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Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are a subset

of tumor cells that persist within tumors as a distinct population. They drive

tumor initiation, relapse, and metastasis through self-renewal and differentiation

into multiple cell types, similar to typical stem cell processes. Despite their

importance, the morphological features of CSCs have been poorly understood.

Recent advances in artificial intelligence (AI) technology have provided

automated recognition of biological images of various stem cells, including

CSCs, leading to a surge in deep learning research in this field. This mini-

review explores the emerging trend of deep learning research in the field of

CSCs. It introduces diverse convolutional neural network (CNN)-based deep

learning models for stem cell research and discusses the application of deep

learning for CSC research. Finally, it provides perspectives and limitations in the

field of deep learning-based stem cell research.
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1 Introduction

Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are a

subpopulation of tumor cells. (1). These cells are thought to persist within tumors as a

distinct population, driving tumor initiation, relapse, and metastasis through self-renewal

and differentiation into multiple cell types, similar to the typical stem cell processes

(Figure 1A). CSCs have been observed in various solid tumors, such as lung, liver, breast,

stomach, and colorectal cancer. In 1877, Cohnheim first observed a minor group of cells

displaying an embryonic characteristic in the tumor cells. The term, CSC, was first named

in a paper published by Reya et al. (2–4). Since 2001, CSC has been one of the crucial

interests in the field of cancer biology, diagnosis, and treatments of cancer patients.

It is widely accepted that CSCs are highly resistant to chemotherapy, and thus intensely

involved in tumor relapses, as compared to well-differentiated or differentiating tumor cells

(5, 6). Currently, the most challenging part about CSCs is how to accurately classify and
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separate them from tumor cells, due to their significant similarity to

typical stem cells or tumor cells. One of the effective ways is to

utilize the expression of several known surface markers, such as

CD24, CD29, CD44, CD90, CD133, aldehyde dehydrogenase 1

(ALDH1), and epithelial-specific antigen (ESA). Those surface

markers can be a therapeutic, diagnostic, or prognostic target for

CSCs (7–10). However, some of the markers, such as CD133 or

CD44, are commonly expressed in both CSCs and normal stem

cells, which may lead to misdiagnosis (11). Thus, finding unique

functional markers for CSCs or stem cells is essential to classify

CSCs from non-CSCs and other types of stem cells.

One of those potential biomarkers is the morphology features,

including cell/organelle morphology, that can often be measured

qualitatively and quantitatively. Studies have shown that CSCs have

different cell sizes with a different cytoplasmic to nuclear ratio and

colony borders, as compared to non-stem cells (12). However, no

standardized method has been established to differentiate CSCs

from other cell types based on morphological features (1, 13).

Furthermore, some types of stem cells, such as induced

pluripotent stem cells (iPSCs), are found to be morphologically

similar to CSCs. Thus, it is essential to develop a robust method not

only for this purpose but also eventually for improving our

understanding of cancer biology.

Recent remarkable advances in artificial intelligence (AI)

technology enable automated recognition of various biological

images for stem cell research. The majority of this research has

been focused on classifying the different states of stem cells, such as

colonies, single cells, differentiated cells, and dead cells, using

different types of stem cells including iPSC, embryonic stem cells

(ESCs), hematopoietic stem cells (HSCs), mesenchymal stem cells

(MSCs), adult stem cells (ASCs), and neural stem cells (NSCs)

(Figure 1B). In contrast, only a few studies have been focused on

CSCs with the application of AI, especially deep learning. In this

mini-review, we address a recent trend for deep learning research

using CSCs. First, diverse convolutional neural network (CNN)-

based deep learning models for stem cell research are introduced.

Next, the application of deep learning for CSC research is discussed.

Lastly, we provide perspectives and limitations in the field of deep

learning-based stem cell research.
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2 Deep learning for stem cell research

2.1 CNN-based deep learning models for
stem cell research

CNN is a type of deep neural network that is primarily

employed in image classification and object recognition based on

the correlation of neighboring pixels. Like most deep machine

learning, CNN is composed of three steps (training, testing, and

validation). Each step consists of a multilayer neural network

starting with randomly defined patches for input and modifying

them during the training process. Once training is done, the

network uses these modified patches to predict and validate the

result in the testing and validation process.

Stem cells are defined as primitive or undifferentiated precursor

cells with the ability to perform self-renewal division and

differentiation into diverse mature and functional cell types of an

organism. In general, stem cells are classified into three categories:

ESCs, ASCs, and iPSCs (14). ESCs are pluripotent stem cells that

can differentiate into all derivatives of the ectoderm, endoderm, and

mesoderm germ cell layers that consist of lineage-specific stem cells,

such as HSCs, MSCs, and NSCs. ASCs are multipotent stem cells

that can develop into multiple specialized cells in a specific tissue,

such as blood cells, skin, bone, cartilage, and cardiac muscles (15).

HSCs, an example of ASCs, are derived from ESCs but have less

differentiation potency than ESCs. Lastly, iPSCs are developed by

genetically reprogramming mature cells, such as human somatic

cells, into embryonic-like stem cells (16).

Stem cells have the power to differentiate multiple or specific

functional cells or tissues; thus, studying stem cells may help explain

the mechanisms and development process underlying human

normal developmental physiology and disease pathology. Stem

cells hold to have great potential for the future of cell-based

therapeutic approaches in the field of regenerative medicine (17),

precision medicine (18, 19), and cancer therapy (20). Examples

include Parkinson’s disease, Alzheimer’s disease (21), spinal cord

injury (22), heart disease (23), diabetes (24), and arthritis (25). Stem

cells can also be used for drug screening and drug discovery (26).

However, before its applications in clinical practice, it is essential to
BA

FIGURE 1

Different types of stem cells. (A) Cancer stem cells (CSCs) with the ability to form tumors. (B) Different types of stem cells reported with deep
learning AI technology.
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characterize stem cells and assess their differentiation potential

and functionality.

Traditional characterization of stem cells relies on the manual

analysis of specific molecular techniques, such as immunostaining

with specific antibodies or lineage tracing. Such analysis of large

datasets is time-consuming, error-prone, and training-dependent

(27). Each cell type shows a distinct characteristic morphology

based on cell type-specific gene expression. Although we cannot

identify cell type-specific morphology by microscopic observation

alone, an automated morphology-based identification system by

CNN have been developed to classify label-free stem cells at

different differentiation status in the last decades.

Nowadays, CNN as a high-throughput imaging method has

applied to relevant cell biology with different cell culture models,

fostering its use in research and translational applications.

Improvements in microscopy, computational capabilities, and data

analysis have enabled high-throughput, high-content approaches

from endpoint 2D microscopy images to 3D microscopy images.

This approach has been engaged in various cell biology research

activities (28–30), specifically for stem cell characterization (31–33)

and differentiation pattern (34–37), disease modeling (38, 39), and

drug screening and discovery (40, 41). The advantages of this

technique are that it is non-invasive, high-throughput, and

consistent, which can save time and costs once automated.

The most common CNN techniques include VGG19,

InceptionV3, Xception, ResNet50V2, and DenseNet121 (42–44).

Kim et al.’s study demonstrated that DenseNet121 was the most

promising model with an area under the curve (AUC) of 0.975 and

an accuracy of 0.922 when they screened mesenchymal stem cell

lines with deep learning (44). Park et al. later confirmed that

DenseNet121 was the best model to predict the differentiation of

kidney organoids. Kegeles et al. developed a deep learning-based

computer algorithm to recognize retinal differentiation in stem cell-

derived organoids based on brightfield imaging. In the study, they

compared different learning approaches: ImageNet pre-trained

ResNet50v2, VGG19, Xception, and DenseNet121 CNNs. As a
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result, they found that ResNet50v2 was the best-performing

classifier with an AUC of 0.91, which performed better than the

expert in predicting organoid fate (42). Additionally, Schaub et al.

developed a robust characterization methodology integrating

quantitative brightfield absorbance microscopy (QBAM) and deep

neural networks (DNNs) to predict tissue function of live retinal

pigment epithelium, demonstrating non-invasive cell therapy

characterization could be achieved with QBAM and machine

learning (31). Later, Dursun et al. developed CNNs for the

recognition of tenogenic differentiation and found that Inception-

ResNetV2 was the best model in terms of accuracy of 96.80% and

training time of 434.55 sec (32).

Nevertheless, many challenges arise in the real-time process.

For example, low-quality micrographs are often obtained due to

technical issues during the experiment. To improve the

performance with those low-quality images, Sun et al. developed a

cell image-enhanced generative adversarial network (CIEGAN) for

image enhancement. They applied the CIEGAN to long-term live-

cell imaging of a human-induced pluripotent stem cell-derived

cardiomyocyte (hiPSC-CM) differentiation system, which greatly

enhanced the quality of brightfield cell images from 256 by 256

pixels to 1,024 by 1,024 pixels, which was 16 times the quantity of

pixels (35).
2.2 Application of deep learning on CSCs

Currently, many studies have been reported to apply deep

learning to stem cell research for the identification of stem cell

differentiation, reprogramming, fate, and multipotency (Table 1).

For example, Zhu et al. applied a deep learning model (Xception) to

bright field images (149,428 images) to investigate the fate of primary

NSCs derived from rats. To collect data for a model system, they

created and used NSCs in different phases with differentiation

inducers: neurons, astrocytes, and oligodendrocytes. Notably, the
TABLE 1 Representative deep learning studies that have been conducted for the detection and classification of different types of stem cells.

AI (CNN) model Image Type Application Cell Type/Source References

Xception (Upgrade version of Google Inception) Brightfield NSC fate identification Primary neural stem cell from rat (45)

ResNet34, ResNet50, ResNet101, DenseNet Brightfield PSC differentiation Mouse ESCs and human iPSCs (46)

Modified AlexNet Brightfield
iPSC colony formation for studying

cell reprogramming
Mouse embryonic fibroblast and

human urinal cell
(47)

Deep vector-based CNN Phase contrast iPSC colony detection
Murine embryonic fibroblast and

iPSC line
(48)

Modified GoogleNet
Brightfield

absorbance images
Prediction of iPSC-RPE function

hiPSC-derived retinal pigment
epithelial cells

(31)

DenseNet121 Fluorescence
Prediction of human stem cell

multipotency
Human nasal turbinate stem cells

(hNTSCs)
(33)

Homemade-deep learning-based algorithms
(DLBAs) with 4 convolution layers

Brightfield CSC fate detection
Glioblastoma-derived N14-0510

and N14-1525 CSCs
(49)

Conditional generative adversarial networks
(CGAN), ResNet50, VGG16

Phase contrast CSC segmentation miPS-LLCcm * CSCs (1, 50)
*miPS-LLCcm: A mouse-induced pluripotent stem (miPS) cell cultured in a medium containing Lewis lung cancer (LLC) cell culture-conditioned medium (cm).
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model was able to provide an accurate prediction of cell

differentiation with a single-cell image even after NSCs were co-

cultured for 1 day with the inducers (45). Waisman et al. adopted

different CNN models (ResNet34, ResNet50, ResNet101, and

DenseNet) to distinguish PSCs from early differentiating cells.

Transmitted light microscopy images for the induced

differentiation of mouse ESCs to epiblast-like cells were utilized.

Results showed that the usedmodels had a good capability to identify

undifferentiated and differentiating cells with high accuracy (> 99%)

(46). Fan et al. leveraged a label-free and non-invasive brightfield

imaging analysis system combined with deep learning (modified

AlexNet) to determine iPSC colony formation (47). Kavitha et al.

developed a new model, vector-based CNN (V-CNN), to distinguish

iPSC colonies with phase contrast images and their results were

compared with a support vector machine (SVM) classifier. The

accuracy of the V-CNN model (> 90%) was significantly higher

than that (75-77%) of the SVM model (48). Schaub et al. proposed a

new non-invasive approach consisting of quantitative brightfield

absorbance microscopy and a CNN-based deep learning model to

predict stem cell donors and tissue functions (31). For the validation,

QBAM images of iPSC-RPE were tested by training the modified

GooglNet for the prediction of iPSC-RPE monolayer transepithelial

resistance, polarized vascular endothelial growth factor secretion,

and the stem cell donors by matching iPSC-RPE monolayers and

their performance was compared with L-SVM. Results exhibited that

the deep learning model has better performance with an accuracy of

85.4%, a sensitivity of 80.9%, and a specificity of 86.8%, compared to

L-VSM with an accuracy of 76.4%, a sensitivity of 64.6%, and a

specificity of 82.3%. Kim et al. proposed a new prediction method

with a CNN model (DenseNet121) to evaluate the multipotency rate

of Human nasal turbinate stem cells (hNTSCs) using fluorescence

images by characterizing genes and morphologies. The CNN model

classified multipotent cells comparatively well with 85.98% accuracy,

which well-matched results of actual differentiation (33).

Nevertheless, the studies and data for AI applications in CSCs

are limited. One of the most significant barriers is that little is

known about the characteristic features of CSC morphology (51).

Previous research has shown that CSCs are phenotypically

transformed from non-CSCs (50). One study showed that iPSC-

induced CSCs (i.e., malignant cells with stem-like properties)

formed spheroids under non-adherent conditions, whereas non-

CSCs (fibroblast-like cells) did not survive. The study indicated

significant changes in morphology during the transformation from

non-CSCs to CSCs (13). Further studies found that iPSC-derived

CSCs with gene Nanog expression formed spherical colonies, but

CSCs without Nanog expression didn’t (13, 52). However, other

studies showed that there was no difference in morphology between

CSCs and non-CSCs. For example, human nasopharyngeal

carcinoma-derived CSCs and non-CSCs displayed the same

squamous morphology, while the CSCs showed morphological

changes in different culture media and culture periods (53). With

a few studies about the morphological features of CSCs, it is still

challenging to accurately identify and determine their

characteristics by experts or trainees in the field of stem cells.

Generally, AI may improve the experts’ performance in the

classification of CSCs (46, 51). To our knowledge, only a few
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papers were reported from a small number of groups regarding

deep learning and CSC detection.

From large amounts of brightfield images, Chambost et al.

developed and utilized a deep learning-based algorithm (DLBAs)

with 4 convolutional layers for label-free and real-time detection of

CSC fate and state (division, death, or quiescence) (49). The features

of this model encompass 4 convolutional and 3 max-pooling layers,

which are followed by a first fully connected layer. Additionally,

there is a second fully connected layer responsible for classifying

images such as “Singles,” “Multiples,” “Death,” or “Empty.” The

results demonstrated that the DLBA had a better performance with

an accuracy of 91.2% and computation time of 0.02 s per image

when compared with a shallow learning-based algorithm (SLBA)

and several CNN-based models (classical CNN, ResNet50,

Inception V3, and VGG16).

Hanai et al. adopted an AI model based on an image-to-image

translational system called conditional generative adversarial

networks (CGAN) (54) to identify live CSC morphology in

phase-contrast images (50). CGANs learn a loss function aimed

at identifying and distinguishing between real and fake output

images, while concurrently training a conditional generative

model to minimize this loss. This characteristic renders cGANs

highly suitable for image-to-image translation tasks (54, 55). They

induced CSCs by culturing a mouse-induced pluripotent stem

(miPS) cell in a medium containing Lewis lung cancer (LLC) cell

culture-conditioned medium (cm) - miPS-LLCcm. Further

information on the induction method is reported elsewhere (13).

Cell image datasets were obtained from cultured plates on days 1

and 2. Results showed that the classification performance for CSC

was better at an earlier stage of cell culture, but became worse with

more days in cultures. Thus they utilized images from the 1-day

culture for training and the 2-day culture for testing. Furthermore,

they found that there was a high precision of CSC classification for

both ResNet50 (0.888 from the 1-day dataset and 0.946 from the 2-

day dataset) and VGG16 models (0.862 from the 1-day dataset and

0.934 for the 2-day dataset) when they classified CSCs via transfer

learning with the ResNet50 and VGG16 models. To further

improve classification, they used F-measure datasets for CGAN

image translation to understand the effect of differences in phase-

contrast images on the depiction of CSCs. As a result, they found

several more accurate AI models (1). These studies proved that

these deep learning models could be versatile in distinguishing

undefined morphological features in CSCs.
3 Discussion

There are several advantages to using pre-trained CNN models

instead of retraining AI models from scratch in the context of CSC

research (56, 57). First, CSC data is extremely limited and scarce

compared to general stem cell data (51), making it challenging to

train AI models solely on CSC data. Pre-trained models offer a way

to leverage knowledge acquired from large and diverse datasets,

effectively utilizing existing knowledge to enhance performance

even with limited CSC data. Second, pre-trained CNN models

have already learned features and patterns from extensive
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amounts of data, enabling them to generalize well to new and

unexplored CSC data. They can capture common visual patterns

and relationships that are relevant to CSC analysis, resulting in

improved performance, as compared to training models from

scratch, which may require a more extensive dataset for effective

generalization. Last but not least, training deep learning models

from scratch can be computationally expensive and time-

consuming. By utilizing pre-trained models, the initial training

phase has already been completed, reducing computational costs

and expediting the overall training process. However, it should be

noted that the effectiveness of pre-trained models compared to

training from scratch may vary, depending on the specific

characteristics of the CSC data or the availability of suitable pre-

trained CNN models. Therefore, conducting comprehensive

experiments and comparisons is crucial to determine the most

effective approach for a given CSC-related study.

Despite significant advancements in AI technology and its

implementation in stem cell research, including CSCs, there

remain several obstacles that must be addressed (58, 59). First,

although several models have been so far developed, most of the

studies only chose one or a few models and compared the

performances with accuracy or precision. Without testing other

powerful models, such designs could not guarantee that the selected

models would produce the best performance among currently

developed models. To overcome this limitation, Park’s group

developed a global deep learning model system by performing

approximately 20 widely used CNN-based deep learning models.

After testing those well-known models, they chose and combined

five models with the top accuracy to create a global model. As a

result, their performance was improved significantly, as compared

to that of individual models (60).

Another challenge is that the morphological features of CSCs

remain elusive (1). Currently, it is difficult to define and generalize

the morphological properties of CSCs because their morphology is

highly dependent on cell type, culture condition, etc. Moreover,

stem cells are highly dynamic and heterogeneous in that they have a

variety of shapes, ranging from spherical to irregular, spindle-

shaped, or elongated. This complexity makes it challenging to

design and develop deep learning models that can accurately

capture the relevant features of CSCs. Mor et al. observed that

ovarian cancer stem cells (Type I Epithelial ovarian cancer (EOC)

stem cells) were bigger and had a higher nucleus-to-cytoplasm ratio

with vesicular chromatin pattern and prominent nucleoli, as

compared to ovarian cancer cells (Type II EOC cells) (61).

Another experimental investigation by Zhang et al. revealed that

colorectal CSCs formed a sphere in the normal culture medium for

10 days, but CSCs changed to adherent cells after the serum was

added to the culture medium (62). Further studies should be

warranted to investigate and define what exact morphological

characteristics represent CSCs.

Deep learning models are often considered black boxes, making

it challenging to interpret how and why they make specific

predictions. This lack of interpretability can be problematic in

CSC research, as it is crucial to understand the underlying

biological mechanisms and identify key features for decision-

making. As such, interpretability is vital for researchers to gain
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studies. To enhance interpretability, intermediate layers of a CNN

can be visualized. The visualization of intermediate layers can

indeed provide some interpretability of the results (63–65). By

visualizing the activations or feature maps of intermediate layers,

we can gain insights into what specific patterns or features the

network is learning and detecting at different stages of the model.

The intermediate layer visualization helps us understand how

information is transformed and processed within the network. By

observing the activations, we can identify which regions of the input

image contribute more strongly to the final output. This can provide

valuable insights into the decision-making process of CNN and help

interpret the results. Furthermore, visualizing intermediate layers

can also help detect issues like overfitting or underfitting. If the

activations appear too sparse or too concentrated, it may indicate a

problem in the learning process of the modeling. By examining the

visualization, researchers can gain a better understanding of how

CNN processes the data and potentially identify areas for

improvement or optimization. However, it is important to note

that while intermediate layer visualization can provide valuable

interpretability, it is not a foolproof method for understanding the

entire decision-making process of a complex CNN. Thus.

interpretability in deep learning models remains an ongoing

research area, and multiple techniques are often used to improve

understanding and explainability in conjunction with

layer visualization.

With deep learning algorithms, the accuracy of cell

classification and segmentation heavily relies on the quality of the

captured images (66). Most errors observed during the training and

testing phases can be attributed to inadequate image contrast and

regions with blurry image features. As such, high contrast

and visible images should be obtained and used to distinguish

stem cell dynamics and morphology. Currently, phase-contrast or

brightfield microscopy has been widely used to quantify cellular

morphological characteristics and evaluate cellular phenotypes as a

non-invasive method. However, in some cases, it is challenging to

take contrast images with high quality, as microscopy generally

exhibits high sample-to-sample variability. As an alternative,

fluorescence microscopy can be leveraged to provide better

images for visualization by labeling cells with fluorescence dyes.

One of the limitations of fluorescence dyes is that they may affect or

damage cell organelles, functions, or behaviors due to toxic

compounds, phototoxicity, and biochemical artifacts. If we need

to use the cells in their downstream study, this labeling would not be

the first choice. Moreover, cell labeling is time-consuming and

expensive. Overall, large, high-quality datasets are required to

effectively train different models with deep learning in different

kinds of CSCs. Currently, data are limited in the relatively new field

for stem cell research, (67).

In addition to that, validating the performance and

generalizability of deep learning models is essential before their

clinical applications. In particular, it is essential to ensure that the

trained models can accurately identify and classify CSCs in different

experimental settings and diverse patient populations. Performing

robust validation studies with large and various datasets is crucial to

assess the reliability and generalizability of these models.
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The integration of expert experience or knowledge in deep

learning models has the potential to significantly enhance their

overall effectiveness and generalization ability (68). By

incorporating the knowledge and expertise of domain experts,

CNN models can benefit from a deeper understanding of the

specific problem or domain they are applied to. This integration

can result in improvements in various aspects such as feature

extraction, architecture design, hyperparameter tuning, and data

labeling and annotation. Moreover, expert experience provides

valuable insights into the intricate nuances of the data, enabling

more accurate predictions. Consequently, the integration of expert

experience into CNN models holds the promising potential to

elevate their effectiveness and generate more reliable results.

In conclusion, advanced deep learning techniques combined

with high-resolution imaging modalities and expert experience will

provide us with the precise identification and classification of CSCs

and speed up our understanding of CSCs’ functional properties in

an automatic way.
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