ-MSCs
in response to damaged endometrial stromal cells which improved
the survival and repair of damaged endometrial cells. The authors
reported a significant elevation in the expression levels of circRNA-
8881-21, circRNA-0020492, circRNA-0026141, circRNA-4049-38,
circRNA-0015825, circRNA-5028-15, and circRNA-0111659; as
well as their host genes ASPM, MKI67, TROAP, WDR62, KIF14,
and MYBL2, which were closely related to cellular proliferation,
differentiation, and survival (Sun et al., 2018). Later, using the same
experimental approach, the same research group reported the
mechanistic role of circ6401-RNA, derived from WJ-MSCs
secretome, in repairing the damaged endometrium by targeting
miR26-b-1-5p, and hence upregulating the level of RAP1B which
is a crucial angiogenic protein involved in the VEGF signaling
pathway (Shi et al., 2020). Exosomes derived from WJ-MSCs, on
the other hand, promoted the repair of myocardial infarction in
rodent models and prevented ischemic cardiomyocytes apoptosis
via the action of circ-0001273 RNA (Li et al., 2020).

7 Conclusion and future perspectives

Wharton’s jelly tissue in humans is an attractive source for
MSCs. The isolated WJ-MSCs are of a naïve embryonic cell origin
with a robust proliferation rate, reputable self-renewal rate, and
multi-lineage differentiation potentials. In comparison with adult
MSCs, WJ-MSCs are superior in respect of their minimal exposure
to the environmental factors and genetic alteration, and by
exhibiting better stemness characteristics. Therefore, the use of
WJ-MSCs for clinical applications is ethically acceptable with
minimal risk associated with the formation of teratoma (Zeddou
et al., 2010; Al Madhoun et al., 2020).

WJ-MSCs’ secretome is enriched in bioactive molecules with the
capacity to sustain cellular and tissue homeostasis. Owing to these
dynamic characteristics, interventions using the WJ-MSCs’
secretome have been successful in treating inflammation, skin
wounds, tumors, neurodegenerative disorders, tissue fibrosis, and
diabetes. Therefore, it is noteworthy that WJ-MSCs’ secretome has
tremendous potential, allowing for its allogeneic therapeutic
applications. However, more detailed secretome profiling studies,
especially those including proteomics and metabolomics, are
required to gain a more in-depth understanding of its
components and the underlying molecular mechanisms
regulating their expression and secretion.

Noteworthy to mention that MSCs and WJ-MSCs cell-free
therapeutic approach is a booming research field with
tremendous potentials for novel clinical applications. There
are several research publications and this review article may
have covered only a limited number of the published research,
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yet we have overall reviewed, discussed and updated emerging
research in the field to highlight importance and point to future
directions.

Human WJ-MSCs and their secretome are a promising
therapeutic modality for different diseases. Currently, in vitro and
in vivo investigations have demonstrated the potential clinical
benefits of these cells, in particular using the cell-free secretome
for various clinical applications and avoiding the ethical concerns
associated with cell transplantation. Although human clinical trials
at phase I/II, for some diseases, are in progress, there remains a
growing need for the longitudinal studies addressing the long-term
efficacy of secretome-based cell-free therapy.

Indeed, WJ-MSCs and their secretome applications should
follow the good manufacturing practice (GMP) guidelines for
isolation, storage, quality assurance, and administration, all the
while ensuring the safety and efficacy of its clinical applications.
Future studies should focus on the cellular mechanisms and
signaling pathways that could be exploited to enhance quality
and benefits of secretome for a wide variety of biomedical
applications. Importantly, an international society or organization
should be on board to implement the safe practice of cell-free
therapy.
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