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1.  INTRODUCTION 

Rising ocean temperatures are severely impacting 
marine ecosystems (Hoegh-Guldberg & Bruno 2010, 
Pecl et al. 2017, Pinsky et al. 2020), a trend expected 
to continue with increasing anthropogenic activity 
(Intergovernmental Panel on Climate Change [IPCC] 
2021). In addition to gradual sustained temperature 
increases, marine ecosystems are further threatened 

by acute warming events, known as marine heat-
waves (MHWs) (Smale et al. 2019). The frequency of 
MHWs has increased by over 50% during the last 
decade (Oliver et al. 2018, IPCC 2021), and more 
than 50% of the world’s oceans are projected to be in 
a permanent MHW state (compared to today) by the 
end of the 21st century (Oliver et al. 2019). The pre-
dicted increases in MHWs pose a huge challenge to 
marine organisms, with upper thermal thresholds 
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ABSTRACT: Marine heatwaves (MHWs) are becoming more frequent as a consequence of cli-
mate change. These discrete events are causing widespread stress and mortality in marine 
ecosystems, including coral reefs. The heat tolerance of different coral species is often complex 
and depends on a combination of environmental and biological factors, making accurate predic-
tions of the impact of MHWs on individual species challenging. Heating rate has been shown to 
influence coral bleaching in Acropora species, but it remains unknown how heating rate influ-
ences bleaching in other corals with contrasting morphology and bleaching sensitivities. In this 
study, we explored the sensitivity of Pocillopora damicornis and Plesiastrea versipora, represent-
ing branching and encrusting growth forms, respectively, to heating rate. We experimentally sim-
ulated MHWs with slow (0.5°C d−1) and fast (1°C d−1) heating rates and measured physiological 
responses to quantify changes in coral health, including photochemical efficiency, holobiont 
metabolism, tissue biomass, chl a, and symbiont density. Our results confirm that heating rate is a 
good predictor of coral bleaching sensitivity for these species, with faster heating rates causing 
more severe bleaching and declines in coral health. However, bleaching sensitivity differed 
between P. damicornis and P. versipora, with P. damicornis more affected by the faster heating 
rate. The use of heating rate, in addition to other metrics such as duration and intensity of heat, 
will enhance our capacity to predict the local impact of MHW events and their overarching 
 ecological consequences for coral ecosystems.  
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expected to be exceeded more regularly. Therefore, 
understanding organismal re sponses to extreme 
temperature events is imperative to understanding 
the impacts of MHWs on marine biodiversity. 

Coral reefs are increasingly experiencing mass 
bleaching events and one-third of all scleractinian 
corals are at elevated risk of extinction (Frieler et al. 
2013, Hughes et al. 2018). Most coral reefs world-
wide have already suffered from widespread coral 
bleaching (Sully et al. 2019), a phenomenon which 
results in the loss of photosynthetic symbiotic 
dinoflagellates (Symbiodiniaceae) (Glynn 1996, La -
Jeunesse et al. 2018). As corals typically rely on their 
endosymbionts for the majority of their daily energy 
requirements (Muscatine et al. 1981, Dubinsky et al. 
1990), the breakdown of this symbiotic relationship 
can lead to impairment of metabolic processes and, 
in severe cases, starvation and partial or whole 
colony mortality (Fitt et al. 2000, Grottoli et al. 2004, 
Rodrigues & Grottoli 2007, Rädecker et al. 2021). 

Heat stress is one of the most common causes of 
coral bleaching and the severity of the bleaching 
event depends on both the intensity and duration of 
heat stress (Middlebrook et al. 2008); thus, the 
degree heating week (DHW) metric was developed 
(Liu et al. 2003) to better characterize the cumulative 
stress associated with warming events. DHW inte-
grates sea surface temperature (SST) anomalies that 
are 1°C above the regional maximum climatological 
mean, with 1 DHW representing 1°C above the max-
imum monthly climatological mean for a period of 
1 wk (Skirving et al. 2020). When DHW reaches 4°C, 
significant coral bleaching is likely, while >8°C DHW 
has been associated with widespread coral mortality 
(Liu et al. 2005). The DHW metric allows a general 
comparison of cumulative heat stress between 
events, but it can fail to accurately predict the impact 
of MHWs (i.e. events may be underestimated, or 
fine-scale events may be missed). A similar DHW 
may cause different bleaching responses between 
species and locations (Weeks et al. 2008, Bainbridge 
2017, DeCarlo et al. 2017). This is, in part, because 
the capacity of corals to withstand heat stress is com-
plex and influenced by a combination of environ-
mental (e.g. Safaie et al. 2018) and biological factors 
including, but not limited to, coral taxa (Marshall & 
Baird 2000), colony morphology (Loya et al. 2001), 
symbiont genotype (Barshis et al. 2010), tissue thick-
ness, and feeding behaviour (Rodrigues & Grottoli 
2007, Grottoli et al. 2014). For instance, growth forms 
(i.e. colony morphology) are generally, but not 
always (Guest et al. 2012), informative in explaining 
bleaching tolerance: branching corals are generally 

more susceptible than massive and encrusting corals 
(reviewed by McCowan et al. 2012). Although the 
underlying mechanisms are not fully understood, this 
may be, in part, because massive and encrusting 
corals generally have thicker tissues (Marshall & 
Baird 2000, Loya et al. 2001). Additionally, corals that 
can increase their heterotrophic feeding whilst 
bleached appear to have an ecological advantage 
and higher chance of survival (Grottoli et al. 2004, 
Rodrigues & Grottoli 2007, Anthony et al. 2009, 
Conti-Jerpe et al. 2020). Bleaching response can be 
further influenced by regular exposure to anoma-
lously high temperatures, particularly on tidal/daily 
time scales (Ainsworth et al. 2016, Camp et al. 2018, 
Safaie et al. 2018), with increased heat tolerance in 
corals located in thermally variable reef environ-
ments, such as back-reef pools (e.g. Palumbi et al. 
2014) or intertidal reef environments (e.g. Schoepf et 
al. 2015). 

Recently, the rate of heating from the onset of the 
MHW to the maximum intensity has been shown to 
be a better predictor of bleaching severity compared 
to DHWs for some species (Maynard et al. 2008, Hob-
day et al. 2016, Li & Donner 2022). Acropora spp. 
showed higher physiological stress when exposed to 
fast versus slow heating rates (Middlebrook et al. 
2010, Martell & Zimmerman 2021). Therefore, under-
standing susceptibility to different heating rates may 
improve heat stress and bleaching predictions in 
combination with existing metrics (i.e. event inten-
sity, duration, DHW) by enabling a unique descrip-
tion and comparison between different MHW events 
(Hobday et al. 2016). However, to date, the effects 
of heating rate have only been studied in Acropora 
spp. and it therefore remains unknown if other 
species and growth forms show similar responses, 
parti cularly massive and encrusting corals, which 
have often been shown to be less susceptible to heat 
stress. 

To test the effect of heating rate on bleaching 
 sensitivity, we experimentally simulated 2 different 
MHWs with the same cumulative intensity, but dif-
ferent rates of heating (0.5 vs. 1°C d−1 for slow and 
fast heating rates, respectively), replicating observed 
MHW temperature profiles described by Hobday et 
al. (2016). We investigated the effect of heating rate 
on photochemical efficiency, holobiont metabolism, 
tissue biomass, chl a, and symbiont density in 2 
widespread coral species, Pocillopora damicornis 
and Plesiastrea versipora, representing branching 
and encrusting growth forms, respectively. We 
focused on subtropical Western Australia, as it is a 
global warming hotspot, warming faster than 90% of 
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the global ocean and therefore a sentinel for climate 
change (Hobday & Pecl 2014). This region also expe-
rienced an extreme MHW in 2011 with DHW > 16, 
SST anomalies reaching up to 5°C above the long-
term averages, and a heating rate of 0.3°C d−1 (Wern-
berg et al. 2013, Schlegel & Smit 2018). Although this 
event resulted in widespread bleaching across the 
majority of the Western Australian coast (Moore et al. 
2012), some corals in the subtropical region, includ-
ing P. versipora, increased 4-fold in abundance after 
this event (Tuckett et al. 2017). We hypothesized that 
fast onset MHWs would have more damaging effects 
on the physiology of the 2 species compared to slow 
onset MHWs, and that these effects would be greater 
in the branching species (P. damicornis) compared to 
the encrusting species (P. versipora). 

2.  MATERIALS AND METHODS 

2.1.  Coral collection 

The encrusting coral Plesiastrea versipora (Lam -
arck, 1816) and the branching coral Pocillopora dam-
icornis (Linnaeus, 1758) are both widely distributed 
across the Indian and Pacific Oceans, and locally 
abundant along the mid-West Australian coast (Ve -
ron & Marsh 1988). We chose these 2 species as rep-
resentatives of winners (P. versipora) and losers 
(P. damicornis) of the extreme MHW in 2011 (Tuckett 
et al. 2017). Eight visibly healthy parent colonies 
(approx. 15 cm in diameter) of each species were col-
lected on 12 December 2019 (the austral summer) 
from Port Gregory (28° 20’ 04.6” S, 114° 24’ 62.8” E), 
Western Australia. Due to differences in habitat pref-
erences (Veron & Marsh 1988, Veron 2000), P. dami-
cornis colonies were collected from open reef areas 
at 8.5 m depth, where light intensity reached a max-
imum of approximately 290 μmol photons m−2 s−1, 
whereas P. versipora colonies were collected from 
shaded crevices at 8 m depth, where the light inten-
sity reached a maximum of approximately 200 μmol 
photons m−2 s−1 during the sampling period. Both 
light measurements were collected using a Li-Cor 
underwater quantum sensor (LI-192; sample rate 
1 Hz) deployed around midday (11:00 to 13:00 h) over 
a few cloudless days in summer (10 to 12 December 
2019) to determine maximum light intensities at our 
study sites. Colonies of both species were collected 
using hammer and chisel at least 10 m apart from 
each other to maximize the likelihood of obtaining 
different genotypes (Baums et al. 2006). Following 
collection, colonies were submerged in seawater in 

portable coolers and transported to laboratory facili-
ties (5 h) where they were maintained in indoor, 
flow-through aquaria at 23.5 ± 0.2°C (ambient tem-
perature at collection site) at approximately 290 μmol 
photons m−2 s−1 for 2 wk to allow recovery and accli-
mation to tank conditions. 

2.2.  Experimental design 

Following a 14 d recovery and acclimation period, 
each colony was fragmented into 3 equal-sized 
pieces (i.e. P. versipora: 4 cm diameter; P. damicornis: 
3 × 1 cm branches) and glued onto pre-labelled plas-
tic tiles using super glue. Corals were kept for 
another 14 d at 23.5 ± 0.2°C prior to the start of the 
experiment under a reduced light intensity of ap -
proximately 120 μmol photons m−2 s−1 to aid recovery 
from fragmentation. Water motion was provided 
using submersible wave makers (JP-067, Sunsun, 
2300 l h−1). Seawater renewal rate was 1.5 l min−1, 
resulting in a turnover time of approximately 30 min 
in 50 l tanks. Light was provided using custom-
designed LED arrangements and colours (Ledzeal 
S150 Plus, 150 W). Lights were programmed to a 12 h 
light:12 h dark cycle, following a natural diurnal light 
cycle with gradual increase up to 160 μmol photons 
m−2 s−1 at noon. The experimental light levels were 
lower than those measured at the collection sites for 
P. damicornis to avoid light stress in P. versipora, 
which naturally grows in shaded areas and crevices. 
Corals were fed 3 times a week with freshly hatched 
Artemia nauplii at night. Approximately 2.5 g of 
brine shrimp eggs were hatched in seawater for 36 h, 
and the stock solution was equally distributed within 
all tanks. Pumps were turned off for 30 min to allow 
for feeding, and the remaining brine shrimp was pre-
sumed flushed out within the next 30 min after 
pumps were turned back on. 

The MHW simulations started following the second 
2 wk acclimation period on 6 January 2020 (i.e. 30 d 
after collection). One coral fragment from each par-
ent colony was randomly assigned to each of 3 tem-
perature treatments: (1) ambient control, (2) slow 
onset MHW, and (3) fast onset MHW (see details 
below), resulting in n = 8 coral parent colonies per 
species per treatment. The temperature profiles 
replicated observed MHW profiles described by 
Hobday et al. (2016). Each temperature treatment 
consisted of 3 replicate 50 l transparent, plastic flow-
through tanks. Temperature increases were done 
using glass heaters (AquaManta 300W) correspond-
ing to the simulated MHW onset; slow onset 0.5 ± 
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0.2°C d−1 and fast onset 1 ± 0.2°C d−1 (Fig. 1). Tem-
perature in each tank (n = 9) was controlled with an 
Aquatronic temperature sensor and logged every 
10 min. Temperature sensors were calibrated every 
week using a high-precision (0.01°C) thermometer 
(Fisher Scientific). 

Slow onset treatments were kept an additional 
1.5 d at the desired heat stress temperature to ensure 
that both treatments had the same DHWs at the end 
of the experiment (13 DHW for P. damicornis and 20 
DHW for P. versipora). For the first phase of the sim-
ulated MHW, temperature was increased from 23.5 ± 
0.2 to 26.5 ± 0.2°C in both heat stress treatments. To 
ensure comparability with DHWs calculated for real 
MHWs, experimental DHWs were calculated using 
1°C increases from the maximum monthly mean 
(MMM) of 23.5°C (MMM provided for the nearby 
Houtman Abrolhos Islands, approximately 60 km to 
the west, by NOAA Coral Reef Watch, Skirving et al. 
2020). However, 10 d at 26.5°C (4 DHW) proved 
insufficient to elicit changes in visual coral health 
(see Fig. 2), which may suggest that corals did not 
experience enough heat stress. Therefore, tempera-
ture was gradually increased to 28.5 ± 0.2°C (corre-
sponding to the simulated MHW onset) and main-
tained for 6 d for P. damicornis and 26 d for P. 
versipora. The longer duration for P. versipora was 

necessary to induce bleaching (see Fig. 2). In total, P. 
damicornis fragments were subjected to heat treat-
ment for 40 and 38 d and P. versipora fragments were 
subjected for 60 and 58 d for slow and fast onset 
treatments, respectively. 

2.3.  Visual coral health 

Coral health was scored once a week to visually 
assess and quantify colour loss (i.e. paling or bleach-
ing). Corals were scored on the upper surface of 
the fragments using the CoralWatch® Coral Health 
Chart, where a change of 2 units corresponds to 
 significant changes in pigment concentration (i.e. 
bleaching, Siebeck et al. 2006). 

2.4.  Photochemical efficiency of Photosystem II 

Maximum dark-adapted quantum yield (FV/FM) of 
chl a fluorescence (Schreiber et al. 1995) was mea-
sured 45 min after sunset (i.e. when the lights were 
turned off) to evaluate changes in photo-physiology 
throughout the experiment (War ner et al. 1996, Hill 
et al. 2004). All coral fragments were measured every 
2 to 3 d. Measurements were done using a mini-PAM 
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Fig. 1. Temperature regimes during the heat stress test. Shaded areas indicate the first and second ramping periods; horizontal 
dashed line: long-term maximum monthly mean (MMM) temperature at the collection site; horizontal solid line: presumed 
bleaching threshold (MMM + 1°C) and the short-term in situ collected MMM values; vertical dashed line: day the experiment 
was ended for Pocillopora damicornis. Degree heating weeks (DHW) are given at times when the experiment was ended for 

each species. Data collection times are indicated as end of the experiment for *P. damicornis, and **Plesiastrea versipora
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fluorometer (Walz) using the following settings: mea-
suring light intensity 3, saturation pulse intensity 12, 
saturation pulse width 0.8 s, gain 3, and damping 2. 
Measurements were made at a constant distance of 3 
mm from the coral tissue using a piece of clear plastic 
tubing. The same part of each fragment was mea-
sured throughout the experiment, given the fixed 
position of each coral. 

2.5.  Holobiont metabolism (P :R) 

Holobiont metabolism was measured as the ratio of 
oxygen production through photosynthesis (gross 
primary productivity, Pgross) (μmol O2 h−1 cm2) to oxy-
gen consumption through respiration (R) (μmol O2 h−1 
cm2). Pgross:R (hereafter P:R) was measured immedi-
ately following the end of heat stress (i.e. after 40 and 
60 d for P. damicornis and P. versipora, respectively). 
Six fragments per treatment (representing control, 
slow onset, and fast onset) were randomly selected 
from 6 parent colonies. Fragments from the remain-
ing 2 parent colonies were excluded due to time 
 limitations. All incubations were done at control 
 temperatures (~23°C) to avoid errors caused by the 
 differences in oxygen solubility between different 
 temperatures. This drop in temperature may have 
stressed the corals, although we consider this un -
likely given that the cooler temperatures were well 
within the seasonal temperature range and may, in 
fact, have provided relief from heat stress. Corals 
were kept under constant light intensity of 160 pho-
tons m−2 s−1 during light incubations to match the 
maximum intensity in the experimental tanks. Incu-
bations were performed between 10:00 and 14:00 h 
to avoid circadian effects of photosynthesis. All frag-
ments were dark acclimated for at least 1 h before 
dark incubations and all incubations from the same 
fragments were performed on the same day. Oxygen, 
temperature, salinity, and pressure were measured 
continuously during incubation using a Presens 
SMA-OXY4 unit (Presens) calibrated once before the 
experiments started according to the manufacturer’s 
instructions in an oxygen-free environment (i.e. 
using sodium sulphate). Corals were incubated for 60 
to 75 min, depending on the size of the coral frag-
ment, to achieve an approximately 15% change in O2 
saturation. Incubations were done in 1 l sealed, trans-
parent plastic chambers placed in a water bath to 
keep the temperature constant during incubation. 
Each incubation round included 1 control chamber 
which was used to correct for the seawater microbial 
Pgross and R. The control chamber contained a plastic 

tile and a bleached, clean coral skeleton of similar 
size to displace a roughly equal amount of water. 
Mixing in the chamber was provided with a sub-
mersible magnetic stirrer. Slow onset treatments 
were incubated for 1.5 d after the fast onset treat-
ments to ensure both treatments had reached the 
same DHW. Both rounds of incubations (i.e. light and 
dark) were completed over 3 d. Oxygen data were 
normalized to incubation volume, incubation dura-
tion, and surface area of the fragment (see Section 
2.6.3). P:R ratios were calculated as 12 h of gross P 
(= net P + R) (μmol h−1 cm−2) divided by 24 h of R 
(μmol h−1 cm−2) given the 12 h light:12 h dark cycle. 

2.6.  Sample processing 

Coral fragments were sacrificed immediately at the 
end of their respective heat stress period and pre-
served at −80°C for 4 mo. Coral tissue was removed 
from the skeletons with deionized (DI) water using 
an airbrush (P. damicornis) or Waterpik (P. versipora), 
as these were determined to be the most appropriate 
methods to suit each morphology (Schoepf et al. 
2015). 

2.6.1. Tissue biomass. A 3 to 4 ml aliquot per sam-
ple of the tissue slurry was dried at 60°C in pre-com-
busted aluminium pans to constant weight and ashed 
in a muffle furnace at 500°C for 4 h. Ash-free dry 
weight (tissue biomass) was determined as the differ-
ence between dry and ash weight (mg) and normal-
ized to surface area (mg cm−2, see Section 2.6.3). 

2.6.2. Chl a and symbiont density. The remaining 
tissue slurry was centrifuged for 10 min (3220 × g) to 
separate the animal host and symbiont fraction. The 
symbiont fraction was resuspended in DI water and 
used for measuring chl a and symbiont density. Chl a 
was extracted in 100% acetone in the dark at 4°C for 
24 h. Concentrations of chl a from each sample were 
determined spectrophotometrically using individual 
glass cuvettes following the equations of Jeffrey & 
Humphrey (1975) for dinoflagellates. Chl a concen-
trations were normalized to both surface area (μg 
cm−2) and cell density (pg cell−1). Symbiont cell den-
sity was calculated using 8 replicate counts on an 
improved Neubauer hemacytometer and standard-
ized to surface area (106 cells cm−2). 

2.6.3. Surface area. Surface area was estimated 
using the most appropriate methods suiting each 
morphology (e.g. Schoepf et al. 2015). To this end, 
the wax-dipping technique (Veal et al. 2010) was 
used for P. damicornis and the aluminium foil tech-
nique was used for P. versipora (Marsh 1970).  
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2.7.  Statistical analyses 

All statistical analyses were done using R version 
3.5.3 (R Development Core Team 2019). General-
ized linear mixed models (GLMM) were computed 
using the ‘glmer’ function from the ‘lme4’ package 
(Bates et al. 2015) to analyse the effect of heating 
rate (fixed effect with 3 levels: control, slow onset, 
fast onset) on tissue biomass, endosymbiont density, 
chl a, P :R, respiration, gross photosynthesis, and 
FV/FM measurements for each species. Models were 
built separately because each species experienced 
different durations of heat stress and DHWs. 
Tukey’s tests using Kenward-Roger degrees-of-free-
dom adjusted p-values were used to test for the 
effect of heating rate when main effects were signif-
icant, using the ‘multcomp’ package (Hothorn et al. 
2008). Parent colonies were used as random group 
intercepts but had no influence on any of the 
response variables. We selected the model with the 
error distribution that best fit the data. Different 
models were compared using Akaike’s Information 
Criterion (AIC), and a Gamma error distribution 
with a log link function was selected as it had the 
best balanced fit and parsimony. Residuals were 
visually inspected using the ‘performance’ package 
for violations of statistical assumptions (Lüdecke et 
al. 2021). Significance of fixed effects was deter-
mined using the ANOVA function of the ‘rstatix’ 
package (Kassambara 2021), which provided Analy-
sis of Deviance tables (Type III Wald chi-square 
tests). Multiple pairwise comparisons were done for 
FV/FM for the days of the experiment that had the 
same cumulative heat stress exposure (13 DHW for 
P. damicornis and 20 DHW for P. versipora). This 
corresponded to the Day 40 value for slow onset 
with Day 38 value for fast onset for P. damicornis, 
and the Day 60 value for slow onset with Day 58 
value for fast onset for P. versipora. 

3.  RESULTS 

3.1.  Visual coral health 

All fragments appeared visibly healthy with full tis-
sue cover, no discolouration, and no signs of disease 
at the start of the experiment, and control fragments 
remained visibly healthy throughout the experiment. 
Complete mortality of the tissue surface only oc -
curred in heat-stressed fragments belonging to 1 
Pocillopora damicornis parent colony. At the end of 
the experiment (i.e. on Days 40 and 60 for P. dami -

cornis and Plesiastrea versipora, respectively), heat-
stressed fragments of both species were visibly paler 
(health score 2 ± 1; mean ± SD, n = 8 per species and 
treatment) than the controls (health score 4 ± 1; 
n = 8). 

3.2.  Photochemical efficiency of photosystem II 

FV/FM remained high and stable (P. damicornis 0.69 
± 0.05; P. versipora 0.67 ± 0.07; n = 8) within control 
fragments over the course of the experiment (Fig. 2). 
Heated P. versipora fragments maintained FV/FM val-
ues similar to their control treatments for 20 d longer 
than P. damicornis fragments, before experiencing a 
similar decrease (Fig. 2B). 

Heating had a significant negative effect on FV/FM 
in both species. For P. damicornis, heat stress treat-
ments had significantly lower (by 20%) FV/FM values 
at the end of the experiment compared to their con-
trols (Tables 1 & 2) (Days 40 and 38 for slow and fast 
onset, respectively). However, there were no differ-
ences in reduction of FV/FM between slow and fast 
onset treatments (Fig. 2A). For P. versipora, declines 
in fast onset treatment corals were greater than in 
slow onset treatment corals, and only fast onset treat-
ments were significantly different to the control 
treatments (12% lower) (p = 0.007) at the end of the 
experiment (Days 60 and 58 for slow and fast onset, 
respectively) (Fig. 2B, Table 2). 

3.3.  Holobiont metabolism (P :R) 

Heating rate had a significant effect on P:R at the 
end of the experiment in P. damicornis (p < 0.001) 
(Table 1), but not P. versipora (Fig. 3C,F, Table 2). 
Fast heating rate resulted in greater declines in P:R 
than slow heating rate in P. damicornis, with frag-
ments experiencing a 65% decrease compared to the 
controls and the loss of net autotrophy (P:R < 1) at the 
end of their heating treatment and slow onset frag-
ments experiencing 26% decrease. No significant 
change was observed in the rate of gross photosyn-
thesis (Pgross) for either species at the time of incuba-
tion (Tables 1 & 2). Similarly, heating rate had no sig-
nificant impact on the respiration (R) of P. versipora; 
however, it had a significant effect on P. damicornis, 
with fast onset corals having significantly higher res-
piration rates (0.5 ± 0.2 μmol h−1 cm−2, mean ± SE) 
than both control (0.2 μmol ± 0.1 h−1 cm−2) and slow 
onset corals (0.2 μmol ± 0.1 h−1 cm−2) (Fig. 3B, 
Table 1). 

38



Sahin et al.: Heating rate explains coral species-specific bleaching severity 39

Fig. 2. Photochemical efficiency 
(FV/FM) of (A) Pocillopora dami-
cornis and (B) Plesiastrea versi-
pora (mean ± SE, n = 8). Lower-
case letters indicate results from 
  Tukey-adjusted multiple pair-
wise comparisons when the 
effect of heating rate was signif-
icant. Shading indicates the  

ramping periods

Parameter                 Fixed effect (Heating)          χ2             df                p               Post-hoc (Heating rate)       Tukey group 
 
FV/FM                                    Heating                 13.442          2            <0.001                      Control                                a 
                                                                                                                                                Slow onset                          b 
                                                                                                                                                Fast onset                           b 

P:R                                        Heating                 14.682          2            <0.001                      Control                                a 
                                                                                                                                                Slow onset                          b 
                                                                                                                                                Fast onset                          ab 

Pgross (μmol h−1 cm−2)           Heating                   1.63            2              0.438                      –                                             

R (μmol h−1 cm−2)                 Heating                   9.531          2              0.008                      Control                                b 
                                                                                                                                                Slow onset                          a 
                                                                                                                                                Fast onset                           b 

Chl a area (μg cm−2)            Heating                 56.057          2            <0.001                      Control                                a 
                                                                                                                                                Slow onset                          b 
                                                                                                                                                Fast onset                           b 

Chl a cell (pg cell−1)             Heating                 27.91             2            <0.001                      Control                                b 
                                                                                                                                                Slow onset                          a 
                                                                                                                                                Fast onset                          ab 

Symbiont density                 Heating                 99.085          2            <0.001                      Control                                a 
(106 cells cm−2)                                                                                                                        Slow onset                          b 
                                                                                                                                                Fast onset                           b 

Tissue biomass                    Heating                 32.656          2            <0.001                      Control                                a 
(mg cm−2)                                                                                                                                 Slow onset                          b 
                                                                                                                                                Fast onset                           b 

Table 1. Results from generalized linear mixed models for Pocillopora damicornis to test for the effect of heating (fixed effect) 
and heating rate (indicated by Tukey letter groupings) on FV/FM at the final time point (i.e. Days 40 and 38 for slow and fast 
onset treatments, respectively), photosynthesis (Pgross) to respiration ratios (P:R), Pgross, R, chl a per area, chl a per cell, symbiont  

density, and tissue biomass. p-values ≤ 0.05 are given in bold
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3.4.  Chl a, symbiont density, and tissue biomass 

Chl a per area decreased significantly (85 to 87%) as 
a consequence of heat stress in P. damicornis, but 
there was no significant difference between the slow 
and fast onset treatments (Fig. 4A, Table 1). However, 
heating rate had a significant effect when chl a was 
normalized per cell (Fig. 4B) rather than per area. In 
fact, we found significantly higher chl a per cell in 
corals in fast onset treatments than corals in either 
slow onset (p = 0.018) or control treatments (p < 0.001). 
This was associated with significant declines in sym-
biont densities (87 to 90%) (Fig. 4C) in both slow and 
fast onset treatments compared to the control treat-
ments, which were independent of heating rate. 

Heating also had a significant negative effect on 
symbiont-related parameters in P. versipora corals, 
where chl a per area (Fig. 4E) and symbiont density 
(Fig. 4G) were both significantly lower than in the 
control (63 and 46%, respectively) (Table 2), but 
heating rate had no significant effect. However, 
unlike in P. damicornis, we found no difference 
between slow and fast onset treatments when chl a 
was normalized per cell rather than area, although 
heated corals in both treatments had significantly 
lower values (−30%) than the control. At the end of 
the heating period, heated P. damicornis had 36% 
less biomass (Fig. 4D) than the controls; however, 
heating rate had no significant effect. In contrast, 
heating rate had no significant impact on P. versipora 
tissue biomass (Fig. 4H, Table 2) 

4.  DISCUSSION 

The present study compared the responses of 2 
coral species, representing different growth forms, to 
2 ecologically relevant MHW scenarios with the 
same cumulative heat exposure but different heating 
rates for each species, testing the hypothesis that 
heating rate can play an important role in bleaching 
responses. Consistent with other studies that have 
shown detrimental effects of rapid heating on 
branching Acropora corals (Middlebrook et al. 2010, 
Martell & Zimmerman 2021), our results showed sen-
sitivity to heating rates but these responses were 
species-specific. 

Species-specific responses to heating rate were 
most evident in P:R ratios, with encrusting Plesias-
trea versipora not impacted by either MHW simula-
tion, while rapidly progressing MHW conditions had 
detrimental effects on branching Pocillopora dami-
cornis, which ultimately resulted in the loss of net 
autotrophy (i.e. P:R < 1). In contrast, under slowly 
progressing MHW conditions, P. damicornis frag-
ments were able to maintain net autotrophy, al -
though the lowered P:R ratios observed here may 
have led to partial depletion of energy reserves. Pho-
tosynthesis (Pgross) rates under rapidly evolving MHW 
conditions remained relatively comparable to control 
treatments at the end of the experiment, which might 
be explained by the fact that photosynthesis rates 
might be independent of total available chl a and 
inversely correlated with symbiont density (Dubin-

40

Parameter                 Fixed effect (Heating)          χ2             df                p               Post-hoc (Heating rate)       Tukey group 
 
FV/FM                                    Heating                  9.2417         2            <0.001                      Control                                a 
                                                                                                                                                Slow onset                         ab 
                                                                                                                                                Fast onset                            b 
P:R                                        Heating                  2.096           2              0.351                      –                                             
Pgross (μmol h−1 cm−2)           Heating                  3.176           2              0.205                      –                                             
R (μmol h−1 cm−2)                 Heating                  3.148           2              0.207                      –                                             
Chl a area (μg cm−2)            Heating                29.461            2            <0.001                      Control                                a 
                                                                                                                                                Slow onset                          b 
                                                                                                                                                Fast onset                            b 
Chl a cell (pg cell−1)             Heating                22.837            2            <0.001                      Control                                a 
                                                                                                                                                Slow onset                          b 
                                                                                                                                                Fast onset                            b 
Symbiont density                Heating                11.5                2              0.003                      Control                                a 
(106 cells cm−2)                                                                                                                        Slow onset                          b 
                                                                                                                                                Fast onset                            b 
Tissue biomass                    Heating                  3.558           2              0.169                      –                                             
(mg cm−2) 

Table 2. Results from generalized linear mixed models for Plesiastrea versipora to test for the effect of heating (fixed effect) 
and heating rate. Final time points are Days 60 and 58 for slow and fast onset treatments, respectively. See Table 1 for details
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sky et al. 1990, Rodrigues & Grottoli 2007). There-
fore, the significant change in P:R ratios of rapidly 
heated P. damicornis corals appears to be driven by 
the significant increase in respiration, which has also 
been observed in several other studies (Coles & Jok-
iel 1977, Hoogenboom et al. 2010, Baker et al. 2018) 
and might be one of the key mechanisms to explain 
susceptibility (e.g. Loya et al. 2001) of this species to 
rapid onset MHWs. 

Additionally, our study showed that faster heating 
rate had a negative effect on photochemical effi-
ciency, as highlighted by the greater declines in 
rapidly heated P. versipora compared to the slowly 
heated treatments. This finding is consistent with the 
previous studies on the negative effects of rapid 
heating rates on branching Acropora corals (Middle-

brook et al. 2010, Martell & Zimmerman 2021). A 
similar response might have been expected from 
rapidly heated P. damicornis fragments, especially 
considering the significant reductions we observed 
in holobiont P:R ratios. However, as this species is 
generally sensitive to heating (i.e. Marshall & Baird 
2000, Loya et al. 2001), it is likely that 0.5 and 1°C d−1 
may have both been too rapid and/or similar to each 
other to allow a significant change for this species to 
be observed. In general, the fast onset treatment 
corals showed earlier declines in FV/FM than the slow 
onset treatments in both species, even though at the 
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Fig. 3. (A,D) Gross photosynthesis (Pgross), (B,E) respiration 
(R), and (C,F) photosynthesis to respiration (P:R) ratios 
for (A,B,C) Pocillopora damicornis and (D,E,F) Plesiastrea 
versipora at the end of their respective heat treatments 
(mean ± SE). (C,F) Dashed line: loss of net heterotrophy (P:R 
< 1). Lowercase letters indicate results from Tukey-adjusted 
 multiple pairwise comparisons when the effect of treat- 

ment was significant

Fig. 4. Chl a normalized to (A,E) surface area and (B,F) sym-
biont cells, (C,G) symbiont density, and (D,H) tissue biomass 
of (A–D) Pocillopora damicornis and (E–H) Plesiastrea versi-
pora at the end of their respective heat treatments (mean ± 
SE). Lowercase letters indicate results from Tukey-adjusted 
multiple pairwise comparisons when the effect of treatment 
was significant. Note the different scaling for the 2 species  

for all parameters
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end of the experiment they experienced the same 
overall declines in magnitude. Lack of a strong 
change in the FV/FM may also be due to the nature of 
the experimental design used in this study. We used 
more ecologically relevant heating rates (0.5 and 1°C 
d−1) compared to the acute heat stress assays that are 
most often used (reviewed by McLachlan et al. 2020). 
As such, heating rate effects may have revealed 
some differences which could be difficult to detect in 
a short-term stress test. This further highlights the 
importance of employing more longer-term, ecologi-
cally relevant experiments. 

It is further important to highlight that while the 
maximum light levels in the experiment were similar 
to natural levels at the collection site for P. versipora, 
they were somewhat lower than the maximum light 
levels that P. damicornis is naturally exposed to (i.e. 
160 vs. maximum 290 photons m−2 s−1, respectively). 
This could have contributed to the observed differ-
ences in bleaching sensitivity between species. How-
ever, the use of low light levels can be informative to 
understand how much heat stress is required to trig-
ger thermally induced bleaching (Anthony et al. 
2007, Middlebrook et al. 2010). P. damicornis was 
more sensitive to heat stress compared to P. versi-
pora, indicated by the ability to maintain high and 
stable FV/FM 20 d longer during the experiment. The 
sustained photosynthetic response of P. versipora rel-
ative to P. damicornis suggests species-specific dif-
ferences in tolerance of sustained heat stress, which 
is consistent with previous studies on heat tolerance 
within this region (Tuckett et al. 2017). It is important 
to note, however, that these different responses may 
also have been caused by the different types of Sym-
biodiniaceae hosted by these coral species in West-
ern Australia (Breviolum and Cladocopium in P. ver-
sipora and P. damicornis, respectively) (Silverstein et 
al. 2011, LaJeunesse et al. 2018). For instance, while 
some symbiont genera and/or species are known to 
be susceptible to higher temperatures, others are 
exceptionally resilient (Hoadley et al. 2015, Hoogen-
boom et al. 2017). Nevertheless, higher heat toler-
ance could be a critical feature for P. versipora to 
adapt to the gradual increases in ocean temperature, 
which could promote resistance and recovery to 
future MHW events. 

Our results did not show an effect of heating rate 
on colony biomass, which may be an important indi-
cator for coral health and bleaching sensitivity 
(Thornhill et al. 2011, Grottoli et al. 2014, but see 
Wall et al. 2019). During bleaching where severe 
losses of symbionts take place, corals depend on 
alternative strategies to meet their daily metabolic 

energy requirements (Muscatine et al. 1981). Cata -
bolism of energy reserves (i.e. lipid, protein, and car-
bohydrate levels) and heterotrophy are two such 
strategies (Fitt et al. 2000, Grottoli et al. 2006, 
Rodrigues & Grottoli 2007). Species that are able to 
increase their heterotrophic input of fixed carbon 
under heat stress are thought to have an ecological 
advantage in survival compared to species that 
deplete their re stricted source of energy (i.e. Grottoli 
et al. 2006, Conti-Jerpe et al. 2020). P. versipora was 
able to maintain its tissue biomass under both heat-
ing rates. This could potentially indicate greater 
capacity for heterotrophic plasticity and may have 
provided bleaching resilience (Anthony et al. 2009). 
Alternatively, this could also be the result of this 
species’ ability to maintain P:R ratios and net auto -
trophy under heat stress. Conversely, P. damicornis 
experienced a significant decline in tissue biomass 
which may be explained by the catabolism of stored 
energy reserves (Porter et al. 1989, Rodrigues & 
Grottoli 2007). A reduction in tissue biomass under 
ocean acidification, another climate change stressor, 
has also been shown for Pocillopora acuta, a species 
closely related to P. damicornis (Wall et al. 2017, but 
see Schoepf et al. 2013). Colonies with high tissue 
biomass are known to be less susceptible when 
exposed to thermal stress compared to those with low 
tissue biomass (Fitt et al. 2000, Loya et al. 2001, 
Thornhill et al. 2011). As an encrusting coral species, 
the tissue biomass in the control treatment for P. ver-
sipora was 3 times higher than in the control treat-
ment for P. damicornis, which might have provided 
protection from light and more effective self-shading 
of the symbiont cells (Hoegh-Guldberg 1999, Cun-
ning & Baker 2014). This finding is consistent with an 
ecological advantage provided by the differences in 
surface area to volume ratios and thicker tissues in 
massive and encrusting species compared to branch-
ing colonies (i.e. Loya et al. 2001). 

The differences in heat tolerance and sensitivity to 
heating rate between 2 common coral species may 
have broader implications for the reef community. 
This might especially be the case in tropical−temper-
ate transition zones where species are undergoing 
major redistributions (Vergés et al. 2014, Pecl et al. 
2017). While many tropical coral reefs and temperate 
kelp forests continue to degrade and homogenize 
with warming oceans (Alvarez-Filip et al. 2009, 
Krumhansl et al. 2016, Wernberg et al. 2016, Perry & 
Alvarez-Filip 2019), the tropical−temperate transi-
tion zones are becoming ‘tropicalized’ with pole-
ward-moving tropically affiliated corals (Precht & 
Aronson 2004: Acropora spp.; Thomson 2010: Gonio-
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pora spp.; Yamano et al. 2011: Acropora spp., Pavona 
spp.; Baird et al. 2012: Acropora spp.). More oppor-
tunistic corals are increasing in abundance, enabled 
by competitive release from historic habitats. This 
has been observed in Western Australia as a result of 
the 2011 MHW, which resulted in major loss of 
canopy-forming kelps and the indirect increase in 
coral abundance (Wernberg et al. 2016, Tuckett et al. 
2017). However, the structural complexity and bio -
diversity which might be supported by novel coral 
assemblages will ultimately depend on their resil -
ience to future warming events (Vergés et al. 2019). 
For instance, in the tropical−temperate transition 
zone in Western Australia, P. versipora has shown 
high heat tolerance and survival under an extreme 
MHW (i.e. 16 DHW), particularly when compared to 
other locally abundant species (i.e. P. damicornis) 
(Tuckett et al. 2017). This is consistent with our find-
ings of a sharp decline in FV/FM when DHW reached 
18 for P. damicornis, yet P. versipora re quired an 
additional 20 d to show similar declines. While our 
study identifies some of the mechanisms behind this 
outcome, it also suggests that, under rapidly evolving 
MHWs, these novel coral communities might shift 
towards less complex morphologies (i.e. dominated 
by the encrusting P. versipora). Therefore, with the 
projected increases in frequency and intensity of 
MHWs (Oliver et al. 2019), the functional attributes 
that can be supported by these novel coral communi-
ties (i.e. tropicalized coral assemblages) (Vergés et 
al. 2019) might be lower than estimated. 

Overall, our results confirm that in addition to 
Acropora species, corals from other genera are also 
susceptible to heating profiles of MHWs, such as the 
heating rate. Our experiment as a mid-term, gradual 
heat-stress onset design also allows comparison with 
many natural bleaching events (McLachlan et al. 
2020, Grottoli et al. 2021). Although the responses 
were species-specific, the differences in heating rate 
appear to be consistent with the idea that massive 
and encrusting corals may be less sensitive to faster 
onset in heating than branching corals. Additionally, 
highlighted by the loss of net autotrophy, these corals 
may rely more upon heterotrophic feeding to over-
come this disadvantage. Understanding species-
 specific sensitivities to heating rates in combination 
with existing metrics (i.e. DHW) is likely to enable us 
to make better predictions on impacts of MHW 
 generally, but also particularly for species-specific 
responses. These subtle changes (i.e. heating rates) 
can influence responses of some coral species more 
than others, which can have consequences for future 
community assemblages and reef functions. 

Data availability. The data and R code supporting the find-
ings of this study are openly available in https://github.
com/defneasahin/Heating_rates. 
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