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Introduction: In recent years, various nanoparticles (NPs) have been discovered
and synthesized for the targeted therapy of cancer cells. Targeted delivery
increases the local concentration of therapeutics and minimizes side effects.
Therefore, NPs-mediated targeted drug delivery systems have become a
promising approach for the treatment of various cancers. As a result, in the
current study, we aimed to design silibinin-loaded magnetic niosomes
nanoparticles (MNNPs) and investigate their cytotoxicity property in colorectal
cancer cell treatment.

Methods:MNPs ferrofluids were prepared and encapsulated into niosomes (NIOs)
by the thin film hydration method. Afterward, the morphology, size, and chemical
structure of the synthesizedMNNPswere evaluated using the TEM, DLS, and FT-IR
techniques, respectively.

Results andDiscussion: The distribution number of MNNPswas obtained at about
50 nm and 70 nm with a surface charge of −19.0 mV by TEM and DLS analysis,
respectively. Silibinin loading efficiency in NIOs was about 90%, and the drug
release pattern showed a controlled release with a maximum amount of about
49% and 70%, within 4 h in pH = 7.4 and pH = 5.8, respectively. To investigate the
cytotoxicity effect, HT-29 cells were treated with the various concentration of the
drugs for 24 and 48 h and evaluated by the MTT as well as flow cytometry assays.
Obtained results demonstrated promoted cell cytotoxicity of silibinin-loaded
MNNPs (5-fold decrease in cell viability) compared to pure silibinin (3-fold
decrease in cell viability) while had no significant cytotoxic effect on HEK-293
(normal cell line) cells, and the cellular uptake level of MNNPs by the HT-29 cell
line was enhanced compared to the control group. In conclusion, silibinin-loaded
MNNPs complex can be considered as an efficient treatment approach for
colorectal cancer cells.
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Introduction

Generally, cancer is a disorder in which abnormal cells are
reinforced by escaping the conventional regulations of cellular
division (Soltanian and Matin, 2011). Millions of people are
being suffered from cancer, and the mortality caused by different
kinds of cancer is dramatically growing in the world. Only in the
United States, 1.7 million new cases of cancer were reported and
over half a million people died of cancer in 2019, according to the
Center for Disease Control (CDC) report (Hulvat, 2020). By 2029, it
is estimated that there will be 16.8 million cancer deaths and
25.5 million new cancer cases annually (Thun et al., 2010).
Colorectal cancer (CRC) is one of the most common
malignancies in the digestive system, and it has been reported as
the third most common malignant tumor worldwide (OLeary et al.,
2018). The occurrence of CRC is expanding in metropolitan regions
and industrialized nations, as well as nations encountering financial
change, like Eastern Europe, most Asian nations, and a few South
American nations (Bray et al., 2018). According to a recent study in
Iran, the prevalence of CRC caused by adenomatous polyps (the
most common cause) is about 34%, which is almost equal to the rate
reported in developed countries. Targeted drug delivery for the
pathogenesis factors of CRC has become an advance, and the
recruitment of nanotechnology approaches has opened new
horizons in this area (Tiwari et al., 2020).

Each cancer treatment method has benefits and disadvantages,
and combined treatment is vital to get the best results
(Mohammadian et al., 2016a; Mokhtari et al., 2017; Hassani
et al., 2022). Since more than 85% of human cancers are solid
tumors, current cancer therapy techniques usually contain invasive
procedures, like chemotherapy, to shrink tumors before surgical
removal (Rolston, 2017). Chemotherapy drugs target rapidly
dividing cells, which are property of most types of cancer cells
and some normal tissues. Although cytotoxic cancer drugs are
highly effective, they exhibit significant adverse effects that limit
the dose of chemotherapy drugs (Pérez-Herrero and Fernández-
Medarde, 2015; Alagheband et al., 2022). Problems associated with
chemotherapy are drug non-specificity caused by poor drug delivery
systems. These problems are being solved using nanoparticles (NPs)
as drug delivery systems (DDSs) or nanocarriers like protein cages,
liposomes, micelles, niosomes (NIOs), metal, polymer, and protein
NPs (Jadid et al., 2023; Jafari-Gharabaghlou et al., 2023). NIOs are a
type of NPs used in drug delivery and consist of layered structures of
vesicles made from non-ionic surfactants. NIOs are carriers of a
hydrophobic and hydrophilic anticancer drug because they have an
amphiphilic property, and can increase the half-life of the drugs
conjugated with NPs in cancer cells (Coviello et al., 2015; Eatemadi
et al., 2016). Owing to their lower toxicity, they improve the
therapeutic index by limiting the drug action to the target cells.
The non-ionic surfactant in NIOs is biodegradable and
biocompatible, thus does not stimulate the body’s immune
system (Liu et al., 2017). Moreover, there is no need to manage
and store surfactants in a specific condition. To boost the DDS
function, a localized magnetic field is applied to direct the
aggregation of NIOs in the target (Liu et al., 2017). Recently,
magnetic NIOs NPs (MNNPs) conjugated with anticancer drugs
are investigated. Promising results are reported about stimulus-
responsive drug release at the target cancer site by applying an

external magnetic field (Jamshidifar et al., 2021; Maurer et al., 2021;
Momekova et al., 2021; Salmani Javan et al., 2022). The role of MNPs
in bio-medicine, especially in the field of drug delivery, is important
because their inherent magnetism facilitates many tasks, including
targeting, which is very important and necessary in drug delivery
(Mou et al., 2015). The combination of NIOs and MNPs provides
both carrier targeting as well as drug protection properties that can
be used as an efficient system for drug delivery (Pardakhty1 and
Moazeni, 2013). Metal NPs can be enclosed inside NIOs with the
desired drug to form MNNPs. Within the last decades, studies have
focused on magnetic delivery approaches for vesicular DDSs,
however, MNNPs have not been investigated widely. Plant-based
drugs are usually the extract of medicinal herbs with different
therapeutic applications (Solowey et al., 2014). Within the past
decades, researchers have focused on herbal extracts, because of
their anticancer and anti-neoplastic properties. Silibinin is an extract
obtained from the medicinal plant Silybum marianum (Valková
et al., 2021). Silibinin is the most active component of silymarin
flavonoids that induces apoptosis and in the last 2 decades has been
evaluated for the treatment of many tumors (alone or in
combination with other chemotherapeutic agents) (Davis-Searles
et al., 2005; Kaur et al., 2009). Previously, silibinin was administrated
as a supplement in foods for liver diseases remedy (Carrier et al.,
2003). Today, the anticancer property of silibinin is known to be
related to the presence of flavonoid factors and some strategies to
fight cancer cells, including interfering with the cell cycle, inhibiting
angiogenesis, invasion, and metastasis through the effect of many
molecular events (Denev et al., 2020). This plant extract is an
inducer of cancer cell apoptosis and has been investigated for
treatment of many tumors (alone or in combination with other
chemotherapeutic agents) in the last 2 decades (Ghasemali et al.,
2013; Badrzadeh et al., 2014; Jahanafrooz et al., 2018). Nonetheless,
hydrophobicity is the most challenging obstacle regarding the
application of silibinin in the body (Figure 1) (Iyengar and
Devaraj, 2020). Therefore, targeted delivery systems for silibinin
are essential to minimize side effects due to systemic drug
distribution and achieve a maximum therapeutic effect. This
research aimed to study the role of silibinin loaded in MNNPs
compared with free drugs in targeting the HT-29 colorectal cancer
cell line. To this end, MNNPs and silibinin-loaded MNNPs were
synthesized and their physicochemical and morphological
properties were evaluated. The MTT assay was done to
investigate cell viability. Furthermore, cell cytotoxicity effects,
apoptosis, and the cellular uptake rate of MNNPs were examined
in vitro.

Materials and methods

Materials

Fetal bovine serum (FBS) and trypsin-EDTA were purchased
from Gibco (Invitrogen, United Kingdom). Silibinin, DMEM
(Dulbecco’s Modified Eagle Medium), tween 80, cholesterol,
sorbitan monostearate (Span 60), 3– (4,5 dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT), trypsin, dimethyl
sulfoxide (DMSO), phosphoric acid, and phosphate-buffered
saline (PBS) were obtained from Sigma-Aldrich (St Louis, MO).
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Methanol, chloroform, ethanol, penicillin G, streptomycin, iron (III)
chloride, and iron (II) chloride tetrahydrate were purchased from
Merck, Germany. Annexin V-FITC apoptosis detection kit
[including binding buffer, annexin V, and propidium iodide (PI)]
was prepared from eBiosciences (MA, United States).

Cell culture

The HT-29 (colorectal cancer cell line) and HEK-293 (normal
cell line) were purchased from the Pasteur Institute cell bank of Iran.
The cells were grown in DMEM medium supplemented with FBS
(10%), 0.05 mg/mL penicillin G, and 0.08 mg/mL streptomycin.
HT-29 colon cancer cells were placed in sterile flasks and
incubated at 37°C in a humidified atmosphere containing 5% CO2.

Synthesis and coating of MNPs

Generally, the co-precipitation method was applied to synthesize
MNPs (Kedar et al., 1997). The amount of 6.5 g of FeCL3 and 4 g of
FeCL2. 4H2O were blended in 100 mL of deionized water in a three-
neck flask, and then 200 mL of 2 M NaOH was added dropwise into
the flask and stirred for 2 h at a speed rate of 1,000 rpm under N2 at
room temperature. The resulting MNPs were washed twice with
distilled water and ethanol (96%) and the final precipitate was
placed in a 50°C oven to dry. In the next step, the MNPs were
coated with a succinate starch. To synthesis succinate starch, 25 mL of
distilled water was added to 4 g of starch, and then 12.5 mL of 2 M
NaOH was added to obtain a clear, yellowish solution. Subsequently,
3.7 g of succinic acid (SA) was added to the solution, and the mixture
was stirred (1,200 rpm) for 4 h at 100°C. After cooling, 50 mL of cold
ethanol (96%) was added to form a white precipitate. Afterward, the
sedimentwas washed several times with ethanol (96%) and dried in an
oven at 60°C. To prepare MNPs Ferro fluid, 100 mg of MNPs and
100 mg of succinate starch were mixed in 10 mL of distilled water and
stirred (1,000 rpm) for 24 h at room temperature. Finally, the
supernatant solution was separated and in order to deposit the
iron nanoparticles attached with starch it was placed on a magnet,
then the supernatant solution was discarded and the precipitate was
collected and dried at room temperature (Fathi et al., 2014; Shahbazi
et al., 2023).

Synthesis of NIOs by thin film hydration
method

Thin-film hydration method was used to synthesize NIOs.
Briefly, 20 mg of Span 60, 15 mg of Tween 80, and 7 mg of
cholesterol were dissolved in 6 mL of chloroform and 6 mL of
methanol solvents (with a 1:1 ratio). Next, the Solvents were
evaporated from the mixture by rotary evaporator (120 rpm,
60°C, 1 h). Finally, a thin layer film of milky surfactant was
formed on the wall of the flask. In the next step, 10 mL PBS was
added and placed in the rotary for 10 min until the transformation of
pro-niosomes to NIOs (Shahbazi et al., 2023). Then, the NIOs
suspension was placed in ice bath and exposed to sonication with
a probe sonicator (Amplitude of 25%, 200 w) (Fisher Scientific Co.,
US), to reduce the size of NIOs and to break NIOs aggregates.
Silibinin was added in the first step of synthesis due to its lipophilic
nature while ferrofluid MNPs were added along with PBS.

MNNPs size, surface charge, and structural
characteristics

The dynamic light scattering (DLS) method was used to assess
the size and surface charge of synthesized NPs. Furthermore, a
transmission electron microscope (TEM) (LEO906E, Carl Zeiss,
Oberkochen, Germany), operating at 80 kV was used to
determine the size and morphology of the prepared MNNPs. For
TEM and FT-IR analysis, the samples were freeze-dried by a freeze-
dryer (Dena Vacuum, FD-5005-BT, Iran). Also, Fourier transforms
infrared (FT-IR Tensor 27 spectrometer) spectrum (500–4,000 cm-
1) was used to evaluate the structural analysis of synthesized NPs,
and a vibrating sample magnetometer (VSM) (MDK, Iran) was used
to evaluate the magnetization value of MNNPs.

Assessment of drug loading (DL) and
encapsulation efficiency (EE) of MNNPs

To determine the amount of loaded silibinin and also to remove
the unloaded drug, a dialysis membrane method was performed.
Briefly, 5 mL of the silibinin loaded MNNPs were added into a
container with 50 mL PBS and magnetically stirred at 120 rpm. To

FIGURE 1
Molecular structure of silibinin.
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protect the stability of MNNPs, the container was exposed to the ice.
The encapsulation efficiency (EE) and drug loading capacity (DL)
were determined by the measurement of unloaded drug via UV-Vis
spectroscopy at 288 nm considering the calibration curve by the
following formula:

EE %( ) � Mass of drug inNPs
Total drugmass

× 100

DL %( ) � Mass of drug inNPs
Total NPsmass

× 100

Assessment of drug release rate of MNNPs

First, the MNNPs containing silibinin were transferred to
two clamped dialysis bags that were inserted in distilled water for
24 h. For the simulation of normal and abnormal (cancer)
conditions, PBS (pH = 7.4) and composed of methanol and
0.02 M phosphoric acid (50: 50, v/v) (pH = 5.8) were used,
respectively. Buffer solutions (50 mL of each) were added into
two lidded containers, and the dialysis bags were exposed to
buffers. Bags were shaken (100 rpm) at 37°C. At different time
intervals, 2 mL of the sample was replaced with 2 mL of fresh
solution. The release pattern was calculated using UV-Vis
spectrophotometer at 288 nm. Also, the release curves were
evaluated by various kinetic models (Fathi et al., 2018).

MTT assay

The cytotoxicity of drugs was evaluated by MTT assay, briefly,
6.5 × 103 HT-29 and HEK-293 cells/well were seeded in a 96-well
plate and incubator at 37°C with 5% CO2 for 24 h. Afterward, cells
were exposed to various doses of free and encapsulated silibinin and
incubated for 24 and 48 h. After the required incubation time, 50 µL
of the MTT solution (2 mg/mL) was added to each well, and plates
were covered with an aluminum foil and incubated for 4 h. After this
time, the supernatant was removed, and 100 µL of DMSOwas added
and shaken for 10 min. Finally, the plates were transferred to the
ELISA reader (Biotech Co., United States), and the optical densities
(ODs) were read at a reference wavelength of 570 nm in comparison
to untreated control cells.

Cell apoptosis assessment

Flow cytometry technique was used to analyze cell apoptosis,
in summary, 70,000 HT-29 cells were seeded to each well in 6-
well plates. For cell treatment, silibinin and NIOs complex
(40 μg/mL) were used and treated for 48 h. After separating,
the cells were washed twice with PBS and centrifuged at 190 g for
5 min. Then, 100 μL of binding buffer, 5 μL of FITC (0.25 μg/
mL), and 5 μL of propidium iodide (20 μg/mL) were added to
each sample and left for 20 min in the dark at room temperature.
Finally, 100 µL of binding buffer (0.1 M Hepes (pH 7.4), 1.4 M
NaCl, and 25 mM CaCl2) was added, and reading was performed
using a flow cytometry device (Thermo Fisher Scientific Co.,
United States) in the darkness.

Assessment of cellular uptake of NIOs

For this purpose, 5 mg of FITC was dissolved in 1 mL of
methanol, and 250 µL was added to each falcon and mixed with
1 mL of niosomal complexes. Covered falcons were placed in a
shaker with ice at a speed of 100 rpm overnight, and then the
contents of the falcons were washed in two steps under dark
conditions using PBS. Subsequently, 70,000 HT-29 cells were
seeded in each well of 6-well plates and exposed to niosomal
complex for 4 h in the darkness in a humidified atmosphere
containing 5% CO2. After the treatment, the cells were
transferred to falcons and centrifuged for 5 min at 190 g, after
discarding the supernatant, washed with PBS and centrifuged,
and this process was repeated and finally, the reading was done
with a flow cytometry device.

Statistical analysis

Statistical analysis was performed using the non-parametric
paired Wilcoxon test and statistical significance was described
when the p-value was less than 0.05. All statistical analyzes were
performed by Flowjo-V10 and Prism software version 9.3. The
results were expressed as the mean ± standard deviation (SD) of
three independent experiments.

Results and discussion

Measurement and characterization of
synthesized MNNPs

Generally, MNNPs size is one of the principal characteristics
regarding the release of the drug from the MNNPs, physical
stability, cellular absorption, and biological distribution (Barani
et al., 2019). The size and surface charge of the synthesized
MNNPs were checked using the DLS method. The distribution
intensity of MNNPs was obtained at 70 nm with DLS (Figure 2A).
According to the TEM image, shapes and distributions of
MNNPs were homogeneous spherical with a size of 50 nm
(Figure 2B). Typically, the size of MNNPs in the TEM images
was smaller than in DLS as DLS, the hydrodynamic diameter of
the MNNPs was measured. The larger MNNPs in the images are
associated with the overlapping/agglomeration of some smaller
MNNPs during the preparation (Liu et al., 2021). Lately,
researchers have focused on the surfactants coating the
MNNPs, because they can act as a steric barrier and intercept
agglomeration caused by magnetic dipole–dipole attractions
between MNNPs (Ramimoghadam et al., 2015). The different
sizes have been reported by previous research, and it seems that
other physical attributes of MNNPs like surface charge as well as
different structures of chemical compounds and synthesis
methods are responsible for the size of MNNPs (Barani et al.,
2020; Ag Seleci et al., 2021). Considering that NPs in the range of
70–200 nm are stable in the bloodstream and are considered
long-circulating agents, synthesized MNNPs with the above size
can be used for smart drug delivery in pharmaceutical purposes,
according to previous published studies (Barar and Omidi, 2014).
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In addition, it was demonstrated that NPs less than 200 nm can
be escaped of the immunes system, while NPs with size less than
70 nm can be accumulated by the liver (Barar and Omidi, 2014).
MNNPs charge is another important feature that has a

considerable impact in entering and capturing the drug into
the cell and size distribution of MNNPs.

It is established that making a targeted surface charge of
synthesized NPs is a practical strategy to control their

FIGURE 2
(A) DLS histogram showing the size distribution intensity of magnetic niosome NPs MNNPs, (B) Characterization of MNNPs size and morphology
using Transmission Electron Microscopy (TEM), and (C) zeta potential distribution of MNNPs.
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assimilation into the particular destination (Osaka et al., 2009;
Stiufiuc et al., 2013). Usually, a positive charge of NPs surface
through coating leads to convenient and fast cellular uptake
when NPs are encountered with the negative charge on the cell
membrane (Su et al., 2012). In this research, the surface charge of the
synthesized MNNPs was determined using the DLS method as the
zeta potential was −19.0 mV (Figure 2C) and polydispersity index
(PDI) was 0.52. The zeta potential result reveals that the surface
charges of synthesized MNNPs are negative. This negative charge
reduces the toxicity of the system and improves its performance by
preventing the accumulation and deposition of NPs. FT-IR
technique was used to study the chemical structure of the
prepared MNNPs, and to measure the non-interaction of the
synthesized niosomal system with silibinin and MNPs. Expected
peaks related to MNPs, modified NIOs, MNNPs, and silibinin
loaded MNNPs were monitored, which indicated that silibinin
and MNPs were loaded in NIOs (Figure 3). In examining the
FT-IR spectrum of drug-free NIOs (Figure 3), the peak at
3,433 cm-1 is characteristic of the–OH group and the peak at
1738 cm-1 is related to C=O stretching vibrations. Finally, the
peaks at 2,923 cm-1 and 1,109 cm-1 are related to the C-H bond
and vibrations of C-O bond stretching, respectively (Mehta and
Jindal, 2013; Samed et al., 2018). For NIOs containing silibinin and
MNPs, the peak at 1,631 cm-1 corresponds to C=O stretching
vibrations, and the peak at 3,435 cm-1 is associated with the -CH
bond. Furthermore, the absorption peaks at 2,923 cm-1, 1,108 cm-1,
and 720 cm-1 belong to the C-H bond, stretching vibrations of the
C-O bond, and Fe-O bond in Fe3O4, respectively (Ebrahimnezhad
et al., 2013). By comparing the peaks in the FT-IR spectrum related
to NIOs, MNNPs, and silibinin loaded MNNPs, it was observed that
slight changes occurred in the peaks related to NIOs containing
silibinin compared to NIOs without drug, and this confirmed that

silibinin drug is placed in the NIOs nisome. Also, considering that
no new peak was added and disappeared in the FT-IR spectrum of
NIOs containing the drug, it can be assumed that no chemical
interaction occurred between the NIOs and the drug as both kept
their nature and remained away from change.

FIGURE 3
FTIR spectrum for magnetic nanoparticles (MNPs), niosomes
(NIOs), magnetic niosomes nanoparticles (MNNPs), and silibinin
loaded MNNPs. The results demonstrated that the silibinin was
effectively encapsulated in MNNPs.

FIGURE 4
Magnetization curves of (A) magnetic nanoparticles (MNPs); (B)
Starch-modified MNPs, and (C) magnetic niosomes nanoparticles
(MNNPs). The results confirmed the loading of MNPs and silibinin in
NIOs is done properly.
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Vibrating sample magnetometer (VSM) was used to evaluate
the superparamagnetism of NPs. Since the reason for using
magnetic NPs is the targeted delivery of the carrier by
applying an external magnetic field, it is very important and
necessary to determine the magnetic properties of these NPs. the
magnetic activities of MNNPs, starch modified MNPs, and MNPs
were demonstrated using vibrating sample magnetometry (VSM)
at room temperature. The hysteresis curve in Figure 4A;
Figure 4B showed that the saturation magnetization of MNPs
was 42 emu/g. Compared to the saturation magnetization of
MNNPs in Figure 4C, which is 1.5 emu/g, this value is higher.
This difference confirms that the loading of MNPs and silibinin
in NIOs is done properly, according to previous studies published
in this area. The Figure 4 does not show any hysteresis curve
indicating the superparamagnetic behavior of the synthesized
particles (Yang et al., 2006).

Encapsulation efficiency, drug release rate
of MNNPs and kinetics models

Encapsulation efficiency (EE) is defined as the ratio of the
amount of drug in the MNNPs to the total amount of drug
applied in NPs formulation. Currently, a large number of NPs
systems have relatively low EE, thus developing strategies to
increase EE remains a challenge (Liu et al., 2019). EE has been
increased while there is a drug concentration increase thanks to
polymers and MNNPs, based on the previously published
studies (Prabha and Raj, 2016; Ghadiri et al., 2017; Erdagi
and Yildiz, 2019). Jin et al. (2018) argued lowering the pH is
a promising way to boost the EE efficiency up to approximately
70% in the MNNPs formation while this efficiency without
pH change is between 10% and 15% at maximum. In the
present study, the EE in NIOs was more than 90%, which

indicates the high potential of MNNPs in EE. Span 60 and
also cholesterol which are used in the NIOs structure increase
the amount of the hydrophobic drug loading into NIOs (Jadon
et al., 2009). The results indicated the release of the silibinin
with a gentle and slow gradient from MNNPs. Evaluating the
drug release pattern shows that the designed NIOs, while
indicating a controlled release, have a burst release within
4 h, then in the conditions of normal cells (pH 7.4) and
cancer cells (pH 5.8) released about 49% and 70%,
respectively during 100 h (Figure 5). These findings reveal
that MNNPs are sensitive to different pH. The high acidity
of tumor cells is attributed to hypoxia, or lack of oxygen owing
to the inadequate blood supply (Justus et al., 2013). It was
demonstrated that the MNNPs indicated better performance in
tumor microenvironment (pH 5.0–6.8) compared to the
physiological condition which make them the suitable
candidate for DDS (Mohammadian et al., 2016b; Myat et al.,
2022). Considering that tumor cells have a significantly acidic
cytoplasmic pHs compared to normal cells, therefore MNNPs
are more efficient with more DR at acidic pH compared to pH =
7.4 (AlSawaftah et al., 2022). This makes NIOs a good candidate
for drug delivery in cancer. The results indicated the release of
the silibinin with a gentle and slow gradient from MNNPs. Our
findings are in agreement with previous studies that confirmed
the promising role of MNNPs in the drug release process. Barani
et al. reported, the drug’s release profile from MNNPs showed a
first rapid release (about 50% of the drug was released within
10 h), followed by a slower and longer-lasting release (65% of
the drug was released within 30 h) in acidic conditions (Barani
et al., 2019). Similar outcomes were obtained by Zheng et al.
(2009) Preparation and definition of magnetic cationic
liposomes for gene transfer research. Tavano et al. (2013)
synthesized MNNPs loading doxorubicin (an anticancer
drug) for smart drug delivery and argued that the utilization

FIGURE 5
Investigation of drug release efficiency from magnetic nisome nanoparticles (MNNPs) at pH = 5.8 and 7.4 at 37°C. The pores of the dialysis
membrane are large enough to allow the freemovement of silibinin, but small enough to prevent the diffusion of nanoparticles. The results demonstrated
a sustained release pattern from the nanoparticle with a partially burst-release at the initial stage and followed sustained during the 96 h study period.
Data are presented as mean ± SD of three independent experiments.
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of MNNPs can improve the release rate of formulations. Table 1
shows various kinetic models that were used to fit the silibinin
release curves at different pHs. According to Table 1, the fitted
model for release curves were Pawer law and Reciprocal
powered time at pH = 7.4 and 5.8.

Cell cytotoxicity of MNNPs

Through receptor-mediated endocytosis, targeted NPs can enter
the target cells, increasing the concentration of drug molecules
within the cell. P-glycoprotein does not recognize drug molecules

TABLE 1 The kinetics models used to fit the silibinin release data from MNNPs at different pHs. The bold values indicated the best fitted models.

Kinetics model Equation Coefficient of determination (R2)

pH = 5.8 pH = 7.4

Zero order F � k0 t 0.7542 0.7274

First order ln(1 − F) � −kf t 0.8673 0.7959

Higuchi F � kH
�
t

√
0.9030 0.8896

Power law lnF � ln kP + P ln t 0.9506 0.9627

Square root of mass 1 − �����
1 − F

√ � k1/2 t 0.8131 0.7622

Hixson-Crowell 1 − �����
1 − F3

√ � k1/3 t 0.8319 0.7736

Three seconds’ root of mass 1 −
�������
(1 − F)23

√
� k2/3 t

0.7937 0.7507

Weibull ln(−ln(1 − F)) � −β ln td + β ln t 0.9462 0.9208

Reciprocal powered time (1F − 1) � m
tb

0.9610 0.9365

FIGURE 6
MTT assay results revealed in vitro cytotoxicity of blank NIOs (control), Silibinin, Silibinin loaded NIOs, Silibinin loaded magnetic NIOs NPs on HT-29
colon cancer cells [(A) and (B)], and HEK-293 normal cell line [(C) and (D)] after 24 h and 48 h incubation time. Encapsulation of silibinin in MNNPs
improved its cytotoxic effect on HT-29 colon cancer cells, while it had no significant cytotoxic effect on HEK-293 cells. Data are presented as mean ± SD
of three independent experiments. Error bars show standard variations and significance is indicated by *p < 0.05, **p < 0.01 and ***p <
0.001 compared to the control group.
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during this process, and membrane efflux transporters pump free
drug molecules out of the cell (Wang et al., 2016). In the cell
cytotoxicity assessment by the MTT method, HT-29 and HEK-
293 cells were treated with free-drug and silibinin MNNPs for
24 and 48 h at various concentrations (10, 20, 40, and 80 μg/mL)
(Figure 6). The results showed that NIOs containing silibinin caused
more cell death in the studied times compared to pure silibinin in the
HT-29 colon cancer cells and had no significant cytotoxic effect on
HEK-293 cells. Thus, nanocarriers can increase the cell cytotoxicity
of the drug against HT-29 cells, and there is a dose-dependent and
relatively time-dependent manner regarding using complex. These

results confirm the previous studies reported that the cytotoxicity of
the drug-loaded MNNPs follows dose-dependent and time-
dependent trends (Huang et al., 2015; Dhavale et al., 2021). The
IC50 of the MNNPs complex was observed at 40 μg/mL within 48 h,
therefore this concentration was considered for the following tests.
The survival of over 90% of cells under drug-free NIOs treatment
revealed that MNNPs have a very tiny lethal effect on the cells. This
biocompatibility makes these MNNPs excellent candidates for
therapeutic purposes. Additionally, the MTT test revealed that
there was no significant correlation between the control group
and silibinin-free NIOs.

FIGURE 7
(A). Apoptosis analysis on HT-29 cell line under treatment (a) control, (b) blank NIOs, (c) blank MNNPs, (d) Silibinin, (e) Silibinin loaded NIOs, (f)
Silibinin loaded MNNPs. (B). HT-29 cells treated with pure silibinin and niosomal complexes were evaluated after 48 h by FITC-labeled annexin V/PI flow
cytometry. The obtained results confirmed that NIOs loaded with the silibinin significantly increase the apoptosis of HT-29 cells, which emphasizes the
increase in the absorption of drugs from NIOs by the cells. This result is consistent with the MTT results. Data were analyzed using Flowjo-V10
analysis software and shown as mean ± SD of three independent experiments. Significance is indicated by *p < 0.05, **p < 0.01 and ***p <
0.001 compared to the control group.
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Apoptosis and cellular uptake analysis on
HT-29 cell line

HT-29 cells that treated with pure silibinin and silibinin
loaded MNNPs were evaluated after 48 h’ incubation by FITC-
labeled Annexin V/PI flow cytometry technique. As shown in
Figure 7, silibinin-loaded MNNPs significantly induce apoptosis
of HT-29 cells more than other forms, furthermore, silibinin-
loaded MNNPs exhibited a greater cytotoxic effect compared to
the free silibinin, which demonstrates the increase in the uptake
of silibinin from MNNPs by the cells. These findings are
consistent with earlier research, which indicated that the
internalization and subsequent intracellular release of the
anticancer drug from NPs is responsible for the cytotoxic
effect of NPs (Zaki, 2014). It is proposed that this
formulation (niosome and magnetic niosome) can increase
the drug bioavailability which can induce cancer cell
apoptosis by causing DNA damage or the oxidation of
proteins, lipids, and enzymes, resulting in cell death and also
helping to destroy and inhibit the mitochondrial respiratory
complex (Rodrigues Pereira da Silva et al., 2016; Van Houten
et al., 2016; Juan et al., 2021). El-Far and co. argued that the
cytotoxicity percentage by IC50 value between paclitaxel–metal
NPs–NIOs and oxaliplatin–metal NPs–NIOs at the same
concentrations did not differ significantly (pH 0.5).
Therefore, they recommended that MNNPs are considered a
suitable targeting nanocarrier system for drug delivery in
colorectal cancer, target tumor cells and prolong circulation
for both drugs (El-Far et al., 2022).

Also, cellular uptake was studied by FITC labeled NPs and via
flow cytometry. Figure 8 illustrates the cellular uptake level of
MNNPs by the HT-29 cell line was 99% compared to the control
group. These findings indicated that the MNNPs could enhance
cellular uptake significantly and induce apoptosis in the HT-29 cell
line after treatment, and are consistent with previous studies that
used flow cytometry to examine apoptosis and MNP uptake in cells
(Depan and Misra, 2012; Li et al., 2018; Lu et al., 2018).

Conclusion

In the current study, silibinin was loaded into NIOs containing
MNPs (MNNPs) as a novel formulation to evaluate its apoptosis
effect in colorectal cancer cells treatment. The size distribution,
surface charge, and chemical structure of synthesized MNNPs were
suitable for immune escape and confirmed that silibinin was
entrapped in NIOs. According to the obtained cytotoxicity
evaluations, silibinin loaded in MNNPs has more cytotoxic
effects on HT-29 colon cancer cells in a dose- and time-
dependent manner, and the cellular uptake of MNNPs by the
HT-29 cell line was higher than controls. Drug loading
evaluation exhibited a high efficiency and drug-loaded MNNPs
showed an accelerated release rate in acidic pH in cancer cells
compared to the neutral condition. To sum up, the MNNPs as
nanocarriers are excellent candidates for the treatment of cancer
cells, especially colorectal cancer. However, further in vivo
experiments are required to prove the potential of the developed
formulation as a suitable vehicle for the various cancerous cells
treatment.
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